
International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

22

Cardinal Neighbor Quadtree: a New Quadtree-based
Structure for Constant-Time Neighbor Finding

Safwan W. Qasem

Computer Science Department, King Saud
University

P.O. Box 51178
Riyadh 11543, Kingdom of Saudi Arabia

Ameur A. Touir
Computer Science Department, King Saud

University
P.O. Box 51178

Riyadh 11543, Kingdom of Saudi Arabia

ABSTRACT
This paper presents a new quadtree structure: Cardinal

Neighbor Quadtrees (CN-Quadtree), that allows finding

neighbor quadrants in constant time regardless of their

sizes. Gunter Schrack’s solution [1] was able to compute

the location code of equal size neighbors in constant-time

without guaranteeing their existence. The structure

proposed by Aizawa [3][2][3]was able to determine the

existence of equal or greater size neighbors and compute

their location in constant time, to which the access-time

complexity should be added. The proposed structure, the

Cardinal Neighbor Quadtree, a pointer based data

structure, can determine the existence, and access a

smaller, equal or greater size neighbor in constant-time

O(1). The time complexity reduction is obtained through

the addition of only four pointers per leaf node in the

quadtree.

General Terms

Spatial data structures; Image coding; spatial access

methods; quadtree;

Keywords

CN-Quadrees; Image coding , neighbor finding.

1. INTRODUCTION
Quadtrees are hierarchical spatial data structures widely

used for spatial representation, originally introduced by

Finkel et al. in [4]. It is a quaternary tree where each

node represents a quadrant in the space. The root

represents the whole space, which is the quadrant that

encloses the space to be processed. The root represents a

quadrant of 2nx2n pixels. Several variants of quadtrees

have been proposed in the literature to handle different

types of data, such as PM Quadtrees, used to manipulate

lines and polylines [5], PR Quadtrees [4][2], used to

manipulate points, and region Quadtrees [6] or simply

quadtrees used to manipulate 2D areas, etc. Since then

numerous research focused on Quadtree manipulation and

neighbor finding were published [7], [8], [9].

Our work will focus on region Quadtrees, named

quadtrees hereafter.

A quadtree represents squared 2D area, which may be an

image, an area where a robot can navigate, a map, etc. A

quadrant is said to be homogeneous if it contains only

one type of information, in which case it is represented as

a leaf node in the quadtree. If it contains more than one

type of information, the quadrant is said to be

heterogeneous and assigned the gray color. It is then

subdivided into four equal sized sub-quadrants. The

subdivision will stop when all leaves of the quadtree

represent homogeneous quadrants. For binary images a

leaf node represents a quadrant that is either black or

white (

Fig. 1).

Originally, quadtree was defined as a pointer-based

structure. Gargantini [10], proposed another way of

coding the quadrants, allowing the structure to be

pointerless. Each quadrant has its own location code. It is

called talk about a linear quadtree. The location code of a

quadrant is built during the subdivision of the quadtree. It

consisted on adding to each new sub-quadrant 2 digits in

base 2 that represented its relative position in its

immediate parent quadrant. 00, 01, 10 and 11, were used

to code the positions NW, NE, SW, and SE.

Fig. 1: A space decomposition and its quadtree

representation and location codes of black leaf nodes

At the end of the subdivision, each leaf node has a

sequence of digits that represent its position by a

succession of subdivisions of the original root quadrant.

The resulting code was an interleaved coordinate where

the bits successively denoted the y and x coordinates. In a

pair of bits, the first one indicated the northern child (0)

or the southern child (1). Similarly, the second bit

denoted the western child (0) or the eastern child (1).

Using this coding 00 indicated the Northwestern child,

01, Northeastern child, 10, the Southwestern child and 11

the Southeastern child (Fig. 2).

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

23

Fig. 2: Binary location code

Quadtrees are used in various applications such as the

spatial indexing, GIS, robot path finding, collision

detection, and gaming. In all those applications, neighbor

finding is one of the fundamental operations Samet [14].

Extensive neighbor finding is required for surface area

computation and region filling which are used in

computer graphics, boundary determination which is

essential for obstacle avoidance in robot navigation.

Klinger [15] proposed a method of moving between

adjacent quadrants. Their method requires complex

computation rather than following links especially when

quadrant are not sibling as well as when they are of

different sizes. In the contrary, Hunter et al. [18]0 used

explicit links between the node and its adjacent equal size

neighbors in the four directions through the use of

adjacent trees and the chasing ropes. A rope is a link

between adjacent nodes of equal size where at least one

the nodes is a leaf node. Thus, not all adjacent quadrants

have ropes. In case of absence of a rope for a given node,

the method requires ascending the tree until finding a

parent having a rope which helps chasing the desired

neighbor. The authors improved the neighbor finding

algorithm by introducing a ‘net’ which links all leaf

nodes to their neighbors regardless of their size, which

adds a huge storage requirement and increases update

complexity for such a structure.

