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1 Introduction
This vignette describes how you can use the CohortMethod package to perform a single new-user cohort
study. We will walk through all the steps needed to perform an exemplar study, and we have selected the
well-studied topic of the effect of coxibs versus non-selective non-steroidal anti-inflammatory drugs (NSAIDs)
on gastrointestinal (GI) bleeding-related hospitalization. For simplicity, we focus on one coxib – celecoxib –
and one non-selective NSAID – diclofenac.
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2 Installation instructions
Before installing the CohortMethod package make sure you have Java available. For Windows users, RTools
is also necessary. See these instructions for properly configuring your R environment.

The CohortMethod package is currently maintained in a Github repository, and has dependencies on other
packages in Github. All of these packages can be downloaded and installed from within R using the drat
package:
install.packages("remotes")
remotes::install_github("ohdsi/CohortMethod")

Once installed, you can type library(CohortMethod) to load the package.

3 Data extraction
The first step in running the CohortMethod is extracting all necessary data from the database server holding
the data in the Observational Medical Outcomes Partnership (OMOP) Common Data Model (CDM) format.

3.1 Configuring the connection to the server
We need to tell R how to connect to the server where the data are. CohortMethod uses the DatabaseConnector
package, which provides the createConnectionDetails function. Type ?createConnectionDetails for
the specific settings required for the various database management systems (DBMS). For example, one might
connect to a PostgreSQL database using this code:
connectionDetails <- createConnectionDetails(dbms = "postgresql",

server = "localhost/ohdsi",
user = "joe",
password = "supersecret")

cdmDatabaseSchema <- "my_cdm_data"
cohortDatabaseSchema <- "my_results"
cohortTable <- "my_cohorts"
options(sqlRenderTempEmulationSchema = NULL)

The last few lines define the cdmDatabaseSchema, cohortDatabaseSchema, and cohortTable variables. We’ll
use these later to tell R where the data in CDM format live, and where we want to write intermediate
tables. Note that for Microsoft SQL Server, databaseschemas need to specify both the database and
the schema, so for example cdmDatabaseSchema <- "my_cdm_data.dbo". For database platforms that do
not support temp tables, such as Oracle, it is also necessary to provide a schema where the user has
write access that can be used to emulate temp tables. PostgreSQL supports temp tables, so we can set
options(sqlRenderTempEmulationSchema = NULL) (or not set the sqlRenderTempEmulationSchema at
all.)

3.2 Preparing the exposures and outcome(s)
We need to define the exposures and outcomes for our study. Here, we will define our exposures using the
OHDSI Capr package. We define two cohorts, one for celecoxib and one for diclofenac. For each cohort we
require a prior diagnosis of ‘osteoarthritis of knee’, and 365 days of continuous prior observation. we restrict
to the first exposure per person:
library(Capr)

osteoArthritisOfKneeConceptId <- 4079750
celecoxibConceptId <- 1118084
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diclofenacConceptId <- 1124300
osteoArthritisOfKnee <- cs(

descendants(osteoArthritisOfKneeConceptId),
name = "Osteoarthritis of knee"

)
attrition = attrition(

"prior osteoarthritis of knee" = withAll(
atLeast(1, conditionOccurrence(osteoArthritisOfKnee), duringInterval(eventStarts(-Inf, 0)))

)
)
celecoxib <- cs(

descendants(celecoxibConceptId),
name = "Celecoxib"

)
diclofenac <- cs(

descendants(diclofenacConceptId),
name = "Diclofenac"

)
celecoxibCohort <- cohort(

entry = entry(
drugExposure(celecoxib, firstOccurrence()),
observationWindow = continuousObservation(priorDays = 365)

),
attrition = attrition,
exit = exit(endStrategy = drugExit(celecoxib,

persistenceWindow = 30,
surveillanceWindow = 0))

)
diclofenacCohort <- cohort(

entry = entry(
drugExposure(diclofenac, firstOccurrence()),
observationWindow = continuousObservation(priorDays = 365)

),
attrition = attrition,
exit = exit(endStrategy = drugExit(diclofenac,

persistenceWindow = 30,
surveillanceWindow = 0))

)
# Note: this will automatically assign cohort IDs 1 and 2, respectively:
exposureCohorts <- makeCohortSet(celecoxibCohort, diclofenacCohort)

