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“In 1960, John McCarthy published a remarkable paper in which he did for programming
something like what Euclid did for geometry. He showed how, given a handful of simple operators
and a notation for functions, you can build a whole programming language. He called this language
Lisp, for “List Processing,” because one of his key ideas was to use a simple data structure called
a list for both code and data.” – Paul Graham [1]

1 Introduction

McCarthy’s paper [2] not only showed how a programming language can be built entirely from
lists as code and data, he also showed a function in Lisp that acts like an interpreter for Lisp
itself. This function, called eval, takes as an argument a Lisp expression and returns its value.
It was a remarkable discovery that Lisp can be written in Lisp itself. Lisp also introduced the
concept of functions as first-class objects (closures) with static scoping1, runtime typing and garbage
collection. Features we now take for granted but were radical at that time. To put this into context,
other programming languages at that time were Fortran (1957) and Algol (1958). Many new
programming languages have appeared since. Most are still “Algol-like”, or as some say, “C-like.”
The Lisp model of computation has regained momentum over the past decade. Contemporary
programming languages now include Lisp-like “lambda functions.” Lambda functions are syntactic
materializations of lambda abstractions from the lambda calculus [3] introduced by Alonzo Church
in 1944. It was lambda calculus that inspired McCarthy to write Lisp.

In honor of the contributions made by Church and McCarthy, I wrote this article to show how
anyone can write a tiny Lisp interpreter in a few lines of C or any “C-like” programming language.
I attempted to preserve the original meaning and flavor of Lisp as much as possible. As a result,
the C code in this article is strongly Lisp-like in compact form. Despite being small, these tiny Lisp
interpreters in C include 20 built-in Lisp primitives, garbage collection and REPL, which makes
them a bit more practical than a toy example. If desired, more Lisp features can be easily added
with a few more lines of C as I will show in this article with examples that are ready for you to try.

I encourage anyone to explore other Lisp implementations and their code. Many are cool with
lots of features. Some are actually incorrect. Sometimes little nuggets surface when digging deeper
to achieve perfection. This appears to be the case when writing this article, as it turns out that the
list dot operator plays an important and useful role in lambda variable lists and arguments lists.
In this case, no special forms are needed to achieve the same in pure Lisp. I hope you will enjoy
reading this article as much as I did writing it!

1Originally dynamic scoping, which has some drawbacks. Static scoping is also known as lexical scoping.
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2 Understanding Lisp

Lisp programs are composed of anonymous functions written in the form of a ( )-delimited list

(lambda variables expression)

where variables is a list of names denoting the function parameters and expression is the body of
the function. Just like any other ordinary math function, lambdas don’t do anything until we apply
them to arguments. Application of a lambda to arguments is written as a list

(function arguments)

The application is performed in two steps. First, we bind the variables to the values of the corre-
sponding arguments. Then the expression is evaluated. The expression may reference the function’s
variables by their name. The value of expression is “returned” as the result of the application.

Note that “return” is an imperative concept. Lisp has no imperative keywords. The entire Lisp
language is built from functions and function applications, all using lists as syntax. Besides lists,
Lisp also has symbols (names) for variables, primitives, functions (closures) and numbers. Lisp
dialects may also include strings.

Function application is perhaps best illustrated with an example. Consider the function

(lambda (x y) (/ (- y x) x))

This function returns the value of y−x
x for numeric arguments x and y. The first thing we note

is that all arithmetic operations are written in functional form in Lisp. There is no need for any
specific rules for operator precedence and associativity in Lisp. To apply our lambda to arguments,
say 3 and 9, we write the list

((lambda (x y) (/ (- y x) x)) 3 9)

Spacing in Lisp is immaterial, so let’s add some more spacing

( ( lambda (x y)

(/ (- y x) x)

)

3 9

)

The Lisp interpreter binds x to 3 and y to 9, then evaluates the function body (/ (- y x) x)) to
compute 2 as the result of the application. Nice, isn’t it?

But our function is not stored anywhere. What if we want to reuse it? After all, programs are
composed of functions and those functions should be stored as part of a program to use them2. We
can save our function by giving it a name using a define

(define subdiv (lambda (x y) (/ (- y x) x)))

and then apply subdiv to 3 and 9 with

(subdiv 3 9)

2The beauty of lambda calculus is that this is not an absolute requirement: lambda calculus is Turing-complete
without named functions.
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which displays 2. A defined name is not required to be alphabetic. Names are syntactically symbolic
forms in Lisp. We could have named our lambda -/ for example. Any sequence of characters can
be used as a name, as long as it is distinguishable from a number and doesn’t use parenthesis,
quotes and whitespace characters.

The power and simplicity of Lisp’s lambdas is better justified when we take a closer look at
closures. A closure combines a function (a lambda) with an environment. An environment defines
a set of name-value bindings. An environment is created (or extended) when the variables of a
lambda are bound to the argument values in a lambda application. An environment provides a
concrete mechanism to create a local scope of variables for the function body. Because lambdas are
first-class objects and can therefore be returned as values by lambdas, environments play a crucial
role to scope nested lambdas properly through static scoping. Consider for example the make-adder
lambda that takes an x to return a new lambda that takes a y and adds them together:

(define make-adder (lambda (x) (lambda (y) (+ x y))))

Applying make-adder to 5 returns a closure in which the environment includes a binding of x to 5.
When this closure is applied to 2 it returns 7 as expected:

> (define make-adder (lambda (x) (lambda (y) (+ x y))))

> ((make-adder 5) 2)

7

> (define add5 (make-adder 5))

> (add5 2)

7

Note that make-adder returns a closure that combines (lambda (y) (+ x y)) with an environ-
ment in which x is bound to 5. The x in the lambda body is not modified. It is Lisp code after all.
When the closure is applied, the environment is extended to include a binding of y to 2. With this
environment the function body (+ x y) evaluates to 7.

A handful of programming languages both correctly and safely implement the semantics of
closures with static scoping. The implementation requires unlimited extent of non-local variables
in scope to store bindings. Otherwise, non-local variables are “gone” as their values are removed
from memory. This requires environments and garbage collection to remove them safely after the
work is done. It doesn’t suffice that functions can be syntactically nested within other functions.

Lisp also has a collection of built-in primitives. These are functions like + and special forms like
define. A special form is a function that selectively evaluates its arguments rather than all of its
arguments as in lambda applications. For example, define does not evaluate its name argument.
Otherwise the value of the name would end up being used by define or an error is produced when
name is not yet defined, which is more likely.

An overview of Lisp is not complete without a presentation of the basic primitives introduced
in McCarthy’s paper. We list them here and also include two more primitives if and a let since
these are often used in Lisp3. Some of the primitives listed below are special forms, namely quote,
cond, if and let:

• (quote x) returns x unevaluated, “as is”. Abbreviated ’x.

3The if and let can be defined as macros, but we keep our Lisp interpreter small without macro processing. To
add macro processing, see Section 11.5.
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> (quote a)

a

> 'a

a

> '(a b c)

(a b c)

• (cons x y) returns the pair (x . y) where the dot is displayed if y is not the empty list ().

> (cons 'a 'b)

(a . b)

> (cons 'a ())

(a)

> (cons 'a (cons 'b (cons 'c ())))

(a b c)

• (car x) (“Contents of the Address part of Register”) returns the first element of the pair or
list x.

> (car (cons 'a 'b))

a

> (car (cons 'a (cons 'b (cons 'c ()))))

a

• (cdr x) (“Contents of tbe Decrement part of Register”, pronounced “coulder” ) returns the
second element of the pair x. When x is a list, the rest of the list is returned after the first
element.

> (cdr (cons 'a 'b))

b

> (cdr (cons 'a (cons 'b (cons 'c ()))))

(b c)

• (eq? x y) returns the atom #t (representing true) if the values of x and y are identical.
Otherwise returns () representing false.

> (eq? 2 2)

#t

> (eq? 2 3)

()

> (eq? 'a 'a)

#t

• (cond (x1 y1) (x2 y2) ... (xn yn)) evaluates xi from left to right until xi is not the
empty list (i.e. is true), then returns the corresponding value of yi.
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> (cond ((eq? 'a 'b) 1) ((eq? 'b 'b) 2))

2

> (cond (() 1) (#t 2))

2

• (if x t e) if x is not the empty list (i.e. is true), then the value of t is returned else the
value of e is returned. (if x t e) is a shorthand for (cond (x t) (#t e)).

> (if 'a 1 2)

1

> (if () 1 2)

2

> (if (eq? 'a 'a) 'ok 'fail)

ok

• (let ((v1 x1) (v2 x2) ... (vn xn)) y) evaluates xi from left to right and binds each
variable vi to the value of xi to extend the environment to the body y, then returns the value
of y. The same is accomplished with ((lambda (v1 v2 ... vn) y) x1 x2 ... xn).

> (let ((x 3) (y 9)) (/ (- y x) x))

2

The let in this article do not require the binding list, so (let* (x 3) (y 9) (/ (- y x) x))

works. Lisp implementations include more primitives, notably for arithmetic, logic and runtime
type checking. Most Lisp implementations define additional Lisp primitives in Lisp itself.

3 Lisp Expressions as Tagged Structures

Lisp expressions are composed of numbers, atoms (names and symbols), strings (when imple-
mented), primitives, cons pairs and closures. A Lisp expression type can be conveniently defined
in C as a tagged union:

struct Expr {

enum { NMBR, ATOM, STRG, PRIM, CONS, CLOS, NIL } tag;

union {

double number; /* NMBR: double precision float number */

const char *atom; /* ATOM: pointer to atom name on the heap */

const char *string; /* STRG: pointer to string on the heap */

struct Expr (*fn)(struct Expr, struct Expr); /* PRIM: built-in primitive */

struct Expr *cons; /* CONS: pointer to (car,cdr) pair on the heap */

struct Expr *closure; /* CLOS: pointer to closure pairs on the heap */

} value;

};

However, rather than storing this information elaborately in a structure, we can exploit NaN boxing
to store this information in an IEEE-754 single or double precision float, because all structure
members are pointers that are essentially unsigned integer offsets from a base address.

7



3.1 NaN Boxing

The idea behind NaN boxing is that IEEE 754 floating point NaN (“Not-a-Number”) values are not
unique. A double precision NaN allows up to 52 bits to be arbitrarily used to stuff any information
we want into a double precision NaN:

| s
exponent︷ ︸︸ ︷

b b b | b b b b | b b b b |
fraction︷ ︸︸ ︷

b b b b︸ ︷︷ ︸
tag

| · · · | b b b b︸ ︷︷ ︸
also available

|

where

s is the sign bit of the float, s = 1 for negative numbers

exponent consists of 11 bits to represent binary exponents -1022 to 2023, when the bits are all 1
the value is NaN or INF

fraction consists of 52 bits with an invisible 1 bit as the leading digit of the mantissa

The tag and other data can be stored in the freely available 52 bit fraction part of a NaN. However,
we want to use quiet NaNs which means that the first bit of the fraction (the bit before the tag bits)
must be 1, leaving 51 bits and the sign bit for both the tag and other data to our disposal. This
is plenty of space in a NaN-boxed double precision float to store a tag to identify atoms, strings,
primitives, cons pairs, and closures together with their pointers and/or integer indices. In all, 48
bits are available to store an integer, or 49 bits when including the sign bit.

In this article I will also describe a Lisp implementation for the Sharp PC-G850 vintage pocket
computer, which poses a bit of a challenge since it does not use IEEE 754 floating point represen-
tations. Instead, floating point values are represented internally in BCD (Binary Coded Decimal).
This raises the question: can we use similar tricks as NaN boxing with BCD floats? Let’s find out.

3.2 BCD Float Boxing

To understand if and how we can exploit BCD floats to store information other than floating point
numbers, we will take a closer look at the PC-G850’s internal decimal floating point representation.
A decimal floating point value is stored in 8 bytes. The first 2 bytes store the exponent in BCD
and the sign of the number. The next 5 bytes store the 10 digit BCD mantissa followed by a zero
byte:

|
10 ′s complement BCD exponent︷ ︸︸ ︷
b b b b︸ ︷︷ ︸

tag

| b b b b | b b b b |
control︷ ︸︸ ︷
s d u u |

10 digit BCD mantissa︷ ︸︸ ︷
b b b b | · · · | b b b b |

2 BCD guard digits︷ ︸︸ ︷
0 0 0 0 | 0 0 0 0 |

where

s is the sign bit of the float, s = 1 for negative numbers

d is the degree bit, d = 1 to display degrees in DoM ′S.S” format in BASIC

u is an unused bit, likely a mantissa carry bit used by the system

10’s complement BCD exponent consists of 12 bits for 3 BCD digits to represent exponents -99
(901 BCD) to 99 (099 BCD)
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10 digit BCD mantissa consists of 10 BCD digits with the normalized mantissa, the leading BCD
digit is nonzero unless all mantissa digits are zero

2 BCD guard digits are always zero after internal rounding to 10 significant digits

To explore opportunities to exploit BCD float boxing4 to store information other than decimal
floating point numbers, we can write some C code for testing. Unfortunately, we cannot use the
mantissa or its trailing guard digits to store extra information. The mantissa is always normalized
to BCD and the guard digits are always reset to zero when passing floats through functions, even
when no arithmetic operations are applied to the float. Our target bits to box a tag with data in
a float are the three bits in the upper half of the leading byte of the float. These three bits of the
float remain unmodified when passing the floating point value through functions as arguments and
as return values. A quick test confirms our hypothesis, with some caveats:

double func(double x) { return x; }

int main() {

double x,y,z; char *p = (char*)&x,*q = (char*)&y; int i;

scanf("%lg",&z); /* input a value z to check */

for (i = 0x20; i <= 0x70; i += 0x10) {

x = z; *p |= i; /* set x to z and set its tag bits */

x = func(x); /* pass x through func() */

y = z; *q |= i; /* set y to z and set its tag bits */

if (x != y) /* x and y should be equal */

printf("fail %x\n",i);

}

}

The first caveat is that tag 000 (i==0x00) cannot be used. This tagged value is indistinguishable
from a normal float value. Second, tag 001 (i==0x10) cannot be used because all tagged floats
appear to fail with an arithmetic error when passed to a function, perhaps because the tagged
value corresponds to a non-normalized carry digit in the exponent. Third, all tagged floats with
values |x| < 10 are normalized to zero and thus fail this test. This type of failure happens when
the two-digit BCD exponent is zero and the third highest order BCD exponent digit nonzero, thus
representing a non-normalized two-digit zero BCD exponent.

After confirming our hypothesis by observation, we conclude that we have six possible tag bit
patterns 010 to 111 to our disposal, as long as we box integers as tagged floats |x| ≥ 10. This is
not a problem, because we can simply multiply a value by 10 before boxing and divide by 10 after
unboxing. When boxing unsigned integers, such as pointers and array indices, it suffices to add 10
before boxing and subtract 10 after unboxing. So we will use this simpler boxing method.