Samet [11] proposed a neighbor finding technique in

quadtrees. To find the neighbor in a certain direction, the

algorithm ascends in the tree until finding a common

parent between the node at hand and its neighbors in the

given direction, then navigating down the tree to find the

adjacent node. Using this algorithm, finding neighbors in

a quadtree takes O(n) computational time for the worst

case, where n is the number of subdivision of the

quadtree (the height of the quadtree).

Using the location code principle, Schrack [1] proposed a

constant-time algorithm to find neighbors of equal size in

linear quadtrees, using algebraic operations. He

introduced an addition operator to add two binary

interleaved location codes, and defined translation vector

patterns to move from a quadrant to any of its equal-sized

neighbors.

For a given direction i, to determine the equal-sized

neighbor quadrant m of a quadrant n, Schrack proposed

the following equation:

𝑚𝑞 = 𝑛𝑞⨁𝑞 ∆𝑛𝑖 ≪ 2 𝑟 − 𝑙 , 𝑖 = 0, 1,… ,7 Where:

r is the resolution of the space in question which is

2𝑟 × 2𝑟 pixels

𝑚𝑞 is the location code of the quadrant m of size :

2𝑟−𝑙 × 2𝑟−𝑙 pixels where l<r

𝑛𝑞 is the location code of the quadrant n: 2𝑟−𝑙 ×

2𝑟−𝑙 pixels

 ∆𝑛𝑖 is a predefined translation vector in the

direction i. For r = 3, the translation vectors are

defined as follows:

∆𝑛0 = 000001,

∆𝑛1 = 000011,

∆𝑛2 = 000010,

∆𝑛3 = 000111, 𝑒𝑡𝑐.
 ≪ is the shift left bits operator

 ⨁𝑞 is the addition operator of binary quadrant

location code

This finds the code of equal size neighbors in constant

time O(1), but requires O(r) computational time to find a

different size neighbor’s location-code, where r is the

level difference between the two neighbors. To access the

data structure corresponding to the computed location

code, the algorithm requires the tree traversal cost. Since

the neighbor location code is computed based on a

translation vector, the algorithm is unable to determine

the existence of an equal-size neighbor.

Vörös [8] used the same principle to find smaller sized

neighbors by geometric translations in the four directions.

His proposed algorithm while able to compute the

location-codes of smaller sized neighbors is unable to tell

if these neighbors existed or not. An extra tree traversal is

still needed to check the existence of the computed

nodes.

Yoder [16] extended the computation of same size

neighbors location codes from quadtrees (2D) to octrees

(3D), and hyper octrees structures.

Aizawa et al. [2][3] proposed an improvement to

Schrack’s algorithm to solve the existence problem of an

equal-size neighbor. They used the translation vectors and

the operator proposed by Schrack in addition to a new

data structure that keeps the level differences between

each quadrant and its adjacent neighbors in the four

directions.

Fig. 3: Example of Level difference between adjacent

quadrants [1]

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

24

The proposed algorithm builds the data-structure and

computes the level differences during the quadtree

subdivision (Fig. 3). Using this structure, Aizawa et al.

[3] algorithm is able to compute for a quadrant, the

geometric location of adjacent neighbors of equal or

greater size in constant time, but its access requires a

traversal the tree.

Kadowaki et al. [12], proposed a graph based quadtree

structure that shows a better efficiency in neighbor

finding compared to classical Samet [13] neighbor

finding algorithm. This algorithm does not present a

predictable behavior as, in some cases, it provides

constant-time access to some smaller size neighbors, but

needs further processing in other cases. In addition,

unlike Schrack [1] and Aizawa [3], the proposed

approach does not guarantee a constant-time access to

equal or greater size neighbors.

Moreover, once the location code of a neighbor quadrant

is computed using Schrack’s formula, this algorithm is

still unable to access the neighbors’ data structure and

needs to traverse the tree using this location code to find

the neighbor quadrant’s data structure.

This paper proposes a new pointer-based quadtree data

structure, named CN-Quadtree, and a neighbor-finding

algorithm that allow retrieving neighbor quadrants in

constant time, whether they are of greater, equal or

smaller size. The proposed data structure will hold a

minimal set of data that allows a direct access to all

neighbors of any given quadrant in the four cardinal

directions, North, East, South, and West.

In section 2, the new data structure is presented; the

algorithm of building the new data structure during the

quadtree subdivision is detailed. In section 3, the

neighbor retrieval algorithm is presented. The last section

is dedicated to a discussion of the proposed structures and

future work.

2. NEIGHBOR-FINDING STRATEGY
The sub-section2 2.1 below, starts by defining the

Cardinal Neighbor Quadtree structure; some definitions

are formalized and notations introduced in sub-section

2.2. The last sub-section 2.3 explains the different steps

of building the Cardinal Neighbor Quadtree.

