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ABSTRACT 
This paper presents a new quadtree structure: Cardinal 

Neighbor Quadtrees (CN-Quadtree), that allows finding 

neighbor quadrants in constant time regardless of their 

sizes. Gunter Schrack’s solution [1] was able to compute 

the location code of equal size neighbors in constant-time 

without guaranteeing their existence. The structure 

proposed by Aizawa [3][2][3]was able to determine the 

existence of equal or greater size neighbors and compute 

their location in constant time, to which the access-time 

complexity should be added. The proposed structure, the 

Cardinal Neighbor Quadtree, a pointer based data 

structure, can determine the existence, and access a 

smaller, equal or greater size neighbor in constant-time 

O(1). The time complexity reduction is obtained through 

the addition of only four pointers per leaf node in the 

quadtree.   

General Terms 

Spatial data structures; Image coding; spatial access 

methods; quadtree;  
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1. INTRODUCTION 
Quadtrees are hierarchical spatial data structures widely 

used for spatial representation, originally introduced by 

Finkel et al. in [4]. It is a quaternary tree where each 

node represents a quadrant in the space. The root 

represents the whole space, which is the quadrant that 

encloses the space to be processed. The root represents a 

quadrant of 2nx2n pixels. Several variants of quadtrees 

have been proposed in the literature to handle different 

types of data, such as PM Quadtrees, used to manipulate 

lines and polylines [5], PR Quadtrees [4][2], used to 

manipulate points, and region Quadtrees [6] or simply 

quadtrees used to manipulate 2D areas, etc. Since then 

numerous research focused on Quadtree manipulation and 

neighbor finding were published [7], [8], [9]. 

Our work will focus on region Quadtrees, named 

quadtrees hereafter. 

A quadtree represents squared 2D area, which may be an 

image, an area where a robot can navigate, a map, etc. A 

quadrant is said to be homogeneous if it contains only 

one type of information, in which case it is represented as 

a leaf node in the quadtree. If it contains more than one 

type of information, the quadrant is said to be 

heterogeneous and assigned the gray color. It is then 

subdivided into four equal sized sub-quadrants. The 

subdivision will stop when all leaves of the quadtree 

represent homogeneous quadrants. For binary images a 

leaf node represents a quadrant that is either black or 

white ( 

Fig. 1).  

Originally, quadtree was defined as a pointer-based 

structure. Gargantini [10], proposed another way of 

coding the quadrants, allowing the structure to be 

pointerless. Each quadrant has its own location code. It is 

called talk about a linear quadtree. The location code of a 

quadrant is built during the subdivision of the quadtree. It 

consisted on adding to each new sub-quadrant 2 digits in 

base 2 that represented its relative position in its 

immediate parent quadrant. 00, 01, 10 and 11, were used 

to code the positions NW, NE, SW, and SE.  

 
Fig. 1: A space decomposition and its quadtree 

representation and location codes of black leaf nodes 

At the end of the subdivision, each leaf node has a 

sequence of digits that represent its position by a 

succession of subdivisions of the original root quadrant. 

The resulting code was an interleaved coordinate where 

the bits successively denoted the y and x coordinates. In a 

pair of bits, the first one indicated the northern child (0) 

or the southern child (1). Similarly, the second bit 

denoted the western child (0) or the eastern child (1). 

Using this coding 00 indicated the Northwestern child, 

01, Northeastern child, 10, the Southwestern child and 11 

the Southeastern child (Fig. 2). 
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Fig. 2: Binary location code 

Quadtrees are used in various applications such as the 

spatial indexing, GIS, robot path finding, collision 

detection, and gaming. In all those applications, neighbor 

finding is one of the fundamental operations Samet [14]. 

Extensive neighbor finding is required for surface area 

computation and region filling which are used in 

computer graphics, boundary determination which is 

essential for obstacle avoidance in robot navigation.  

Klinger [15] proposed a method of moving between 

adjacent quadrants. Their method requires complex 

computation rather than following links especially when 

quadrant are not sibling as well as when they are of 

different sizes. In the contrary, Hunter et al. [18]0 used 

explicit links between the node and its adjacent equal size 

neighbors in the four directions through the use of 

adjacent trees and the chasing ropes. A rope is a link 

between adjacent nodes of equal size where at least one 

the nodes is a leaf node. Thus, not all adjacent quadrants 

have ropes. In case of absence of a rope for a given node, 

the method requires ascending the tree until finding a 

parent having a rope which helps chasing the desired 

neighbor. The authors improved the neighbor finding 

algorithm by introducing a ‘net’ which links all leaf 

nodes to their neighbors regardless of their size, which 

adds a huge storage requirement and increases update 

complexity for such a structure.    

Samet [11] proposed a neighbor finding technique in 

quadtrees. To find the neighbor in a certain direction, the 

algorithm ascends in the tree until finding a common 

parent between the node at hand and its neighbors in the 

given direction, then navigating down the tree to find the 

adjacent node. Using this algorithm, finding neighbors in 

a quadtree takes O(n) computational time for the worst 

case, where n is the number of subdivision of the 

quadtree (the height of the quadtree).  

