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ABSTRACT

. A number of different techniques are presented for moving
- between adjacent blocks in an image represented by a quadtree.
These adjacencies may be in the horizontal, vertical, or dia-
gonal directions. Algorithms are given and their execution
time is analyzed using a suitably defined model.
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1. 1Introduction

Region representation is an important aspect of image
processing with numerous representations finding use. Recent-
ly, there has emerged a considerable amount of interest in
the quadtree [3-7,13]. This stems primarily from its hierarchi-
cal nature which lends itself to a compact representation. It
is also quite efficient for a number of traditional image pro-
cessing operations such as computing perimeters [10], labeiing
connected components [l1l], finding the genus of an image (1},
and computing centroids and set properties [l17]. Development
of algorithms to convert between the quadtree representation
and other representations such as chain codes [2,9], rasters
[12,14), binary arrays [13], and medial axis transforms [15,16,
18] lend further support to this importance.

In this paper we discuss methods for moving between adjacent
blocks in the quadtree. We first show how transitions are made
between blocks of equal size and then generalize our result to
blocks of different size where the destination block is either of
larger or smaller size than the source block. Such blocks are
termed neighbors. Note that the transitions that we discuss
also include those along diagonal, as well as horizontal and
vertical, directions. These methods form the cornerstone of
many of the quadtree algorithms (e.g., [1,2,9-12,14-18]),

since they are basically tree traversals with a "visit" at each

node. More often than not these visits involve probing a node's




PY

p -y e

:
i-

2
§

i

i i S i B AR e g - —3

neighbors. The significance of our methods lies in the fact
that they do not use coordinate information, knowledge of the

size of the image, or storage in excess of that imposed by the

nature of the quadtree data structure.
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. 2. Definitions and notation

The quadtree is an approach to image representation based

f on the successive subdivision of the image into quadrants. It
E is represented by a tree of outdegree 4 in which the root repre-
sents a block and the four sons represent in order the NW, NE,
SW, and SE quadrants. We assume that each node is stored as a
record containing six fields. The first five fields contain
pointers to the node's father and its four sons which corre-
spond to the four quadrants. If P is a node and I is a qua-
drant, then these fields are referenced as FATHER(P) and SON(P,I)
respectively. We can determine the specific quadrant in which

a node, say P, lies relative to its father by use of the func-
tion SONTYPE(P) which has a value of I if SON(FATHER(P),I) = P.

The sixth field, NODETYPE, describes the contents of the block

of the image which the node represents--i.e., WHITE if the block

% ; contains no 1l's, BLACK if the block contains only 1l's, and GRAY
| if it contains 0's and l's. Alternatively, BLACK and WHITE are
terminal nodes, while GRAY nodes are non-terminal nodes. For
example, Figure 1lb is a block decomposition of the region in
Figure la while Figure lc is the corresponding gquadtree.

Let the four sides of a node's block be called its N, E, S,
and W sides. They are also termed its boundaries. We define

the following predicates and functions to aid in the expression

of operations involving a block's quadrants and its boundaries.
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ADJ(B,1) is true if and only if quadrant I is adjacent to
boundary B of the node's block, e.g., ADJ(W,SW) is true.
REFLECT(B,I) yields the SONTYPE value of the block of equal
size that is adjacent to side B of a block having SONTYPE
value I, e.g., REFLECT(N,SW) = NW. COMMONSIDE(Ql,Q2) indi-
cates the boundary of the block containing quadrants Q1 and Q2
that is common to them; e.g., COMMONSIDE(SW,NW) = W. If Ql and
Q2 are not adjacent brother quadrants (e.g., NE and SW) or if
Ql and Q2 are the same, then the value of COMMONSIDE is unde-
fined. OPQUAD(Q) is the quadrant which does not share a block
boundary with quadrant Q; e.g., OPQUAD(SW) = NE. Figure 2 shows
the relationship between the quadrants of a node and its boun-
daries while Tables 1-4 contain the definitions of the ADJ,
REFLECT, OPQUAD, and COMMONSIDE relationships respectively.
! corresponds to an undefined value.

For a quadtree corresponding to a 2" by 2" array we say
that the root is at level n, and that a node at level i is at
a distance of n-i from the root of the tree. 1In other words,
for a node at level i, we must ascend n-i FATHER links to reach
the root of the tree. Note that the farthest node from the root
of the tree is at a level 2. A node at level § corresponds to
a single pixel in the image. Also, we say that a node is of

size 25 if it is found at level s in the tree.
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3. _Neighbor finding algorithms

Given a node corresponding to a specific block in the image,
its neighbor of equal size in the horizontal or vertical direc-
tion is determined by locating a common ancestor. Next, we re-
trace the path while making mirror image moves about an axis
formed by the common boundary between the blocks associated
with the two nodes. The common ancestor is simple to deter-
mine--e.g., to find an eastern neighbor, the common ancestor is
the first ancestor node which is reaced via its NW or SW son.
For example, the eastern neighbor of node A in Figure 3a is G.
It is located by ascending the tree until the common ancestor,
D, is found. This requires going through a NE link to reach B,
a NE link to reach C, and a NW link to reach D, Node G is
now reached by backtracking along the previous path with the
appropriate mirror image moves. This requires descending a NE
link to reach E, a NW link to reach F, and a NW link to reach G.
Figures 3a and 3b show how the eastern neighbor of node A is
located. The algorithm for locating an equal sized neighbor in
a given horizontal or vertical direction is given below using a
variant of ALGOL 60 [8]. Note that we assume that the neighbor

in the specified direction does indeed exist (i.e., we are not

on the border of the image).
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node procedure EQUAL ADJ_NEIGHBOR(P,D);

/* Locate an equal-sized neighbor of node P in horizontal
or vertical direction D */

begin
value node P;

value direction D;

return (SON(if ADJ(D,SONTYPE(P)) then
EQUAL_ADJ_NEIGHBOR (FATHER(P),D)

else FATHER(P),

REFLECT (D,SONTYPE(P)))) ;
end;

Finding a node's neighbor in the diagonal direction (i.e.,

its corresponding block touches the given node's block at a
corner) is more complex. Given a node corresponding to a
specific block in the image, its neighbor of equal size in a
diagonal direction is achieved by a three step process. First,
we locate the given node's nearest ancestor who is also adjacent
(horizontally or vertically) to an ancestor of the sought neigh-
bor. Next we make use of EQUAL_ADJ NEIGHBOR to access the an-

cestor of the sought neighbor in the direction of the adjacency.