2.1. CN-Quadtree structure
The new data structure called Cardinal Neighbor

Quadtree (CN-Quadtree), is a pointer-based quadtree

structure. Each node N of the CN-Quadtree holds four

references CNi to an adjacent neighbor quadrant. Each

CNi is located in the side i of the quadrant N and is able

to identify all the other neighbors located in the same

side, where 𝑖 ∈ 0, 1 ,2, 3 , and 0, 1, 2, 3 represent

respectively the directions West, North, East and South.

These particular neighbors are called Cardinal Neighbors

of the quadrant. Fig. 4 shows a representation of the CN

quadrant.

Naturally if the neighbor CNi of a quadrant is of greater

or equal size, then CNi will be the unique neighbor in the

side i. Otherwise, it will be the first neighbor, that will be

used to determine all the quadrant’s remaining neighbors

in that side. The first neighbor (called Cardinal neighbor)

will be defined as follows:

 The Western cardinal neighbor is the top-most

neighbor node among the western neighbors, noted

CN0.

 The North cardinal neighbor is the left-most

neighbor node among the northern neighbors, noted

CN1.

 The Eastern cardinal neighbor is the bottom-most

neighbor node among the eastern neighbors, noted

CN2.

 The Southern cardinal neighbor is the right-most

neighbor node among the southern neighbors, noted

CN3.

Each node is represented using the data structure in (Fig.

5)

Fig. 4: Each Cardinal Neighbor is used to access all

the neighbors in its side

Attribute LocationCode is a quaternary code computed

during subdivision where NW, NE, SW, SE sub-quadrants

are labeled 0, 1, 2, and 3 respectively. Two binary digits

are added at each level of subdivision.

Location_Code
𝑆𝑖𝑧𝑒
𝑇𝑦𝑝𝑒 = 𝑊𝐻𝐼𝑇𝐸 | 𝐵𝐿𝐴𝐶𝐾 | 𝐺𝑅𝐴𝑌
𝑃𝑎𝑟𝑒𝑛𝑡_𝑁𝑜𝑑𝑒

 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑁𝑜𝑑𝑒𝑠 = 𝐶ℎ[𝑁𝑊],𝐶ℎ[𝑁𝐸],𝐶ℎ[𝑆𝑊],𝐶ℎ[𝑆𝐸]

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 = 𝐶𝑁0,𝐶𝑁1,𝐶𝑁2,𝐶𝑁3,

Fig. 5: CN-Quadtree node data structure

The attribute Size represents the length of one side of the

quadrant in pixels, the attribute Type can be one of

BLACK, WHITE or GRAY; the attribute Parent_Node is

a reference to the quadrant’s parent node. If the node is of

type GRAY, then the attribute Children_Nodes holds the

four quadrant’s children. The attribute

Cardinal_Neighbors holds references to the quadrant’s

four Cardinal Neighbors.

2.2. Definitions and notations
This section presents the definition of some functions and

operators on the CN-Quadtree that will be used later to

compute the cardinal neighbors of each node.

The following functions are defined on the CN- Quadtree

data structure:

 𝜌 𝐷 returns the immediate parent of the node D.

The notation 𝜌2 𝐷 denotes the parent of the parent

of D. 𝜌0 𝐷 = 𝐷.

 𝑆𝑖𝑧𝑒 𝐷 returns the side length of node N in pixels.

 𝜑𝑖 𝐷 returns the cardinal Neighbor of node D in

direction i, for 𝑖 ∈ 0, 1 ,2, 3 where 0,1,2,3

represent respectively the directions West, North,

East and South. For example, in Fig. 8.d,

𝜑0 #12 gives the node #031.

 𝜑𝑖𝑗 𝐷 represents the Cardinal Neighbor in the

direction i of the Cardinal Neighbor in direction j of

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

25

the Node D. 𝜑𝑖𝑗 𝐷 = 𝜑𝑖 𝜑𝑗 𝐷 . For example, in

Fig. 8.d, 𝜑3 𝜑0 #12 = 𝜑30 #12 = #033.

 𝜑𝑖 𝜑𝑖 𝐷 will be noted as 𝜑𝑖
2 𝐷 . This represents

the Cardinal Neighbor in the direction i of the

Cardinal Neighbor in direction i of the Node D for

𝑖 ∈ 0, 1 ,2, 3 where 0,1,2,3 represent respectively

the directions West, North, East and South and

where 𝜑𝑖
0 𝐷 = 𝐷. 𝜑𝑖

2 𝐷 = 𝜑𝑖 𝜑𝑖 𝐷

In Fig. 8.d, 𝜑3 𝜑3 #011 = 𝜑3
2 #011 = #031, and

𝜑3
0 #011 = #011.

2.3. Building the CN-Quadtree structure
To represent an area, the CN-Quadtree is progressively

populated during the subdivision process of the

represented environment. CN-Quadtree is built by

applying recursively the following three major steps:

1. Decomposing the gray quadrant and updating

the parent node following the Z-order traversal.

2. Updating each new four children with their

respective Cardinal Neighbors

3. Updating all neighbors accordingly.

2.3.1. Step1: Decomposing the gray quadrant

and updating the parent node
The decomposition starts by identifying the first quadrant

of type GRAY, decomposing it into four sub-quadrants.