3.3 Types of Lisp Expressions

We define two types5 in C that we exclusively use in our Lisp interpreter: a nice and simple type
I for unsigned integers and a type L for Lisp expressions defined as floats for NaN or BCD float
boxing:

4I think the term “BCD float boxing” nails it, but Google seems to think it’s sports gear.
5PC-G850 C does not support typedef. We use #define instead.
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#define I unsigned

#define L double

We define five tags for atoms, primitives, constructed pairs, closures and nil (the empty list):

/*** with NaN Boxing ***/

I ATOM=0x7ff8,PRIM=0x7ff9,CONS=0x7ffa,CLOS=0x7ffb,NIL=0x7ffc;

/*** with BCD boxing ***/

I ATOM=32,PRIM=48,CONS=64,CLOS=80,NIL=96;

To access the tag bits of a tagged float we cast the pointer to the float to uint64 t* or char* using
a nice short and sweet T:

/*** with NaN Boxing ***/

#define T(x) *(uint64_t*)&x>>48

/*** with BCD boxing ***/

#define T *(char*)&

We will set a tag with T(x) = tag and retrieve a tag with T(x) for Lisp expression L x. Instead
of uint64 t to cast the 64 bit double in T(x) we can use unsigned long long instead, which is
typically 64 bits6. We also need the following two functions to manipulate tagged floats and their
ordinal content:

/*** with NaN Boxing ***/

L box(I t,I i) { L x; *(uint64_t*)&x = (uint64_t)t<<48|i; return x; }

I ord(L x) { return *(uint64_t*)&x; }

/*** with BCD boxing ***/

L box(I t,I i) { L x = i+10; T(x) = t; return x; }

I ord(L x) { T(x) &= 15; return (I)x-10; }

The box function returns a float tagged with the specified tag t as ATOM, PRIM, CONS, CLOS or NIL
and by boxing unsigned integer i as ordinal content. For BCD boxing we must add 10 to i to
avoid the aforementioned caveat when boxing values in BCD floats. The ord function unboxes the
unsigned integer (ordinal) of a tagged float. For BCD boxing we first untag the float with T(x) &=

15 then subtract 10 to return the boxed ordinal content of the tagged float.
We should be able to perform arithmetic on floats in our Lisp interpreter. To do so, we could

simply assume that the arguments and operands to arithmetic operations are always untagged
floats. However, to make sure we aren’t applying arithmetic operations on tagged floats by accident,
we should define a new function num to check or clear tag bits first, before applying arithmetic
operations:

/*** with NaN Boxing ***/

L num(L n) { return n; }

/*** with BCD boxing ***/

L num(L n) { T(n) &= 159; return n; }

6At least 64 bits, but we want 64 exactly. C is one of the oldest programming languages and had to accommodate
systems with strange bit widths like 18 and 36 and so on, hence “at least”.
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With NaN boxing the number is returned “as is”, but we could check if n is a NaN7 and take some
action. For now, we just pass NaNs to perform arithmetic on, which results in a NaN. For BCD
boxing we clear two bits of the tag with T(n) &= 159 (0x9f) since negative BCD exponents are
represented in BCD 9dd. The high-order digit 9 (binary 1001) should be preserved.

Checking if two values are equal is performed with the equ function. Because equality compar-
isons == with NaN values always produce false, we just need to compare the 64 bits of the values
for equality:

/*** with NaN Boxing ***/

I equ(L x,L y) { return *(uint64_t*)&x == *(uint64_t*)&y; }

/*** with BCD boxing ***/

I equ(L x,L y) { return x == y; }

Note that BCD boxing does not really require defining an equ function. It just wraps ==. But we
include it here since we may have to redefine it depending on the BCD arithmetic performed by a
specific machine.

Checking if a Lisp expression is nil (the empty list) only requires checking its tag for NIL:

I not(L x) { return T(x) == NIL; }

The not function comes in handy later when we implement conditionals, since nil is considered
false in Lisp. Anything else is implicitly true in Lisp.

The C functions we defined here are the only ones specific to NaN or BCD float boxing. The
rest of our Lisp interpreter is independent of the tagging method used.

4 Constructing Lisp Expressions

Lisp expressions are composed of atoms (also called symbols in Lisp), primitives, cons pairs, closures
and nil. The nil constant represents the empty list () in Lisp. The nil constant is also considered
false in Lisp conditionals. Furthermore, we have two pre-defined atoms, namely #t and ERR. The
#t atom will be used as an explicit true in Lisp, although any value other than nil is implicitly
true in Lisp conditionals. The ERR atom represents an error and is returned to the user when an
expression evaluates to an error. These three constants are globally declared since we will often use
them in the internals of our Lisp interpreter. They are initialized8 in the main function as follows:

L nil,tru,err;

...

int main() {

...

nil = box(NIL,0); tru = atom("#t"); err = atom("ERR");

...

}

7Checking if a value n is a NaN is easy, just do an equality check on itself: if (n != n) NaN-action-here.
8We initialize globals in main since PC-G850 C does not support initialization of globals with non-constants, i.e..

function calls cannot be used as initializers of globals.
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where we used the box function defined in Section 3.2. The atom function returns an ATOM-tagged
float that is globally unique. The atom function checks if the atom name already exists on the heap
and returns the heap index corresponding to the atom name boxed in the ATOM-tagged float. If the
atom name is new, then additional heap space is allocated to copy the atom name into the heap as
a string. The heap index of the new atom name is boxed in the ATOM-tagged float and returned by
the atom function:

L atom(const char *s) {

I i = 0; while (i < hp && strcmp(A+i,s)) i += strlen(A+i)+1;

if (i == hp && (hp += strlen(strcpy(A+i,s))+1) > sp<<3) abort();

return box(ATOM,i);

}

where hp is the heap pointer pointing to free bytes available on the heap. When i==hp we execute
strlen(strcpy(A+i,s))+1) to copy the string s to the free heap address at A+hp and return the
length of the string plus one to increase hp. A is the starting byte address of the heap and sp is
the stack pointer pointing to the top of the stack of Lisp values (tagged and untagged floats L):

#define A (char*)cell

#define N 1024

L cell[N];

I hp = 0,sp = N;

The cell[N] array of 1024 (tagged) floats contains both the heap and the stack. The value of N
can be increased to pre-allocate more memory.

The atom function searches the heap at addresses A+i until a matching atom name is found to
return box(ATOM,i). If the atom name is new, then space for the atom’s string name is allocated
and copied into this space with a terminating zero byte. In this way, atoms constructed with
box(ATOM,i) are globally unique. The method by which we construct them by looking them up in
a pool of names is often referred to as interning.

The heap grows upward towards the stack. The stack grows downward, as stacks usually do.
The remaining free space is available between the heap and stack. For example, the table below
depicts the memory configuration after pushing a pair of cells box(ATOM,4) and nil on the stack
and storing two atoms ERR and #t in the heap:

cell[1023]: box(ATOM,4) stack
cell[sp=1022]: nil ↓

free
A+hp=A+7: space

A+4: “#t\0” ↑
A+0: “ERR\0” heap

What’s actually on the stack here is the Lisp list (#t) containing one element #t in the list. This
list is represented by box(CONS,1022) where 1022 is the stack index of the cdr cell of this list pair.
The cell above it on the stack contains the car of this list pair. Lisp uses linked lists with the car
of a list node (a cons pair) containing the list element and cdr pointing to the next cons pair in
the list or it is nil at the end of the list.
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With this memory configuration in mind, constructing cons pairs is easy. We just allocate two
cells on the stack, copy the values therein and return box(CONS,sp) since sp points to the cdr cell:

L cons(L x,L y) {

cell[--sp] = x;

cell[--sp] = y;

if (hp > sp<<3) abort();

return box(CONS,sp);

}

If the hp and sp pointers meet we ran out of memory and we should abort or take some other
action. Note that hp points to bytes whereas sp points to 8-byte floats. Therefore, the out-of-
memory condition is checked in the atom and cons functions by scaling sp by a factor 8 in the
conditional if (hp > sp<<3) abort().

Deconstructing a cons pair is trivial. We just need to get the cell of the car or cdr indexed
by i in box(CONS,i) by retrieving it with the ord function:

L car(L p) { return (T(p) & ~(CONS^CLOS)) == CONS ? cell[ord(p)+1] : err; }

L cdr(L p) { return (T(p) & ~(CONS^CLOS)) == CONS ? cell[ord(p)] : err; }

where ord(p) is the cell index of the cdr of the cons pair p with the car cell located just above it.
However, we do not trust the argument p to be a cons pair. The condition T(p) & ~(CONS^CLOS))

== CONS guards valid car and cdr function calls on cons pairs. The condition is true if p is a cons
pair or a closure pair. Closure pairs are just cons pairs tagged as closures. The ~(CONS^CLOS)

mask is an efficient way to check for both CONS and CLOS tags in one comparison, because the tag
values of CONS and CLOS were carefully chosen to differ by only one bit.

For example, suppose p = box(CONS,sp) representing the list (#t) with the cells on the stack
depicted in the memory configuration shown previously. Then car(p) returns box(ATOM,4) repre-
senting #t and cdr(p) returns nil, the empty list.

Closures and environment lists are constructed with the cons function applied twice, first to
construct the name-value Lisp pair9 (v . x), then to place the pair in front of the Lisp environment
list. We define a pair function for this purpose:

L pair(L v,L x,L e) { return cons(cons(v,x),e); }

A closure is a CLOS-tagged pair(v,x,e) representing an instantiation of a Lisp (lambda v x) with
either a single atom v as a variable referencing a list of arguments passed to the function, or v is
a list of atoms as variables, each referencing the corresponding argument passed to the function.
Closures include their static scope as an environment e to reference the bindings of their parent
functions, if functions are nested, and to reference the global static scope:

L closure(L v,L x,L e) { return box(CLOS,ord(pair(v,x,equ(e,env) ? nil : e))); }

9The Lisp pair denoted with a dot (v . x) is constructed by the Lisp parser with p = cons(v,x), whereas a Lisp
list always ends in nil, such as (1 2) constructed by the Lisp parser with cons(1,cons(2,nil)).
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The conditional equ(e,env) ? nil : e forces the scope of a closure to be nil if e is the global
environment env. Later, when we apply the closure, we check if its environment is nil and use
the current global environment. This permits recursive calls and calls to forward-defined functions,
because the current global environment includes the latest global definitions.

An environment in Lisp is implemented as a list of name-value associations, where names
are Lisp atoms. Environments are searched with the assoc function given an atom v and an
environment e:

L assoc(L v,L e) {

while (T(e) == CONS && !equ(v,car(car(e)))) e = cdr(e);

return T(e) == CONS ? cdr(car(e)) : err;

}

The assoc function returns the Lisp expression associated with the specified atom in the specified
environment e or returns err if not found.

Consider for example the Lisp environment e = ((n . 3) (p . (1 . 2)) (x . nil)) where the
Lisp expression (1 . 2) constructs a pair of 1 and 2 instead of a list. This example environment
e is represented in memory as follows with boxes for cells and arrows for CONS indices pointing to
cells:

e → ↓ →−→ ↓ →−→ ↓ nil

↓ ↓ ↓
n 3 p ↓ x nil

↙
1 2

Note that a CONS index points to two cells on the stack, the car and cdr cells.

5 Evaluating Lisp Expressions

A Lisp expression is either a number, an atom, a primitive, a cons pair, a closure, or nil. Numbers,
primitives, closures and nil are constant and returned by eval as is. Atoms are evaluated by
returning their associated value from the environment using the assoc function, see Section 4. The
environment includes function parameters and global definitions. Lists are evaluated by applying
the first element in the list as a function to the rest of the list as arguments passed to that function:

L eval(L x,L e) {

return T(x) == ATOM ? assoc(x,e) :

T(x) == CONS ? apply(eval(car(x),e),cdr(x),e) :

x;

}

Note that Lisp expression x evaluates to the value assoc(x,e) of x when x is an atom, or evaluates
to the result of a function application apply(eval(car(x),e),cdr(x),e) if x is a list, or evaluates
to x itself otherwise. A function application requires evaluating the function eval(car(x),e) first
before applying it, because car(x) may be an expression that returns a function such as an atom
associated with a Lisp primitive or the closure constructed for a lambda. The apply function
applies the primitive or the closure f to the list of arguments t in environment e:
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L apply(L f,L t,L e) {

return T(f) == PRIM ? prim[ord(f)].f(t,e) :

T(f) == CLOS ? reduce(f,t,e) :

err;

}

The prim[] array contains all pre-defined primitives. A primitive is stored in a structure with its
name as a string and a function pointer to its code. To call the primitive we invoke the function
pointer with prim[ord(f)].f(t,e). See also Section 6. If f is a closure then reduce10 is called to
apply closure f to the list of arguments t:

L reduce(L f,L t,L e) {

return eval(cdr(car(f)),bind(car(car(f)),evlis(t,e),not(cdr(f)) ? env : cdr(f)));

}

where f is the closure and t is the list of arguments. The outer eval evaluates the body of closure f
retrieved with cdr(car(f)). The evaluation is performed with an extended environment produced
with the bind function. This extended environment includes the bindings of the lambda’s variables
to the evaluated arguments. Remember that a closure was constructed for a lambda to include
its static scope or nil as its environment? We retrieve its environment with cdr(f) and check it
for nil with not(cdr(f)) ? env : cdr(f), which gives the current global environment env or the
lambda’s local static environment cdr(f). This environment is used with bind to bind the lambda
variables car(car(f)) with the evaluated arguments evlis(t,e).

Arguments passed to a function or primitive are evaluated with the evlis function:

L evlis(L t,L e) {

return T(t) == CONS ? cons(eval(car(t),e),evlis(cdr(t),e)) :

T(t) == ATOM ? assoc(t,e) :

nil;

}

where evlis recursively traverses the list of expressions t to create a new list with their values.
Recursion bottoms out at a non-CONS t. It is important to correctly handle the dot operator in a
list of actual arguments in this way, such as (f x . args), by calling eval(t,e) to evaluate args.

The variable-argument bindings for apply are constructed as a list of pairs with the bind

function originally called pairlis:

L bind(L v,L t,L e) {

return T(v) == NIL ? e :

T(v) == CONS ? bind(cdr(v),cdr(t),pair(car(v),car(t),e)) :

pair(v,t,e);

}

where v is a list of variables or a variable (an atom), and t is the list of evaluated arguments. When
recursion bottoms out, we either have a NIL or a name. The name is bound to the rest of the list
t with pair(v,t,e). The latter happens when a single variable is used like (lambda args args)

and when a dot is used in the list of variables like (lambda (x . args) args).