Using the location code principle, Schrack [1] proposed a 

constant-time algorithm to find neighbors of equal size in 

linear quadtrees, using algebraic operations. He 

introduced an addition operator to add two binary 

interleaved location codes, and defined translation vector 

patterns to move from a quadrant to any of its equal-sized 

neighbors. 

For a given direction i, to determine the equal-sized 

neighbor quadrant m of a quadrant n, Schrack proposed 

the following equation: 

𝑚𝑞 = 𝑛𝑞⨁𝑞   ∆𝑛𝑖 ≪  2 𝑟 − 𝑙   , 𝑖 = 0, 1,… ,7   Where: 

r is the resolution of the space in question which is 

2𝑟 × 2𝑟  pixels  

𝑚𝑞  is the location code of the quadrant m of size :  

2𝑟−𝑙 × 2𝑟−𝑙   pixels where l<r 

𝑛𝑞  is the location code of the quadrant n: 2𝑟−𝑙 ×

2𝑟−𝑙  pixels 

 ∆𝑛𝑖  is a predefined translation vector in the 

direction i. For r = 3, the translation vectors are 

defined as follows: 

∆𝑛0 = 000001,  

∆𝑛1 = 000011, 

∆𝑛2 = 000010,  

∆𝑛3 = 000111, 𝑒𝑡𝑐. 
 ≪ is the shift left bits operator 

 ⨁𝑞  is the addition operator of binary quadrant 

location code  

This finds the code of equal size neighbors in constant 

time O(1), but requires O(r) computational time to find a 

different size neighbor’s location-code, where r is the 

level difference between the two neighbors. To access the 

data structure corresponding to the computed location 

code, the algorithm requires the tree traversal cost. Since 

the neighbor location code is computed based on a 

translation vector, the algorithm is unable to determine 

the existence of an equal-size neighbor.  

Vörös [8] used the same principle to find smaller sized 

neighbors by geometric translations in the four directions. 

His proposed algorithm while able to compute the 

location-codes of smaller sized neighbors is unable to tell 

if these neighbors existed or not. An extra tree traversal is 

still needed to check the existence of the computed 

nodes. 

Yoder [16] extended the computation of same size 

neighbors location codes from quadtrees (2D) to octrees 

(3D), and hyper octrees structures. 

Aizawa et al. [2][3] proposed an improvement to 

Schrack’s algorithm to solve the existence problem of an 

equal-size neighbor. They used the translation vectors and 

the operator proposed by Schrack in addition to a new 

data structure that keeps the level differences between 

each quadrant and its adjacent neighbors in the four 

directions.  

Fig. 3: Example of Level difference between adjacent 

quadrants [1] 
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The proposed algorithm builds the data-structure and 

computes the level differences during the quadtree 

subdivision (Fig. 3). Using this structure, Aizawa et al. 

[3] algorithm is able to compute for a quadrant, the 

geometric location of adjacent neighbors of equal or 

greater size in constant time, but its access requires a 

traversal the tree. 

Kadowaki et al. [12], proposed a graph based quadtree 

structure that shows a better efficiency in neighbor 

finding compared to classical Samet [13] neighbor 

finding algorithm. This algorithm does not present a 

predictable behavior as, in some cases, it provides 

constant-time access to some smaller size neighbors, but 

needs further processing in other cases. In addition, 

unlike Schrack [1] and Aizawa [3], the proposed 

approach does not guarantee a constant-time access to 

equal or greater size neighbors.   

Moreover, once the location code of a neighbor quadrant 

is computed using Schrack’s formula, this algorithm is 

still unable to access the neighbors’ data structure and 

needs to traverse the tree using this location code to find 

the neighbor quadrant’s data structure. 

This paper proposes a new pointer-based quadtree data 

structure, named CN-Quadtree, and a neighbor-finding 

algorithm that allow retrieving neighbor quadrants in 

constant time, whether they are of greater, equal or 

smaller size. The proposed data structure will hold a 

minimal set of data that allows a direct access to all 

neighbors of any given quadrant in the four cardinal 

directions, North, East, South, and West. 

In section 2, the new data structure is presented; the 

algorithm of building the new data structure during the 

quadtree subdivision is detailed. In section 3, the 

neighbor retrieval algorithm is presented. The last section 

is dedicated to a discussion of the proposed structures and 

future work. 

2. NEIGHBOR-FINDING STRATEGY 
The sub-section2 2.1 below, starts by defining the 

Cardinal Neighbor Quadtree structure; some definitions 

are formalized and notations introduced in sub-section 

2.2. The last sub-section 2.3 explains the different steps 

of building the Cardinal Neighbor Quadtree.  

2.1. CN-Quadtree structure 
The new data structure called Cardinal Neighbor 

Quadtree (CN-Quadtree), is a pointer-based quadtree 

structure. Each node N of the CN-Quadtree holds four 

references CNi to an adjacent neighbor quadrant. Each 

CNi is located in the side i of the quadrant N and is able 

to identify all the other neighbors located in the same 

side, where 𝑖 ∈  0, 1 ,2, 3 , and 0, 1, 2, 3 represent 

respectively the directions West, North, East and South. 