The sub-quadrants are added immediately after their

parent. Each sub-quadrant first inherits its parent external

neighbors then updates the internal neighbors,

represented with arrows as shown in Fig. 6.

For example, the neighbor nodes of the NW sub-quadrant

are updated as follows:

CN0 = inherited; CN1= inherited; CN2 = NE sub-

quadrant; and for CN3 = SW sub-quadrant.

 Fig. 6: Updating Cardinal Neighbors on subdivision

Considering the root quadrant R of size 64x64, it will be

represented as follows: {#, 64, GRAY, #, {#, #, #, #}, {#,

#, #, #}}

On subdivision of the root quadrant R, the four sub-

quadrants are added to the quadtree as follows:

 R.Ch[NW] ={0, 32, WHITE, R, {#, #, #, #}, {#, #,

1, 2}}

 R.Ch[NE] ={1, 32, GRAY, R, {#, #, #, #}, {0, #,

#, 3}}

 R.Ch[SW] ={2, 32, GRAY, R, {#, #, #, #}, {#, 0,

3, #}}

 R.Ch[SE] ={3, 32, GRAY, R, {#, #, #, #}, {2, 1, #,

#}}

The sub-quadrant’s size is computed by diving the parent

node’s size by 2.

After finishing decomposition, the parent node is updated

to refer to its sub-quadrants:

 R= {#, 64, GRAY, #, {0, 1, 2, 3}, {#, #, #, #}}

2.3.2. Step2: Updating the new children

Cardinal Neighbors
The structure of the Quadtree offers interesting

characteristics that make easy the use of parents’ cardinal

neighbors to identify the children’s.

On decomposition, the sub-quadrants have been assigned

their parent’s Cardinal Neighbors on their external

borders. Some of the sub-quadrants cardinal neighbors

have to be updated to reflect the effective neighbor of the

child quadrant rather than its parents’.

The western and northern cardinal neighbors of the parent

remain valid for the NW child, while the eastern and

southern cardinal neighbors of the parent remain valid for

the SE child (Fig. 6). Thus, no change needs to be

carried out in these cases. This is not the case for the NE

and SW sub-quadrants as their Cardinal Neighbors may

be different.

Distinction is made between two cases:

 Parent Cardinal Neighbor size is greater or

equal to parent quadrant’s size

 Parent Cardinal Neighbor size is smaller than

parent quadrant’s size

In the first case, no update is needed as the same Cardinal

Neighbor applies for the parent and the child quadrants.

In the second case, the child’s Cardinal Neighbor has to

be updated. The case of NE and SW children are

explained respectively in the following sub-sections. The

section 2.3.2.2, explains how to use the parent Cardinal

Neighbors to identify the children ones.

2.3.2.1. Updating Cardinal Neighbors of NE

sub-Quadrant
The Fig. 7 shows step by step how the NE sub-Quadrant’s

Northern Cardinal Neighbor is updated. The NE new sub-

Quadrant [#21] first inherits its parent cardinal neighbors

during decomposition (Fig. 7.b), which is [#022] while

the correct cardinal neighbor is [#03]. Thus, the new

north cardinal neighbor [#21].CN1 has to be updated.

This is done through a horizontal traversal of the northern

neighbors from west to east (Fig. 7.c), by repeating the

operation #21 .𝐶𝑁1 𝜑2 𝜑1 #21 until reaching the

first quadrant that is a direct neighbor of the considered

quadrant [#21]. In this case #03 (Fig. 7.d). The value of

𝜑1 #21 has changed progressively as follows:

Iteration 𝝋𝟏 #𝟐𝟏
0 (initial value) [#022]

1 [#023]

2 [#03]

CN0

CN2

CN3

NW NE

SW SE

CN0

CN1

CN2

CN3

CN1

11

5

9

7

11
9 10

12

21

43

5

7 8

#
#

7
3

4
#

1
#

7
3

#
#

11
4

5
1

6

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

26

(a)

(b)

(c)

(d)

Fig. 7: Updating the NE sub-quadrant's Cardinal

Neighbors

2.3.2.2. Methodology of identifying the new

Cardinal Neighbors
A very simple method is used to identify the new cardinal

neighbor and stop the horizontal traversal. One can notice

that after a node decomposition, the two northern child-

nodes have the same northern cardinal neighbor if their

parent’s northern cardinal neighbor is of equal or greater

size than the parent node (eq. 1).