10Viz. lambda calculus beta reduction involves a contraction step (λv.x) y ⇒ x[v := y] where y may or may not be
evaluated first before the contraction. This models strict and lazy evaluation, respectively.
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6 Lisp Primitives

The Lisp primitives are defined in an array prim[] of structures containing the name of the prim-
itive as string s and the function pointer f pointing to the implementation in C. The function
implementing the primitive takes the list of Lisp arguments as the first parameter and the Lisp
environment as its second parameter:

struct { const char *s; L (*f)(L,L); } prim[] = {

{"eval", f_eval},

{"quote", f_quote},

{"cons", f_cons},

{"car", f_car},

{"cdr", f_cdr},

{"+", f_add},

{"-", f_sub},

{"*", f_mul},

{"/", f_div},

{"int", f_int},

{"<", f_lt},

{"eq?", f_eq},

{"or", f_or},

{"and", f_and},

{"not", f_not},

{"cond", f_cond},

{"if", f_if},

{"let*", f_leta},

{"lambda",f_lambda},

{"define",f_define},

{0}};

The main program initializes the global environment env with #t to return itself, followed by the
Lisp primitives:

int main() {

...

env = pair(tru,tru,nil);

for (i = 0; prim[i].s; ++i) env = pair(atom(prim[i].s),box(PRIM,i),env);

...

}

Lisp includes so-called special forms, which are functions that do not evaluate all arguments passed
to them. For example, the if special form evaluates the test. If the test is true, then the then-
expression is evaluated and returned. Otherwise the else-expression is evaluated and returned.

6.1 eval

(eval expr) evaluates an expression. This primitive is also called “unquote” since expr is typically
a quoted Lisp expression:
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L f_eval(L t,L e) { return eval(car(evlis(t,e)),e); }

All arguments to eval are evaluated with evlis(t,e) but eval only applies to one argument or
the first argument when more than one is specified. Example: (eval (quote (+ 1 2))) gives 3.

6.2 quote

(quote expr) quotes an expression to keep it unevaluated. The Lisp parser also accepts ’expr.
Note that expr may be a list which means that the list and all of its elements remain unevaluated.

L f_quote(L t,L _) { return car(t); }

quote only applies to one argument or the first argument when more than one is specified, hence
car(t) is returned. Example: (quote (1 2 3)) and ’(1 2 3) give (1 2 3)

6.3 cons

(cons expr1 expr2) constructs a new pair (expr1 . expr2). Typically expr2 is a list to construct a
list with expr1 at its head.

L f_cons(L t,L e) { return t = evlis(t,e),cons(car(t),car(cdr(t))); }

Example: (cons 1 ()) gives (1), (cons 1 2) gives the pair (1 . 2) and (cons 1 (cons 2 ()))

gives the list (1 2).

6.4 car and cdr

(car pair) and (cdr pair) give the first and second element of a pair, respectively. This means
that (car list) and (cdr list) give the element at the front of the list and the rest of the list,
respectively.

L f_car(L t,L e) { return car(car(evlis(t,e))); }

L f_cdr(L t,L e) { return cdr(car(evlis(t,e))); }

6.5 Arithmetic

The four basic arithmetic operations are variadic functions:

L f_add(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n += car(t); return num(n); }

L f_sub(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n -= car(t); return num(n); }

L f_mul(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n *= car(t); return num(n); }

L f_div(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n /= car(t); return num(n); }

Note that the arithmetic functions expect at least one argument. They are undefined if no argu-
ments are provided. Example: (+ 1 2 3 4) gives 10, (- 3 2) gives 1, and (- 3) gives 3, not -3.
Some other Lisp may give -3, which can be implemented by checking if only one argument is passed
to the function. I will leave it to you to change the implementation to support this feature.

6.6 int

(int expr) truncates expr to an integer.

L f_int(L t,L e) { L n = car(evlis(t,e)); return n-1e9 < 0 && n+1e9 > 0 ? (long)n : n; }
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6.7 Comparison

(< expr1 expr2) and (eq? expr1 expr2) compare expr1 and expr2 to give #t when true or () when
false.

L f_lt(L t,L e) { return t = evlis(t,e),car(t) - car(cdr(t)) < 0 ? tru : nil; }

L f_eq(L t,L e) { return t = evlis(t,e),equ(car(t),car(cdr(t))) ? tru : nil; }

Equality for pairs and lists is only true if the lists are the same objects in memory. Otherwise the
pairs or lists are not equal, even when they contain the same elements. Example: (eq? ’a ’a)

gives #t and (eq? ’(a) ’(a)) gives (). The less-than primitive compares numbers only and is
always false for non-numeric arguments. Non-numeric types can be compared by comparing tags
first and when equal comparing the ord values for example.

6.8 Logic

(not expr) gives #t when expr is () (the empty list) and () otherwise. (or expr1 expr2 ... exprn)
gives the value of the first expri that is not () (i.e. is true) and () otherwise if all expr1 are ()

(i.e. all are false). (and expr1 expr2 ... exprn) gives the value of the last exprn if all expri are
not () (i.e. all are true) and () otherwise if any expri is () (i.e. is false).

L f_not(L t,L e) { return not(car(evlis(t,e))) ? tru : nil; }

L f_or(L t,L e) { L x = nil; while (T(t) != NIL && not(x = eval(car(t),e))) t = cdr(t); return x; }

L f_and(L t,L e) { L x = nil; while (T(t) != NIL && !not(x = eval(car(t),e))) t = cdr(t); return x; }

Only the first arguments to or and and are evaluated to determine the result. Example: (and #t

()) gives () and (and 1 2) gives 2 since numbers are not (). Note that and returns the value of
the last expression or (). Like the Lua programming language, the or and and combined produce
an if-then-else of the form (or (and test then) else). However, like Lua, this is not correct when
test evaluates to true but then is nil (the () empty list.) In that case else is evaluated.

6.9 cond

(cond (test1 expr1) (test2 expr2) ... (testn exprn)) evaluates the tests from the first to the
last until testi evaluates to true and then returns expri.

L f_cond(L t,L e) {

while (T t != NIL && not(eval(car(car(t)),e))) t = cdr(t);

return eval(car(cdr(car(t))),e);

}

Example: (cond ((eq? ’a ’b) 1) ((< 2 1) 2) (#t 3)) gives 3.

6.10 if

(if test expr1 expr2) evaluates and tests if test is true or false. If true (i.e. not ()) then expr1 is
evaluated and returned. Else expr2 is evaluated and returned.

L f_if(L t,L e) { return eval(car(cdr(not(eval(car(t),e)) ? cdr(t) : t)),e); }

Example: (if (eq? ’a ’a) 1 2) gives 1.
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6.11 let*

(let* (var1 expr1) (var2 expr2) ... (varn exprn) expr) defines a set of bindings11 of variables
in the scope of the body expr by evaluating each expri sequentially and associating vari with the
result

I let(L t) { return T(t) != NIL && !not(cdr(t)); }

L f_leta(L t,L e) {

for (; let(t); t = cdr(t)) e = pair(car(car(t)),eval(car(cdr(car(t))),e),e);

return eval(car(t),e);

}

The loop runs over the pairs in the let*. Each iteration extends the environment e with a pair
that binds vari (i.e. car(car(t))) to the value of expri (i.e. eval(car(cdr(car(t))),e). Example:
(let* (a 3) (b (* a a)) (+ a b)) gives 12.

6.12 lambda

(lambda var expr) and (lambda (var1 var1 ... varn) expr) create a closure, i.e. an anonymous
function. The first form associates var with the list of arguments passed to the closure when the
closure is applied. The second form associates each vari with the corresponding argument passed
to the closure when the closure is applied. Also the list dot may be used in the list of variables
(lambda (var1 . var2) expr) to specify the remaining arguments to be passed as a list in var2.

L f_lambda(L t,L e) { return closure(car(t),car(cdr(t)),e); }

Example: ((lambda (x) (* x x)) 3) gives 9 and ((lambda (x y . args) args) 1 2 3 4) gives
(3 4).

6.13 define

(define var expr) globally defines var and associates it with the evaluated expr.

L f_define(L t,L e) { env = pair(car(t),eval(car(cdr(t)),e),env); return car(t); }

Globally defined functions may be (mutually) recursive. Example: after (define pi 3.14) the
value of pi is 3.14, after (define square (lambda (x) (* x x))) the application (square 3)

gives 9 and after (define factorial (lambda (n) (if (< 1 n) (* n (factorial (- n 1)))

1))) the application (factorial 5) gives 120.

We have not defined an apply primitive often found in Lisp implementations, because apply is
not needed. To apply a function to a list of arguments (f . args) suffices, but only if args is a vari-
able associated with a list of arguments12. Otherwise, we shall use (let* (args x) (f . args))

to ensure args is a variable bound to expression x.

11Other Lisp require pairs (var expr) to be placed in a list such as (let* ((a 3) (b (* a a))) (+ a b)), but I
prefer the simpler form shown here. Of course, you can change this implementation in any way you like.

12The reason is that if we place a list after the dot like (f . (g args)), then the arguments passed to f are actually
g and args which is not what we want.
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7 Reading and Parsing Lisp Expressions

A Lisp tokenizer scans the input for tokens to return to the parser. A token is a single parenthesis,
the quote character, or a white space delimited sequence of characters up to 39 characters long.
The scan function populates buf[40] with the next token scanned from standard input. The token
is stored as a 0-terminated string in buf[]:

char buf[40],see = ' ';

void look() { int c = getchar(); see = c; if (c == EOF) exit(0); }

I seeing(char c) { return c == ' ' ? see > 0 && see <= c : see == c; }

char get() { char c = see; look(); return c; }

char scan() {

int i = 0;

while (seeing(' ')) look();

if (seeing('(') || seeing(')') || seeing('\'')) buf[i++] = get();

else do buf[i++] = get(); while (i < 39 && !seeing('(') && !seeing(')') && !seeing(' '));

return buf[i] = 0,*buf;

}

This implementation of scan does not support Lisp comments. I did this intentionally, since it is
up to you to write your own implementation with the features that you want.

Lisp comments begin with a semicolon and end at the next line. To support comments, we can
change the second line of the scan function to skip comments and continue scanning:

while (seeing(' ') || seeing(';')) if (get() == ';') while (!seeing('\n')) look();

Note that EOF is not checked. A nice trick is to look for an EOF and then reopen standard input
to read from the terminal:

void look() {

int c = getchar();

if (c == EOF) freopen("/dev/tty", "r", stdin), c = ' ';

see = c;

}

By changing look this way, we can now read a collection of Lisp definitions from a file before the
interactive session starts, by using the Linux/Unix cat utility:

bash$ cat common.lisp list.lisp math.lisp | ./tinylisp

This sends the common.lisp, list.lisp and math.lisp files (see Section E) to the interpreter.
After EOF of cat, the Lisp interpreter is ready to accept input again, this time from the terminal.
Beware that the number of cells N must be increased to import this many definitions!

To parse Lisp expressions we employ a recursive-descent parsing technique. The read function13

returns a Lisp expression parsed from the input by invoking the scan and parse functions:

L read() { return scan(),parse(); }

13Not to be confused with the unistd.h read function. To avoid link failures, I’ve renamed it to Read in the source
code of the tinylisp repository https://github.com/Robert-van-Engelen/tinylisp.
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where the parse function parses a list, a quoted expression, or an atomic expression (a symbol or
a number):

L parse() { return *buf == '(' ? list() : *buf == '\'' ? quote() : atomic(); }

The list function recursively parses and constructs a list up to the closing parenthesis ). In
addition, a dot in a list creates a pair:

L list() {

L x;

return scan() == ')' ? nil :

!strcmp(buf, ".") ? (x = read(),scan(),x) :

(x = parse(),cons(x,list()));

}

Note that x = parse() must be called before the parsed value is used in cons(x,list()), because
argument evaluation order in C is undefined, i.e. not necessarily left-to-right. You may have noticed
by now that I use the C comma operator a lot, including for this specific purpose and to keep
the code compact. The C comma operator has a cousin in Lisp (begin expr1 expr2 ... exprn)
sometimes called progn that returns the value of the last expression exprn. So its use is sanctioned
by Lisp to sequence expressions as statements with side effects14.

Parsing the list (x y z) for example, results in the list construction (cons x (cons y (cons

z nil))) and parsing (x y . args) results in the construction (cons x (cons y args)). Parsing
a quoted expression ’expr produces (quote expr):

L quote() { return cons(atom("quote"),cons(read(),nil)); }

Parsing an atomic expression produces a number if the token is numeric and an atom otherwise:

L atomic() { L n; I i; return sscanf(buf,"%lg%n",&n,&i) > 0 && !buf[i] ? n : atom(buf); }

A token must be numeric to convert it to a number. If it is not, then an atom with the specified
tokenized name is returned. Note that sscanf accepts inf, -inf and nan as numbers and hex-
adecimal 0xh...h, all of which we get it for free. Since a NaN corresponds to the ERR atom with
zero offset into the heap, nan is reported as ERR.

The PC-G850 requires function atomic to be modified as follows:

L atomic() {

L n; int i = strlen(buf);

return isdigit(buf[*buf == '-']) && sscanf(buf,"%lg%n",&n,&i) && !buf[i] ? n : atom(buf);

}

where i must be initialized to the length of the buffer passed to sscanf. Because sscanf on the
PC-G850 simply returns 0 for incomplete numeric forms such as a single character -, we check if
the token begins with a digit after an optional minus sign.

14Functions with side effects affect the state of the machine outside of their arguments and locals, such as through
assignments to non-local variables and by performing IO operations. Pure functional programming bans them. For
C and Lisp we must properly sequence functions with side effects to avoid undefined behavior.
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8 Printing Lisp Expressions

Displaying Lisp expression requires a few lines of code. This code should be self-explanatory:

void print(L x) {

if (T(x) == NIL) printf("()");

else if (T(x) == ATOM) printf("%s",A+ord(x));

else if (T(x) == PRIM) printf("<%s>",prim[ord(x)].s);

else if (T(x) == CONS) printlist(x);

else if (T(x) == CLOS) printf("{%u}",ord(x));

else printf("%.10lg",x);

}

Function printlist iterates over the list to display its elements in order. It prints a dot for the
last cons pair if the list does not end in nil:

void printlist(L t) {

for (putchar('('); ; putchar(' ')) {

print(car(t));

if (not(t = cdr(t))) break;

if (T(t) != CONS) { printf(" . "); print(t); break; }

}

putchar(')');

}

Note that not(t = cdr(t)) changes t to the next list pair. Then, if t is nil we break from the
loop. Otherwise, if the next t is not a cons pair, then we display a dot followed by the value of t.
The dot visually separates the pair’s values. The dot is also used to construct pairs, see Section 7.

9 Garbage Collection

To keep our Lisp interpreter code tiny, we should implement a very simple form of garbage collection
to delete all temporary cells from the stack. We should preserve all globally-defined names and
functions listed in env, To delete all temporary cells and keep env intact, it suffices to restore the
stack pointer to the point on the stack where the free space begins, which is right below the global
environment env cell on the stack:

void gc() { sp = ord(env); }

Why does this work? After the last env = pair(name,expr,env) call was made to define name
globally, we know for sure that expr is already stored higher up in the stack in cells above the last
env pair on the stack. These cells are not removed by gc when we set sp = ord(env).