These particular neighbors are called Cardinal Neighbors 

of the quadrant. Fig. 4 shows a representation of the CN 

quadrant. 

Naturally if the neighbor CNi of a quadrant is of greater 

or equal size, then CNi will be the unique neighbor in the 

side i. Otherwise, it will be the first neighbor, that will be 

used to determine all the quadrant’s remaining neighbors 

in that side.  The first neighbor (called Cardinal neighbor) 

will be defined as follows: 

 The Western cardinal neighbor is the top-most 

neighbor node among the western neighbors, noted 

CN0. 

 The North cardinal neighbor is the left-most 

neighbor node among the northern neighbors, noted 

CN1. 

 The Eastern cardinal neighbor is the bottom-most 

neighbor node among the eastern neighbors, noted 

CN2. 

 The Southern cardinal neighbor is the right-most 

neighbor node among the southern neighbors, noted 

CN3.  

Each node is represented using the data structure in (Fig. 

5)  

 

Fig. 4: Each Cardinal Neighbor is used to access all 

the neighbors in its side 

Attribute LocationCode is a quaternary code computed 

during subdivision where NW, NE, SW, SE sub-quadrants 

are labeled 0, 1, 2, and 3 respectively. Two binary digits 

are added at each level of subdivision.  

 
 
 

 
 

Location_Code                                                                             
𝑆𝑖𝑧𝑒                                                                                              
𝑇𝑦𝑝𝑒 = 𝑊𝐻𝐼𝑇𝐸 | 𝐵𝐿𝐴𝐶𝐾 | 𝐺𝑅𝐴𝑌                                       
𝑃𝑎𝑟𝑒𝑛𝑡_𝑁𝑜𝑑𝑒                                                                             

  𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛_𝑁𝑜𝑑𝑒𝑠 =  𝐶ℎ[𝑁𝑊],𝐶ℎ[𝑁𝐸],𝐶ℎ[𝑆𝑊],𝐶ℎ[𝑆𝐸] 

𝐶𝑎𝑟𝑑𝑖𝑛𝑎𝑙_𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 =  𝐶𝑁0,𝐶𝑁1,𝐶𝑁2,𝐶𝑁3,                  

  

Fig. 5: CN-Quadtree node data structure 

The attribute Size represents the length of one side of the 

quadrant in pixels, the attribute Type can be one of 

BLACK, WHITE or GRAY; the attribute Parent_Node is 

a reference to the quadrant’s parent node. If the node is of 

type GRAY, then the attribute Children_Nodes holds the 

four quadrant’s children. The attribute 

Cardinal_Neighbors holds references to the quadrant’s 

four Cardinal Neighbors.  

2.2. Definitions and notations 
This section presents the definition of some functions and 

operators on the CN-Quadtree that will be used later to 

compute the cardinal neighbors of each node. 

The following functions are defined on the CN- Quadtree 

data structure: 

 𝜌 𝐷  returns the immediate parent of the node D. 

The notation 𝜌2 𝐷  denotes the parent of the parent 

of D. 𝜌0 𝐷 = 𝐷. 

 𝑆𝑖𝑧𝑒 𝐷  returns the side length of node N in pixels. 

 𝜑𝑖 𝐷  returns the cardinal Neighbor of node D in 

direction i, for 𝑖 ∈  0, 1 ,2, 3     where 0,1,2,3 

represent respectively the directions West, North, 

East and South. For example, in Fig. 8.d, 

𝜑0 #12  gives the node #031. 

 𝜑𝑖𝑗  𝐷  represents the Cardinal Neighbor in the 

direction i of the Cardinal Neighbor in direction j of 
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the Node D. 𝜑𝑖𝑗  𝐷 = 𝜑𝑖  𝜑𝑗  𝐷  . For example, in 

Fig. 8.d, 𝜑3 𝜑0 #12  =  𝜑30 #12 = #033. 

 𝜑𝑖 𝜑𝑖 𝐷   will be noted as 𝜑𝑖
2 𝐷 . This represents 

the Cardinal Neighbor in the direction i of the 

Cardinal Neighbor in direction i of the Node D for 

𝑖 ∈  0, 1 ,2, 3   where 0,1,2,3 represent respectively 

the directions West, North, East and South and 

where 𝜑𝑖
0 𝐷 = 𝐷.     𝜑𝑖

2 𝐷 =  𝜑𝑖 𝜑𝑖 𝐷   

In Fig. 8.d, 𝜑3 𝜑3 #011  =  𝜑3
2 #011 = #031, and 

𝜑3
0 #011 = #011. 

2.3. Building the CN-Quadtree structure 
To represent an area, the CN-Quadtree is progressively 

populated during the subdivision process of the 

represented environment. CN-Quadtree is built by 

applying recursively the following three major steps: 

1. Decomposing the gray quadrant and updating 

the parent node following the Z-order traversal. 

2. Updating each new four children with their 

respective Cardinal Neighbors 

3. Updating all neighbors accordingly. 

2.3.1. Step1: Decomposing the gray quadrant 

and updating the parent node  
The decomposition starts by identifying the first quadrant 

of type GRAY, decomposing it into four sub-quadrants.  