Considering a node Q and its 4 children Ci for 𝑖 ∈
 0, 1 ,2, 3 where 0,1,2,3 represent respectively the

directions in Z-order, it is obvious that: 𝑆𝑖𝑧𝑒 𝑄 =
𝑆𝑖𝑧𝑒 𝐶0 + 𝑆𝑖𝑧𝑒 𝐶1

If 𝑆𝑖𝑧𝑒 𝜑1 𝑄 ≥ 𝑆𝑖𝑧𝑒 𝑄 then

𝜑1 𝐶0 = 𝜑1 𝑄

𝜑1 𝐶1 = 𝜑1 𝑄
 (eq. 1)

In case the parent’s northern cardinal neighbor is of

smaller size than the parent node (eq. 2), the northern

cardinal neighbor is aligned on the left edge of its

quadrant. As the distance between the left edge of 𝐶0 and

the left edge of 𝐶1 is equal to 𝑆𝑖𝑧𝑒 𝐶0 , the distance

between the left edge of 𝜑1 𝐶0 and 𝜑1 𝐶1 is also equal

to 𝑆𝑖𝑧𝑒 𝐶0 . Thus starting from 𝜑1 𝐶0 , it is sufficient to

move to the right for a distance equal to 𝑆𝑖𝑧𝑒 𝐶0 to reach

𝜑1 𝐶1 .

If 𝑆𝑖𝑧𝑒 𝜑1 𝑄 < 𝑆𝑖𝑧𝑒 𝑄 then

𝜑1 𝐶0 = 𝜑1 𝑄

𝜑1 𝐶1 = 𝜑2
𝑘+1(𝜑1 𝐶0)

 (eq. 2)

Where k is the number of northern neighbor quadrants 𝑛𝑖

of 𝐶0, such that 𝑆𝑖𝑧𝑒 𝑛𝑖 = 𝑆𝑖𝑧𝑒 𝐶0 𝑘
𝑖=0 .

Notice that if k= 0, 𝑛0 = 𝜑1 𝐶0 ⋀ 𝑆𝑖𝑧𝑒 𝑛0 = 𝑆𝑖𝑧𝑒 𝐶0 .

Lemma 1:

In the process of west-east traversal, 𝜑1 𝐶1 is reached

when the sum of the sizes of all the traversed neighbors

becomes greater than 𝑆𝑖𝑧𝑒 𝐶0 .

In the example mentioned above, starting from [#022],

the condition applied once [#03] is reached and

𝑆𝑖𝑧𝑒 [#022] + 𝑆𝑖𝑧𝑒 [#023] + 𝑆𝑖𝑧𝑒 [#03] > 𝑆𝑖𝑧𝑒[#20]

Thus, [#03] becomes the new North Cardinal Neighbor of

𝐶1.

As the quadrants subdivision is done in Z order, there is

no need to update the Eastern cardinal neighbor (CN2). In

fact, because of the decomposition order, the eastern

neighbor of a quadrant will always be of equal or bigger

size, since it is not yet decomposed and thus the parents’

eastern cardinal neighbor is itself the Eastern CN of the

NE and SE child quadrants. It will need to be updated in

case the eastern neighbor is decomposed, as described in

the 3rd step of the process.

2.3.2.3. Updating Cardinal Neighbors of SW

sub-Quadrant
Fig. 8 shows the process of subdivision of the sub

quadrant [#1] into its 4 children Ci and how the West

Cardinal Neighbor is updated.

Applying the same principle shown in the previous

sections, one can notice that:

𝜑0 𝐶2 = 𝜑3
2(𝜑0 𝐶2)=𝜑3

2(𝜑0 #10)= 𝜑3
2 #011 =

𝜑3 𝜑3 #011 = 𝜑3 #013 = [#031].

Given a node Q and its 4 children Ci for 𝑖 ∈ 0, 1 ,2, 3 as

previously described, it can be noticed that: 𝑆𝑖𝑧𝑒 𝑄 =
𝑆𝑖𝑧𝑒 𝐶0 + 𝑆𝑖𝑧𝑒 𝐶2 and

If 𝑆𝑖𝑧𝑒 𝜑0 𝑄 ≥ 𝑆𝑖𝑧𝑒 𝑄 then

𝜑0 𝐶0 = 𝜑0 𝑄

𝜑0 𝐶2 = 𝜑0 𝑄
 (eq. 3)

If 𝑆𝑖𝑧𝑒 𝜑0 𝑄 < 𝑆𝑖𝑧𝑒 𝑄 then

𝜑0 𝐶0 = 𝜑0 𝑄

𝜑0 𝐶2 = 𝜑3
𝑘+1(𝜑0 𝐶0)

 (eq. 4)

Where k is the number of western neighbor quadrants 𝑛𝑖

of 𝐶0, such that 𝑆𝑖𝑧𝑒 𝑛𝑖 = 𝑆𝑖𝑧𝑒 𝐶0 𝑘
𝑖=0 . Notice that if

k= 0, 𝑛0 = 𝜑0 𝐶0 and 𝑆𝑖𝑧𝑒 𝑛0 = 𝑆𝑖𝑧𝑒 𝐶0 .

Lemma 2:

In the process of north-south traversal, 𝜑0 𝐶2 is reached

when the sum of the sizes of all the traversed neighbors

becomes greater than 𝑆𝑖𝑧𝑒 𝐶0 .