We’ll pull the outcome definition from the OHDSI PhenotypeLibrary:
library(PhenotypeLibrary)
outcomeCohorts <- getPlCohortDefinitionSet(77) # GI bleed

We combine the exposure and outcome cohort definitions, and use CohortGenerator to generate the cohorts:
allCohorts <- bind_rows(outcomeCohorts,

exposureCohorts)

library(CohortGenerator)
cohortTableNames <- getCohortTableNames(cohortTable = cohortTable)
createCohortTables(connectionDetails = connectionDetails,

cohortDatabaseSchema = cohortDatabaseSchema,
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cohortTableNames = cohortTableNames)
generateCohortSet(connectionDetails = connectionDetails,

cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTableNames = cohortTableNames,
cohortDefinitionSet = allCohorts)

If all went well, we now have a table with the cohorts of interest. We can see how many entries per cohort:
connection <- DatabaseConnector::connect(connectionDetails)
sql <- "SELECT cohort_definition_id, COUNT(*) AS count FROM @cohortDatabaseSchema.@cohortTable GROUP BY cohort_definition_id"
DatabaseConnector::renderTranslateQuerySql(connection, sql, cohortDatabaseSchema = cohortDatabaseSchema, cohortTable = cohortTable)
DatabaseConnector::disconnect(connection)

## cohort_concept_id count
## 1 1 109307
## 2 2 176675
## 3 77 733601

3.3 Extracting the data from the server
Now we can tell CohortMethod to extract the cohorts, construct covariates, and extract all necessary data
for our analysis.

Important: The target and comparator drug must not be included in the covariates, including any descendant
concepts. You will need to manually add the drugs and descendants to the excludedCovariateConceptIds
of the covariate settings. In this example code we exclude the concepts for celecoxib and diclofenac and
specify addDescendantsToExclude = TRUE:
# Define which types of covariates must be constructed:
covSettings <- createDefaultCovariateSettings(

excludedCovariateConceptIds = c(diclofenacConceptId, celecoxibConceptId),
addDescendantsToExclude = TRUE

)

#Load data:
cohortMethodData <- getDbCohortMethodData(

connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
targetId = 1,
comparatorId = 2,
outcomeIds = 77,
exposureDatabaseSchema = cohortDatabaseSchema,
exposureTable = cohortTable,
outcomeDatabaseSchema = cohortDatabaseSchema,
outcomeTable = cohortTable,
covariateSettings = covSettings

)
cohortMethodData

## # CohortMethodData object
##
## Target cohort ID: 1
## Comparator cohort ID: 2
## Outcome cohort ID(s): 77
##
## Inherits from CovariateData:
## # CovariateData object
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##
##
## Inherits from Andromeda:
## # Andromeda object
## # Physical location: C:\Users\admin_mschuemi\AppData\Local\Temp\2\RtmpWSqLkf\file2c305f401b93.sqlite
##
## Tables:
## $analysisRef (analysisId, analysisName, domainId, startDay, endDay, isBinary, missingMeansZero)
## $cohorts (rowId, personSeqId, personId, treatment, cohortStartDate, daysFromObsStart, daysToCohortEnd, daysToObsEnd)
## $covariateRef (covariateId, covariateName, analysisId, conceptId)
## $covariates (rowId, covariateId, covariateValue)
## $outcomes (rowId, outcomeId, daysToEvent)

There are many parameters, but they are all documented in the CohortMethod manual. The
createDefaultCovariateSettings function is described in the FeatureExtraction package. In
short, we are pointing the function to the table created earlier and indicating which concept IDs in that
table identify the target, comparator and outcome. We instruct that the default set of covariates should be
constructed, including covariates for all conditions, drug exposures, and procedures that were found on or
before the index date. To customize the set of covariates, please refer to the FeatureExtraction package
vignette by typing vignette("UsingFeatureExtraction", package="FeatureExtraction").