The sub-quadrants are added immediately after their 

parent. Each sub-quadrant first inherits its parent external 

neighbors then updates the internal neighbors, 

represented with arrows as shown in  Fig. 6.  

For example, the neighbor nodes of the NW sub-quadrant 

are updated as follows:  

CN0 = inherited; CN1= inherited; CN2 = NE sub-

quadrant; and for CN3 = SW sub-quadrant.  

 

  
 Fig. 6: Updating Cardinal Neighbors on subdivision 

Considering the root quadrant R of size 64x64, it will be 

represented as follows: {#, 64, GRAY, #, {#, #, #, #}, {#, 

#, #, #}} 

On subdivision of the root quadrant R, the four sub-

quadrants are added to the quadtree as follows:  

 R.Ch[NW] ={0, 32, WHITE, R, {#, #, #, #}, {#, #, 

1, 2}} 

 R.Ch[NE] ={1, 32, GRAY, R, {#, #, #, #}, {0, #, 

#, 3}} 

 R.Ch[SW] ={2, 32, GRAY, R, {#, #, #, #}, {#, 0, 

3, #}} 

 R.Ch[SE] ={3, 32, GRAY, R, {#, #, #, #}, {2, 1, #, 

#}} 

The sub-quadrant’s size is computed by diving the parent 

node’s size by 2.  

After finishing decomposition, the parent node is updated 

to refer to its sub-quadrants: 

 R= {#, 64, GRAY, #, {0, 1, 2, 3}, {#, #, #, #}} 

2.3.2. Step2: Updating the new children 

Cardinal Neighbors 
The structure of the Quadtree offers interesting 

characteristics that make easy the use of parents’ cardinal 

neighbors to identify the children’s. 

On decomposition, the sub-quadrants have been assigned 

their parent’s Cardinal Neighbors on their external 

borders. Some of the sub-quadrants cardinal neighbors 

have to be updated to reflect the effective neighbor of the 

child quadrant rather than its parents’. 

The western and northern cardinal neighbors of the parent 

remain valid for the NW child, while the eastern and 

southern cardinal neighbors of the parent remain valid for 

the SE child ( Fig. 6). Thus, no change needs to be 

carried out in these cases. This is not the case for the NE 

and SW sub-quadrants as their Cardinal Neighbors may 

be different.  

Distinction is made between two cases: 

 Parent Cardinal Neighbor size is greater or 

equal to parent quadrant’s size 

 Parent Cardinal Neighbor size is smaller than 

parent quadrant’s size 

In the first case, no update is needed as the same Cardinal 

Neighbor applies for the parent and the child quadrants. 

In the second case, the child’s Cardinal Neighbor has to 

be updated. The case of NE and SW children are 

explained respectively in the following sub-sections. The 

section 2.3.2.2, explains how to use the parent Cardinal 

Neighbors to identify the children ones. 

2.3.2.1. Updating Cardinal Neighbors of NE 

sub-Quadrant 
The Fig. 7 shows step by step how the NE sub-Quadrant’s 

Northern Cardinal Neighbor is updated. The NE new sub-

Quadrant [#21] first inherits its parent cardinal neighbors 

during decomposition (Fig. 7.b), which is [#022] while 

the correct cardinal neighbor is [#03]. Thus, the new 

north cardinal neighbor [#21].CN1 has to be updated. 

This is done through a horizontal traversal of the northern 

neighbors from west to east (Fig. 7.c), by repeating the 

operation #21 .𝐶𝑁1 𝜑2 𝜑1 #21    until reaching the 

first quadrant that is a direct neighbor of the considered 

quadrant [#21]. In this case  #03  (Fig. 7.d). The value of 

𝜑1 #21  has changed progressively as follows: 

Iteration 𝝋𝟏 #𝟐𝟏  
0 (initial value) [#022] 

1 [#023] 

2 [#03] 

CN0

CN2

CN3

NW NE

SW SE

CN0

CN1

CN2

CN3

CN1

11

5

9

7

11
9 10

12

21

43

5

7 8

#
#

7
3

4
#

1
#

7
3

#
#

11
4

5
1

6
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 7: Updating the NE sub-quadrant's Cardinal 

Neighbors 

2.3.2.2. Methodology of identifying the new 

Cardinal Neighbors  
A very simple method is used to identify the new cardinal 

neighbor and stop the horizontal traversal. One can notice 

that after a node decomposition, the two northern child-

nodes have the same northern cardinal neighbor if their 

parent’s northern cardinal neighbor is of equal or greater 

size than the parent node (eq. 1). 

