
Path traversal vulnerability. Denial of Service vulnerability.

Vulnerable scenario: "/openemr/custom/ajax_download.php?fileName="
Vulnerable function in file: /custom/ajax_download.php
Conditions:

 any authorized user
 for DoS case: directory "/sites/default/documents/cqm_qrda/" must exists on server (Due

to logic of "unlink()" function, path to file must consist only exsisting directories and file in
it.)

Description:

 Attacker can download any file, which is readable by user "www-data", from server storage.
 If requested file is writeable for "www-data" user and directory
"/sites/default/documents/cqm_qrda/" exists, it will be deleted from server and may cause Denial
of Service.

Request example:

GET /open/custom/ajax_download.php?fileName=../../../../../../../../../etc/passwd HTTP/1.1

Host: 10.198.0.133

X-Requested-With: XMLHttpRequest

Cookie: OpenEMR=tgk4uo09vdrk0dtnvm8751rl17

Screenshot 1. Upload file “/etc/passwd” with simple request.

Used filename in request: “../../../../../../../../etc/passwd”

Teplykh Maksim

Screenshot 2. Code of “ajax_download.php”.

Variable “qrda_file_path” is equal to “/sites/default/documents/cqm_qrda/”.

Attacker have control over the “filename” variable and there is no validation/sanitize of it.

How to secure:
There is good function "check_file_dir_name()" in sanitize.inc.php and you might use

something like that for filename check.

New function example (based on "check_file_dir_name()"):

 function check_file_name($fname)
 {
 if (empty($fname) || preg_match('/[^A-Za-z0-9_.-]/', $fname)) {
 error_log("ERROR: The following variable contains invalid characters:" .
errorLogEscape($fname));
 die(xlt("ERROR: The following variable contains invalid characters").": ". attr($fname));
 } else {
 return $fname;
 }
 }