One caveat of this approach is that we cannot support interactive use of the Lisp special forms
setq (modifies an association in an environment, Section 11.3), set-car! and set-cdr! (over-
writes the car or cdr of a pair, Section 11.4), since these may change previously-defined expressions
in the global environment. If the modified global environment references temporary lists, then gc
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corrupts the global environment by removing these lists. We can support setq, set-car! and
set-cdr! if we only assign atomic values to globals. Locals are always assignable.

This simple one-line garbage collector does not remove unused symbols. Temporary atoms on
the heap are kept. A minor addition suffices to remove unused atoms from the heap. We only need
to find the max heap reference among the used ATOM-tagged cells and adjust hp accordingly:

void gc() {

I i = sp = ord(env);

for (hp = 0; i < N; ++i) if (T(cell[i]) == ATOM && ord(cell[i]) > hp) hp = ord(cell[i]);

hp += strlen(A+hp)+1;

}

10 The Read-Eval-Print Loop

After the main program initialized the static variables nil, tru, and err (see Section 4) and
populated the environment with #t and other primitives (see Section 6), the main program executes
the so-called Lisp read-eval-print loop (REPL):

int main() {

...

while (1) { printf("\n%u>",sp-hp/8); print(eval(read(),env)); gc(); }

}

The prompt in the REPL displays the number of cells freely available, i.e. the space between the
heap pointer hp and stack pointer sp. Note that hp points to bytes and sp points to 8-byte floats,
so hp is scaled down by a factor 8. Garbage collection is performed in the REPL after the results
are displayed.

This completes Lisp in 99 lines15 of C. See Appendix A and B for the complete listings with
NaN and BCD boxing, respectively.

11 Additional Lisp Primitives

The following Lisp primitives are not included in the 99 line C program, since these are not abso-
lutely required to write Lisp programs.

11.1 assoc and env

(assoc var environment) gives the expression associated with var in the specified environment.
(env) returns the current environment in which (env) is evaluated.

L f_assoc(L t,L e) { return t = evlis(t,e),assoc(car(t),car(cdr(t))); }

L f_env(L _,L e) { return e; }

... prim[] = { ... {"assoc", f_assoc},{"env", f_env} ... };

Note that var should be quoted when passed to assoc since its arguments are evaluated first.
Example: (assoc ’b ’((a 1) (b 2) (c 3)) gives 2.

15That is, a Lisp-like functional style of structured C. Lines are 55 columns wide on average and never wider than
120 columns for convenient editing.
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11.2 let and letrec*

The let special form16 is similar to the let* special form, but evaluates all expressions first before
binding the values to the variables.

L f_let(L t,L e) {

L d = e;

for (; let(t); t = cdr(t)) d = pair(car(car(t)),eval(car(cdr(car(t))),e),d);

return eval(car(t),d);

}

... prim[] = { ... {"let", f_let} ... };

The letrec* special form is similar to the let* special form, but allows for local recursion where
the name may also appear in the value of a letrec* name-value pair.

L f_letreca(L t,L e) {

for (; let(t); t = cdr(t)) {

e = pair(car(car(t)),err,e);

cell[sp+2] = eval(car(cdr(car(t))),e);

}

return eval(car(t),e);

}

... prim[] = { ... {"letrec*", f_letreca} ... };

This implementation adds new variable-err bindings17 to the environment e , then overrides the
err cell on the stack with the expression evaluated within the updated scope e. Example:

> (letrec* (f (lambda (n) (if (< 1 n) (* n (f (- n 1))) 1))) (f 5))

120

11.3 setq

The setq special form sets the value of a variable as a side-effect with (setq var expr):

L f_setq(L t,L e) {

L v = car(t),x = eval(car(cdr(t)),e);

while (T(e) == CONS && !equ(v, car(car(e)))) e = cdr(e);

return T(e) == CONS ? cell[ord(car(e))] = x : err;

}

... prim[] = { ... {"setq", f_setq} ... };

This function is dangerous, because garbage collection after setq may corrupt the stack if the
new value assigned to a global variable is a temporary list (all interactively constructed lists are
temporary). On the other hand, atomic values are always safe to assign and setq is safe to use to
assign local variables in the scope of a lambda and a let.

16This let syntax differs from other Lisp: like our let* we don’t need to put all the var-expr pairs in a list. Change
the syntax as you like.

17you can pick nil instead of err if you’ve implemented error handling in Section 14
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11.4 set-car! and set-cdr!

(set-car! pair expr) sets the value of the car cell of a cons pair to expr as a side-effect, (set-cdr! pair
expr) sets the value of the cdr cell of a cons pair to expr as a side-effect.

L f_setcar(L t,L e) {

L p = car(t = evlis(t,e));

return (T(p) == CONS) ? cell[ord(p)+1] = car(cdr(t)) : err;

}

L f_setcdr(L t,L e) {

L p = car(t = evlis(t,e));

return (T(p) == CONS) ? cell[ord(p)] = car(cdr(t)) : err;

}

... prim[] = { ... {"set-car!", f_setcar},{"set-cdr!", f_setcdr} ... };

Like setq, these functions are dangerous.

11.5 macro

Macros allow Lisp to be syntactically extended. A macro is similar to a lambda, except that its
arguments are not evaluated when the macro is applied. Typically a macro constructs Lisp code
when applied, thereby expanding and evaluating the Lisp code in place.

To add the (macro variables expression) primitive is easy. It only requires a few lines of code
to define a new MACR tag, add new the functions macro, f macro and expand, and make some minor
changes to the existing functions car, cdr and apply. First we add a new tag MACR:

/*** with NaN Boxing ***/

I ATOM=0x7ff8,PRIM=0x7ff9,CONS=0x7ffa,CLOS=0x7ffb,MACR=0x7ffc,NIL=0x7ffd;

/*** with BCD boxing ***/

I ATOM=32,PRIM=48,CONS=64,CLOS=80,MACR=96,NIL=112;

We must modify the car and cdr functions to apply to MACR-tagged floats, which are essentially
cons pairs containing the list of variables of the macro as car cell and expression as the cdr cell:

L car(L p) { return T(p) == CONS || T(p) == CLOS || T(p) == MACR ? cell[ord(p)+1] : err; }

L cdr(L p) { return T(p) == CONS || T(p) == CLOS || T(p) == MACR ? cell[ord(p)] : err; }

We add a constructor macro and the corresponding Lisp primitive f macro:

L macro(L v,L x) { return box(MACR,ord(cons(v,x))); }

L f_macro(L t,L e) { return macro(car(t),car(cdr(t))); }

... prim[] = { ... {"macro", f_macro} ... };

Application of macros is similar to lambdas, but they expand instead by a new expand function:

L expand(L f,L t,L e) { return eval(eval(cdr(f),bind(car(f),t,env)),e); }

L apply(L f,L t,L e) {

return T(f) == PRIM ? prim[ord(f)].f(t,e) :
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T(f) == CLOS ? reduce(f,t,e) :

T(f) == MACR ? expand(f,t,e) :

err;

}

The macro is evaluated in the global environment env. This typically constructs Lisp code that is
then evaluated in the current environment e.

Example: the Lisp delayed evaluation primitives delay and force implemented as a macro:

> (define list (lambda args args))

> (define delay (macro (x) (list 'lambda () x)))

> (define force (lambda (f) (f)))

The delay macro is used for lazy evaluation or call by need of arguments, by passing them uneval-
uated to a function together with their environment as a closure called a promise. Hence, (list
’lambda () x) constructs the Lisp code (lambda () x) where x is the unevaluated argument
passed to delay. The closure of this lambda includes the proper environment in which x should be
evaluated, thus respecting its static scope. The force function evaluates a promise:

> (force (delay (+ 1 2)))

3

More information and examples of delay and force can be found in Lisp textbooks and manuals.
With macros we can also define defun to define functions more easily without a lambda:

> (define defun (macro (f v x) (list 'define f (list 'lambda v x))))

> (defun square (n) (* n n))

> (square 3)

9

11.6 read and print

Since our Lisp implementation already includes read and print functions, we can add them as
primitives as follows:

L f_read(L t,L e) { L x; char c = see; see = ' '; x = read(); see = c; return x; }

L f_print(L t,L e) {

for (t = evlis(t,e); T(t) != NIL; t = cdr(t)) print(car(t));

return nil;

}

L f_println(L t,L e) { f_print(t,e); putchar('\n'); return nil; }

... prim[] = { ... {"read",f_read},{"print",f_print},{"println",f_println} ... };

Example: (read) gives the Lisp expression typed in (unevaluated), (print ’hello 123) displays
hello123, and (println ’(hello world)) displays (hello world).

With a few more lines of C code, you can add your own Lisp primitives for a more complete IO
implementation. You could store open file FILE* streams in an array to support open and close

primitives on multiple streams in Lisp. Then index this array by a float number in Lisp to obtain
the FILE* for an internal IO operation. Some Lisp implementations include a special port type for
this, which is basically a FILE*.
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12 Adding Readline with History

Command shells such as bash use GNU readline for interactive input. Readline plays nice with
interactive input and provides a history mechanism to let us recall previous input. The readline
library will be a nice addition to our Lisp. While we are at it, we might as well read a Lisp
initialization file init.lisp with one or more Lisp definitions to import before the interactive
prompt. First we need to include the usual C headers. There are two for readline:

#include <readline/readline.h>

#include <readline/history.h>

Besides the buf and see globals, we also need a ptr pointing at the current character in the line
string returned by readline. We also add a prompt string ps to display the Lisp prompt and an
in pointer to the open file with input, i.e. to read init.lisp when opened successfully:

char buf[40],see = ' ',*ptr = "",*line = NULL,ps[20];

FILE *in = NULL;

The look function is modified to read a character from in when in is not NULL, or to read a
line of input with by readline when we reach the end of the last line read, i.e. when see==’\n’:

void look() {

if (in) {

int c = getc(in);

see = c;

if (c != EOF) return;

fclose(in);

in = NULL;

}

if (see == '\n') {

if (line) free(line);

while (!(ptr = line = readline(ps))) freopen("/dev/tty","r",stdin);

add_history(line);

strcpy(ps,"?");

}

if (!(see = *ptr++)) see = '\n';

}

To read init.lisp or a file specified on the command line, let’s modify main as follows:

int main(int argc,char **argv) {

...

in = fopen((argc > 1 ? argv[1] : "init.lisp"),"r");

using_history();

while (1) { putchar('\n'); snprintf(ps,20,"%u>",sp-hp/8); print(eval(read(),env)); gc(); }

}

Note that the modified REPL populates the prompt string ps with snprintf to display the number
of remaining free cells. The prompt string is set to ? in the look function when the interactive
input is not yet complete. The libreadline library must be linked with our updated source:

bash$ cc -o tinylisp-opt.c -lreadline

Now you’re all set to enjoy enhanced interactive input!
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13 Tracing Lisp

Everything that is happing behind the scenes in our Lisp interpreter is essentially just the traversal
of lists as code to return numbers, atoms, closures and lists as data. But what does that actually
look like? Well, let’s find out by tracing the evaluation steps in our Lisp. When we display every
evaluation step performed by eval we see exactly what is happening in detail:

tinylisp

930>(define sq (lambda (n) (* n n)))

920: define => <define>

920: lambda => <lambda>

916: (lambda (n) (* n n)) => {916}

912: (define sq (lambda (n) (* n n))) => sq

sq

901>(sq 3)

908: sq => {916}

908: 3 => 3

908: () => ()

902: * => <*>

902: n => 3

902: n => 3

902: () => ()

898: (* n n) => 9

898: (sq 3) => 9

9

901>

A trace displays the Lisp code and data before eval followed by the Lisp code and data after eval.
To implement tracing, we rename eval to step and add a new eval function to display the trace:

L step(L x,L e) { ... } /* this is the old eval() function renamed to step() */

void print(L); /* function prototype moved up since we need print() */

L eval(L x,L e) {

L y = step(x,e);

printf("%u: ",sp); print(x); printf(" => "); print(y);

while (getchar() >= ' ') continue;

return y;

}

The while-loop in eval waits until the RETURN key is pressed (or any special key or EOF). This
always displays the trace of your Lisp. With a few more lines of C, you could make tracing an
option enabled with a new (trace state) Lisp function that takes state 0, 1 or 2 to set a global
variable. When this variable is set to 1 or 2, the trace output is displayed in eval and when 2 it
also waits for a keypress. With this addition to your Lisp, you can now step through your code on
demand. In addition to tracing, you could also dump the stack. For example, when the user types
a d for dump followed by RETURN.
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14 Adding Error Handling and Exceptions to Lisp

Error handling is practically non-existent in our Lisp at this point. It is an error to take the car

or cdr of a non-pair, to use the value of an undefined symbol, or to try to apply a non-function to
arguments. These three error conditions produce the ERR value in our Lisp. We could extensively
debug our code by tracing (see Section 13) to find all possible bugs and add err? checks to our
Lisp functions to catch problems (see Appendix E for a definition of err?). Analyzing your Lisp
code for correctness and debugging your Lisp functions is critical, but adding err? calls to Lisp
code is cumbersome. Wouldn’t it be nice to have a mechanism to catch exceptions?

There are two mechanisms to implement exception handling in our Lisp: in C using setjmp or
in C++ with try-catch if we rename and compile our project in C++.

14.1 C setjmp

The setjmp(jmp buf jb) function saves its calling environment in jb and returns zero. The
corresponding longjmp(jmp buf jb,int n) function restores the calling environment jb saved by
the most recent setjmp(jb) and passes n to the return value of this setjmp. What basically
happens is that longjmp deletes all active function calls since the last setjmp and immediately
returns to setjmp. This mechanism is somewhat similar to C++ exceptions with longjmp acting
like throw and setjmp acting like try-catch. As with C++ exceptions, we must be careful
to finalize unfinished business before throwing exceptions or add exception handlers to finalize
unfinished business, re-throwing the exception when applicable. Unfinished business include open
files that must be closed and memory allocations that must freed. Fortunately, we have none of
these issues to worry about18 in our Lisp interpreter.

After including setjmp in our interpreter, we define a global calling environment jmp buf jb

and a new err function to “throw” errors by invoking longjmp(jb,n) for nonzero error codes n:

#include <setjmp.h>

...

jmp_buf jb;

L err(int i) { longjmp(jb,i); }

Note that the new err function doesn’t return a value (you should be able to figure out why it
makes no sense to return a value.) After defining a new err function, we change the uses of err in
our implementation to throw three different error codes:

L car(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)+1] : err(1); }

L cdr(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)] : err(1); }

...

L assoc(L v,L e) {

while (T(e) == CONS && !equ(v,car(car(e)))) e = cdr(e);

return T(e) == CONS ? cdr(car(e)) : err(2);

}

...