Considering a node Q and its 4 children Ci for 𝑖 ∈
 0, 1 ,2, 3   where 0,1,2,3 represent respectively the 

directions in Z-order, it is obvious that: 𝑆𝑖𝑧𝑒 𝑄 =
𝑆𝑖𝑧𝑒 𝐶0 +  𝑆𝑖𝑧𝑒 𝐶1  

If  𝑆𝑖𝑧𝑒 𝜑1 𝑄  ≥ 𝑆𝑖𝑧𝑒 𝑄  then  

 
𝜑1 𝐶0 =  𝜑1 𝑄 

𝜑1 𝐶1 = 𝜑1 𝑄 
           (eq. 1) 

In case the parent’s northern cardinal neighbor is of 

smaller size than the parent node (eq. 2), the northern 

cardinal neighbor is aligned on the left edge of its 

quadrant. As the distance between the left edge of 𝐶0  and 

the left edge of 𝐶1 is equal to 𝑆𝑖𝑧𝑒 𝐶0 , the distance 

between the left edge of 𝜑1 𝐶0   and 𝜑1 𝐶1  is also  equal 

to 𝑆𝑖𝑧𝑒 𝐶0 . Thus starting from 𝜑1 𝐶0 , it is sufficient to 

move to the right for a distance equal to 𝑆𝑖𝑧𝑒 𝐶0  to reach 

𝜑1 𝐶1 .  

If  𝑆𝑖𝑧𝑒 𝜑1 𝑄  < 𝑆𝑖𝑧𝑒 𝑄  then 

 
𝜑1 𝐶0 =  𝜑1 𝑄              

𝜑1 𝐶1 = 𝜑2
𝑘+1(𝜑1 𝐶0 )

  (eq. 2)   

Where k is the number of northern neighbor quadrants  𝑛𝑖  

of 𝐶0, such that  𝑆𝑖𝑧𝑒 𝑛𝑖 = 𝑆𝑖𝑧𝑒 𝐶0  𝑘
𝑖=0 .  

Notice that if k= 0, 𝑛0 = 𝜑1 𝐶0  ⋀ 𝑆𝑖𝑧𝑒 𝑛0 = 𝑆𝑖𝑧𝑒 𝐶0 . 

Lemma 1:  

In the process of west-east traversal, 𝜑1 𝐶1  is reached 

when the sum of the sizes of all the traversed neighbors 

becomes greater than 𝑆𝑖𝑧𝑒 𝐶0 . 

In the example mentioned above, starting from [#022], 

the condition applied once [#03] is reached and  

𝑆𝑖𝑧𝑒 [#022] + 𝑆𝑖𝑧𝑒 [#023] + 𝑆𝑖𝑧𝑒 [#03] > 𝑆𝑖𝑧𝑒[#20] 

Thus, [#03] becomes the new North Cardinal Neighbor of 

𝐶1. 

As the quadrants subdivision is done in Z order, there is 

no need to update the Eastern cardinal neighbor (CN2). In 

fact, because of the decomposition order, the eastern 

neighbor of a quadrant will always be of equal or bigger 

size, since it is not yet decomposed and thus the parents’ 

eastern cardinal neighbor is itself the Eastern CN of the 

NE and SE child quadrants. It will need to be updated in 

case the eastern neighbor is decomposed, as described in 

the 3rd step of the process. 

2.3.2.3. Updating Cardinal Neighbors of SW 

sub-Quadrant 
Fig. 8 shows the process of subdivision of the sub 

quadrant [#1] into its 4 children Ci and how the West 

Cardinal Neighbor is updated. 

Applying the same principle shown in the previous 

sections, one can notice that: 

𝜑0 𝐶2 = 𝜑3
2(𝜑0 𝐶2 )=𝜑3

2(𝜑0 #10 )=  𝜑3
2 #011 =

𝜑3 𝜑3 #011  = 𝜑3 #013 = [#031]. 

Given a node Q and its 4 children Ci for 𝑖 ∈  0, 1 ,2, 3  as 

previously described, it can be noticed that: 𝑆𝑖𝑧𝑒 𝑄 =
𝑆𝑖𝑧𝑒 𝐶0 +  𝑆𝑖𝑧𝑒 𝐶2  and  

If  𝑆𝑖𝑧𝑒 𝜑0 𝑄  ≥ 𝑆𝑖𝑧𝑒 𝑄  then  

 
𝜑0 𝐶0 =  𝜑0 𝑄 

𝜑0 𝐶2 = 𝜑0 𝑄 
           (eq. 3) 

If  𝑆𝑖𝑧𝑒 𝜑0 𝑄  < 𝑆𝑖𝑧𝑒 𝑄  then  

 
𝜑0 𝐶0 =  𝜑0 𝑄              

𝜑0 𝐶2 = 𝜑3
𝑘+1(𝜑0 𝐶0 )

 (eq. 4)  

Where k is the number of western neighbor quadrants  𝑛𝑖  

of 𝐶0, such that  𝑆𝑖𝑧𝑒 𝑛𝑖 = 𝑆𝑖𝑧𝑒 𝐶0  𝑘
𝑖=0 . Notice that if 

k= 0, 𝑛0 = 𝜑0 𝐶0  and 𝑆𝑖𝑧𝑒 𝑛0 = 𝑆𝑖𝑧𝑒 𝐶0 .  

Lemma 2:  

In the process of north-south traversal, 𝜑0 𝐶2  is reached 

when the sum of the sizes of all the traversed neighbors 

becomes greater than 𝑆𝑖𝑧𝑒 𝐶0 . 

