
[Alghero, Italy]

How Configurable is Linux?

On the Challenges of Analyzing the Kernel’s Feature Model

FOSD 2024 — April 9–12 — Eindhoven, Netherlands

Elias Kuiter1, Chico Sundermann2, Tobias Heß2, Sebastian Krieter3, Thomas Thüm3, Gunter Saake1

University of Magdeburg1, Ulm2, Paderborn3, Germany

Configurability: A Fundamental Metric of Variability

A Small Feature Model . . .

A

B C

D E

. . . and a Question to You

How configurable is this feature model?

Variability metrics as proxy questions:

• How many features does it have?

• How many valid configurations are there?

• count program variants (+ solution space)

• count distinct program variants (+ binary diff)

• count t-wise interactions, . . .

How Is This Relevant?

• judge complexity of featuremodels [Kuiter et al. 2024]

• ground truth for facilitated decision-making

• can also be applied to subsystems and evolution

• #features is fundamental, often stated in papers

• many applications for #cfg’s [Sundermann et al. 2021]

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Cardinality of
Feature Models

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

DD

+
Radio

Cardinality of
Features

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

DD

DD

DD

DD

DD

+

Cardinality of
Partial Configurations

3Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 2

https://dl.acm.org/doi/10.1145/3634713.3634733
https://dl.acm.org/doi/10.1145/3442391.3442404
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf

Configurability: A Fundamental Metric of Variability

A Small Feature Model . . .

A

B C

D E

. . . and a Question to You

How configurable is this feature model?

Variability metrics as proxy questions:

• How many features does it have?

• How many valid configurations are there?

• count program variants (+ solution space)

• count distinct program variants (+ binary diff)

• count t-wise interactions, . . .

How Is This Relevant?

• judge complexity of featuremodels [Kuiter et al. 2024]

• ground truth for facilitated decision-making

• can also be applied to subsystems and evolution

• #features is fundamental, often stated in papers

• many applications for #cfg’s [Sundermann et al. 2021]

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Cardinality of
Feature Models

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

DD

+
Radio

Cardinality of
Features

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

DD

DD

DD

DD

DD

+

Cardinality of
Partial Configurations

3Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 2

https://dl.acm.org/doi/10.1145/3634713.3634733
https://dl.acm.org/doi/10.1145/3442391.3442404
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf

Configurability: A Fundamental Metric of Variability

A Small Feature Model . . .

A

B C

D E

. . . and a Question to You

How configurable is this feature model?

Variability metrics as proxy questions:

• How many features does it have?

• How many valid configurations are there?

• count program variants (+ solution space)

• count distinct program variants (+ binary diff)

• count t-wise interactions, . . .

How Is This Relevant?

• judge complexity of featuremodels [Kuiter et al. 2024]

• ground truth for facilitated decision-making

• can also be applied to subsystems and evolution

• #features is fundamental, often stated in papers

• many applications for #cfg’s [Sundermann et al. 2021]

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Cardinality of
Feature Models

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

DD

+
Radio

Cardinality of
Features

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

DD

DD

DD

DD

DD

+

Cardinality of
Partial Configurations

3Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 2

https://dl.acm.org/doi/10.1145/3634713.3634733
https://dl.acm.org/doi/10.1145/3442391.3442404
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf

Configurability: A Fundamental Metric of Variability

A Small Feature Model . . .

A

B C

D E

. . . and a Question to You

How configurable is this feature model?

Variability metrics as proxy questions:

• How many features does it have?

• How many valid configurations are there?

• count program variants (+ solution space)

• count distinct program variants (+ binary diff)

• count t-wise interactions, . . .

How Is This Relevant?

• judge complexity of featuremodels [Kuiter et al. 2024]

• ground truth for facilitated decision-making

• can also be applied to subsystems and evolution

• #features is fundamental, often stated in papers

• many applications for #cfg’s [Sundermann et al. 2021]

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Cardinality of
Feature Models

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

DD

+
Radio

Cardinality of
Features

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

DD

DD

DD

DD

DD

+

Cardinality of
Partial Configurations

3Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 2

https://dl.acm.org/doi/10.1145/3634713.3634733
https://dl.acm.org/doi/10.1145/3442391.3442404
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf

Configurability: A Fundamental Metric of Variability

A Small Feature Model . . .

A

B C

D E

. . . and a Question to You

How configurable is this feature model?

Variability metrics as proxy questions:

• How many features does it have?

• How many valid configurations are there?

• count program variants (+ solution space)

• count distinct program variants (+ binary diff)

• count t-wise interactions, . . .

How Is This Relevant?