(a)

(b)

2

022 023 03

20

022 023 03

21

022 023 03

20 21

022 023 03

20 21

2 3

1032 033

012 013

02

00

010 011

030 031

2 3

032 033

012 013

02

00

010 011

030 031

12 13

1110

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

27

(c)

(d)

Fig. 8: Updating the SW sub-quadrant's Cardinal

Neighbors

As the quadrants subdivision is done in Z order, there is

no need to update the Southern cardinal neighbor (CN3).

In fact, because of the decomposition order, the southern

neighbor of a quadrant will always be of equal or bigger

size, since it is not yet decomposed and thus the parents’

southern cardinal neighbor is itself the Southern CN of

the SW and SE child quadrants. It will be updated in case

the southern neighbor is decomposed as described in the

following section.

2.3.3 Step3: Updating all neighbors

accordingly
After the decomposition of a quadrant, all its neighbors in

the four directions must be informed of the change so that

they can update their own cardinal neighbors accordingly.

On each direction, a full traversal of the neighbors should

be performed. In every quadrant where a reference to the

parent quadrant is stored as the Cardinal Neighbor, it

should be replaced by one of its children created after the

decomposition.To minimize the effort, the step 3 and step

2 will be performed in a single traversal on each side.

On the northern side, during the traversal described in

section Step 2.a (cf. 2.3.2.1. Updating Cardinal

Neighbors of NE sub-Quadrant) and represented in Fig.

7, each visited neighbor that had quadrant [#2] as its

southern Cardinal neighbor must update it to one of its

closest children [#20] and [#21]. The traversal will stop

when a quadrant is encountered that has a southern CN

different from the parent; in this case [#2].

The same process is applied to western neighbors during

the same traversal described in section Step 2.c.

Considering the example represented in Fig. 8, all

western neighbors of [#1] will update their eastern

cardinal neighbors from [#1] to either [#10] or [#12].

As the quadrant decomposition is performed in Z order, a

quadrant is always decomposed before its eastern and

southern neighbors. Thus, at the moment of

decomposition, any quadrant will have only one neighbor

in the eastern and southern directions which will be itself

the cardinal neighbor. Therefore, one assignment is

sufficient to update each of the eastern and southern side

neighborhoods of a quadrant.

To update the eastern CN of a quadrant Q that is being

decomposed: Q.CN2.CN0=Q.Ch[NE]

To update the southern CN of a quadrant Q that is being

decomposed: Q.CN3.CN1=Q.Ch[SE]

This neighbor will be of equal or greater size. So, only

one assignment will be enough.

3. NEIGHBOR-FINDING IN CN-

QUADTREE
Once the CN-Quadtree completely built, finding a

neighbor of a specific quadrant is straightforward using

its cardinal neighbors.

3.1. Finding north neighbors
To find the north neighbor of a quadrant Q, it is sufficient

to access its north cardinal neighbor (𝜑1 𝑄) as it is the

first north neighbor. From this initial point, the kth north

neighbor of Q can be retrieved by a simple traversal from

west to east using the function 𝜑2
𝑘−1 𝜑1 𝑄 .

All north neighbors (Say N) of a quadrant Q can be

retrieved using the following algorithm:

𝑁 = 𝜑1 𝑄

If (𝑆𝑖𝑧𝑒 𝑁 < 𝑆𝑖𝑧𝑒(𝑄))

While (𝜑3 𝑁 == 𝑄)

𝑁 = 𝜑2 𝑁 ;

If the north neighbor of Q is of equal or greater size than

Q, it will retrieved in 1 step. Otherwise, it will be

retrieved in as many steps as its rank among of neighbors

starting from the most western one.

3.2. General neighbor finding
In all the other directions, neighbor finding follows the

same principle.

On the western side, the neighbors are found starting

from the western CN and moving to the south. For the

eastern side, the neighbors are identified starting from the

Eastern CN and moving north, and last for the southern

side, the neighbors are identified starting from the

southern CN and moving to the west.

After defining the indices 0, 1, 2 and 3 to represent

respectively the direction west, north, east and south, the

algorithm can be rewritten in a general case as follows:

𝑁 = 𝜑𝑖 𝑄

If (𝑆𝑖𝑧𝑒 𝑁 < 𝑆𝑖𝑧𝑒(𝑄))

While (𝜑((𝑖+2) 𝑚𝑜𝑑 4) 𝑁 == 𝑄)

𝑁 = 𝜑(3−𝑖) 𝑁 ;

4. EXPERIMENTAL RESULTS
The major benefit of the proposed algorithm is to provide

a direct access to the first neighbor in each direction and

accessing the remaining ones sequentially. This

advantage is not reached without memory overhead. It is

then necessary to compare it with the other similar

algorithms on the two aspects of performance and

memory requirements.

For experimental evaluation, it is proposed to compare

the new method (CN-Quadtree) with Aizawa algorithm,

as it is the most recent method of quadtree neighbor

finding that can compute the location code of the

neighbors at constant time. It was demonstrated in [3],

that the new method outperformed the classical Samet

algorithm [11]. Aizawa’s method will be referred to as

AZW hereafter.