18Unless you’ve added file open and close to your Lisp interpreter’s primitives. In that case, it helps to keep a table
of open file descriptors and close them all when an exception occurs.
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L apply(L f,L t,L e) {

return T(f) == PRIM ? prim[ord(f)].f(t,e) :

T(f) == CLOS ? reduce(f,t,e) :

err(3);

}

All other err values should be removed from the Lisp interpreter19. In main we invoke setjmp(jb)
to initialize jb and also to catch errors when setjmp returns a nonzero value n from err(n):

int main() {

...

if ((i = setjmp(jb)) != 0) printf("ERR %d",i);

while (1) { gc(); printf("\n%u>",sp-hp/8); print(eval(read(),env)); }

}

We also moved gc() up. After an error is caught by setjmp we report it and commence the REPL:

930>(car 3)

ERR 1

930>(1 2)

ERR 3

930>'(1 2)

(1 2)

930>

Another good idea is to replace abort() with err(4) to avoid aborting when we ran out of memory.
In addition to our new and practical exception handling mechanism, there are several ways Lisp

catch and throw primitives can be defined. The following is a simplified version that allows you
to (throw n) an error code n that are caught as (ERR .n) pairs returned by (catch expression)
when a (throw n) is invoked or when an ERR n occurs when expression is evaluated:

L f_catch(L t,L e) {

L x; int i;

jmp_buf savedjb;

memcpy(savedjb,jb,sizeof(jb));

i = setjmp(jb);

x = i ? cons(atom("ERR"),i) : eval(car(t),e);

memcpy(jb,savedjb,sizeof(jb));

return x;

}

L f_throw(L t,L e) { longjmp(jb,(int)num(car(t))); }

... prim[] = { ... {"catch", f_catch},{"throw", f_throw} ... };

where throw is a special form that does not evaluate its argument, which must be a constant integer.
With some more C code you could pass along the cell index of a cons pair on the stack instead
of error codes. That means you could throw lists as errors with more information. However, care
must be taken to distinguish internal error codes from explicit exceptions thrown.

19You may still want to call atom("ERR") in main to populate the heap with an ERR atom first, because its zero
ord is implicitly associated with a quiet NaN, or update num to throw an error when its argument is NaN.
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14.2 Using C++ Exceptions

Compiling our Lisp interpreter in C++ requires almost no change (e.g. renaming not to Not). With
C++ we can use try-catch and throw in the REPL:

L err(int i) { throw(i); }

...

int main() {

...

while (1) {

printf("\n%u>",sp-hp/8);

try { print(eval(read(),env)); }

catch (int i) { printf("ERR %d",i); }

gc();

}

}

We also change the car, cdr, assoc and apply functions as shown in the previous section. Lisp
catch and throw primitives can be defined with the usual C++ try-catch-throw.

15 Downsizing Lisp to Single Floating Point Precision

Our Lisp supports double precision floating point values and operations on them without compro-
mise. We can halve the memory use of our Lisp by using single precision floating point instead. This
is a small compromise to make to reduce memory consumption if memory comes at a premium or if
the machine does not support double floating point precision. Despite downsizing our Lisp, it won’t
be handicapped to run toy Lisp examples only. In fact, it can handle up to N = 220/4 = 262, 144
cells (1,048,576 bytes) to evaluate Lisp.

A single precision NaN allows up to 22 bits to be arbitrarily used to stuff any information we
want into a single precision NaN:

| s
exponent︷ ︸︸ ︷

b b b | b b b b | b
fraction︷ ︸︸ ︷

b b b︸︷︷︸
tag

| · · · | b b b b︸ ︷︷ ︸
also available

|

All exponent bits must be set for NaN. This time we use the sign bit s together with our tag since
we need 3 bits for tagging. Therefore, NIL has tag 0xfff with the sign bit set as part of the tag.
We also want to maximize the use of the 23 bit fraction. Of these 23 bits the most significant bit
must be set for quiet NaN. We use 2 bits for the tag and are left with 20 bits to store an integer
“ordinal” value to refer to atoms on the heap, to refer to primitives in the prim[] array, and to
refer to cons cells and closure cells on the stack.

Only a few minor changes are required to the code to downsize our Lisp to single precision
floating point with 4-byte stack cells. We adjust the NaN-boxing tags and reduce the ordinals to
20 bit by changing the NaN-boxing-related functions:

#define L float

#define T(x) *(uint32_t*)&x>>20
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...

#define N 1024 /* N should not exceed 262144 = 2^20/4 cells = 1048576 bytes */

I hp=0,sp=N,ATOM=0x7fc,PRIM=0x7fd,CONS=0x7fe,CLOS=0x7ff,NIL=0xfff;

...

L box(I t,I i) { L x; *(uint32_t*)&x = (uint32_t)t<<20|i; return x; }

I ord(L x) { return *(uint32_t*)&x & 0xfffff; }

L num(L n) { return n; }

I equ(L x,L y) { return *(uint32_t*)&x == *(uint32_t*)&y; }

The float-addressing stack pointer sp should be scaled by 4 instead of 8 to compare to the byte-
addressing heap pointer hp to check if they meet. Therefore, the atom and cons functions should
be modified to use sp<<2:

L atom(const char *s) {

...

if (i == hp && (hp += strlen(strcpy(A+i,s))+1) > sp<<2) abort();

...

}

L cons(L x,L y) {

...

if (hp > sp<<2) abort();

...

}

Likewise, the prompt displayed in the REPL is changed to use sp-hp/4:

int main() {

...

while (1) { printf("\n%u>",sp-hp/4); print(eval(read(),env)); gc(); }

}

Furthermore, we tweak the atomic and print functions to correctly parse and print single precision
floats, respectively:

L atomic() { L n; int i; return sscanf(buf,"%g%n",&n,&i) > 0 && !buf[i] ? n : atom(buf); }

...

void print(L x) {

...

else printf("%g",x);

}

Finally, we may also want to change f int to truncate floats to 32 bit integers:

L f_int(L t,L e) { L n = car(evlis(t,e)); return n<1e7 && n>-1e7 ? (int32_t)n: n; }
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16 Optimizing the interpreter

Understanding Lisp and Lisp evaluation does not require a deep understanding of the optimizations
we may want to apply to make our interpreter run faster and use less memory. Optimization is
generally nice, but a more critical goal is to optimize tail-calls performed by Lisp functions. Tail-call
optimization effectively permits recursion in Lisp without the risk of running out of stack space.
To achieve this, we start with optimizing recursion away in our interpreter by replacing recursive
calls with loops when possible. Then focus on replacing eval with a tail-call optimized iterative
version.

16.1 Replacing recursion with loops

The evlis C function is the first target we pick for optimization. It calls itself recursively to con-
struct a list of evaluated expressions. The evlis function does this by consing the evaluated car ex-
pression of the list t to the evlis rest of the list t in (cons(eval(car(t),e),evlis(cdr(t),e))).
This is inefficient. Worse, the C compiler can’t tail-call optimize this C code to avoid the calling
overhead and the stack growth associated with it.

Effective C programming with pointers can be exploited to replace recursion in evlis by iter-
ation using a pointer p that points to the last cdr cell of the list we are constructing in evlis. To
construct the list iteratively, we just need to replace the last nil cell of the list that *p points to
and replace it by a new cons, then update p to point to the nil of that cons with p = cell+sp:

L evlis(L t,L e) {

L s,*p;

for (s = nil,p = &s; T(t) == CONS; p = cell+sp,t = cdr(t)) *p = cons(eval(car(t),e),nil);

if (T(t) == ATOM) *p = assoc(t,e);

return s;

}

Instead of p = cell+sp which points to the last cell created on the stack that happens to be the
cdr cell of the last cons, we can also use p = &cell[ord(*p)] or simply p = cell+ord(*p) as
an alternative. Initially, p points to s with s = nil as the first step to get the list construction
started. Once the list is complete, we return s as the result of evlis.

Eventually the list t runs out in a non-CONS value. This is typically a T(t) == NIL, but can
instead be a symbol when the function application list uses the dot operator as in (f x . args)

for example. The dotted args should be evaluated and appended to the list we construct. This is
performed by if (T(t) != NIL) *p = eval(t,e) in the optimized version of evlis.

Another candidate C function to optimize is list, which parses a Lisp list:

L list() {

L t,*p;

for (t = nil,p = &t; ; *p = cons(parse(),nil),p = cell+sp) {

if (scan() == ')') return t;

if (*buf == '.' && !buf[1]) return *p = read(),scan(),t;

}

}

Note that the optimization mirrors the evlis optimization by assigning *p = cons(parse(),nil)

and updating the pointer p = cell+sp.
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16.2 Tail-call optimization

Our interpreter implements an evaluation algorithm similar to, but not identical to, McCarthy’s
classic Lisp evaluator. It uses the functions eval, evlis, bind (a.k.a. pairlis), apply, reduce, and
assoc. The eval function lies at the heart of this. It evaluates a function application represented
as a list, say x. The list has the function stored at the head car(x) and the arguments stored in
the rest of the list cdr(x). The steps performed by eval and the functions it calls are as follows:

1. eval(L x,L e) calls apply(eval(car(x),e),cdr(x),e) which evaluates the function at the
head with eval(car(x),e) first to obtain a closure or primitive to apply to the yet-to-be
evaluated arguments stored in the rest of the list cdr(x);

2. apply(L f,L t,L e) calls reduce(f,t,e) when the function f passed to it is a closure,
where t are the unevaluated arguments to f and e is the current environment with bindings
of symbols to values;

3. reduce(L f,L t,L e) calls bind(car(car(f)),evlis(t,e),not(cdr(f)) ? env : cdr(f))

where the list of the closure’s variables car(car(f)) are pair-wise bound to the list of
evaluated arguments evlis(t,e) starting with the bindings of the lexical scope of the clo-
sure cdr(f) if not empty or the global environment env, then reduces the closure’s body
cdr(car(f)) with a call to eval as can be seen in the body of the reduce function that re-
turns eval(cdr(car(f)),bind(car(car(f)),evlis(t,e),not(cdr(f)) ? env : cdr(f))).

Note that the sequence of events started with eval making certain calls that eventually ended with
a call to eval. Tail-call optimization aims to remove all intermediate calls that lead to the final
eval call. Then, rather than calling eval again, tail-call optimization loops back the originating
eval. This means that a Lisp function evaluation at the “tail end” do not incur any return stack
growth. For example:

(define func1

(lambda (n)

(func2 (+ n 1))))

is tail-call optimized, because the application (func2 (+ n 1)) is the body of func1. By contrast:

(define func1

(lambda (n)

(+ 1 (func2 n))))

is not tail-call optimized, because the result of func2 is used by the addition operator to increment
the value which is returned by func1.

Let’s break down the following tail-call optimized eval implementation:

L eval(L x,L e) {

L f,v,d;

while (1) {

if (T(x) == ATOM) return assoc(x,e);

if (T(x) != CONS) return x;

f = eval(car(x),e); x = cdr(x);

if (T(f) == PRIM) return prim[ord(f)].f(x,e);
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if (T(f) != CLOS) return err;

v = car(car(f)); d = cdr(f);

if (T(d) == NIL) d = env;

for (;T(v) == CONS && T(x) == CONS; v = cdr(v),x = cdr(x)) d = pair(car(v),eval(car(x),e),d);

if (T(v) == CONS) x = eval(x,e);

for (;T(v) == CONS; v = cdr(v),x = cdr(x)) d = pair(car(v),car(x),d);

if (T(x) == CONS) x = evlis(x,e);

else if (T(x) != NIL) x = eval(x,e);

if (T(v) != NIL) d = pair(v,x,d);

x = cdr(car(f)); e = d;

}

}

It seems that a lot is going on here, but it is not complicated once we dig into it. The code looks
a lot more convoluted than our original simple and elegant eval. Important to note is that eval
loops until x is a symbol tagged ATOM or a constant, meaning something that is not applicable. By
contrast, a CONS is a function application that we should perform. To do so, f = eval(car(x),e)

gives us the closure/primitive f. We get the rest of the list of arguments with x = cdr(x).
When f is a primitive, we call it with if (T(f) == PRIM) return prim[ord(f)].f(x,e) to

return its value. Note that ord(f) is the index of the primitive into the prim[] array with function
pointer f to call member function f(x,e) with unevaluated list of arguments x and the current
environment e.

When f is a closure, we obtain its list of variables v = car(car(f)) and lexical scope of bindings
d = cdr(f). If this scope is empty, the function’s scope is global (see function reduce in Section 5)
and we set it accordingly if (T(d) == NIL) d = env.

The bindings to the evaluated arguments are performed by the two for-loops that essentially
combine the functionalities of evlist and the former bind. The conditions are checked to handle
the dot operator in the list of actual arguments and in the list of formal arguments (the variables)
of a lambda special form. Finally, we assign the body of the closure x = cdr(car(f)) to replace
x to be evaluated next in the updated environment e = d.

The optimization got rid of apply, bind and reduce, which won’t be needed any longer. This
optimized implementation performs the same operations as the previous unoptimized implemen-
tation, which can be viewed as a reference implementation that implements the Lisp interpreter
requirements20.

Tail-call optimization is only effective with full garbage collection. Our tiny interpreter does not
perform garbage collection continuously, but rather waits until returning to the prompt to reclaim
memory. This means that evaluated arguments will continue to accumulate in memory and this
will eventually exhaust memory. If we can reclaim the list of evaluated arguments before making
a tail-call, then we will not run out of memory. Some other small Lisp interpreters use a so-called
“ABC” garbage collector, which immediately reclaims the evaluated list of arguments passed to
a function when the function returns (or tail-calls). It assumes that Lisp data structures are not
cyclic. However, this assumption is not a sufficient requirement for “ABC” garbage collection to
be sound. Our Lisp interpreter supports forms like (lambda args args) and (lambda (x . args)

args) that use a single variable args to refer to the (partial) list of evaluated arguments passed
to the closure. The args reference is invalidated after “ABC” garbage collection. Hence, “ABC”
garbage collection is not safe. The next sections apply more optimizations to reduce memory usage.