• judge complexity of featuremodels [Kuiter et al. 2024]

• ground truth for facilitated decision-making

• can also be applied to subsystems and evolution

• #features is fundamental, often stated in papers

• many applications for #cfg’s [Sundermann et al. 2021]

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

Variability Factor

Void Feature Moddel

Degree of Orthogonality

Cost Savings

Maintainability Prediction

Configuration Relevance

Rating Errors

Variability Reduction

Subset Variability

Cardinality of
Feature Models

Homogeneity

Payoff Threshold

Degree of Reuse

Core, Dead & False-Optional

Atomic Set Candidates

Feature Prioritization

CTC Restrictiveness

Optimize Configuring

DD

+
Radio

Cardinality of
Features

Uniform Random Sampling

Atomic Sets

Rate Interactions

Configuration Derivation

DD

DD

DD

DD

DD

+

Cardinality of
Partial Configurations

3Chico Sundermann, Heß, Nieke, Bittner, Young, Schaefer, Thüm Analyzing Industrial Feature Models with #SAT: Are we there yet? - FOSD’21

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 2

https://dl.acm.org/doi/10.1145/3634713.3634733
https://dl.acm.org/doi/10.1145/3442391.3442404
https://github.com/SoftVarE-Group/Slides/blob/main/2021/2021-04-14-FOSD-AnalyzingFeatureModelsWithSharpSAT.pdf

Linux: The End Boss of Feature-Model Analysis?

A

B C

D E

vs.

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 3

https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Linux: The End Boss of Feature-Model Analysis?

A

B C

D E

vs.

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 3

https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Linux: The End Boss of Feature-Model Analysis?

A

B C

D E

vs.

A BDD for Linux?
The Knowledge Compilation Challenge for Variability

Thomas Thüm
University of Ulm, Germany
thomas.thuem@uni-ulm.de

Figure 1: Excerpt of a feature model for Linux 2.6.33.3 with 6,467 features and 3,545 cross-tree constraints in FeatureIDE.

ABSTRACT
What is the number of valid configurations for Linux? How to gen-
erate uniform random samples for Linux? Can we create a binary
decision diagram for Linux? It seems that the product-line com-
munity tries hard to answer such questions for Linux and other
configurable systems. However, attempts are often not published
due to the publication bias (i.e., unsuccessful attempts are not pub-
lished). As a consequence, researchers keep trying by potentially
spending redundant effort. The goal of this challenge is to guide
research on these computationally complex problems and to foster
the exchange between researchers and practitioners.

CCS CONCEPTS
• Software and its engineering � Formal software verifica-
tion; Software testing and debugging; Software verification;
Automated static analysis; Consistency; Software configura-
tion management and version control systems; Preproces-
sors; • Theory of computation� Program verification; Pro-
gram analysis; Logic and verification
.
KEYWORDS
software product line, configurable system, software configuration,
product configuration, feature models, decision models, artificial
intelligence, satisfiability solving, knownledge compilation, binary
decision diagrams

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SPLC ’20, October 19–23, 2020, Montreal, QC, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7569-6/20/10. . . $15.00
https://doi.org/10.1145/3382025.3414943

ACM Reference Format:
Thomas Thüm. 2020. A BDD for Linux?: The Knowledge Compilation Chal-
lenge for Variability. In 24th ACM International Systems and Software Product
Line Conference (SPLC ’20), October 19–23, 2020, Montreal, QC, Canada. ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3382025.3414943

1 MOTIVATION
What is the holy grail of the product-line community? A binary
decision diagram for Linux.

Linux is an operating system with thousands of configuration
options (cf. Figure 1). These options cannot be arbitrarily combined,
as every option typically comes with constraints with respect to
several other options. Constraints are specified in KConfig [21],
but can be translated into feature models or propositional logic [11,
32, 34, 37, 40, 49, 57, 65, 68, 71, 77, 81–83]. Whenever we analyze
the Linux kernel for errors, ignoring those constraints would lead
to false positives. That is, tools would report errors for invalid
configurations, which cannot be used to compile a kernel. Hence,
these constraints are crucial for any kind of analysis of Linux.

A binary decision diagram (short BDD) is data structure repre-
senting a propositional formula. While there are multiple represen-
tations of propositional formulas, BDDs can have the advantage of
reducing NP-complete problems into more tractable problems (aka.
knowledge compilation) [14, 31]. For instance, checking whether a
formula represented as a BDD is satisfiable is an operation with
constant effort. While operations on BDDs might scale well, the
downside of BDDs is that their construction can be intractable.
The main reason for the scalability challenge is that the variable
ordering heavily influences the size of the BDD and they tend to
explode for most variable orderings.