 
(a) 

 
(b) 
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(c) 

 
(d) 

Fig. 8: Updating the SW sub-quadrant's Cardinal 

Neighbors 

As the quadrants subdivision is done in Z order, there is 

no need to update the Southern cardinal neighbor (CN3). 

In fact, because of the decomposition order, the southern 

neighbor of a quadrant will always be of equal or bigger 

size, since it is not yet decomposed and thus the parents’ 

southern cardinal neighbor is itself the Southern CN of 

the SW and SE child quadrants. It will be updated in case 

the southern neighbor is decomposed as described in the 

following section. 

2.3.3 Step3: Updating all neighbors 

accordingly 
After the decomposition of a quadrant, all its neighbors in 

the four directions must be informed of the change so that 

they can update their own cardinal neighbors accordingly. 

On each direction, a full traversal of the neighbors should 

be performed. In every quadrant where a reference to the 

parent quadrant is stored as the Cardinal Neighbor, it 

should be replaced by one of its children created after the 

decomposition.To minimize the effort, the step 3 and step 

2 will be performed in a single traversal on each side. 

On the northern side, during the traversal described in 

section Step 2.a (cf. 2.3.2.1. Updating Cardinal 

Neighbors of NE sub-Quadrant) and represented in Fig. 

7, each visited neighbor that had quadrant [#2] as its 

southern Cardinal neighbor must update it to one of its 

closest children [#20] and [#21]. The traversal will stop 

when a quadrant is encountered that has a southern CN 

different from the parent; in this case [#2]. 

The same process is applied to western neighbors during 

the same traversal described in section Step 2.c. 

Considering the example represented in Fig. 8, all 

western neighbors of [#1] will update their eastern 

cardinal neighbors from [#1] to either [#10] or [#12]. 

As the quadrant decomposition is performed in Z order, a 

quadrant is always decomposed before its eastern and 

southern neighbors. Thus, at the moment of 

decomposition, any quadrant will have only one neighbor 

in the eastern and southern directions which will be itself 

the cardinal neighbor. Therefore, one assignment is 

sufficient to update each of the eastern and southern side 

neighborhoods of a quadrant.  

To update the eastern CN of a quadrant Q that is being 

decomposed:  Q.CN2.CN0=Q.Ch[NE] 

To update the southern CN of a quadrant Q that is being 

decomposed: Q.CN3.CN1=Q.Ch[SE] 

This neighbor will be of equal or greater size. So, only 

one assignment will be enough. 

3. NEIGHBOR-FINDING IN CN-

QUADTREE  
Once the CN-Quadtree completely built, finding a 

neighbor of a specific quadrant is straightforward using 

its cardinal neighbors. 

3.1. Finding north neighbors 
To find the north neighbor of a quadrant Q, it is sufficient 

to access its north cardinal neighbor (𝜑1 𝑄 ) as it is the 

first north neighbor. From this initial point, the kth north 

neighbor of Q can be retrieved by a simple traversal from 

west to east using the function 𝜑2
𝑘−1 𝜑1 𝑄  . 

All north neighbors (Say N) of a quadrant Q can be 

retrieved using the following algorithm: 

𝑁 = 𝜑1 𝑄  

If (𝑆𝑖𝑧𝑒 𝑁 < 𝑆𝑖𝑧𝑒(𝑄)) 

While (𝜑3 𝑁 == 𝑄) 

𝑁 = 𝜑2 𝑁 ; 

If the north neighbor of Q is of equal or greater size than 

Q, it will retrieved in 1 step. Otherwise, it will be 

retrieved in as many steps as its rank among of neighbors 

starting from the most western one. 

3.2. General neighbor finding  
In all the other directions, neighbor finding follows the 

same principle.  

On the western side, the neighbors are found starting 

from the western CN and moving to the south. For the 

eastern side, the neighbors are identified starting from the 

Eastern CN and moving north, and last for the southern 

side, the neighbors are identified starting from the 

southern CN and moving to the west. 

After defining the indices 0, 1, 2 and 3 to represent 

respectively the direction west, north, east and south, the 

algorithm can be rewritten in a general case as follows: 

𝑁 = 𝜑𝑖 𝑄  

If (𝑆𝑖𝑧𝑒 𝑁 < 𝑆𝑖𝑧𝑒(𝑄)) 

While (𝜑((𝑖+2) 𝑚𝑜𝑑  4) 𝑁 == 𝑄) 

𝑁 = 𝜑(3−𝑖) 𝑁 ; 

4. EXPERIMENTAL RESULTS 
The major benefit of the proposed algorithm is to provide 

a direct access to the first neighbor in each direction and 

accessing the remaining ones sequentially. This 

advantage is not reached without memory overhead. It is 

then necessary to compare it with the other similar 

algorithms on the two aspects of performance and 

memory requirements.  

For experimental evaluation, it is proposed to compare 

the new method (CN-Quadtree) with Aizawa algorithm, 

as it is the most recent method of quadtree neighbor 

finding that can compute the location code of the 

neighbors at constant time. It was demonstrated in [3], 

that the new method outperformed the classical Samet 

algorithm [11]. Aizawa’s method will be referred to as 

AZW hereafter. 