To perform the experimentation, a quadtree-based image

coding application using C++ in a Linux environment has

2 3

032 033

012 013

02

00

010 011

030 031

12 13

1110

2 3

032 033

012 013

02

00

010 011

030 031

12 13

1110

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

28

been implemented. This application was used as a

common basis for the two algorithms. The node structure

of the quadtree was modified in each one of the two

applications to include the additional fields required by

each specific algorithms, and to include the necessary

behavior for each method. The experiments were

executed one at a time, on the same computing

environment.

4.1. Methodology
The experimental evaluation aims to compare the time

required to access neighbors of a pre-determined set of

nodes. Because of the techniques used by the different

algorithms, The cases where the nodes have only one

neighbor on each side will be differentiated from the

general case, because when a node has only one neighbor

on each side, CNQT will plainly benefit from the direct

access to that neighbor, while AZW algorithm will

benefit from the constant time computation of the

neighbor’s location code. Both algorithms will have to

use additional processing in the case of multiple

neighbors.

The experiment consisted on selecting randomly a set of

nodes and accessing all its neighbors using the two

methods. The two algorithms accessed exactly the same

set of nodes and logged only the time necessary to access

the neighbors. These experiments were repeated using

several images selected from Signal and Image

Processing Institute’s image database of the University of

Southern California (USC-SIPI). For each considered

image, the methodology used in this experiment, is as

follows:

 Build the quadtrees of the image.

 Randomly select one thousand leaf nodes

 Using both considered methods:

 For each of the selected nodes, compute the

time necessary to access all its neighbors.

 Compute the average access time for the nodes

with a single neighbor per side.

 Compute the average access time for the nodes

with a multiple neighbors per side.

4.2. Results and discussion
The test base images that was used is the SIPI image

database of the University of Southern California [17] .

The selected images were of 512x512 and 1024x1024

pixels resolution. Figure lists a sample of these images.

Figure 9: Samples of images used to obtain

experimental results

These images have been converted to black and white

using the threshold method.

In the first experiment, only the nodes having 4

neighbors, one on each side, have been selected. The

average time to access the 4 neighbors using the three

selected methods were computed and compared. As it is

clearly shown in Figure 10, CNQT method largely

outperforms the reference methods. Table 1 shows that

CNQT provides about 75% gain compared to AZW

method. Figure 10 illustrates this performance gain for

each one of the five considered images.

Table 1: Performance gain of CNQT compared

to AZW methods

Image CNQT vs. AZW

Satellite 78%

Native-American 74%

Roof 78%

Airport 78%

Pentagon 79%

Figure 10: Comparison of Average Access time (in

nanoseconds) for 4 neighbors

The second experiment of performance analysis

considered the average access time to all neighbors of all

selected nodes. As the selected nodes, had a number of

neighbors varying from 2 to 70 per node, the average

time to access each neighbor node individually was

computed. The results are reported in Figure 11 and the

gain percentages Table 2.

Figure 11: Comparison of Average Access time for a

single neighbor node

284 249 253 285 244

1286

945
1135

1272
1166

0
200
400
600
800
1000
1200
1400 CNQT AZW

73 69 69 78 68

274

200 220
252 247

0
50

100
150
200
250
300 CNQT AZW

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

29

Table 2: Performance gain of CNQT compared

to AZW

Image CNQT vs. AZW

Satellite 73%

Native-American 65%

Roof 68%

Airport 69%

Pentagon 73%

The experiments were conducted using a set of images of

different contents. Some of them show some repetitive

patens, whereas others have a random distribution of

pixels. Some images resulted in a large set of small

quadrants due to a deep subdivision level while others

decomposed into bigger size quadrants.

Figure 11 shows that CNQT gives almost constant access

time in all type of images, wich clearly reflects the fact

that each neighbor is retrieved in constant time. AZW

method present some variation of average time from an

image to another. This can be explained by the specific

images decomposition and the nature of the method.

AZW method has to compute the location code of the

neighbor and launch the search process from the root of

the tree. If the selected nodes are in majority not deep in

the image quadtree, the average access time using AZW

method may be shorter.

4.3. Memory space impact
In this paragraph we’ll propose a comparison of the two

methods with regards to memory occupation. Both

algorithms have some common fields in their data

structure. They are namely: the location code, the node’s

level, the nodes color and pointer references to the parent

node and to the four children nodes.

Both methods have the same structure for the gray /

intermediary node structure but for the leaf node

structure, each method has its own particularity. The

common part of the node structure can be represented

using 26 bytes in a 32 bit machine.

In addition to the common structure, the AZW algorithm

adds 4 fields to represent the level differences with the

neighboring nodes in each of the four directions. This can

be represented using four additional bytes. The CNQT

algorithm uses the common structure for the gray

quadrants and adds 4 pointers in the leaf nodes to access

the cardinal neighbors. This requires four additional

pointers.