Finally, we retrace the remainder of the path while making directly

opposite moves (i.e., 180° opposite so that a NW move becomes a
SE move). The nearest ancestor of the first step is the first
ancestor which is not reached by a link equal to the direction

of the desired neighbor--e.g., to find a SE neighbor, the




nearest such ancestor is the first ancestor node which is not
reached via its SE son. For example, the SE neighbor of node

A in Figure 4a is G. It is located by ascending the tree until
the nearest ancestor, B, which is also adjacent horizontally

{in this case) to an ancestor of G, i.e., F, is found. This
requires going through a NE link to reach B. Node F is now
reached by applying EQUAL ADJ_NEIGHBOR in the direction of the
adjacency (i.e., east). This forces us to go through a NE link
to reach C and a NW link to reach D. Backtracking results in
descending a NW link to reach E and a NW link to reach F.
Finally, we backtrack along the remainder of the path making
180° moves--i.e., we descend a SW link to reach G. Figures 4a
and 4b show how the SE neighbor of node A is located. The algo-
rithm for locating an equal size neighbor in a given diagonal
direction is given below. Note that we assume that the neighbor
in the specified direction does indeed exist (i.e., we are not on
the border of the image).

node procedure EQUAL_CORNER_NEIGHBOR(P,C);

/ *Locate an equal-sized neighbor of node P in the direction
of guadrant C */
begin
value node P

value quadrant C;
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return (SON (if SONTYPE (P)=OPQUAD(C) then FATHER(P)

else if SONTYPE(P)=C then
EQUAL_CORNER;NEIGHBOR(FATHER(P),C)
else EQUAL ADJ NEIGHBOR( N
FATHER(P),
COMMONSIDE ( SONTYPE (?),C)),

OPQUAD (SONTYPE(P))));

end;
It is often the case that neighbors are of different sizes.

In such a case, we say that we want the neighboring terminal
nodes having equal or greater size (e.g., the eastern neighbor
of node 23 in Figure 1 is 16). If such a node does not exist,
then we return a GRAY node of equal size if possible (e.g., the
northern neighbor of node 23 in Figure 1 is J). Otherwise the
node is adjacent to the border of the image (not the region) and
NULL is returned since there is no neighbor in the specified
direction (e.g., the northern neighbor of node 2 in Figure 1l is
NULL). When a node does not have a neighboring terminal node
of equal or greater size, returning a GRAY node of equal size
is reasonable because the given node whose neighbor is being
sought has more than one neighboring terminal node in the given
direction. The algorithms for locating neighbors of equal or
greater size in horizontal and vertical directions as well as
diagonal directions are given below using procedures GTEQUAL

ADJ_NEIGHBOR and GTEQUAL_CORNER_NEIGHBOR respectively. Note

that a neighbor in a diagonal direction, say C, will not always

et tla cenr b,
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' abut against corner C of the node whose neighbor is sought
{ (e.g., node 16 is a non-abutting NE neighbor of node 23 in
E! ‘ Figure 1).

node procedure GTEQUAL_ADJ NEIGHBOR(P,D);

/* Locate a neighbor of node P in horizontal or vertical
: direction D. If such a node does not exist, then return NULL */

begin

value node P;

W TOTETTE T e e T

value direction D;

node Q;

if not NULL(FATHER(P)) and ADJ(D,SONTYPE(P)) then

/* Find a common ancestor */

Q«GTEQUAL_ADJ_NEIGHBOR (FATHER (p),D)
else Q+«FATHER(P);
/* Follow the reflected path to locate the neighbor */

return (if not NULL(Q) and GRAY(Q) then SON(Q,REFLECT(D,SONTYPE(P)))

t else Q);
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{ node procedure GTEQUAL_CORNER NEIGHBOR (P,C)

;é /* Locate a neighbor of node P in the direction of quadrant C. If
’ such a node does not exist, then return NULL */ '
begin
value node P;

value quadrant C;

L node Q;
i; not NULL (FATHER(P)) and SONTYPE (P)#OPQUAD(C) then

/* Find a common ancestor */

if SONTYPE (P) =C then Q*GTEQUAL~CORNER_NEIGHBOR(FATHER(P),C)

else Q*GTEQUAL_ADJ_NEIGHBOR(FATHER(P),COMMONSIDE(SONTYPE(P),C))
else Q+«FATHER(P);

/* Follow opposite path to locate the neighbor */

return (if not NULL(Q) and GRAY (Q) then SON(Q,OPQUAD (SONTYPE(P)))

else Q);

end;
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If neighbors are of different sizes, we may wish to know

the size of the adjacent or abutting neighbor. 1In such a case,
we want our neighbor finding algorithms to return both a pointer
to the neighboring node and a value from which the node's size
can be easily computed. This is relatively straightforward
when we know the level in the tree at which is found the node
whose neighbor is being sought. In fact, such an algorithm need
only increment the level counter by 1 for each link that is as-
cended while locating the common ancestor, and then decrement
the level counter by 1 for each link that is descended while

locating the appropriate neighbor. The algorithms for locating

neighbors of equal or greater size, with their corresponding level

positions, in horizontal and vertical directions as well as dia- .

gonal directions, are given below using procedures GTEQUAL ADJ
NEIGHBOR2 and GTEQUAL CORNER_NEIGHBOR2 respectively. Note the
use of reference parameters to transmit and return results. An
alternative is to define a record of type block having two
fields of type node and integer whose values are a pointer to

the neighboring node and its level respectively.
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node procedure GTEQUAL_ADJ NEIGHBOR2(P,D,Q,L);

/* Return in Q the neighbor of node P in horizontal or vertical
direction D. L denotes the level of the tree at which node P
is initially found and the level of the tree at which node Q
is ultimately found. 1If such a node does not exist, then
return NULL */
begin ;
value node P

value direction D;

reference node Q;

reference integer L;

L<L+1;
if not NULL(FATHER(P)) and ADJ(D,SONTYPE(P)) then
/* Find a common ancestor */ i
GTEQUAL_ADJ_NEIGHBORZ(FATHER(P),D,Q,L) ;
else Q+FATHER(P);
/* Follow the reflected path to locate the neighbor */
if not NULL(Q) and GRAY(Q) then
begin
Q+SON (Q,REFLECT (D, SONTYPE (P} ) ) ;
L+L-1;

end;

end;




node procedure GTEQUAL_CORNER_NEIGHBORZ(P,C,Q,L);

/* Return in Q the neighbor of node P in the direction of quadrant C.
L denotes the level of the tree at which node P is initially found and
the level of the tree at which node Q is ultimately found. 1If such a
node does not exist, then return NULL */
begin
value node P;

value gquadrant C;

reference node Q;

1 reference integer L;

L+L+1;
if not NULL(FATHER(P)) and SONTYPE (P)#OPQUAD(C) then
/* Find a common ancestor */

if SONTYPE(P)=C then GTEQUAL CORNER_NEIGHBOR2 (FATHER(P),C,Q,L)

else GTEQUAL ADJ_ NEIGHBOR2 (FATHER (P) ,COMMONSIDE (SONTYPE(P),C),Q,L)
else Q+«FATHER(P);
/* Follow the opposite path to locate the neighbor */

if not NULL(Q) and GRAY(Q) then

R e

begin
Q+SON (Q, OPQUAD (SONTYPE(P) ) ) ;

L<L-1;

end;




