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Remark Lh being a diffeomorphism implies that the Jacobian matrix, denoted

J i
j(θ) = ∂θ̃i

∂θj
(4.58)

exists and is invertible in a neighborhood, i.e., det(J) 6= 0.

Diffeomorphisms are known to generate a curve on a manifold connecting the points
involved in a mapping. At each point on the curve, one can then assign a tangent vector
and, more generally, a tangent space. These tangent space are also connected via a map
known as the push-forward that are, in fact, induced by the existence of the left and
right translation diffeomorphisms.

Definition 25 (Push–Forward) A left (and similarly right) push–forward, L∗
h : Tg(G) → Thg(G) is

the map
V = vi ∂

∂θi
∈ Tg(G) 7→ Ṽ = ṽi ∂

∂θ̃i
∈ Thg(G) (4.59)

with ṽi = J i
j(θ) vj .

From the push–forward definition, we can define a vector field generally and connect
every point in the tangent space as a push–forward of the identity element.

Definition 26 (Vector Field) A vector field is a map V : G → Tg(G) such that g 7→ Vg at g. In a
coordinate system

V (θ) = V i(θ) ∂

∂θi
∈ Tg(θ)(G) (4.60)

is a vector field that is smooth if the components, V i(θ) ∈ R, are each infinitely
differentiable.

With regards to left and right translations, starting from a tangent vector at the
identity, ω ∈ Te(G), we may define a vector field

Ω(g) = L∗
g(ω) (4.61)

for all g ∈ G. As L∗
g is smooth and invertible, Ω(g) is smooth and since the Jacobian is

invertible, Ω(g) is also non-vanishing. This generalizes our result from earlier. We may
now describe every point on the manifold as a push–forward of the identity.

Naturally, we want to tie in how this aids in developing a Lie algebra from Lie
group. As we now have a vector space, we are just a short skip and step away from
identifying the tangent space of these matrix Lie groups with the vector space needed
for the Lie algebra. Continuing our program, we next introduce a basis for the tangent
space. Let B = {ωa} with a = 1, . . . , D be the basis for Te(G). We obtain D independent
nowhere–vanishing vector fields on G such that

Ωa(g) = L∗
g(ωa). (4.62)

This is already a very strong constraint on M(G) because it says that there exists no
other vector field on M(G) that may be constructed independently of the basis vector,
i.e., all vectors on M(G) have a basis decomposition.

To see how this manifests itself on any given manifold consider the following exam-
ples.

Example The so–called hairy ball theorem says that any smooth vector field on S2 has at
least two zeros. Thus M(G) 6= S2. In fact, for dim(G) = 2, assuming the G is compact,