To perform the experimentation, a quadtree-based image 

coding application using C++ in a Linux environment has 
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been implemented. This application was used as a 

common basis for the two algorithms. The node structure 

of the quadtree was modified in each one of the two 

applications to include the additional fields required by 

each specific algorithms, and to include the necessary 

behavior for each method. The experiments were 

executed one at a time, on the same computing 

environment.  

4.1. Methodology 
The experimental evaluation aims to compare the time 

required to access neighbors of a pre-determined set of 

nodes. Because of the techniques used by the different 

algorithms, The cases where the nodes have only one 

neighbor on each side will be differentiated from the 

general case, because when a node has only one neighbor 

on each side, CNQT will plainly benefit from the direct 

access to that neighbor, while AZW algorithm will 

benefit from the constant time computation of the 

neighbor’s location code. Both algorithms will have to 

use additional processing in the case of multiple 

neighbors. 

The experiment consisted on selecting randomly a set of 

nodes and accessing all its neighbors using the two 

methods. The two algorithms accessed exactly the same 

set of nodes and logged only the time necessary to access 

the neighbors. These experiments were repeated using 

several images selected from Signal and Image 

Processing Institute’s image database of the University of 

Southern California (USC-SIPI). For each considered 

image, the methodology used in this experiment, is as 

follows: 

 Build the quadtrees of the image. 

 Randomly select one thousand leaf nodes 

 Using both considered methods: 

 For each of the selected nodes, compute the 

time necessary to access all its neighbors. 

 Compute the average access time for the nodes 

with a single neighbor per side. 

 Compute the average access time for the nodes 

with a multiple neighbors per side. 

4.2. Results and discussion 
The test base images that was used is the SIPI image 

database of the University of Southern California [17] . 

The selected images were of 512x512 and 1024x1024 

pixels resolution. Figure  lists a sample of these images.  

Figure 9: Samples of images used to obtain 

experimental results 

  

These images have been converted to black and white 

using the threshold method.  

In the first experiment, only the nodes having 4 

neighbors, one on each side, have been selected. The 

average time to access the 4 neighbors using the three 

selected methods were computed and compared.  As it is 

clearly shown in Figure 10, CNQT method largely 

outperforms the reference methods. Table 1 shows that 

CNQT provides about 75% gain compared to AZW 

method. Figure 10 illustrates this performance gain for 

each one of the five considered images. 

Table 1: Performance gain of CNQT compared  

to AZW methods 

Image CNQT vs. AZW 

Satellite 78% 

Native-American 74% 

Roof 78% 

Airport 78% 

Pentagon 79% 
 

 

Figure 10: Comparison of Average Access time (in 

nanoseconds) for 4 neighbors  

The second experiment of performance analysis 

considered the average access time to all neighbors of all 

selected nodes. As the selected nodes, had a number of 

neighbors varying from 2 to 70 per node, the average 

time to access each neighbor node individually was 

computed. The results are reported in Figure 11 and the 

gain percentages Table 2.  

  

Figure 11: Comparison of Average Access time for a 

single neighbor node 
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Table 2: Performance gain of CNQT compared 

to AZW 

Image CNQT vs. AZW 

Satellite 73% 

Native-American 65% 

Roof 68% 

Airport 69% 

Pentagon 73% 
 

The experiments were conducted using a set of images of 

different contents. Some of them show some repetitive 

patens, whereas others have a random distribution of 

pixels. Some images resulted in a large set of small 

quadrants due to a deep subdivision level while others 

decomposed into bigger size quadrants. 

Figure 11 shows that CNQT gives almost constant access 

time in all type of images, wich clearly reflects the fact 

that each neighbor is retrieved in constant time. AZW 

method present some variation of average time from an 

image to another. This can be explained by the specific 

images decomposition and the nature of the method. 

AZW method has to compute the location code of the 

neighbor and launch the search process from the root of 

the tree. If the selected nodes are in majority not deep in 

the image quadtree, the average access time using AZW 

method may be shorter.  

4.3. Memory space impact 
In this paragraph we’ll propose a comparison of the two 

methods with regards to memory occupation. Both 

algorithms have some common fields in their data 

structure. They are namely: the location code, the node’s 

level, the nodes color and pointer references to the parent 

node and to the four children nodes.  

Both methods have the same structure for the gray / 

intermediary node structure but for the leaf node 

structure, each method has its own particularity. The 

common part of the node structure can be represented 

using 26 bytes in a 32 bit machine. 

In addition to the common structure, the AZW algorithm 

adds 4 fields to represent the level differences with the 

neighboring nodes in each of the four directions. This can 

be represented using four additional bytes. The CNQT 

algorithm uses the common structure for the gray 

quadrants and adds 4 pointers in the leaf nodes to access 

the cardinal neighbors. This requires four additional 

pointers. 

In a 32 bit machine, the CNQT method will require in 

average 38 bytes per node compared to 29 bytes needed 

by AZW. This leads to memory increase of 31%. 