All data about the cohorts, outcomes, and covariates are extracted from the server and stored in the
cohortMethodData object. This object uses the Andromeda package to store information in a way that
ensures R does not run out of memory, even when the data are large. We can use the generic summary()
function to view some more information of the data we extracted:
summary(cohortMethodData)

## CohortMethodData object summary
##
## Target cohort ID: 1
## Comparator cohort ID: 2
## Outcome cohort ID(s): 77
##
## Target persons: 109307
## Comparator persons: 176675
##
## Outcome counts:
## Event count Person count
## 77 37779 27913
##
## Covariates:
## Number of covariates: 78589
## Number of non-zero covariate values: 142730640

3.3.1 Saving the data to file

Creating the cohortMethodData file can take considerable computing time, and it is probably a good idea
to save it for future sessions. Because cohortMethodData uses Andromeda, we cannot use R’s regular save
function. Instead, we’ll have to use the saveCohortMethodData() function:
saveCohortMethodData(cohortMethodData, "coxibVsNonselVsGiBleed.zip")

We can use the loadCohortMethodData() function to load the data in a future session.

3.3.2 Defining new users

Typically, a new user is defined as first time use of a drug (either target or comparator), and typically a
washout period (a minimum number of days prior first use) is used to make sure it is truly first use. When
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using the CohortMethod package, you can enforce the necessary requirements for new use in three ways:

1. When creating the cohorts in the database, for example using Capr.
2. When loading the cohorts using the getDbCohortMethodData function, you can use the

firstExposureOnly, removeDuplicateSubjects, restrictToCommonPeriod, and washoutPeriod
arguments. (As shown in the example above).

3. When defining the study population using the createStudyPopulation function (see below) using
the firstExposureOnly, removeDuplicateSubjects, restrictToCommonPeriod, and washoutPeriod
arguments.

The advantage of option 1 is that the input cohorts are already fully defined outside of the CohortMethod
package, and for example external cohort characterization tools can be used on the same cohorts used in this
package. The advantage of options 2 and 3 is that it saves you the trouble of limiting to first use yourself, for
example allowing you to directly use the drug_era table in the CDM. Option 2 is more efficient than 3, since
only data for first use will be fetched, while option 3 is less efficient but allows you to compare the original
cohorts to the study population.

4 Defining the study population
Typically, the exposure cohorts and outcome cohorts will be defined independently of each other. When we
want to produce an effect size estimate, we need to further restrict these cohorts and put them together, for
example by removing exposed subjects that had the outcome prior to exposure, and only keeping outcomes
that fall within a defined risk window. For this we can use the createStudyPopulation function:
studyPop <- createStudyPopulation(

cohortMethodData = cohortMethodData,
outcomeId = 3,
firstExposureOnly = FALSE,
restrictToCommonPeriod = FALSE,
washoutPeriod = 0,
removeDuplicateSubjects = "keep all",
removeSubjectsWithPriorOutcome = TRUE,
minDaysAtRisk = 1,
riskWindowStart = 0,
startAnchor = "cohort start",
riskWindowEnd = 30,
endAnchor = "cohort end"

)

Note that we’ve set firstExposureOnly and removeDuplicateSubjects to FALSE, and washoutPeriod
to zero because we already filtered on these arguments when using the getDbCohortMethodData function.
During loading we set restrictToCommonPeriod to FALSE, and we do the same here because we do not want
to force the comparison to restrict only to time when both drugs are recorded. We specify the outcome ID we
will use, and that people with outcomes prior to the risk window start date will be removed. The risk window
is defined as starting at the cohort start date (the index date, riskWindowStart = 0 and startAnchor
= "cohort start"), and the risk windows ends 30 days after the cohort ends (riskWindowEnd = 30 and
endAnchor = "cohort end"). Note that the risk windows are truncated at the end of observation or the
study end date. We also remove subjects who have no time at risk. To see how many people are left in the
study population we can always use the getAttritionTable function:
getAttritionTable(studyPop)

## # A tibble: 4 x 5
## description targetPersons comparatorPersons targetExposures comparatorExposures
## <chr> <int> <int> <int> <int>
## 1 Original cohorts 109307 176675 109307 176675
## 2 Restricting duplicate subje ... 99734 164277 99734 164277
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## 3 No prior outcome 96089 156060 96089 156060
## 4 Have at least 1 days at ris ... 96050 155990 96050 155990

One additional filtering step that is often used is matching or trimming on propensity scores, as will be
discussed next.

5 Propensity scores
The CohortMethod can use propensity scores to adjust for potential confounders. Instead of the traditional
approach of using a handful of predefined covariates, CohortMethod typically uses thousands to millions of
covariates that are automatically constructed based on conditions, procedures and drugs in the records of the
subjects.