20We want our Lisp interpreter to support the dot operator in function application lists and in lambda variable
lists, such as (lambda (x . args) args), but other Lisp may not support these useful forms.
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16.3 Tail-call optimization part deux

Our new tail-call optimized Lisp interpreter works well to optimize “tail end” calls of user-defined
functions. But it doesn’t work when we use an if or a cond, which are quite common to limit
recursion. For example, the following foldl (fold left, a.k.a. reduce) and begin (a.k.a. progn)
functions are both tail-recursive in the “then-branch” of the if special form:

(define foldl

(lambda (f x t)

(if t

(foldl f (f (car t) x) (cdr t))

x)))

(define begin

(lambda (x . args)

(if args

(begin . args)

x)))

In order to tail-call optimize Lisp evaluation through the special forms if, cond, and let*, we
mark these three primitives in the prim[] array by introducing a new member short t flag with
the value 1 for tail-calls:

struct { const char *s; L (*f)(L,L*); short t; } prim[] = {

{"eval", f_eval, 1},

{"quote", f_quote, 0},

{"cons", f_cons, 0},

{"car", f_car, 0},

{"cdr", f_cdr, 0},

{"+", f_add, 0},

{"-", f_sub, 0},

{"*", f_mul, 0},

{"/", f_div, 0},

{"int", f_int, 0},

{"<", f_lt, 0},

{"eq?", f_eq, 0},

{"or", f_or, 0},

{"and", f_and, 0},

{"not", f_not, 0},

{"cond", f_cond, 1},

{"if", f_if, 1},

{"let*", f_leta, 1},

{"lambda",f_lambda,0},

{"define",f_define,0},

{0}};

Perhaps surprisingly, we also make eval in prim[] a tail-call because it just returns its argument
to be evaluated next. When the t member flag is set, we continue the eval function’s loop to
evaluate the Lisp expression x returned by the tail-call enabled primitive:

L eval(L x,L e) {

L f,v,d;

while (1) {

...
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if (T(f) == PRIM) {

x = prim[ord(f)].f(x,&e);

if (prim[ord(f)].t) continue;

return x;

}

...

}

}

In addition, the if, cond, and let* primitives no longer call eval before returning to return the
expression to be evaluated instead:

L f_cond(L t,L *e) {

while (T(t) != NIL && not(eval(car(car(t)),*e))) t = cdr(t);

return car(cdr(car(t)));

}

L f_if(L t,L *e) {

return car(cdr(not(eval(car(t),*e)) ? cdr(t) : t));

}

L f_leta(L t,L *e) {

for (;let(t); t = cdr(t)) *e = pair(car(car(t)),eval(car(cdr(car(t))),*e),*e);

return car(t);

}

The f leta primitive shows why we pass *e to the primitives instead of e by value. This permits
the primitive to extend the environment to continue evaluation with an expression x that has an
extended scope of bindings e.

The rest of the primitives remain the same, except that we pass a pointer to the current
environment *e and for the updated f eval implementation as stated earlier:

L f_eval(L t,L *e) { return car(evlis(t,*e)); }

Appendix C and D show the optimized Lisp interpreter source code.

16.4 Optimizing the Lisp primitives

The evlis function constructs a list of evaluated arguments. It is a fundamental Lisp interpreter
function. While optimizing our Lisp interpreter we got rid of several Lisp interpreter functions, but
not evlis, which is called in eval to handle the dot operator in lambda variable lists by binding
the list of evaluated arguments to a variable. All other calls to evlis in our Lisp interpreter are
made to evaluate the arguments passed to a primitive. The important point is that evlis correctly
handles the dot operator in the arguments passed to a primitive. For example, we can define a sum

function that calls + on its list argument t:

(define sum (lambda (t) (+ . t)))

(sum '(1 2 3))

6

Here, the evlis call in f add simply passes the list t = (1 2 3) back as a return value to be
summed in f add’s loop over its arguments. If we were to blindly remove evlis from f add to
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replace it with a call to eval for each unevaluated car(t) in the list of unevaluated arguments t,
then we will lose the ability to pass arguments via the dot operator.

Rather than calling evlis in a primitive, we implement an iterative approach that calls a func-
tion arg repeatedly. This function returns the next evaluated argument from the list of arguments
t passed to the primitive:

L arg(short *d,L *t,L x,L e) {

if (T(*t) == ATOM && !*d) { *t = assoc(*t,e); *d = 1; }

if (T(*t) != CONS) return x;

x = *d ? car(*t) : eval(car(*t),e);

*t = cdr(*t);

if (T(*t) == ATOM) { *t = assoc(*t,e); *d = 1; }

return x;

}

We pass a pointer *t to arg to be updated by arg to point to the rest of the list of arguments that
are not yet evaluated. The arg function checks if t ends in a symbol, which is the variable after
the dot operator. In this case, the value of the variable should be looked up with assoc and its list
is used as the remaining list of arguments that are already evaluated. When this happens, a flag
*d is set to prevent double evaluation of dot operator arguments. We also pass a default value x

to arg when no arguments are provided.
The short flag d is a locally-declared variable of the primitive, which is initially zero and set

when the dot operator argument was evaluated. The first set of primitives is modified as follows:

L f_eval(L t,L *e) { short d = 0; return arg(&d,&t,err,*e); }

L f_quote(L t,L *_) { return car(t); }

L f_cons(L t,L *e) { short d = 0; L x = arg(&d,&t,err,*e),y = arg(&d,&t,err,*e); return cons(x,y); }

L f_car(L t,L *e) { short d = 0; return car(arg(&d,&t,err,*e)); }

L f_cdr(L t,L *e) { short d = 0; return cdr(arg(&d,&t,err,*e)); }

L f_add(L t,L *e) {

short d = 0; L n = arg(&d,&t,0,*e);

while (T(t) == CONS) n += arg(&d,&t,0,*e);

return num(n);

}

L f_sub(L t,L *e) {

short d = 0; L n = arg(&d,&t,0,*e);

while (T(t) == CONS) n -= arg(&d,&t,0,*e);

return num(n);

}

L f_mul(L t,L *e) {

short d = 0; L n = arg(&d,&t,1,*e);

while (T(t) == CONS) n *= arg(&d,&t,1,*e);

return num(n);

}

L f_div(L t,L *e) {

short d = 0; L n = arg(&d,&t,1,*e);

while (T(t) == CONS) n /= arg(&d,&t,1,*e);

return num(n);

}

L f_int(L t,L *e) { short d = 0; L n = arg(&d,&t,err,*e); return n<1e16 && n>-1e16 ? (long long)n : n; }

L f_lt(L t,L *e) { short d = 0; L x = arg(&d,&t,err,*e),y = arg(&d,&t,err,*e); return x < y ? tru : nil; }

L f_eq(L t,L *e) { short d = 0; L x = arg(&d,&t,err,*e),y = arg(&d,&t,err,*e); return equ(x,y) ? tru : nil; }

L f_not(L t,L *e) { short d = 0; return not(arg(&d,&t,nil,*e)) ? tru : nil; }

This optimization is an example of a plethora of possibilities to increase the speed of Lisp evaluation
and/or reduce memory usage. In this case we reduced memory usage, but the computational
overhead by repeatedly calling arg increases. Furthermore, the resulting code becomes rather
opaque compared to the original simple and elegant Lisp implementation that we started with.
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17 Conclusions

This article demonstrated how a fully-functional Lisp interpreter with 20 Lisp primitives, a REPL
and simple garbage collection can be written in 99 lines of C or less. The concepts and implemen-
tation presented largely follow the original ideas and discoveries made by McCarthy in his 1960
paper. Given the material included in this article, it should not be difficult to expand the Lisp
interpreter to support additional features and experiment with alternative syntax and semantics of
a hybrid Lisp or a completely new language.

Any overlap or resemblance to any other Lisp implementations is coincidental. I wrote this
article from scratch based on McCarthy’s paper and based on my 20 years of experience teaching
programming language courses that include Lisp/Scheme design and programming.
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A Tiny Lisp Interpreter with NaN boxing: 99 Lines of C

Lisp in 99 lines of C without comments:

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#define I unsigned

#define L double

#define T(x) *(unsigned long long*)&x>>48

#define A (char*)cell

#define N 1024

I hp=0,sp=N,ATOM=0x7ff8,PRIM=0x7ff9,CONS=0x7ffa,CLOS=0x7ffb,NIL=0x7ffc;

L cell[N],nil,tru,err,env;

L box(I t,I i) { L x; *(unsigned long long*)&x = (unsigned long long)t<<48|i; return x; }

I ord(L x) { return *(unsigned long long*)&x; }

L num(L n) { return n; }

I equ(L x,L y) { return *(unsigned long long*)&x == *(unsigned long long*)&y; }

L atom(const char *s) {

I i = 0; while (i < hp && strcmp(A+i,s)) i += strlen(A+i)+1;

if (i == hp && (hp += strlen(strcpy(A+i,s))+1) > sp<<3) abort();

return box(ATOM,i);

}

L cons(L x,L y) { cell[--sp] = x; cell[--sp] = y; if (hp > sp<<3) abort(); return box(CONS,sp); }

L car(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)+1] : err; }

L cdr(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)] : err; }

L pair(L v,L x,L e) { return cons(cons(v,x),e); }

L closure(L v,L x,L e) { return box(CLOS,ord(pair(v,x,equ(e,env) ? nil : e))); }

L assoc(L v,L e) { while (T(e) == CONS && !equ(v,car(car(e)))) e = cdr(e); return T(e) == CONS ? cdr(car(e)) : err; }

I not(L x) { return T(x) == NIL; }

I let(L x) { return T(x) != NIL && !not(cdr(x)); }

L eval(L,L),parse();

L evlis(L t,L e) { return T(t) == CONS ? cons(eval(car(t),e),evlis(cdr(t),e)) : T(t) == ATOM ? assoc(t,e) : nil; }

L f_eval(L t,L e) { return eval(car(evlis(t,e)),e); }

L f_quote(L t,L _) { return car(t); }

L f_cons(L t,L e) { return t = evlis(t,e),cons(car(t),car(cdr(t))); }

L f_car(L t,L e) { return car(car(evlis(t,e))); }

L f_cdr(L t,L e) { return cdr(car(evlis(t,e))); }

L f_add(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n += car(t); return num(n); }

L f_sub(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n -= car(t); return num(n); }

L f_mul(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n *= car(t); return num(n); }

L f_div(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n /= car(t); return num(n); }

L f_int(L t,L e) { L n = car(evlis(t,e)); return n<1e16 && n>-1e16 ? (long long)n : n; }

L f_lt(L t,L e) { return t = evlis(t,e),car(t) - car(cdr(t)) < 0 ? tru : nil; }

L f_eq(L t,L e) { return t = evlis(t,e),equ(car(t),car(cdr(t))) ? tru : nil; }

L f_not(L t,L e) { return not(car(evlis(t,e))) ? tru : nil; }

L f_or(L t,L e) { L x = nil; while (T(t) != NIL && not(x = eval(car(t),e))) t = cdr(t); return x; }

L f_and(L t,L e) { L x = nil; while (T(t) != NIL && !not(x = eval(car(t),e))) t = cdr(t); return x; }

L f_cond(L t,L e) { while (T(t) != NIL && not(eval(car(car(t)),e))) t = cdr(t); return eval(car(cdr(car(t))),e); }

L f_if(L t,L e) { return eval(car(cdr(not(eval(car(t),e)) ? cdr(t) : t)),e); }

L f_leta(L t,L e) { for (;let(t); t = cdr(t)) e = pair(car(car(t)),eval(car(cdr(car(t))),e),e); return eval(car(t),e); }

L f_lambda(L t,L e) { return closure(car(t),car(cdr(t)),e); }

L f_define(L t,L e) { env = pair(car(t),eval(car(cdr(t)),e),env); return car(t); }

struct { const char *s; L (*f)(L,L); } prim[] = {

{"eval",f_eval},{"quote",f_quote},{"cons",f_cons},{"car", f_car}, {"cdr", f_cdr}, {"+", f_add}, {"-", f_sub},

{"*", f_mul}, {"/", f_div}, {"int", f_int}, {"<", f_lt}, {"eq?", f_eq}, {"or", f_or}, {"and",f_and},

{"not", f_not}, {"cond", f_cond}, {"if", f_if}, {"let*",f_leta},{"lambda",f_lambda},{"define",f_define},{0}};

L bind(L v,L t,L e) { return T(v) == NIL ? e : T(v) == CONS ? bind(cdr(v),cdr(t),pair(car(v),car(t),e)) : pair(v,t,e); }

L reduce(L f,L t,L e) { return eval(cdr(car(f)),bind(car(car(f)),evlis(t,e),not(cdr(f)) ? env : cdr(f))); }

L apply(L f,L t,L e) { return T(f) == PRIM ? prim[ord(f)].f(t,e) : T(f) == CLOS ? reduce(f,t,e) : err; }

L eval(L x,L e) { return T(x) == ATOM ? assoc(x,e) : T(x) == CONS ? apply(eval(car(x),e),cdr(x),e) : x; }

char buf[40],see = ' ';

void look() { int c = getchar(); see = c; if (c == EOF) exit(0); }

I seeing(char c) { return c == ' ' ? see > 0 && see <= c : see == c; }
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char get() { char c = see; look(); return c; }

char scan() {

int i = 0;

while (seeing(' ')) look();

if (seeing('(') || seeing(')') || seeing('\'')) buf[i++] = get();

else do buf[i++] = get(); while (i < 39 && !seeing('(') && !seeing(')') && !seeing(' '));

return buf[i] = 0,*buf;

}

L Read() { return scan(),parse(); }

L list() { L x; return scan() == ')' ? nil : !strcmp(buf, ".") ? (x = Read(),scan(),x) : (x = parse(),cons(x,list())); }

L quote() { return cons(atom("quote"),cons(Read(),nil)); }

L atomic() { L n; int i; return sscanf(buf,"%lg%n",&n,&i) > 0 && !buf[i] ? n : atom(buf); }

L parse() { return *buf == '(' ? list() : *buf == '\'' ? quote() : atomic(); }

void print(L);

void printlist(L t) {

for (putchar('('); ; putchar(' ')) {

print(car(t));

if (not(t = cdr(t))) break;

if (T(t) != CONS) { printf(" . "); print(t); break; }

}

putchar(')');

}

void print(L x) {

if (T(x) == NIL) printf("()");

else if (T(x) == ATOM) printf("%s",A+ord(x));

else if (T(x) == PRIM) printf("<%s>",prim[ord(x)].s);

else if (T(x) == CONS) printlist(x);

else if (T(x) == CLOS) printf("{%u}",ord(x));

else printf("%.10lg",x);

}

void gc() { sp = ord(env); }

int main() {

int i;

printf("tinylisp");

nil = box(NIL,0); err = atom("ERR"); tru = atom("#t"); env = pair(tru,tru,nil);

for (i = 0; prim[i].s; ++i) env = pair(atom(prim[i].s),box(PRIM,i),env);

while (1) { printf("\n%u>",sp-hp/8); print(eval(Read(),env)); gc(); }

}
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B Tiny Lisp Interpreter with BCD boxing: 99 Lines of C

Lisp for the PC-G850 in 99 lines of C without comments:

#define I unsigned

#define L double

#define T *(char*)&

#define A (char*)cell

#define N 1024

I hp=0,sp=N,ATOM=32,PRIM=48,CONS=64,CLOS=80,NIL=96;

L cell[N],nil,tru,err,env;

L box(I t,I i) { L x = i+10; T(x) = t; return x; }

I ord(L x) { T(x) &= 15; return (I)x-10; }

L num(L n) { T(n) &= 159; return n; }

I equ(L x,L y) { return x == y; }

L atom(const char *s) {

I i = 0; while (i < hp && strcmp(A+i,s)) i += strlen(A+i)+1;

if (i == hp && (hp += strlen(strcpy(A+i,s))+1) > sp<<3) abort();

return box(ATOM,i);