In a 32 bit machine, the CNQT method will require in

average 38 bytes per node compared to 29 bytes needed

by AZW. This leads to memory increase of 31%.

5. DISCUSSION AND CONCLUSION
In this paper, a new data structure, the CN-Quadtree was

presented. In the building phase of the quadtree, four

cardinal neighbors are determined for each quadrant.

These particular neighbors will allow access to all the

neighbors in each side in the retrieval phase. This access

is performed in constant time for the cardinal neighbors

regardless of their size.

If the neighbor is of equal or greater size, it will be itself

stored in the cardinal neighbor and accessed immediately.

For smaller size neighbors, as all the neighbors are

solutions, they can also be accessed by traversing the list

of neighbors whose head is the cardinal neighbor. The

experimental results demonstrated that the proposed data

structure and algorithm clearly outperforms the algorithm

proposed by Aizawa et al. [2][3].

The proposed method required an increase of 31% in the

quadtree memory occupation, and allowed 69.7% average

reduction in the neighbor access time as highlighted by

the experimental results.

The proposed solution, the CN-Quadtree, will present

opportunities for new optimizations in the field of image

analysis and processing and the field of robots path

planning and navigation.

6. ACKNOWLEDGMENTS
This research has been supported by the research center

of the college of Computer and Information Sciences at

King Saud University. Project reference RC140204.

7. REFERENCES
[1] Schrack G 1992 Finding Neighbors of Equal Size in

Linear Quadtrees and Octrees in Constant Time,

CVGIP: Image Understanding, 55: 221-230.

[2] Aizawa K, Motomura K, Kimura S, Kadowaki R and

Fan J 2008 Constant Time Neighbor Finding in

Quadtrees: An Experimental Result, in: Proc. 3rd

International Symposium on Communications,

Control and Signal Processing, Malta.

[3] Aizawa K and Tanaka S 2009 A Constant-Time

Algorithm for Finding Neighbors in Quadtrees, IEEE

Trans. Pattern Analysis and Machine Intelligence,

31(7), 1178-1183.

[4] Finkel R A and Bentley J L 1974 Quad Trees: A Data

Structure for Retrieval on Composite Keys, Acta

Informatica, 4: 1-9.

[5] Samet H and Webber R E 1985 Storing a Collection

of Polygons Using Quadtrees, ACM Transactions on

Graphics 4(3): 182-222.

[6] Samet H 1985 A Top-Down Quadtree Traversal

Algorithm, IEEE Trans. Pattern Analysis and

Machine Intelligence 7: 94-98.

[7] Fuhrmann D R 1988 Quadtree Traversal Algorithms

for Pointer-Based and Depth-First Representations,

IEEE Trans. Pattern Analysis and Machine

Intelligence, 10: 955-960.

[8] Vörös J 1997 A Strategy for Repetitive Neighbor

Finding in Images Represented by Quadtrees,

Pattern Recognition Letters, 18:955-962.

[9] Frisken S F and Perry R N 2002 Simple and Efficient

Traversal Methods for Quadtrees and Octrees, The

Journal of Graphics Tools, 7(3): 1-11.

[10] Gargantini I 1982 An Effective Way to Represent

Quadtrees, Comm. ACM, 25: 905-910.

[11] Samet H 1982 Neighbor finding techniques for

images represented by quadtrees, Computer

Graphics and Image Processing, 18: 35-57.

International Journal of Computer Applications (0975 – 8887)

Volume 132 – No.8, December2015

30

[12] Kadowaki R, Motomura K, Ohkura S and Aizawa K

2010 Graphs Representing Quadtree Structures using

Eight Edges, Proc. Int. Symposium on

Communications, Control and Signal Processing,

Cyprus.

[13] Samet H 1984 The quadtree and related hierarchical

data structures, ACM Computing Surveys. 16(2):

187-260.

[14] Samet H 1990 Applications of Spatial Data

Structures: Computer Graphics, Image Processing,

and GIS, Addison-Wesley, Boston.

[15] Klinger, A., and M.L. Rhodes, 1979. Organization

and access of image data by areas, LEEE Trans.

Pattern Anal. Mach. Lntell., PAMI-1:5& 60.

[16] Yoder R and Bloniarz P 2006 A Practical Algorithm

for Computing Neighbors in Quadtrees, Octrees, and

Hyperoctrees, Proc. Int. Conf. on Modeling,

Simulation, and Visualization Methods, Las Vegas,

USA.

[17] USC-SIPI Image Database, last accessed March

2015, http://sipi.usc.edu/database/,

[18] Hunter, G.M., and K. Steiglitz, 1979a. Operations on

images using quad trees. IEEE Transactions on

Pattern Analysis and Machine Intelligence,. 1, 2

(Apr.), 145-153.

[19] Hunter, G.M., and K. Steiglitz, 1979b. Linear

transformation of pictures represented by quadtrees.

Comput. Gr. Image Process. 10, 3 (July), 289-296.

IJCATM : www.ijcaonline.org

http://sipi.usc.edu/database/