Why do we argue that a BDD for Linux is the holy grail of the product-
line community?

First, it seems to be a challenging task. To the best of our knowl-
edge, no one has been able to create a BDD for Linux so far. In
recent work, we tried to create a BDD for hundreds of large feature

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 3

https://dl.acm.org/doi/abs/10.1145/3382025.3414943

Literature on the Linux Kernel

Year Revision Architecture Reported Reported
#Features #Configurations

2002 v2.5.45 ∗ — —
2005 v2.6.12 i386 3,284 —
2008 v2.6.28 ∗ 5,426 —

v2.6.28 x86 5,321 5,323 6,888 —
v2.6.28 x86? 5,701 6,888 —
v2.6.28? x86? 6,888 —

2009 v2.6.32 x86 6,319 6,320 60,072 —
2010 v2.6.33 x86 6,467 6,559 6,918 62,482 —

v2.6.33? x86? 5,913 —
2011 v3.1 ∗ 11,691 —
2015 v4.0 x86 11,135 —
2016 v4.4 x86 15,500 —
2018 v4.18 x86 13,379 22,352 —
2020 v5.8 x86 14,817 —
2024 v6.7 ∗ — —

(references omitted)

• #features unknown for
recent revisions

• #features varies wildly
(impact on other analyses?)

• #configurations unknown

Our Goals

• which factors influence this?

• which results are accurate?

• when is it too hard?

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 4

Literature on the Linux Kernel

Year Revision Architecture Reported Reported
#Features #Configurations

2002 v2.5.45 ∗ — —
2005 v2.6.12 i386 3,284 —
2008 v2.6.28 ∗ 5,426 —

v2.6.28 x86 5,321 5,323 6,888 —
v2.6.28 x86? 5,701 6,888 —
v2.6.28? x86? 6,888 —

2009 v2.6.32 x86 6,319 6,320 60,072 —
2010 v2.6.33 x86 6,467 6,559 6,918 62,482 —

v2.6.33? x86? 5,913 —
2011 v3.1 ∗ 11,691 —
2015 v4.0 x86 11,135 —
2016 v4.4 x86 15,500 —
2018 v4.18 x86 13,379 22,352 —
2020 v5.8 x86 14,817 —
2024 v6.7 ∗ — —

(references omitted)

• #features unknown for
recent revisions

• #features varies wildly
(impact on other analyses?)

• #configurations unknown

Our Goals

• which factors influence this?

• which results are accurate?

• when is it too hard?

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 4

Literature on the Linux Kernel

Year Revision Architecture Reported Reported
#Features #Configurations

2002 v2.5.45 ∗ — —
2005 v2.6.12 i386 3,284 —
2008 v2.6.28 ∗ 5,426 —

v2.6.28 x86 5,321 5,323 6,888 —
v2.6.28 x86? 5,701 6,888 —
v2.6.28? x86? 6,888 —

2009 v2.6.32 x86 6,319 6,320 60,072 —
2010 v2.6.33 x86 6,467 6,559 6,918 62,482 —

v2.6.33? x86? 5,913 —
2011 v3.1 ∗ 11,691 —
2015 v4.0 x86 11,135 —
2016 v4.4 x86 15,500 —
2018 v4.18 x86 13,379 22,352 —
2020 v5.8 x86 14,817 —
2024 v6.7 ∗ — —

(references omitted)

• #features unknown for
recent revisions

• #features varies wildly
(impact on other analyses?)

• #configurations unknown

Our Goals

• which factors influence this?

• which results are accurate?

• when is it too hard?

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 4

Choosing and Analyzing the Feature Model

“are we talking about the same feature model?”

1. Source Tree

⇒ here: mainline kernel (§/torvalds/Linux)

↓

2. Revision

⇒ here: all releases since 2002 (i.e., KConfig)

↓

3. Architecture

⇒ here: all architectures (except for um)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

https://github.com/torvalds/linux

Choosing and Analyzing the Feature Model

“are we talking about the same feature model?”

1. Source Tree

⇒ here: mainline kernel (§/torvalds/Linux)

↓

2. Revision

⇒ here: all releases since 2002 (i.e., KConfig)

↓

3. Architecture

⇒ here: all architectures (except for um)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

https://github.com/torvalds/linux

Choosing and Analyzing the Feature Model

“are we talking about the same feature model?”

1. Source Tree

⇒ here: mainline kernel (§/torvalds/Linux)

↓

2. Revision

⇒ here: all releases since 2002 (i.e., KConfig)

↓

3. Architecture

⇒ here: all architectures (except for um)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

https://github.com/torvalds/linux

Choosing and Analyzing the Feature Model

“are we talking about the same feature model?”