At times we may wish to locate an adjacent horizontal or
vertical neighbor regardless of its size. In such a case, we
also specify a corner of the block corresponding to the node !
whose neighbor is being sought. The neighboring node must be
adjacent to this corner (e.g., node 21 is the northern neighbor
of node 23 which is adjacent to the NE corner of node 23). The
algorithm for computing such a neighbor is given below by proce-

dure CORNER_ADJ NEIGHBOR which makes use of GTEQUAL_ADJ_ NEIGHBOR.

node procedure CORNER_ADJ_NEIGHBOR(P,D,C);

/* Locate a neighbor of node P in horizontal or vertical direction
D which is adjacent to corner C of node P. If such a node does L
not exist, then return NULL */

begin |

value node P; i

value direction D;

value gquadrant C;

P+GTEQUAL_ADJ_NEIGHBOR(P,D);

while GRAY (P) do P+SON(P,REFLECT(D,C)); /* Descend to the desired corner *

return (P);

end;

Similarly, in the case of a diagonal neighbor, we may also
wish to locate the neighbor in the given direction regardless of
its size (e.g., node 20 is a NE neighbor of node 22 in Figure 1

which is smaller in size). The algorithm for locating an _ I
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arbitrary-sized diagonal neighbor is given below by procedure
CORNER_CORNER_NEIGHBOR which makes use of GTEQUAL_CORNER

NEIGHBOR.

node procedure CORNER_CORNER_NEIGHBOR(P,C);

/* Locate a neighbor of node P in the direction of quadrant C which
abuts against corner C of node P. 1If such a node does not
exist, then return NULL */

begin

value node P

value guadrant C;

node Q;

Q+GTEQUAL CORNER_NEIGHBOR(P,C);

while GRAY(Q) do Q+SON(C,OPQUAD(C)); /*Descend to the desired corner */

return (Q);

end;

It should be clear that procedures similar to CORNER_ADJ NEIGHBOR
and CORNER_CORNER NEIGHBOR can be constructed that also return
the level at which the desired neighboring node is found. This
will not be done here.

The procedures outlined above always return NULL when a
neighbor in a specified direction does not exist. This situation
arises whenever the node whose neighbor is sought is adjacent to

the border of the image along the specified direction. At times

e At s i el




. o L e i i ‘Ek_! ——u

Ym

b the NULL pointer is not convenient. 1Instead, we could assume
that the image is surrounded by WHITE blocks as in Figure Sa or

by BLACK blocks as in Figure Sb. The choice of WHITE or BLACK

MR S

for the surrounding blocks depends on the particular application.

For example, we use WHITE in the case of the gquadtree to boundary

o

code conversion algorithm [2] while BLACK is more useful in the
case of the computation of distance [15] and the construction of
a Quadtree Medial Axis Transform [16].

At times it is useful to determine if certain edges of the
blocks corresponding to two neighboring nodes extend past each
other or are aligned. For example, in Figure 1, node 16 extends

past node 10 with respect to their western boundaries, while the

western boundaries of nodes 9 and 16 are aligned. We assume that

the level of the tree at which each of the two nodes, say P and

Q at levels LP and LQ respectively, reside is known. It should
be clear that at most |LP-LQ| nodes must be visited. This can
be seen by observing that the smaller of the two nodes cannot
extend farther than the other because this would imply that the
two nodes properly overlap, which is impossible. At best, the
smaller node can be aligned with the other node, and this occurs
if and only if the smaller node is adjacent to the extreme side
in the designated direction of the nearest common ancestor of
the two nodes. The algorithm for computing the aligned rela-

tionship is given below by procedure ALIGNED.




Boolean procedure ALIGNED(P,LP,Q,LQ,D);

/* Given two nodes P and Q, at levels LP and LQ respectively, which
are adjacent along side CCSIDE(D) of node P, determine whether
either of P or Q extends farther in direction D than the other
. (return FALSE), or their two sides in direction D are aligned
(return TRUE) */
begin
value node P,Q;

value integer LP,LQ;

value direction D;

node R;

integer I;
if LP=LQ then return (TRUE)

else if LP>LQ then R+Q

else R+«P;

/* The smaller of the two nodes cannot extend farther than the
other because this would imply that P and Q properly overlap,
which is impossible. At best, the smaller node can be aligned
with the other node, and tiiis occurs if and only if the smaller

node is adjacent tc the extreme side in direction D of the

nearest common ancestor of nodes P and Q */

for I+l step 1 until ABS(LP-LQ) do

begin
if not ADJ(D,SONTYPE(R)) then return (FALSE)

else R«FATHER(R)
end;
return (TRUE);

end;
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The above techniques should be contrasted with other methods
of locating neighbors [3-5,7]. In (7], a method is described for
moving between adjacent blocks of equal size that are brothers
(i.e., have the same father node). This method does not make
use of the tree structure; instead, coordinate information and:
knowledge of the size of the image are used to locate a neigh-
boring brother in a given horizontal-or vertical direction.

This is accomplished by a number of primitives termed MOVE UP,
MOVE DOWN, MOVE RIGHT, and MOVE LEFT. Transitions to non-brother
neighboring blocks require the use of approximations through

the use of primitives named MORE, LESS, and GAMMA, The disad-
vantages of these methods is that they require computation
(rather than chasing links) and are clumsy when adjacent blocks
are not brothers as well as when they are of different sizes

than the block whose neighbor is sought.

In [3-5] a number of algorithms are described for operating
on images using quadtrees. Transitions between neighboring blocks
are made by use of explicit links from a node to its adjacent
neighbors in the horizontal and vertical directions. This is
achieved through the use of adjacency trees, "ropes", and " nets".
An adjacency tree exists whenever a leaf node, say X, has a GRAY
neighbor, say Y, of equal size. In such a case, the adjacency
tree of X is a binary tree rooted at Y whose nodes consist of

all sons of Y (BLACK, WHITE, and GRAY) that are adjacent to X. .




For example, for node 16 in Figure 1, the western neighbor is
GRAY node F with an adjacency tree as shown in Figure 6. A
rope is a link between adjacent nodes of equal size at least
one of which is a leaf node. For example, in Figure 1, .there
exists a rope between node 16 and nodes G, 17, H, and F. Simi-
larly, there exists a rope between node 37 and nodes M and N;
however, there does not exist a rope between node L and nodes
M and N.