}

L cons(L x,L y) { cell[--sp] = x; cell[--sp] = y; if (hp > sp<<3) abort(); return box(CONS,sp); }

L car(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)+1] : err; }

L cdr(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)] : err; }

L pair(L v,L x,L e) { return cons(cons(v,x),e); }

L closure(L v,L x,L e) { return box(CLOS,ord(pair(v,x,equ(e,env) ? nil : e))); }

L assoc(L v,L e) { while (T(e) == CONS && !equ(v,car(car(e)))) e = cdr(e); return T(e) == CONS ? cdr(car(e)) : err; }

I not(L x) { return T(x) == NIL; }

I let(L x) { return T(x) != NIL && !not(cdr(x)); }

L eval(L,L),parse();

L evlis(L t,L e) { return T(t) == CONS ? cons(eval(car(t),e),evlis(cdr(t),e)) : T(t) == ATOM ? assoc(t,e) : nil; }

L f_eval(L t,L e) { return eval(car(evlis(t,e)),e); }

L f_quote(L t,L _) { return car(t); }

L f_cons(L t,L e) { return t = evlis(t,e),cons(car(t),car(cdr(t))); }

L f_car(L t,L e) { return car(car(evlis(t,e))); }

L f_cdr(L t,L e) { return cdr(car(evlis(t,e))); }

L f_add(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n += car(t); return num(n); }

L f_sub(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n -= car(t); return num(n); }

L f_mul(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n *= car(t); return num(n); }

L f_div(L t,L e) { L n = car(t = evlis(t,e)); while (!not(t = cdr(t))) n /= car(t); return num(n); }

L f_int(L t,L e) { L n = car(evlis(t,e)); return n-1e9 < 0 && n+1e9 > 0 ? (long)n : n; }

L f_lt(L t,L e) { return t = evlis(t,e),car(t) - car(cdr(t)) < 0 ? tru : nil; }

L f_eq(L t,L e) { return t = evlis(t,e),equ(car(t),car(cdr(t))) ? tru : nil; }

L f_not(L t,L e) { return not(car(evlis(t,e))) ? tru : nil; }

L f_or(L t,L e) { L x = nil; while (T(t) != NIL && not(x = eval(car(t),e))) t = cdr(t); return x; }

L f_and(L t,L e) { L x = nil; while (T(t) != NIL && !not(x = eval(car(t),e))) t = cdr(t); return x; }

L f_cond(L t,L e) { while (T(t) != NIL && not(eval(car(car(t)),e))) t = cdr(t); return eval(car(cdr(car(t))),e); }

L f_if(L t,L e) { return eval(car(cdr(not(eval(car(t),e)) ? cdr(t) : t)),e); }

L f_leta(L t,L e) { for (;let(t); t = cdr(t)) e = pair(car(car(t)),eval(car(cdr(car(t))),e),e); return eval(car(t),e); }

L f_lambda(L t,L e) { return closure(car(t),car(cdr(t)),e); }

L f_define(L t,L e) { env = pair(car(t),eval(car(cdr(t)),e),env); return car(t); }

struct { const char *s; L (*f)(L,L); } prim[] = {

{"eval",f_eval},{"quote",f_quote},{"cons",f_cons},{"car", f_car}, {"cdr", f_cdr}, {"+", f_add}, {"-", f_sub},

{"*", f_mul}, {"/", f_div}, {"int", f_int}, {"<", f_lt}, {"eq?", f_eq}, {"or", f_or}, {"and",f_and},

{"not", f_not}, {"cond", f_cond}, {"if", f_if}, {"let*",f_leta},{"lambda",f_lambda},{"define",f_define},{0}};

L bind(L v,L t,L e) { return T(v) == NIL ? e : T(v) == CONS ? bind(cdr(v),cdr(t),pair(car(v),car(t),e)) : pair(v,t,e); }

L reduce(L f,L t,L e) { return eval(cdr(car(f)),bind(car(car(f)),evlis(t,e),not(cdr(f)) ? env : cdr(f))); }

L apply(L f,L t,L e) { return T(f) == PRIM ? prim[ord(f)].f(t,e) : T(f) == CLOS ? reduce(f,t,e) : err; }

L eval(L x,L e) { return T(x) == ATOM ? assoc(x,e) : T(x) == CONS ? apply(eval(car(x),e),cdr(x),e) : x; }

char buf[40],see = ' ';

void look() { int c = getchar(); see = c; if (c == -1) exit(0); }

I seeing(char c) { return c == ' ' ? see > 0 && see <= c : see == c; }

char get() { char c = see; look(); return c; }

char scan() {

int i = 0;
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while (seeing(' ')) look();

if (seeing('(') || seeing(')') || seeing('\'')) buf[i++] = get();

else do buf[i++] = get(); while (i < 39 && !seeing('(') && !seeing(')') && !seeing(' '));

return buf[i] = 0,*buf;

}

L read() { return scan(),parse(); }

L list() { L x; return scan() == ')' ? nil : !strcmp(buf, ".") ? (x = read(),scan(),x) : (x = parse(),cons(x,list())); }

L quote() { return cons(atom("quote"),cons(read(),nil)); }

L atomic() {

L n; int i = strlen(buf);

return isdigit(buf[*buf == '-']) && sscanf(buf,"%lg%n",&n,&i) && !buf[i] ? n : atom(buf);

}

L parse() { return *buf == '(' ? list() : *buf == '\'' ? quote() : atomic(); }

void print(L);

void printlist(L t) {

for (putchar('('); ; putchar(' ')) {

print(car(t));

if (not(t = cdr(t))) break;

if (T(t) != CONS) { printf(" . "); print(t); break; }

}

putchar(')');

}

void print(L x) {

if (T(x) == NIL) printf("()");

else if (T(x) == ATOM) printf("%s",A+ord(x));

else if (T(x) == PRIM) printf("<%s>",prim[ord(x)].s);

else if (T(x) == CONS) printlist(x);

else if (T(x) == CLOS) printf("{%u}",ord(x));

else printf("%.10lg",x);

}

void gc() { sp = ord(env); }

int main() {

int i;

printf("lisp850");

nil = box(NIL,0); err = atom("ERR"); tru = atom("#t"); env = pair(tru,tru,nil);

for (i = 0; prim[i].s; ++i) env = pair(atom(prim[i].s),box(PRIM,i),env);

while (1) { printf("\n%u>",sp-hp/8); print(eval(read(),env)); gc(); }

}
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C Optimized Lisp Interpreter with NaN boxing

The following version of the Lisp interpreter is tail-call optimized for speed and reduced memory
usage at runtime.

#include <stdlib.h>

#include <stdio.h>

#include <string.h>

#define I unsigned

#define L double

#define T(x) *(unsigned long long*)&x>>48

#define A (char*)cell

#define N 1024

I hp=0,sp=N,ATOM=0x7ff8,PRIM=0x7ff9,CONS=0x7ffa,CLOS=0x7ffb,NIL=0x7ffc;

L cell[N],nil,tru,err,env;

L box(I t,I i) { L x; *(unsigned long long*)&x = (unsigned long long)t<<48|i; return x; }

I ord(L x) { return *(unsigned long long*)&x; }

L num(L n) { return n; }

I equ(L x,L y) { return *(unsigned long long*)&x == *(unsigned long long*)&y; }

L atom(const char *s) {

I i = 0; while (i < hp && strcmp(A+i,s)) i += strlen(A+i)+1;

if (i == hp && (hp += strlen(strcpy(A+i,s))+1) > sp<<3) abort();

return box(ATOM,i);

}

L cons(L x,L y) { cell[--sp] = x; cell[--sp] = y; if (hp > sp<<3) abort(); return box(CONS,sp); }

L car(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)+1] : err; }

L cdr(L p) { return (T(p)&~(CONS^CLOS)) == CONS ? cell[ord(p)] : err; }

L pair(L v,L x,L e) { return cons(cons(v,x),e); }

L closure(L v,L x,L e) { return box(CLOS,ord(pair(v,x,equ(e,env) ? nil : e))); }

L assoc(L v,L e) { while (T(e) == CONS && !equ(v,car(car(e)))) e = cdr(e); return T(e) == CONS ? cdr(car(e)) : err; }

I not(L x) { return T(x) == NIL; }

I let(L x) { return T(x) != NIL && (x = cdr(x),T(x) != NIL); }

L eval(L,L),parse();

L evlis(L t,L e) {

L s,*p;

for (s = nil,p = &s; T(t) == CONS; p = cell+sp,t = cdr(t)) *p = cons(eval(car(t),e),nil);

if (T(t) == ATOM) *p = assoc(t,e);

return s;

}

L f_eval(L t,L *e) { return car(evlis(t,*e)); }

L f_quote(L t,L *_) { return car(t); }

L f_cons(L t,L *e) { return t = evlis(t,*e),cons(car(t),car(cdr(t))); }

L f_car(L t,L *e) { return car(car(evlis(t,*e))); }

L f_cdr(L t,L *e) { return cdr(car(evlis(t,*e))); }

L f_add(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n += car(t); return num(n); }

L f_sub(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n -= car(t); return num(n); }

L f_mul(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n *= car(t); return num(n); }

L f_div(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n /= car(t); return num(n); }

L f_int(L t,L *e) { L n = car(evlis(t,*e)); return n<1e16 && n>-1e16 ? (long long)n : n; }

L f_lt(L t,L *e) { return t = evlis(t,*e),car(t) - car(cdr(t)) < 0 ? tru : nil; }

L f_eq(L t,L *e) { return t = evlis(t,*e),equ(car(t),car(cdr(t))) ? tru : nil; }

L f_not(L t,L *e) { return not(car(evlis(t,*e))) ? tru : nil; }

L f_or(L t,L *e) { L x = nil; while (T(t) != NIL && not(x = eval(car(t),*e))) t = cdr(t); return x; }

L f_and(L t,L *e) { L x = nil; while (T(t) != NIL && !not(x = eval(car(t),*e))) t = cdr(t); return x; }

L f_cond(L t,L *e) { while (T(t) != NIL && not(eval(car(car(t)),*e))) t = cdr(t); return car(cdr(car(t))); }

L f_if(L t,L *e) { return car(cdr(not(eval(car(t),*e)) ? cdr(t) : t)); }

L f_leta(L t,L *e) { for (;let(t); t = cdr(t)) *e = pair(car(car(t)),eval(car(cdr(car(t))),*e),*e); return car(t); }

L f_lambda(L t,L *e) { return closure(car(t),car(cdr(t)),*e); }

L f_define(L t,L *e) { env = pair(car(t),eval(car(cdr(t)),*e),env); return car(t); }

struct { const char *s; L (*f)(L,L*); short t; } prim[] = {

{"eval", f_eval, 1},{"quote", f_quote, 0},{"cons",f_cons,0},{"car", f_car, 0},{"cdr",f_cdr,0},{"+", f_add, 0},

{"-", f_sub, 0},{"*", f_mul, 0},{"/", f_div, 0},{"int", f_int, 0},{"<", f_lt, 0},{"eq?", f_eq, 0},

{"or", f_or, 0},{"and", f_and, 0},{"not", f_not, 0},{"cond",f_cond,1},{"if", f_if, 1},{"let*",f_leta,1},

{"lambda",f_lambda,0},{"define",f_define,0},{0}};
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L eval(L x,L e) {

L f,v,d;

while (1) {

if (T(x) == ATOM) return assoc(x,e);

if (T(x) != CONS) return x;

f = eval(car(x),e); x = cdr(x);

if (T(f) == PRIM) {

x = prim[ord(f)].f(x,&e);

if (prim[ord(f)].t) continue;

return x;

}

if (T(f) != CLOS) return err;

v = car(car(f)); d = cdr(f);

if (T(d) == NIL) d = env;

for (;T(v) == CONS && T(x) == CONS; v = cdr(v),x = cdr(x)) d = pair(car(v),eval(car(x),e),d);

if (T(v) == CONS) x = eval(x,e);

for (;T(v) == CONS; v = cdr(v),x = cdr(x)) d = pair(car(v),car(x),d);

if (T(x) == CONS) x = evlis(x,e);

else if (T(x) != NIL) x = eval(x,e);

if (T(v) != NIL) d = pair(v,x,d);

x = cdr(car(f)); e = d;

}

}

char buf[40],see = ' ';

void look() { int c = getchar(); see = c; if (c == EOF) exit(0); }

I seeing(char c) { return c == ' ' ? see > 0 && see <= c : see == c; }

char get() { char c = see; look(); return c; }

char scan() {

int i = 0;

while (seeing(' ')) look();

if (seeing('(') || seeing(')') || seeing('\'')) buf[i++] = get();

else do buf[i++] = get(); while (i < 39 && !seeing('(') && !seeing(')') && !seeing(' '));

return buf[i] = 0,*buf;

}

L Read() { return scan(),parse(); }

L list() {

L t,*p;

for (t = nil,p = &t; ; *p = cons(parse(),nil),p = cell+sp) {

if (scan() == ')') return t;

if (*buf == '.' && !buf[1]) return *p = Read(),scan(),t;

}

}

L parse() {

L n; int i;

if (*buf == '(') return list();

if (*buf == '\'') return cons(atom("quote"),cons(Read(),nil));

return sscanf(buf,"%lg%n",&n,&i) > 0 && !buf[i] ? n : atom(buf);

}

void print(L);

void printlist(L t) {

for (putchar('('); ; putchar(' ')) {

print(car(t));

if (not(t = cdr(t))) break;

if (T(t) != CONS) { printf(" . "); print(t); break; }

}

putchar(')');

}

void print(L x) {

if (T(x) == NIL) printf("()");

else if (T(x) == ATOM) printf("%s",A+ord(x));

else if (T(x) == PRIM) printf("<%s>",prim[ord(x)].s);

else if (T(x) == CONS) printlist(x);

else if (T(x) == CLOS) printf("{%u}",ord(x));

else printf("%.10lg",x);

}
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void gc() { sp = ord(env); }

int main() {

int i;

printf("tinylisp");

nil = box(NIL,0); err = atom("ERR"); tru = atom("#t"); env = pair(tru,tru,nil);

for (i = 0; prim[i].s; ++i) env = pair(atom(prim[i].s),box(PRIM,i),env);

while (1) { printf("\n%u>",sp-hp/8); print(eval(Read(),env)); gc(); }

}
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D Optimized Lisp Interpreter with BCD boxing

The following version of the Lisp interpreter for the PC-G850 is tail-call optimized for speed and
reduced memory usage at runtime.