1. Source Tree

⇒ here: mainline kernel (§/torvalds/Linux)

↓

2. Revision

⇒ here: all releases since 2002 (i.e., KConfig)

↓

3. Architecture

⇒ here: all architectures (except for um)

Architecture Subsumed Architecture

alpha
arc
arm, arm64 arm26
csky
hexagon
loongarch
m68k (m68000) m68knommu
microblaze
mips mips64
nios2
openrisc
parisc parisc64
powerpc ppc, ppc64
riscv
s390 (z Systems) s390x
sh (SuperH) sh64
sparc sparc32, sparc64
um (User Mode Linux)
x86 i386, x86 64
xtensa

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

https://github.com/torvalds/linux

Choosing and Analyzing the Feature Model

“are we analyzing the model the same way?”

4. Extraction

⇒ here: KConfigReader and KClause (KMax)

↓

5. Transformation

⇒ here: CNF and backbone transformation

↓

6. Analysis

⇒ here: #features and #configurations

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

Choosing and Analyzing the Feature Model

config X86_32

def_bool y

depends on !64BIT

select ARCH_WANT_IPC_PARSE_VERSION

config SMP

bool "Symmetric multi-processing support"

help

This enables support for systems with

more than one CPU.

if X86_32

config X86_BIGSMP

bool "Support for big SMP systems"

depends on SMP

help

This option is needed for the systems

that have more than 8 CPUs.

endif # X86_32

“are we analyzing the model the same way?”

4. Extraction

⇒ here: KConfigReader and KClause (KMax)

F = {X86 32, 64BIT, SMP, X86 BIGSMP}
ϕ = (X86 32 → ¬64BIT)
∧ (X86 BIGSMP → (X86 32 ∧ SMP))

↓

5. Transformation

⇒ here: CNF and backbone transformation

↓

6. Analysis

⇒ here: #features and #configurations

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

Choosing and Analyzing the Feature Model

CNF Transformation [Kuiter et al. 2022]

ϕCNF := tseitinCNF (ϕ)

Backbone Transformation [Biere et al. 2023]

Vdead := {v ∈ V | ¬SAT (ϕCNF ∧ v)}
Vcore := {v ∈ V | ¬SAT (ϕCNF ∧ ¬v)}

ϕback
CNF := ϕCNF ∧

∧
v∈Vdead

¬v ∧
∧

v∈Vcore
v

“are we analyzing the model the same way?”

4. Extraction

⇒ here: KConfigReader and KClause (KMax)

↓

5. Transformation

⇒ here: CNF and backbone transformation

↓

6. Analysis

⇒ here: #features and #configurations

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

https://dl.acm.org/doi/10.1145/3551349.3556938
https://doi.org/10.4230/LIPIcs.SAT.2023.3

Choosing and Analyzing the Feature Model

#Features

|F | (sort of)

#Configurations

#SAT (V , ϕ) (sort of)

(more on this later)

“are we analyzing the model the same way?”

4. Extraction

⇒ here: KConfigReader and KClause (KMax)

↓

5. Transformation

⇒ here: CNF and backbone transformation

↓

6. Analysis

⇒ here: #features and #configurations

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 5

Evaluation

Choosing and Analyzing the Feature Model

1. Source Tree

only mainline kernel

2. Revision

all releases ≥ 2002

3. Architecture

all but um

4. Extraction

KConfigReader,
KClause

5. Transformation

CNF, backbone

6. Analysis

#features,
#configurations

Research Questions

RQ1 When can we count features/configurations?

RQ2 How to count features?
Influence of revision, architecture, extractor?

RQ3 How to count configurations?
Influence of revision, architecture, extractor?

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 6

Evaluation

Choosing and Analyzing the Feature Model

1. Source Tree

only mainline kernel

2. Revision

all releases ≥ 2002

3. Architecture

all but um

4. Extraction

KConfigReader,
KClause

5. Transformation

CNF, backbone

6. Analysis

#features,
#configurations

Research Questions

RQ1 When can we count features/configurations?

RQ2 How to count features?
Influence of revision, architecture, extractor?

RQ3 How to count configurations?
Influence of revision, architecture, extractor?

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 6

Evaluation

Choosing and Analyzing the Feature Model

1. Source Tree

only mainline kernel

2. Revision

all releases ≥ 2002

3. Architecture

all but um

4. Extraction

KConfigReader,
KClause

5. Transformation

CNF, backbone

6. Analysis

#features,
#configurations

Research Questions

RQ1 When can we count features/configurations?

RQ2 How to count features?
Influence of revision, architecture, extractor?