At this point we can give an algorithm for finding a
neighbor, say Y, on a given side, say S, of a block, say X.
If there is a rope from X on side S, then it leads to the de-
sired neighbor. If no such rope exists, then the desired neigh-
bor must be larger. In such a case, we ascend the tree until
encountering a node having a rope on side S which leads to the
desired neighbor. 1In effect, we have ascended the adjacency tree
of Y. For example, to find the eastern neighbor of node 21 in
Figure 1, we ascend through node J to node F which has a rope
along its eastern side leading to node 1l6. At times it is not
convenient to ascend nodes searching for ropes. A data structure
named a net is used to obviate this step by linking all leaf
nodes to their neighbors regardless of their relative size.
Thus in the previous example there would_be a direct link between
nodes 21 and 16 along the eastern side of node 21. The advantage

of ropes and nets is that the number of links that must be
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traversed is reduced. However, the disadvantage is that the

P,

storage requirements are considerably increased since many ad-
ditional links are necessary. In contrast, our methods are im-
plemented by algorithms that make use of the existing structure
of the tree-~i.e., four links from a non-leaf node to its sons,

and a link from a non-root node to its father.
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4. Analysis

The execution time of the neighbor finding algorithms pre-

sented in Section 3 depends on the relative positions of the
nodes in question. Clearly, the execution time depends on the
number of nodes that must be traversed in locating the desired
neighbor. In the following we analyze the average execution
time of EQUAL_ADJ _NEIGHBOR, GTEQUAL_ADJ_NEIGHBOR, CORNER_ADJ_
NEIGHBOR, EQUAL_CORNER_NEIGHBOR, GTEQUAL CORNER_NEIGHBOR, ’
CORNER_CORNER_NEIGHBOR, and ALIGNED. GTEQUAL_ADJ NEIGHBOR2 ’
and GTEQUAL_CORNER_NEIGHBOR2 have the same execution time as
GTEQUAL_ADJ_NEIGHBOR and GTEQUAL_CORNER_NEIGHBOR respectively
since they visit the same number of nodes. )
At this point it is appropriate to elaborate on our notion
of average. We assume a random image in the sense that a node
is equally likely to appear in any position and level in the
quadtree. This means that we assume that all neighbor pairs
(i.e., configurations of adjacent nodes of varying sizes) have ]
equal probability. This is different from the more conventional
notion of a random image which implies that every block at level
@ (i.e., pixel) has an equal probability of being BLACK or WHITE.
Such an assumption would lead to a very low probability of any
nodes corresponding to blocks of size larger than 1. Clea;ly,
for such an image, the quadtree is the wrong representation.
Theorem l: The average of the number of nodes visited by

EQUAL_ADJ_NEIGHBOR is bounded by 4. i




Proof: Given a node P at level i and a direction D, there
21,8

n-i, g n-i

are 2 -1l) neighbor pairs of equal sized nodes.

n-i,1 .t level

have their nearest common ancestor at level n, 2
n-1,..., and 2" 1.27711 .t 1ovel i+l. For each node at level
i having a nearest common ancestor at level j, the number of

nodes that will be visited in the process of locating an equal-

sized neighbor at level i is 2-(j-i). This is obtained by ob-

serving that the nearest common ancestor is at a distance of j-i.

Therefore, the average number of nodes visited by EQUAL_ADJ_

NEIGHBOR is
n-i n =i _n=
z g 207 2Pl o (5-4)
i=0 j=i+l
S P (1)
g 207 . (2P
i=0

(1) can be rewritten to yield

n-1 n-i .
5 5 22n-2:.-3+1,j

i=0 j=1 (2)

n . .
£ 2. (2*-1
i=1
The numerator of (2) can be simplified as follows:
n-i

n-1 n-i n-1

5 5 22n-2i-j+1.j = 22n+l 5 2—21 5 a (3)
i=0 j=1 i=0 j=1 27
n . n .
But I = § =2 - E%% (4)
j=1 23 j=0 27 2
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Making use of (4) in (3) yields
n-1

22n+l 5 2-2%(2 - n+i:%)
i=0 203
n-1 n-1 n-1 .
222 T oL ey 2™ L™ L ()
i=0 2 i=0 2 i=0 2
n
Also © &= 2(1- —ip (6)
j=0 23 2
n
1 4 1
And I —= = ool = —==—0) (7
=0 22] 3 22n+2

Substituting (4), (6), and (7) into (5) yields

220%2 4.0 1, eyy2™2i - Ly 4 ol ol
3 22n 2n 2n—l

= - 222 18 L g2y - (27-1) 440 (2%enmD)
4 2n+2 . .on_ 4
=32 - 4-(n+1) 2" - 3 (8)

The denominator of (2) can be simplified as follows:

i i no o 2i i
g 2% (2t-1) = 1 (2%i-2Y
i=1 i=0
n i n i
= s a4t - 52
i=0 i=0
a™1 n+1
=3 - 27D
n . .
or f 2i.(2i-1y = % . (220%2_ 5.0+ 5, (9)
i=1
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Substituting (8) and (9) into (2) yields
3(n-1) - 272

+12
22042 _3.7%1,,

4 -

-

R

~ 4 as n gets large
s 4
Q.E.D.
Theorem 2: The average number of nodes visited by GTEQUAL
ADJ_NEIGHBOR is bounded by 5.
Proof: Given a node P at level i and a direction D, and
recalling Theorem 1, there are 2h-t vg Zn-j-(j—i) pairs such

j=i+1
that the neighboring node is one size greater than or equal to

that of P. The index j in the summation corresponds to the

level at which the nearest common ancestor is located. For a
node at level i, a direction D, and a nearest common ancestor

at level j, we have possible neighbor pairs having the initial
node at level i and the neighboring nodes at levels j~1, j-2,
see,i+tl,i-~-i.e., j-1i possible neighbor pairs. Thus for a node
at level i, the number of nodes that will be visited in the pro-
cess of locating a greater than or equal sized neighbor at level
k with a nearest common ancestor at level j is (j-i+j-k). This

is obtained by observing that the nearest common ancestor is at

a distance of j-i. Therefore, the average number of nodes

visited by GTEQUAL_ADJ_NEIGHBOR is:

n-1 n i . J=1
z T 2PTLTI T (-i+i-k)
i=0 =i+l k=i
n-1 ., n-i (10)

R
i=0 j=1




The

But

Substituting (4),

D vt e o=

numerator of (10) can be simplified to yield:

n=1 n . .3
z g 20"t.pn-J.

i=0 j=i+l =1

n-1 n : .
r oo 2RI dG-n? « 3G-1)
=0 j=i+l

n-1 n-i 2
«(337+3)

)
i=1 j=1

2n=-2i-j-

n-1 -2j n-i .2
£ 2743 o+ ot
=0 j=1 23 5

22n—l

i
2

i2 _ ¢ _ n+anve
23 o

[N 3e =

Making use of (4) and (12) in (1ll) yields

(n-i)2+4(n-i)+6)

: + 2 -
n-i

$ 2722 (3(6 -
=0 2

n-1
z
i=0

1 2

- n-1 1
i =T ~-(3n“+13n+20) -2

— +
o1

o
N

1 . 3.2n—l.n—l i2

i=0 2%

(6), (7), and (12)

1

——

20.22n-l -
2

4
. =(1~
3 2

n+l 1,

n+2-i)
on-i

- (3n%+13n+20)-2%- (1 - )

(n-1) %+4 (n-1)+6

3 AR I3 Lo

Caindt

(1L

(12)

(13)

into (13) results in

+(6n+11) 271 (2 - y-3-20"L. (6 -

n-1

2 2n-l

)




ohm,

4 Coi 2
P~ T SR N

2n+2 40

10 40
=3 3
-9.2" + 3:(n-1)2+12«(n-1)+18

2 - 80 _ (3n%413n+20) - (27-1) +(6n+11) - (2"-n-1)

14

10 -(3n%47n+18) -2%42n + (14)

= 5 -2

2n+2

The denominator of (10) can be simplified as follows:
n-1 . n=i

5 22n-21 s

i=0 j=1 27

1 n-1 . :
=
i

1 i=0 2

T
0 2 i=

nt+l

. . Ly, g -
(n+2) - (1 - 2n)+ 2 (2 o1

—(n+1)-27*1 _ 2 (15)

Substituting (14) and (15) into (10) yields

(9n2-9n+24) - 2P-6n-24 :
22M%3_3. (n+1) .20%1o0 !