#define I unsigned

#define L double

#define T *(char*)&

#define A (char*)cell

#define N 1024

I hp=0,sp=N,ATOM=32,PRIM=48,CONS=64,CLOS=80,NIL=96;

L cell[N],nil,tru,err,env;

L box(I t,I i) { L x = i+10; T x = t; return x; }

I ord(L x) { T x &= 15; return (I)x-10; }

L num(L n) { T n &= 159; return n; }

L atom(const char *s) {

I i = 0; while (i < hp && strcmp(A+i,s)) i += strlen(A+i)+1;

if (i == hp && (hp += strlen(strcpy(A+i,s))+1) > sp<<3) abort();

return box(ATOM,i);

}

L cons(L x,L y) { cell[--sp] = x; cell[--sp] = y; if (hp > sp<<3) abort(); return box(CONS,sp); }

L car(L p) { return (T p&224) == CONS ? cell[T p &= 15,(I)p-9] : err; }

L cdr(L p) { return (T p&224) == CONS ? cell[T p &= 15,(I)p-10] : err; }

L pair(L v,L x,L e) { return cons(cons(v,x),e); }

L closure(L v,L x,L e) { return box(CLOS,ord(pair(v,x,e == env ? nil : e))); }

L assoc(L v,L e) { while (T e == CONS && v != car(car(e))) e = cdr(e); return T e == CONS ? cdr(car(e)) : err; }

I not(L x) { return T x == NIL; }

I let(L x) { return T x != NIL && (x = cdr(x),T x != NIL); }

L eval(L,L),parse();

L evlis(L t,L e) {

L s,*p;

for (s = nil,p = &s; T t == CONS; p = cell+sp,t = cdr(t)) *p = cons(eval(car(t),e),nil);

if (T t == ATOM) *p = assoc(t,e);

return s;

}

L f_eval(L t,L *e) { return car(evlis(t,*e)); }

L f_quote(L t,L *_) { return car(t); }

L f_cons(L t,L *e) { return t = evlis(t,*e),cons(car(t),car(cdr(t))); }

L f_car(L t,L *e) { return car(car(evlis(t,*e))); }

L f_cdr(L t,L *e) { return cdr(car(evlis(t,*e))); }

L f_add(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n += car(t); return num(n); }

L f_sub(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n -= car(t); return num(n); }

L f_mul(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n *= car(t); return num(n); }

L f_div(L t,L *e) { L n = car(t = evlis(t,*e)); while (!not(t = cdr(t))) n /= car(t); return num(n); }

L f_int(L t,L *e) { L n = car(evlis(t,*e)); return n<1e16 && n>-1e16 ? (unsigned long)n : n; }

L f_lt(L t,L *e) { return t = evlis(t,*e),car(t) - car(cdr(t)) < 0 ? tru : nil; }

L f_eq(L t,L *e) { return t = evlis(t,*e),car(t) == car(cdr(t)) ? tru : nil; }

L f_not(L t,L *e) { return not(car(evlis(t,*e))) ? tru : nil; }

L f_or(L t,L *e) { L x = nil; while (T t != NIL && not(x = eval(car(t),*e))) t = cdr(t); return x; }

L f_and(L t,L *e) { L x = nil; while (T t != NIL && !not(x = eval(car(t),*e))) t = cdr(t); return x; }

L f_cond(L t,L *e) { while (T t != NIL && not(eval(car(car(t)),*e))) t = cdr(t); return car(cdr(car(t))); }

L f_if(L t,L *e) { return car(cdr(not(eval(car(t),*e)) ? cdr(t) : t)); }

L f_leta(L t,L *e) { for (;let(t); t = cdr(t)) *e = pair(car(car(t)),eval(car(cdr(car(t))),*e),*e); return car(t); }

L f_lambda(L t,L *e) { return closure(car(t),car(cdr(t)),*e); }

L f_define(L t,L *e) { env = pair(car(t),eval(car(cdr(t)),*e),env); return car(t); }

struct { const char *s; L (*f)(L,L*); short t; } prim[] = {

{"eval", f_eval, 1},{"quote", f_quote, 0},{"cons",f_cons,0},{"car", f_car, 0},{"cdr",f_cdr,0},{"+", f_add, 0},

{"-", f_sub, 0},{"*", f_mul, 0},{"/", f_div, 0},{"int", f_int, 0},{"<", f_lt, 0},{"eq?", f_eq, 0},

{"or", f_or, 0},{"and", f_and, 0},{"not", f_not, 0},{"cond",f_cond,1},{"if", f_if, 1},{"let*",f_leta,1},

{"lambda",f_lambda,0},{"define",f_define,0},{0}};

L eval(L x,L e) {

L f,v,d;

while (1) {

if (T x == ATOM) return assoc(x,e);

47



if (T x != CONS) return x;

f = eval(car(x),e); x = cdr(x);

if (T f == PRIM) {

x = prim[ord(f)].f(x,&e);

if (prim[ord(f)].t) continue;

return x;

}

if (T f != CLOS) return err;

v = car(car(f)); d = cdr(f);

if (T d == NIL) d = env;

for (;T v == CONS && T x == CONS; v = cdr(v),x = cdr(x)) d = pair(car(v),eval(car(x),e),d);

if (T v == CONS) x = eval(x,e);

for (;T v == CONS; v = cdr(v),x = cdr(x)) d = pair(car(v),car(x),d);

if (T x == CONS) x = evlis(x,e);

else if (T x != NIL) x = eval(x,e);

if (T v != NIL) d = pair(v,x,d);

x = cdr(car(f)); e = d;

}

}

char buf[40],see = ' ';

void look() { int c = getchar(); see = c; if (c == -1) exit(0); }

I seeing(char c) { return c == ' ' ? see > 0 && see <= c : see == c; }

char get() { char c = see; look(); return c; }

char scan() {

int i = 0;

while (seeing(' ')) look();

if (seeing('(') || seeing(')') || seeing('\'')) buf[i++] = get();

else do buf[i++] = get(); while (i < 39 && !seeing('(') && !seeing(')') && !seeing(' '));

return buf[i] = 0,*buf;

}

L read() { return scan(),parse(); }

L list() {

L t,*p;

for (t = nil,p = &t; ; *p = cons(parse(),nil),p = cell+sp) {

if (scan() == ')') return t;

if (*buf == '.' && !buf[1]) return *p = read(),scan(),t;

}

}

L parse() {

L n; int i;

if (*buf == '(') return list();

if (*buf == '\'') return cons(atom("quote"),cons(read(),nil));

i = strlen(buf);

return isdigit(buf[*buf == '-']) && sscanf(buf,"%lg%n",&n,&i) > 0 && !buf[i] ? n : atom(buf);

}

void print(L);

void printlist(L t) {

for (putchar('('); ; putchar(' ')) {

print(car(t));

if (not(t = cdr(t))) break;

if (T(t) != CONS) { printf(" . "); print(t); break; }

}

putchar(')');

}

void print(L x) {

if (T x == NIL) printf("()");

else if (T x == ATOM) printf("%s",A+ord(x));

else if (T x == PRIM) printf("<%s>",prim[ord(x)].s);

else if (T x == CONS) printlist(x);

else if (T x == CLOS) printf("{%u}",ord(x));

else printf("%.10lg",x);

}

void gc() { sp = ord(env); }

int main() {

int i;
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printf("lisp850");

nil = box(NIL,0); err = atom("ERR"); tru = atom("#t"); env = pair(tru,tru,nil);

for (i = 0; prim[i].s; ++i) env = pair(atom(prim[i].s),box(PRIM,i),env);

while (1) { printf("\n%u>",sp-hp/8); print(eval(read(),env)); gc(); }

}
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E Example Lisp Functions

E.1 Standard Lisp Functions

The following functions should be self-explanatory, for details see further below:

(define null? not)

(define err? (lambda (x) (eq? x 'ERR)))

(define number? (lambda (x) (eq? (* 0 x) 0)))

(define pair? (lambda (x) (not (err? (cdr x)))))

(define symbol?

(lambda (x)

(and

x

(not (err? x))

(not (number? x))

(not (pair? x)))))

(define atom?

(lambda (x)

(or

(not x)

(symbol? x))))

(define list?

(lambda (x)

(if (not x)

#t

(if (pair? x)

(list? (cdr x))

()))))

(define equal?

(lambda (x y)

(or

(eq? x y)

(and

(pair? x)

(pair? y)

(equal? (car x) (car y))

(equal? (cdr x) (cdr y))))))

(define negate (lambda (n) (- 0 n)))

(define > (lambda (x y) (< y x)))

(define <= (lambda (x y) (not (< y x))))

(define >= (lambda (x y) (not (< x y))))

(define = (lambda (x y) (eq? (- x y) 0)))

(define list (lambda args args))

(define cadr (lambda (x) (car (cdr x))))

(define caddr (lambda (x) (car (cdr (cdr x)))))

(define begin (lambda (x . args) (if args (begin . args) x)))

Explanation:

• equal? tests equality of two values recursively (eq? tests exact equality only)

• symbol? tests if the value is an atom excluding the empty list.

• atom? tests if the value is an atom including the empty list, but beware that some Lisp
implementation also return #t for numbers.
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• list returns a list of the values of the arguments. For example, (list 1 2 (+ 1 2)) gives
(1 2 3).

• begin (called progn in some other Lisp) returns the last value of its last argument. For
example, (begin 1 2 (+ 1 2)) gives 3. This function is often used as a code block in Lisp,
to evaluate a sequence of expressions, which only makes sense if the expressions have side
effects, such as setq to change the value of a variable. This variation of begin does not work
without arguments passed to begin. Add (define progn (lambda args (if args (begin

args) ()))) to define progn with optional arguments.

E.2 Math Functions

The following functions should be self-explanatory:

(define abs

(lambda (n)

(if (< n 0)

(- 0 n)

n)))

(define frac (lambda (n) (- n (int n))))

(define truncate int)

(define floor

(lambda (n)

(int

(if (< n 0)

(- n 1)

n))))

(define ceiling (lambda (n) (- 0 (floor (- 0 n)))))

(define round (lambda (n) (floor (+ n 0.5))))

(define mod (lambda (n m) (- n (* m (int (/ n m))))))

(define gcd

(lambda (n m)

(if (eq? m 0)

n

(gcd m (mod n m)))))

(define lcm (lambda (n m) (/ (* n m) (gcd n m))))

(define even? (lambda (n) (eq? (mod n 2) 0)))

(define odd? (lambda (n) (eq? (mod n 2) 1)))

E.3 List Functions

The following functions should be self-explanatory, for details see further below:

(define length

(lambda (t)

(if t

(+ 1 (length (cdr t)))

0)))

(define append1

(lambda (s t)

(if s

(cons (car s) (append1 (cdr s) t))

t)))

(define append
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(lambda (t . args)

(if args

(append1 t (append . args))

t)))

(define rev1

(lambda (r t)

(if t

(rev1 (cons (car t) r) (cdr t))

r)))

(define reverse (lambda (t) (rev1 () t)))

(define nthcdr

(lambda (t n)

(if (eq? n 0)

t

(nthcdr (cdr t) (- n 1)))))

(define nth (lambda (t n) (car (nthcdr t n))))

(define member

(lambda (x t)

(if t

(if (equal? x (car t))

t

(member x (cdr t)))

t)))

(define foldr

(lambda (f x t)

(if t

(f (car t) (foldr f x (cdr t)))

x)))

(define foldl

(lambda (f x t)

(if t

(foldl f (f (car t) x) (cdr t))

x)))

(define min

(lambda args

(foldl

(lambda (x y)

(if (< x y)

x

y))

9.999999999e99

args)))

(define max

(lambda args

(foldl (lambda (x y)

(if (< x y)

y

x))

-9.999999999e99

args)))

(define filter

(lambda (f t)

(if t

(if (f (car t))

(cons (car t) (filter f (cdr t)))

(filter f (cdr t)))
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())))

(define all?

(lambda (f t)

(if t

(and

(f (car t))

(all? f (cdr t)))

#t)))

(define any?

(lambda (f t)

(if t

(or

(f (car t))

(any? f (cdr t)))

())))

(define mapcar

(lambda (f t)

(if t

(cons (f (car t)) (mapcar f (cdr t)))

())))

(define map

(lambda (f . args)

(if (any? null? args)

()

(let*

(x (mapcar car args))

(t (mapcar cdr args))

(cons (f . x) (map f . t))))))

(define zip (lambda args (map list . args)))

(define seq

(lambda (n m)

(if (< n m)

(cons n (seq (+ n 1) m))

())))

(define seqby

(lambda (n m k)

(if (< 0 (* k (- m n)))

(cons n (seqby (+ n k) m k))

())))

(define range

(lambda (n m . args)

(if args

(seqby n m (car args))

(seq n m))))

Explanation:

• length returns the length of a list.

• append returns the concatenation of multiple lists.

• reverse reverses a list (tail recursive)

• nth returns the n’th element of a list

• nthcdr skips n elements of a list to return the n’th cdr
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• member checks list membership and returns the rest of the list where x was found.

• foldr and foldl return the value of right- and left-folded lists t using an operator f and
initial value: x (foldl ⊕ x0 ’(x1 x2 ... xn)) = (· · · ((x0⊕x1)⊕x2)⊕· · ·xn) and x (foldr

⊕ x0 ’(x1 x2 ... xn)) = (x1 ⊕ (x2 ⊕ (· · · (xn ⊕ x0)))).

• filter returns a list with elements x from the list t for which (f x) is true.

• all? returns #t if all elements x of the list t satisfy (f x) is true, and returns () otherwise.

• any? returns #t if any one of the elements x of the list t satisfy (f x) is true, and returns
() otherwise.

• mapcar applies f to the elements of a list t.

• map applies f to the elements of a list or to n lists for n-ary function f.

• zip takes n lists of length m to return a list of length m with lists of length n.

• seq generates a list of successive values n up to but not including m

• seqby generates a list of values from n to but not including m and stepping by k

• range generates a list of values from n to but not including m with an optional step value.

E.4 Higher-Order Functions

The following functions take one or more functions as arguments to construct new functions are
explained further below:

(define curry (lambda (f x) (lambda args (f x . args))))

(define compose (lambda (f g) (lambda args (f (g . args)))))

(define Y (lambda (f) (lambda args ((f (Y f)) . args))))

Explanation:

• curry takes a function f and an argument x and returns a function that applies f to x and
the given arguments.

• compose takes two function f and g and returns a function that applies g to the arguments
followed by the application of f to the result.

• Y is the Y combinator that takes a function f to return a function that applies f to (Y f) that
is a copy of itself, and in turn returns a self-applying (recursive) function. The Y combinator
can be used for recursion without naming the function. For example the factorial of 5 is 120:

> ((Y (lambda (f) (lambda (k) (if (< 1 k) (* k (f (- k 1))) 1)))) 5)

120
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E.5 Revealing Closures

The following function reveals the arguments and body of the closure of a lambda:

(define reveal (lambda (f) (cons 'lambda (cons (car (car f)) (cons (cdr (car f)) ())))))

Explanation:

• reveal takes a closure and “unparses” it as a lambda. For example (reveal reveal) shows
(lambda (f) (cons (quote lambda) (cons (car (car f)) (cons (cdr (car f)) ())))).
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