RQ3 How to count configurations?
Influence of revision, architecture, extractor?

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 6

Evaluation

Choosing and Analyzing the Feature Model

1. Source Tree

only mainline kernel

2. Revision

all releases ≥ 2002

3. Architecture

all but um

4. Extraction

KConfigReader,
KClause

5. Transformation

CNF, backbone

6. Analysis

#features,
#configurations

Research Questions

RQ1 When can we count features/configurations?

RQ2 How to count features?
Influence of revision, architecture, extractor?

RQ3 How to count configurations?
Influence of revision, architecture, extractor?

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 6

RQ1: When Can We Count Features and Configurations?

100% #features

35.8% #configurations

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 7

RQ1: When Can We Count Features and Configurations?

2003
 2.5.54

2004
 2.6.1

2005
 2.6.11

2006
 2.6.15

2007
 2.6.20

2008
 2.6.24

2009
 2.6.29

2010
 2.6.33

2011
 2.6.37

2012
 3.2

2013
 3.8

2014
 3.13

2015
 3.19

2016
 4.4

2017
 4.10

2018
 4.15

2019
 5.0

2020
 5.5

2021
 5.11

2022
 5.16

2023
 6.2

2024
 6.7

Countable (Both)
Countable (KClause)
Uncountable (Both)
Unsatisfiable (KConfigReader)
Unextractable (Both)

Year
First Release in Year

P
ro

ce
ss

or
 A

rc
hi

te
ct

ur
e

alpha

arc

arm

arm26

arm64

avr32
blackfin

c6x

cris

csky

frv

h8300

hexagon

i386

ia64

loongarch

m32r

m68k

m68knommu

metag

microblaze

mips

mips64

mn10300

nds32

nios2

openrisc

parisc

powerpc

ppc
ppc64

riscv

s390
s390x

score

sh

sh64

sparc
sparc64

tile
unicore32

v850

x86

x86_64

xtensa

100% #features

35.8% #configurations

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 7

RQ1: When Can We Count Features and Configurations?

2003
 2.5.54

2004
 2.6.1

2005
 2.6.11

2006
 2.6.15

2007
 2.6.20

2008
 2.6.24

2009
 2.6.29

2010
 2.6.33

2011
 2.6.37

2012
 3.2

2013
 3.8

2014
 3.13

2015
 3.19

2016
 4.4

2017
 4.10

2018
 4.15

2019
 5.0

2020
 5.5

2021
 5.11

2022
 5.16

2023
 6.2

2024
 6.7

Countable (Both)
Countable (KClause)
Uncountable (Both)
Unsatisfiable (KConfigReader)
Unextractable (Both)

Year
First Release in Year

P
ro

ce
ss

or
 A

rc
hi

te
ct

ur
e

alpha

arc

arm

arm26

arm64

avr32
blackfin

c6x

cris

csky

frv

h8300

hexagon

i386

ia64

loongarch

m32r

m68k

m68knommu

metag

microblaze

mips

mips64

mn10300

nds32

nios2

openrisc

parisc

powerpc

ppc
ppc64

riscv

s390
s390x

score

sh

sh64

sparc
sparc64

tile
unicore32

v850

x86

x86_64

xtensa 100% #features

35.8% #configurations

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 7

RQ2–3: How to Count Features and Configurations?

“Isn’t this just the cardinality of F?” Yes-ish. (60%) “Isn’t this just the answer to the #SAT query
#SAT (V , ϕ)?” Yes-ish. (1 : 1010)

Improved #Features

• begin with the formula’s variables

• remove auxiliary variables (from tseitinCNF)

• remove non-related variables (i.e., modules and
visibility conditions)

• remove dead features, which cannot be selected

• add unconstrained features, which can be se-
lected freely

• cross-reference with features defined in KConfig
files, remove non-Boolean variables

Improved #Configurations

• begin with the formula’s model count

• add unconstrained features, which can be se-
lected freely (∗2|Funconstrained |)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 8

RQ2–3: How to Count Features and Configurations?

“Isn’t this just the cardinality of F?” Yes-ish. (60%)

“Isn’t this just the answer to the #SAT query
#SAT (V , ϕ)?” Yes-ish. (1 : 1010)

Improved #Features

• begin with the formula’s variables

• remove auxiliary variables (from tseitinCNF)

• remove non-related variables (i.e., modules and
visibility conditions)

• remove dead features, which cannot be selected

• add unconstrained features, which can be se-
lected freely

• cross-reference with features defined in KConfig
files, remove non-Boolean variables

Improved #Configurations

• begin with the formula’s model count

• add unconstrained features, which can be se-
lected freely (∗2|Funconstrained |)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 8

RQ2–3: How to Count Features and Configurations?