5 -

=~ 5 as n gets large
=5

Q.E.D.

Theorem 3: The average number of nodes visited by

CORNER_ADJ_NEIGHBOR is bounded by %%.




Proof: Given a node P at level i, and a direction D towards
corner C of P, using similar reasoning as in Theorem 1 and 2,

. n .
there are 2774 . : 2“‘3-j neighbor pairs where we make no

restriction on %;;+ielative size of the neighboring node. j
corresponds to the level at which the nearest common ancestor
is located. For a node at level i, a direction D towards corner
C, and a nearest common ancestor at level j, we have possible
neighbor pairs having the initial node at level i and the neigh-
boring node at levels j-1,j-2,...,i+l1,i,i-1,...,2,1,@--i.e.,
j possible neighbor pairs. Thus for a node at level i, the
number of nodes that will be visited in the process of locating
a neighbor at level k with a nearest common ancestor at level j
is (j~i+j-k). This is obtained by observing that the nearest
common ancestor is at a distance of j-i. Therefore, the average
number of nodes visited by CORNER_ADJ NEIGHBOR is:

n-1 n . . -1

% g 2MTE2BTI.T 1 (5-i+j-k)

i=0 j=i+l k=0

) g 2071eaPTIy
i=0 j=i+l

The numerator of (16) can be multiplied to yield

n-1 n . .
pop 2T 5% 1o gy
i=0 j=i+l
Azl n=i on-2i-j-1 2 2
= 1 I 2 IR ((35%+F) +4Fi+ic+i) (17)
i=0 j=1




Now, compute the following component of (17) and make use of

(4) and (6):

n-l n-i .
5 5 22n-21-3-1'(4ji+i2+i)

i=0 j=1
n=1 on-2i+1 , BTy 2n-2i-1 P71 324

= I (2 cie I -+ 2 T =3
i=0 j=1 2 j=1 2J
n=l  on-2i+1 n+2-i, .2n-2i-1 ,.2 1

= I (2 eic(2 - BTET) 2 e (i%+i)e(1- -) )
i=0 2"t 2"t

n-1 . n-1 .2 n-1
= 7220y Lol Ty L a2ty
i=0 2 i=0 2 i=0 2
n-1 .2
+ 5.zn-l . iI (18)
i=0 2
nooy 1 3n+4
But I —%— = 5(4 ~ 3n ) (19)
j=1 24J 2
n .2 2
And I —= = f%(zo - 25_:%%3139, (20)

j=1 24J 2

Substituting (4), (12), (19), and (20) into (18) yields

2
7 . ,2n-1, 3(n-1)+4, _ 1 _,2n-1, 9 (n-1) 2424 (n-1) +20
gt 2 U= TRt )ty 2 e (20 - 7n-2 )

2 2
2
-(an+7) .27 Lo (2 - BHL , g.pnmlo (g (n=1)"+d (n-1) 46,
2n+l 2n--l
_ 64 .,2n=1_o, . ..n-l_ 12 _ 29 _ 248
= 3= -2 8(n=2) -2 zn 51 > (21)

U U




i

£

. |

. Now, add (14) to (21) to get the numerator of (16)

K 98 . .2n+2 ,, 2 n 12 11 122

3 37 " 2 -(3n“+11n+10) 2" - 3n° - Fn - S5 (22)
}: The denominator of (16) can be simplified as follows:

)

r n-1 n . .

: ) 2RIl ((4-1) +4) (23)
: i=0 j=i+l

Compute the following component of (23)

n-1 n . .
p g 2P0l
i=0 j=i+l

n-1 . n-i
5 22n-21.i. 5 1

i=0 j=1 27

n-1
= I

1

2202150 - L
zn‘l

0

-1 . n-1 i
= 2 hd Z——.—-Z-Z-—.
=0 241 i=0 2%

_ 3(n-1)+4

22n—2

) - 2P o2 - B

(24)

Now, add (15) to (24) to get the denominator of (16)

2n+2

oj
L]

n+l + 2

2 —(n+2) -2 $n + g (25)

Substituting (22) and (25) into (16) yields
14 _ (27n%+15n-78) - 2"+3n%+39n+78

3 7.220%2_ 9. (n+2) . 2™ Lignes
< l‘f;la&: n gets large

14
=3

>




Theorem 4: The average number of nodes visited by

EQUAL CORNER_NEIGHBOR is bounded by %?.
Proof: Given a node P at level i and a direction towards

quadrant C, there are (2n-1_1)2 neighbor pairs of equal sized

nodes. 4g~(2-(2n-i-l)-l) have their nearest common ancestor at
level n, 41-(2'(2n-i-1-1)-1) at level n-1,... and gn-i-1,
(2’(2n-i-(n—i_l)-l)-l) at level i+l. 1In order to see this,
consider Figure 7 where a grid is shown for n=3. If all BLACK

and WHITE nodes are at level @ (i.e., a complete quadtree), then
for a neighbor pair in the NE direction we see that nodes along
the fifth row and fourth column have their nearest common ancestor
at level 3 (i.e., 13 nodes labeled 1-13). Continuing the process
for the NW, NE, SW, and SE quadrants of Figure 7 we £ind that

all neighbor pairs contained exclusively within these gquadrants

have their nearest common ancestor at level s2. 1In particular,
for the NW quadrant, nodes along the third row and second column
have their nearest common ancestor at level 2 (i.e., 5 nodes
labeled 14-18). The NE, SW, and SE quadrants are analyzed in a
similar manner. This process is next applied to the four sub-
quadrants of each quadrant to obtain the neighbor pairs whose

nearest common a.cestor is at level 1. Note that we had to

consider every row in the image when analyzing neighbor pairs
in the direction of guadrants whereas we only needed to consider
one row or one column when analyzing neighbor pairs in the N,

E, S, and W directions. This is necessary because for neighbors




o R X Y

oo o 15 £ i L ks mmina et 5 e kst W P

in the direction of quadrants, each row and column in the image
has a different number of neighbor pairs with a common ancestor
at a given level while this number is constant for each row or
column when considering neighbor pairs in the horizontal and
vertical directions.