5. DISCUSSION AND CONCLUSION 
In this paper, a new data structure, the CN-Quadtree was 

presented. In the building phase of the quadtree, four 

cardinal neighbors are determined for each quadrant. 

These particular neighbors will allow access to all the 

neighbors in each side in the retrieval phase. This access 

is performed in constant time for the cardinal neighbors 

regardless of their size.  

If the neighbor is of equal or greater size, it will be itself 

stored in the cardinal neighbor and accessed immediately. 

For smaller size neighbors, as all the neighbors are 

solutions, they can also be accessed by traversing the list 

of neighbors whose head is the cardinal neighbor. The 

experimental results demonstrated that the proposed data 

structure and algorithm clearly outperforms the algorithm 

proposed by Aizawa et al. [2][3]. 

The proposed method required an increase of 31% in the 

quadtree memory occupation, and allowed 69.7% average 

reduction in the neighbor access time as highlighted by 

the experimental results.  

The proposed solution, the CN-Quadtree, will present 

opportunities for new optimizations in the field of image 

analysis and processing and the field of robots path 

planning and navigation. 

6. ACKNOWLEDGMENTS  
This research has been supported by the research center 

of the college of Computer and Information Sciences at 

King Saud University. Project reference RC140204. 

7. REFERENCES 
[1] Schrack G 1992 Finding Neighbors of Equal Size in 

Linear Quadtrees and Octrees in Constant Time, 

CVGIP: Image Understanding, 55: 221-230. 

[2] Aizawa K, Motomura K, Kimura S, Kadowaki R and 

Fan J 2008 Constant Time Neighbor Finding in 

Quadtrees: An Experimental Result, in: Proc. 3rd 

International Symposium on Communications, 

Control and Signal Processing, Malta. 

[3] Aizawa K and Tanaka S 2009 A Constant-Time 

Algorithm for Finding Neighbors in Quadtrees, IEEE 

Trans. Pattern Analysis and Machine Intelligence, 

31(7), 1178-1183. 

[4] Finkel R A and Bentley J L 1974 Quad Trees: A Data 

Structure for Retrieval on Composite Keys, Acta 

Informatica, 4: 1-9. 

[5] Samet H and Webber R E 1985 Storing a Collection 

of Polygons Using Quadtrees, ACM Transactions on 

Graphics 4(3): 182-222. 

[6] Samet H 1985 A Top-Down Quadtree Traversal 

Algorithm, IEEE Trans. Pattern Analysis and 

Machine Intelligence 7: 94-98.  

[7] Fuhrmann D R 1988 Quadtree Traversal Algorithms 

for Pointer-Based and Depth-First Representations, 

IEEE Trans. Pattern Analysis and Machine 

Intelligence, 10: 955-960. 

[8] Vörös J 1997 A Strategy for Repetitive Neighbor 

Finding in Images Represented by Quadtrees, 

Pattern Recognition Letters, 18:955-962. 

[9] Frisken S F and Perry R N 2002 Simple and Efficient 

Traversal Methods for Quadtrees and Octrees, The 

Journal of Graphics Tools, 7(3): 1-11. 

[10] Gargantini I 1982 An Effective Way to Represent 

Quadtrees, Comm. ACM, 25: 905-910. 

[11] Samet H 1982 Neighbor finding techniques for 

images represented by quadtrees, Computer 

Graphics and Image Processing, 18: 35-57. 



International Journal of Computer Applications (0975 – 8887) 

Volume 132 – No.8, December2015 

30 

[12] Kadowaki R, Motomura K, Ohkura S and Aizawa K 

2010 Graphs Representing Quadtree Structures using 

Eight Edges, Proc. Int. Symposium on 

Communications, Control and Signal Processing, 

Cyprus.  

[13] Samet H 1984 The quadtree and related hierarchical 

data structures, ACM Computing Surveys. 16(2): 

187-260.  

[14] Samet H 1990 Applications of Spatial Data 

Structures: Computer Graphics, Image Processing, 

and GIS, Addison-Wesley, Boston. 

[15] Klinger, A., and M.L. Rhodes, 1979. Organization 

and access of image data by areas, LEEE Trans. 

Pattern Anal. Mach. Lntell., PAMI-1:5& 60. 

[16] Yoder R and Bloniarz P 2006 A Practical Algorithm 

for Computing Neighbors in Quadtrees, Octrees, and 

Hyperoctrees,  Proc. Int. Conf. on Modeling, 

Simulation, and Visualization Methods, Las Vegas, 

USA. 

[17] USC-SIPI Image Database, last accessed March 

2015, http://sipi.usc.edu/database/, 

[18] Hunter, G.M., and K. Steiglitz, 1979a. Operations on 

images using quad trees. IEEE Transactions on 

Pattern Analysis and Machine Intelligence,. 1, 2 

(Apr.), 145-153. 

[19] Hunter, G.M., and K. Steiglitz, 1979b. Linear 

transformation of pictures represented by quadtrees. 

Comput. Gr. Image Process. 10, 3 (July), 289-296.  

 

IJCATM  : www.ijcaonline.org 

http://sipi.usc.edu/database/