“Isn’t this just the cardinality of F?” Yes-ish. (60%)

“Isn’t this just the answer to the #SAT query
#SAT (V , ϕ)?” Yes-ish. (1 : 1010)

Improved #Features

• begin with the formula’s variables

• remove auxiliary variables (from tseitinCNF)

• remove non-related variables (i.e., modules and
visibility conditions)

• remove dead features, which cannot be selected

• add unconstrained features, which can be se-
lected freely

• cross-reference with features defined in KConfig
files, remove non-Boolean variables

Improved #Configurations

• begin with the formula’s model count

• add unconstrained features, which can be se-
lected freely (∗2|Funconstrained |)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 8

RQ2–3: How to Count Features and Configurations?

“Isn’t this just the cardinality of F?” Yes-ish. (60%) “Isn’t this just the answer to the #SAT query
#SAT (V , ϕ)?” Yes-ish. (1 : 1010)

Improved #Features

• begin with the formula’s variables

• remove auxiliary variables (from tseitinCNF)

• remove non-related variables (i.e., modules and
visibility conditions)

• remove dead features, which cannot be selected

• add unconstrained features, which can be se-
lected freely

• cross-reference with features defined in KConfig
files, remove non-Boolean variables

Improved #Configurations

• begin with the formula’s model count

• add unconstrained features, which can be se-
lected freely (∗2|Funconstrained |)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 8

RQ2–3: How to Count Features and Configurations?

“Isn’t this just the cardinality of F?” Yes-ish. (60%) “Isn’t this just the answer to the #SAT query
#SAT (V , ϕ)?” Yes-ish. (1 : 1010)

Improved #Features

• begin with the formula’s variables

• remove auxiliary variables (from tseitinCNF)

• remove non-related variables (i.e., modules and
visibility conditions)

• remove dead features, which cannot be selected

• add unconstrained features, which can be se-
lected freely

• cross-reference with features defined in KConfig
files, remove non-Boolean variables

Improved #Configurations

• begin with the formula’s model count

• add unconstrained features, which can be se-
lected freely (∗2|Funconstrained |)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 8

RQ2: How to Count Features? – Results

2005 2010 2015 2020
 0

 5k

 10k

 15k

 20k

2005 2010 2015 2020

Year Year

#F
ea

tu
re

s
(T

ot
al

)

Extractor=KConfigReader Extractor=KClause

v2.5.45 v6.7
2,907

19,338

v2.5.45 v6.7
2,916

19,445

2005 2010 2015 2020
 0

 5k

 10k

 15k

 20k

2005 2010 2015 2020

Year Year

#F
ea

tu
re

s
(A

rc
h.

)

v4.16 v6.7

arm: 15,001x86: 14,797

arm64: 14,486

nios2: 11,017

score: 3,878
v4.16 v6.7

arm: 14,856x86: 14,652

arm64: 14,321

nios2: 10,821

score: 3,775

sustained linear
growth (still!)

a given architecture
only contains half of
the features

does not depend on
extractor

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 9

RQ2: How to Count Features? – Results

2005 2010 2015 2020
 0

 5k

 10k

 15k

 20k

2005 2010 2015 2020

Year Year

#F
ea

tu
re

s
(T

ot
al

)

Extractor=KConfigReader Extractor=KClause

v2.5.45 v6.7
2,907

19,338

v2.5.45 v6.7
2,916

19,445

2005 2010 2015 2020
 0

 5k

 10k

 15k

 20k

2005 2010 2015 2020

Year Year

#F
ea

tu
re

s
(A

rc
h.

)

v4.16 v6.7

arm: 15,001x86: 14,797

arm64: 14,486

nios2: 11,017

score: 3,878
v4.16 v6.7

arm: 14,856x86: 14,652

arm64: 14,321

nios2: 10,821

score: 3,775

sustained linear
growth (still!)

a given architecture
only contains half of
the features

does not depend on
extractor

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 9

RQ2: How to Count Features? – Results

2005 2010 2015 2020
 0

 5k

 10k

 15k

 20k

2005 2010 2015 2020

Year Year

#F
ea

tu
re

s
(T

ot
al

)

Extractor=KConfigReader Extractor=KClause

v2.5.45 v6.7
2,907

19,338

v2.5.45 v6.7
2,916

19,445

2005 2010 2015 2020
 0

 5k

 10k

 15k

 20k

2005 2010 2015 2020

Year Year

#F
ea

tu
re

s
(A

rc
h.