For each node at level i having a nearest common ancestor
at level j, the number of nodes that will be visited in the pro-
cess of locating an equal-sized neighbor at level i is 2(j-i).
This is obtained by observing that the nearest common ancestor
is at a distance of j~-i. Therefore, the average number of nodes
visited by EQUAL_ CORNER NEIGHBOR is:

n-1 n

oz 4Pl @rim(0=3) gy gy i0e (51
i=0 =i+l
T (26)
z (2™7ta))
i=0

(26) can be rewritten to yield

n-1 n-i - . a
5 5 (22n—21-3+2_3.22n-21-2)+l).j
i=0 j=1

(2112
1

e

i

The numerator of (26) can be simplified to yield

n-1 n- i

. i . . nN=- .
=0 j=1 27 j=1 2

1

S————————r——

N




Making use of (4) and (19) in (27) results in

n-1 . . .
221 5 272l e (20 B2l 3. L(go 3noiin),
i=0 2 2
n-1 n-1
z —%-+ R
=0 2 i=

n-1
1 n+2
z =T - {n+2) -2 .

8 22n+l
3°
i=0 2 i

- n-1
I 1-211i (28)
=0 i=0

=

. n
+(2n+ %)-
i

Substituting (4), (6), and (7) into (28) yields

= g_ .22n+l. % « (1l - %n)—(n+2).2n+3_ (1- _1_-1_)_’_2n+2.(2_ 2-:}-)
2 2 2
8
+n- (2n+ }) - n(n=-1)
= %; . 2202 %; - 8%n+2%(2n-l)+812n-n-1)+2n2 + %n-n2+n
El
f =16 ,2n%2_ . .y.on#3, 2 11 8 (29)
9 379
The denominator of (26) can be simplified as follows:
n .
r (2i.1)2
i=1
n . n . n
= 12423724, 1
i=0 i=0  i=0
n+1l
i =i =l o - ™lyenn
H22™2-3.2M 243048 (30)

R ol pwist sl <an-ou; ol e DM 1 e ey e e W8 N e g .. . . N
- PNt » -~ N .
- e e o T e ——




Substituting (29) and (30) into (26) yields

16 _ (6n-10) -2"*2_3n%+5n+40
3 22n%2_3.,0%2 3048
& ;g as n gets large

Q.E.D.

Theorem 5: The average number of nodes visited by
GTEQUAL CORNER_NEIGHBOR is bounded by 6.

Proof: Given a node P at level i and a direction towards
quadrant C, and recalling Theorem 3, there are ‘ g 4n-j
-(2'(2n-i_(n-j)-l)-l)'(j-i) neighbor pairs suchJ:;;t the
neighboring node is of size greater than or equal to that of P.
The index j in the summation corresponds to the level at which
the nearest common ancestor is located. Recall that a neighbor
in the direction of guadrant C will not always abut against
corner C of the node whose neighbor is sought (e.g., node 16 is
a non-abutting NE neighbor of node 23 in Figure 1). For a node
at level i, a direction towards quadrant C, and a nearest common
ancestor at level j, we have possible neighbor pairs having the
initial node at level i and the neighbor node at levels j-1,j-2,
eee,i+l,i--i.e., (j-i) possible neighbor pairs. Thus for a node
at level i, the number of nodes that will be visited in the pro-
cess of locating a greater than or equal sized neighbor at level

k with a nearest common ancestor at level j is (j-i+j-k). This

is obtained by observing that the nearest common ancestor is at

o BT 2 SR




a distance of j-i. Therefore, the average number of nodes

visited by GTEQUAL CORNER NEIGHBOR is:

The

n-1 n . . . j=1
L T 43 (2. (22t (0=3) 1y 1y T8 (5-i4-k)

n-1 n . . .
L 4™ 3. (2. (203 gy gyl (5-1)
i=0 j=i+l

numerator of (31) can be simplified to yield:

n-1 n a1 ' s J-i
5 5 (22n j+1 1_3,22n 23). L (§-i+k)
i=0 =i+l k=1
n-1 n . . .
r o (2TItmg20m20 (35-0 2 4 S(3-4))
i=0 j=i+1
n-1 n-i . L . .
5 5 (22n-21-3_3.22n-21-23-l).(3j2+j)
i=0 j=1
n-1 n-i .2 n=-i .2 n-i n-1 .
22"2%32 L-%z++z—l-%z—%-.-) (32)
i=0 2°% j=1 27 j=1 299 j=1 2 j=1 2%

Making use of (4), (12), (19), and (20) in (32) results in

-1 2 . 2 .
2n B 1 .. (n=i) “+4 (n-i) +6 9 . 1 9 (n~i) “+24 (n-i) +20
2°" 1 (3 (6- e ) = 3 - 57(20- e )
i=0 2 2 2
n+2-i 3.1 3(n-i)+4
*2 - n-i 2 §(4 - 2n-21 1)
2 2
n-1 n-1
16-2%0 g “%I - (3n%+13n+20) -2 ¢ 'Ji
i=0 2 i=0 2
n-1 . n-1 .2 n-1 n-1
+(6n+13)-2" 1 L - 32" 1 i % S L %2 (3n+ %) I i
i=0 2 i=0 2 i=0 i=0
n-l
+(3n? + 2n 44y 11 (33)
R i=0




Substituting (4), (6), (7), and (12) into (33) yields

2n 4

. $41- 3= -(3n%+13n+20) 2™ (1 - 2
2n

- =)

16-2
P

2
.on, _n+tl . . on_ . (n-1)"+4(n-1)+6 Do 1velne
+(6n+13) + 27 (2 ;EII’ 3.2M. (¢ 1 )+ J(2n-1)-(n-1)
- %<3n+ %»(n-l)+n-(%n2 + %n+4)
= %; 22n _ %} ~-2(3n%+13n+20)-(2"-1) +2:(6n+13)+(2"-n-1) -18. 2"
+6:(n-1) 2+24:(n=1)+36+ J{2n-1)(n-1)- F(3n+ %%(n-1)+n4%n2+ 3n +4)

-(5n2+14n+32)~2n+ %n3+3n2+ lén + %% (34)

16 ,22n+2
3 2

The denominator of (31) is equal to 1/2 of the numerator of
(26)--i.e., (29):

2
8 ,2n+2 n+2, n 11 4
= 2 -~(n+l) -2 + VI + —61’1 + g (35)

O

Substituting (34) and (35) into (31) yields
(27n%-45n+36) - 2" 2_9n>+81n-144

16-227%2_1g8. (n+1)2"* 249n+33n+8

6 -

T 6 as n gets large

=6




Theorem 6: The average number of nodes visited by

CORNER_CORNER_NEIGHBOR is bounded by 65%.
Prbof: Given a node P at level i and a direction towards
quadrant C, using similar reasoning as in Theorems 3 and 4,
there are g 4n—j-(2*(2n-i-(n_j)-l)—l)'j neighbor pairs where
we make noj:;;triction on the relative size of the abutting
neighboring node. Jj corresponds to the level at which the
nearest common ancestor is located. For a node at level i, a
direction towards quadrant C, and a nearest common ancestor at
level j, we have possible neighbor pairs having the initial node
at level i and the neighboring node at levels j-1,j-2,...,i+1,
i,i-1,...,2,1,8--i.e., j possible neighbor pairs. Thus for a
node at level i, the number of nodes that will be visited in
the process of locating a neighbor at level k with a nearest
common ancestor at level j is (j-i+j-k). This is obtained by
observing that the nearest common ancestor is at a distance of

j-i. Therefore, the average number of nodes visited by CORNER_

CORNER_NEIGHBOR is:

-1

-1 . . . J . .

T angurtitemd) gy )y (-l43ek)

i=0 9=i+1 k=0

. - ;-l n . . . (36)
L $ 4™ (2e (20 im(nm3) gy

i=0 j=i+l

The numerator of (36) can be simplified to yield:

e e T




03

i=0 j=

n

i

-1l n
z
=OJ

n
T (2

=i+l

2n-j+1-i _3. 22n-23) (3 .2 l - i3)

not (22072073 _3.520m20-23-1y L (352,554 543244)

=1

L (22n 2i-3_3.,

=1

2n-2i-2j-1

) ((33 +J)+431+1 +1) (37)

Now, compute the following component of (37) and make use of

(4), (6), (7), and (19)
n-1 n-i
5
i=0 j=1
n=1 525 P2t 444
= T (2 g 24
i=0 j=1 273
. N=1 .
+ 22n—21 5, +1
j=1 27
n-1 .
= 1 ( 2n=-2i+2 (2
1=0
+22n 21'(12+i)'(l
_2n-1 T 52 35
= 2 z 2 +T
i=0 2
n- i
-(4n+9)-2 I = +
i=0 2%

Tt (p2n-2i-3_5.520-28-23-1) | (44545%44)

3.p20-2i-1 77 4%;
j=1 24J

an-2i-1 Mo 124

3. b 57 )
j=1 2<J

3(n-i)+4

n+2-i 2n-2i+1 ., 1
- o172 i 20 4 Gl o x
2 2
1 2n-2i-1_ .2, :y. 1
n-1 n-1 .2
I T i
i=0 2 i=0 2
n-1
(2n+ 52) i (38)
i=0

e e b F T e




Substituting (4), (12), (14), and (20) into (38) yields:

2

1 .2n-1, ., 9(n-1)%+24(n-1)+20 35 .2n-1_,,_ 3(n-1)+4
37 "2 (20 27n-2 s I - =z
n (n-1) 2+4(n-1)+6 n n+1 19, ,n2-n
+3-2%. (6- ) - (4n+9) - 27+ (2- Y+ (2n+ =2y -
on-1 on-1 5 7]

- %n3 + %nz - %n

_20 .,2n42 o .on 13 82 71 _ 80

= 55 2 8n*2 + Zn” + 3n‘+ 1" 57 (39)

Now, add (34) to (39) to get the numerator of (36)

164

=222 .2

27

2n+2 n+%§§ (40)

—(6n+22n+32) -2R4n3+ 1752 & 7

3, 17.2 , 94
3 9

The denominator of (36) can be simplified as follows:

n-1 n | i j
- 2 4n_3'(Z.Zn—l-(n~])_l)_l)-((j-i)+i)
i=0 j=i+l

Compute the following component of (41)

n-1 n . . .
£ 1 4™ 3.2 erittn=d) gy gy
i=0 j=i+l
=0l B one3+l-i L .2n-23
z g (247D -3.2 y-i
i=0 j=i+1
n-1 n-i . . . .
=5 5 (22n—3+l-21_3.22r1~23-21).i
i=0 j=1
_ n=1 _9s D-1i _5:D-1
= orogefit2iopT Lo gyt d
i=0 j=1 2J j=l 2 ]
=0l one1-2i 1 2n-21 1
L oi-(2 (1- ——)=2 c (1= ———))
\ n-i 2n-21
i=0 2 2

)




RS s,
i

IR ey

Y ai

2n_ 1,, 3«(n-1)+4, _n+l,
- g4 52n=-2 )-2 (2- ,n-1

1 22n+2_

n+2, 1 2 13 32
3 +

2 Zn° + ZFn o+ =2 (42)

Now, add (35) to (42) to get the denominator of (36)

2n+2 2

2 - (n+2) 27241024 4n+a (43)

Substituting (40) and (43) into (36) yields

(162n%-62n-448) - 2"-27n3+11n2+374n+448

)
22n+2-(n+2)-2n+2+n2+4n+4 4

1
57(164 -

2 ;;i as n gets large

=

64 _
=7 =6

N}
\JN

Q.E.D.

Theorem 7: The average numer of nodes visited by ALIGNED
21 ° !
!

Proci: Given a node P at level i and a direction D, using

is bounded by

., n .
n-i y ,n-j
j=i+1 i

neighbor pairs such that there is no restriction on the g
|

similar reasoning as in Theorems 2 and 3, there are 2 3]
size of the neighboring node. Jj corresponds to the level of
the tree at which the nearest common ancestor is located. Given

i and j as defined above, we have possible neighbor pairs having

an initial node at level i and a neighboring node at levels 1

j=-1,3-2,...,i+1,i,i-1,...,2,1,@8-~i.e., j possible neighbor pairs,




For a node at level i and a neighbor at level k, at most i

-k

nodes must be visited in determining the aligned relationship.

Therefore the average number of nodes visited by ALIGNED is

n-1 n s . j=1
£z 2™l ek
i=0 j=i+l k=0
n-1 n . . (44)
T b 2“'1.2n‘3.j
i=0 j=i+l
The numerator of (44) can be simplified to yield
n-1 n s _s i-1 j=1
z g 207RPTdl(r (i-k)+ I (k-i))
i=0 =i+l k=0 k=1
n-1 n . . .2 .
= I g 20"leaB=dl (5245 55+ -4
i=0 j=i+l
A=l nol on-2i-3-1, .2 2
= 3z 2 ITt(§4-3-1+19)
i=0 j=1
n-1 . n-i .2 . . .2
= g pém-2i-) Spm 3T g G-if), (45)
i=0 j=1 27 23 27
Substituting (4), (6), and (12) into (45) leads to
n=l on-2i-1 (n=-1) 2+4(n-i) +6 n-i+2 2 1
L2 < (6- o1 -2+ o1 -{i=i“). (1~ n-i))
i=0 2 2 2
_Lanel ™t 1 om0y 2n-1 "7 42
= 2 - I 31 -2 - I "ﬁ + 2 z —i
i=0 2 i=0 2 i=0 2
_q nh-1 n-1 ., n-1 .2
~(n2+3n+4) - 271 —% +(n+2).20 ¢ L o pnuy i (46)
i=0 2 i=0 2% i=p 2%




Making use of (4), (6), (7), (12), (19), and (20) in (46)

results in:

2n+1 1 o, 1 , ,2n-1 1 3(n-1)+4
2 3 (4 2n-2) 2 3 (4- T_z-)
2 2
- (n-1)2+24.(n-
+p20-1 ._;_.(20_ 9«(n-1) “+24-(n l)+20)-(n2+3n+4)-2n-(1- _L)
2
+(n+2) 20 (2- Bl _on, (o (n-1) “+4(n-1)+6,
zn-l zn-l
_ 19 _.,2n+2 2 .o, 1.2 11 86
= 57 2 —(n +n+6) 27+ 3-n + —9—1'1 + 2—7 (47)

The denominator of (44) is equal to (25) and substituting
(47) and (25 in (44) yields:

19 _ 3 (21n%-17n+50) - 2"=7n%-13n-50

2L 7 5202 g, (ne2) - 2™ Ligneg
T %% as n gets large

n
j—
e

Q.E.D.