)

v4.16 v6.7

arm: 15,001x86: 14,797

arm64: 14,486

nios2: 11,017

score: 3,878
v4.16 v6.7

arm: 14,856x86: 14,652

arm64: 14,321

nios2: 10,821

score: 3,775

sustained linear
growth (still!)

a given architecture
only contains half of
the features

does not depend on
extractor

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 9

RQ3: How to Count Configurations? – Results

2005 2010 2015 2020
10 0

10 200

10 400

10 600

10 800

10 1000

2005 2010 2015 2020

Kind of Bound
Exact
Lower Bound

Year Year

#C
on

fig
ur

at
io

ns
 (T

ot
al

, l
og

 10
)

v2.5.45
v2.6.2

v2.6.20

10 632
10 741

10 922

v2.5.45 v2.6.12 v2.6.23

10 424

10 567

10 746

2005 2010 2015 2020
10 0

10 200

10 400

10 600

10 800

10 1000

2005 2010 2015 2020

Year Year

#C
on

fig
ur

at
io

ns
 (A

rc
h.

, l
og

 10
)

v2.6.14 v3.7

i386: 10 906

h8300: 10 622

v2.6.23 v3.10

i386: 10 746

h8300: 10 434

exponential growth

only 1/10130 configu-
rations are valid

depends on extrac-
tor (log10 ∗ 1.5)

pushes the limits
of state-of-the-art
#SAT solvers

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 10

RQ3: How to Count Configurations? – Results

2005 2010 2015 2020
10 0

10 200

10 400

10 600

10 800

10 1000

2005 2010 2015 2020

Kind of Bound
Exact
Lower Bound

Year Year

#C
on

fig
ur

at
io

ns
 (T

ot
al

, l
og

 10
)

v2.5.45
v2.6.2

v2.6.20

10 632
10 741

10 922

v2.5.45 v2.6.12 v2.6.23

10 424

10 567

10 746

2005 2010 2015 2020
10 0

10 200

10 400

10 600

10 800

10 1000

2005 2010 2015 2020

Year Year

#C
on

fig
ur

at
io

ns
 (A

rc
h.

, l
og

 10
)

v2.6.14 v3.7

i386: 10 906

h8300: 10 622

v2.6.23 v3.10

i386: 10 746

h8300: 10 434

exponential growth

only 1/10130 configu-
rations are valid

depends on extrac-
tor (log10 ∗ 1.5)

pushes the limits
of state-of-the-art
#SAT solvers

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 10

RQ3: How to Count Configurations? – Results

2005 2010 2015 2020
10 0

10 200

10 400

10 600

10 800

10 1000

2005 2010 2015 2020

Kind of Bound
Exact
Lower Bound

Year Year

#C
on

fig
ur

at
io

ns
 (T

ot
al

, l
og

 10
)

v2.5.45
v2.6.2

v2.6.20

10 632
10 741

10 922

v2.5.45 v2.6.12 v2.6.23

10 424

10 567

10 746

2005 2010 2015 2020
10 0

10 200

10 400

10 600

10 800

10 1000

2005 2010 2015 2020

Year Year

#C
on

fig
ur

at
io

ns
 (A

rc
h.

, l
og

 10
)

v2.6.14 v3.7

i386: 10 906

h8300: 10 622

v2.6.23 v3.10

i386: 10 746

h8300: 10 434

exponential growth

only 1/10130 configu-
rations are valid

depends on extrac-
tor (log10 ∗ 1.5)

pushes the limits
of state-of-the-art
#SAT solvers

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 10

Goodies for You

torte: Feature-Model Experiments à La Carte

declarative, fully automated, reproducible

1. Source Tree

any

2. Revision

any ≥ 2002

3. Architecture

any but um

4. Extraction

KConfigReader,
KClause

5. Transformation

FeatureIDE, FeatJAR,
z3, clausy, CaDiBack

6. Analysis

the above + SATGraf,
dozens of solvers

→

Comprehensive Dataset

> 3000 feature models of the Linux kernel

(weekly sample also available)

(for now, available on request)

curl -s https://ekuiter.github.io/torte/ | sh -s - linux-history-releases (takes a few weeks!)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 11

https://github.com/ekuiter/torte

Goodies for You

torte: Feature-Model Experiments à La Carte

declarative, fully automated, reproducible

1. Source Tree

any

2. Revision

any ≥ 2002

3. Architecture

any but um

4. Extraction

KConfigReader,
KClause

5. Transformation

FeatureIDE, FeatJAR,
z3, clausy, CaDiBack

6. Analysis

the above + SATGraf,
dozens of solvers

→

Comprehensive Dataset

> 3000 feature models of the Linux kernel

(weekly sample also available)