The analysis of the ALIGNED relationship performed in
Theorem 7 can also be used to yield an estimate of the cost of
finding neighbors when using the roping methods of Hunter [3-5].
Recall that roping implies that equal sized neighbors are linked
directly regardless of whether or not they are brothers. 1In the
case of a larger sized neighbor, the time required to access it
in a roped guadtree is equal to the number of FATHER links that
must be ascended to reach a GRAY ancestor node of size equal to

that of the desired neighbor. Therefore, the following is the

analog of Theorem 2 when roping is used.




Theorem 8: The average number of nodes visited when seeking
larger sized neighbors in a roped quadtree is bounded by 1.
Proof: Given a node P at level i and a direction D we have

-

from Theorem Zz that there are 2n-i.' ; Zn—j-(j-i) pairs such
that the neighboring node is of sizg_;ziater than or equal to
that of P. For a node at level i, the number of nodes that will
be visited in locating a greater than or equal sized neighbor

at level k (k=2i) where the nearest common ancestor is at level j

is k~-i. The average is obtained as follows:

n-1 n s _s J-1
L g 2P7h2RT)Tr (k-d)
i=0 j=i+l k=i
n=-1 . D=i . (48)
207t g .2t
i=0 j=1
The numerator of (48) can be simplified to yield
n-1 n . - .2 . .
oot 2P e I -iye 5 - D
i=0 j=i+l
n-1 n~i _
= 1§ g 22m-itl (32
i=0 j=1
n-1 : n-i .2 .
= g 22l ot A 4 (49)
i=0 j=1 23 2
Substituting (4) and (12) into (49) leads to
n-1 R iy 2 . .
5 22n-21-1_(6_ (n-i) “+4(n-i)+6 _ n-i+2,
i=0 zn-l 2n-=1
n-1 n-1 ., n-1 .2
= 22T Loy 2™ Aoty
i=0 2 i=0 2 i=0 2
n-1
-(n%+3n+4) .20 L (50)
. i
i=0 2
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Making use of (4), (6), (7), and (12) in (50) results in:

2
2n+l, 4, 1 .on=l. o n+l . .n-1_ . (n-1)2+4(n-1)+6
2 5‘(1 —22n)+(2n+3) 2 (2 'ZT_—I) 2 (6 2n_l )
—(n%+3n+4)- 27100 (1o Ly
n
2
= 2 222 (n24n44) 2% 4 (51)

The denominator of (48) is equal to (15) and substituting (51)
and (15) in (48) yields:

3(n%-n+2) -2"-¢

22033041y 27* 1,

l1 -

* 1 as n gets large
s 1
Q.E.D.
If one is interested in finding a smaller or larger neighbor
in a roped quadtree, then we must add to the analysis of
Theorem 8 a factor for finding a smaller sized neighbor. 1In
the case of a roped quadtree we merely need to follow the rope
and then descend to find the smaller neighbor. However, the cost
of finding the smaller and larger sized neighbors is precisely
the cost of the ALIGNED procedure. Thus for a roped quadtree,
the analog of Theorem 3 is given below.
Theorem 9: The average number of nodes visited when seeking
smaller and larger sized neighbors in a roped quadtree is

bounded by %% .
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Proof: Given a node P at level i and a direction D we have
from Theorem 3 that there are Zn-i' § Zn'j-j neighbor pairs such
that there is no restriction on thgagzie of the neighboring node.
For a node at level i, the number of nodes that will be visited
in locating a greater than or equal sized neighbor at level k
(k2i) where the nearest common ancestor is at level j is k-i.

Similarly, in locating a smaller sized neighbor at level k (k<i)

i-k nodes will be visited. The average is obtained as follows:

n-1 n s . i-1 j-1
X g 2TR2MTdl (3 (i-k)+ T (k-i))
i=0 =i+l k=0 k=i
n-1 n s s (52)
z g 2RTh.RTI 5
i=0 j=i+l

However, (52) is identical to (44) and our result follows.
Q.E.D.

Note that the bounds of Theorems 8 and 9 do not reflect the
fact that one must also visit one additional link due to the
presence of the rope (i.e., the link which the rope represents).
It should also be clear that if the quadtree is netted, then

no links need ever be traversed except for the link which the

net represents.




b

sl T

s e o e AN 5 LIS IR o S bl e Wi ftim i e Lt T

5. Concluding Remarks

We have described the neighbor finding techniques for quad-
trees in detail. The analyses of the various algorithms demon-
strate that the operation is quite efficient. We have used an
unusual model of a random image in our analysis. However, as
stated in Section 4, had we used a model which attributes a given
probaﬁility (e.g., 1/2) for a pixel being BLACK or WHITE, the
quadtree for a 2" by 2" image would most likely have n levels
and have neighboring nodes of equal size. In such a case,
Theorems 1 and 4 are applicable and show a lower bound on the
execution time of adjacent and corner neighbor locating algo-
rithms. Thus our model attempts to present a more realistic
view of the time complexity of these algorithms.

We have also analyzed an alternative neighbor finding technique
which makes use of a construct termed a rope. 1In such a case, we
saw that neighbors can be located more quickly (at about 1/2 to
1/3 of the cost when our technique is used). Nevertheless, if
space is at a premium, roping should probably not be used without
some careful thought. An upper bound on the number of links
necessary to achieve roping is four times the number of leaf
nodes since each leaf node may participate in a maximum of four

ropes (one for each side).
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Table 1. ADJ(S,Q)

_Q | orQuUAD (Q)
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Table 3. OPQUAD(Q)
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Figure 2. Relationship between a block's four gquadrants and
¥ its boundaries.
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Table 2. REFLECT(S,Q)

Table 4. COMMONSIDE(Q1l,Q2)
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Figure 4. Process of locating the SE neighbor of node A (i.e., G).
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Figure 7. Sample grid illustrating blocks whose nodes are at
level #§ and whose nearest common ancestor is at level
22 when attempting to locate a NE neighbor.
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