(for now, available on request)

curl -s https://ekuiter.github.io/torte/ | sh -s - linux-history-releases (takes a few weeks!)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 11

https://github.com/ekuiter/torte

Goodies for You

torte: Feature-Model Experiments à La Carte

declarative, fully automated, reproducible

1. Source Tree

any

2. Revision

any ≥ 2002

3. Architecture

any but um

4. Extraction

KConfigReader,
KClause

5. Transformation

FeatureIDE, FeatJAR,
z3, clausy, CaDiBack

6. Analysis

the above + SATGraf,
dozens of solvers

→

Comprehensive Dataset

> 3000 feature models of the Linux kernel

(weekly sample also available)

(for now, available on request)

curl -s https://ekuiter.github.io/torte/ | sh -s - linux-history-releases (takes a few weeks!)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 11

https://github.com/ekuiter/torte

Goodies for You

torte: Feature-Model Experiments à La Carte

declarative, fully automated, reproducible

1. Source Tree

any

2. Revision

any ≥ 2002

3. Architecture

any but um

4. Extraction

KConfigReader,
KClause

5. Transformation

FeatureIDE, FeatJAR,
z3, clausy, CaDiBack

6. Analysis

the above + SATGraf,
dozens of solvers

→

Comprehensive Dataset

> 3000 feature models of the Linux kernel

(weekly sample also available)

(for now, available on request)

curl -s https://ekuiter.github.io/torte/ | sh -s - linux-history-releases (takes a few weeks!)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 11

https://github.com/ekuiter/torte

Conclusion

Date Sun, 1 Apr 2012 00:33:21 +0800 [LKML 2012]

From Paul E. McKenney

Subject [PATCH RFC] Simplify the Linux kernel by reducing its state space

Although there have been numerous complaints about the complexity of parallel programming,

the plain truth is that the incremental complexity of parallel programming over that of

sequential programming is not as large as is commonly believed. Despite that you might

have heard, the mind-numbing complexity of modern computer systems is not due so much to

there being multiple CPUs, but rather to there being any CPUs at all. In short, for the

ultimate in computer-system simplicity, the optimal choice is NR CPUS=0.

This commit therefore limits kernel builds to zero CPUs. This change has the beneficial

side effect of rendering all kernel bugs harmless. Furthermore, this commit enables

additional beneficial changes, for example, the removal of those parts of the kernel that

are not needed when there are zero CPUs.

1

VR™

1
1 · · ·

Thank you for listening!

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 12

https://lkml.org/lkml/2012/3/31/131
https://github.com/EagleoutIce/tikzpingus

Feature and Configuration Candidates

F extracted V all V FV FV undead F all F
0%

20%

40%

60%

80%

100%

F extracted V all V FV FV undead F all F

Set of Candidate Features Set of Candidate Features

Ja
cc

ar
d

S
im

ila
rit

y
to

 F
ea

tu
re

s
(F

)

Extractor=KConfigReader Extractor=KClause

1f

1p

1n

1μ

0.001

1

R
at

io
 o

f #
C

 mi
n

to
 #

C
 (l

og
10

)

KCR KCl

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 13

Feature Types

 48.66%
 44.09%

 3.68% 2.29% 0.75% 0.53%

bool tristate int unknown hex string
0

5k

10k

15k Configurability
config
core
dead
unconstrained
constrained

Feature Type

To
ta

l N
um

be
r o

f F
ea

tu
re

s

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 14

Model Count Time

2004 2006 2008 2010 2012 2014

0.1

1

10

100

1000

10k

2004 2006 2008 2010 2012

Year Year

Ti
m

e
fo

r C
ou

nt
in

g
(lo

g 1
0

s)

Extractor=KConfigReader Extractor=KClause

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 15

Failed Attempts and Future Directions

• approximate model counting: works worse then standard #SAT

• model approximate counting: use exact counter on approximate model (where hard constraints are omitted)

• knowledge compilation (BDD, d-DNNF, . . .): still too hard [Thüm 2020, Sundermann et al. 2023]

• incremental counting (count #SAT differences): grow exponentially as well

• prime factorization (shorten the #SAT ratio): is this possible?

• non-Boolean variability: what encoding is actually needed in which use case? (Boolean, bit-blasting,
equivalence classes, solution-space model, . . .)

• architecture unification (eliminate architecture as a threat of validity)

• future projection (make predictions about the development of Linux)

Elias Kuiter et al. How Configurable is Linux? – On the Challenges of Analyzing the Kernel’s Feature Model 16

https://dl.acm.org/doi/abs/10.1145/3382025.3414943
https://link.springer.com/article/10.1007/s10472-023-09906-6