5.1 Fitting a propensity model
We can fit a propensity model using the covariates constructed by the getDbcohortMethodData() function:
ps <- createPs(cohortMethodData = cohortMethodData, population = studyPop)

The createPs() function uses the Cyclops package to fit a large-scale regularized logistic regression.

To fit the propensity model, Cyclops needs to know the hyperparameter value which specifies the variance of
the prior. By default Cyclops will use cross-validation to estimate the optimal hyperparameter. However,
be aware that this can take a really long time. You can use the prior and control parameters of the
createPs() to specify Cyclops behavior, including using multiple CPUs to speed-up the cross-validation.

5.2 Propensity score diagnostics
We can compute the area under the receiver-operator curve (AUC) for the propensity score model:
computePsAuc(ps)

## [1] 0.81

We can also plot the propensity score distribution, although we prefer the preference score distribution:
plotPs(ps,

scale = "preference",
showCountsLabel = TRUE,
showAucLabel = TRUE,
showEquiposeLabel = TRUE)
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It is also possible to inspect the propensity model itself by showing the covariates that have non-zero
coefficients:
getPsModel(ps, cohortMethodData)

## # A tibble: 6 x 3
## coefficient covariateId covariateName
## <dbl> <dbl> <chr>
## 1 -3.49 1150871413 ...gh 0 days relative to index: misoprostol
## 2 3.27 2001006 index year: 2001
## 3 3.09 2002006 index year: 2002
## 4 2.70 2003006 index year: 2003
## 5 2.51 2004006 index year: 2004
## 6 1.79 2007006 index year: 2007

One advantage of using the regularization when fitting the propensity model is that most coefficients will
shrink to zero and fall out of the model. It is a good idea to inspect the remaining variables for anything that
should not be there, for example variations of the drugs of interest that we forgot to exclude.

Finally, we can inspect the percent of the population in equipoise, meaning they have a prefence score between
0.3 and 0.7:
CohortMethod::computeEquipoise(ps)

## [1] 0.4900214

A low equipoise indicates there is little overlap between the target and comparator populations.
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5.3 Using the propensity score
We can use the propensity scores to trim, stratify, match, or weigh our population. For example, one could
trim to equipoise, meaning only subjects with a preference score between 0.25 and 0.75 are kept:
trimmedPop <- trimByPsToEquipoise(ps)
plotPs(trimmedPop, ps, scale = "preference")

## Population size after trimming is 123505
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Instead (or additionally), we could stratify the population based on the propensity score:
stratifiedPop <- stratifyByPs(ps, numberOfStrata = 5)
plotPs(stratifiedPop, ps, scale = "preference")
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We can also match subjects based on propensity scores. In this example, we’re using one-to-one matching:
matchedPop <- matchOnPs(ps, caliper = 0.2, caliperScale = "standardized logit", maxRatio = 1)
plotPs(matchedPop, ps)

## Population size after matching is 115832
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Note that for both stratification and matching it is possible to specify additional matching criteria such as age
and sex using the stratifyByPsAndCovariates() and matchOnPsAndCovariates() functions, respectively.

We can see the effect of trimming and/or matching on the population using the getAttritionTable function:
getAttritionTable(matchedPop)

## # A tibble: 5 x 5
## description targetPersons comparatorPersons targetExposures comparatorExposures
## <chr> <int> <int> <int> <int>
## 1 Original cohorts 109307 176675 109307 176675
## 2 Restricting duplicate subje ... 99734 164277 99734 164277
## 3 No prior outcome 96089 156060 96089 156060
## 4 Have at least 1 days at ris ... 96050 155990 96050 155990
## 5 Matched on propensity score 57916 57916 57916 57916

Or, if we like, we can plot an attrition diagram:
drawAttritionDiagram(matchedPop)
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5.4 Evaluating covariate balance
To evaluate whether our use of the propensity score is indeed making the two cohorts more comparable, we
can compute the covariate balance before and after trimming, matching, and/or stratifying:
balance <- computeCovariateBalance(matchedPop, cohortMethodData)

plotCovariateBalanceScatterPlot(balance, showCovariateCountLabel = TRUE, showMaxLabel = TRUE)

## Warning: Removed 27794 rows containing missing values (`geom_point()`).
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The ‘before matching’ population is the population as extracted by the getDbCohortMethodData function,
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so before any further filtering steps.

5.5 Inspecting select population characteristics
It is customary to include a table in your paper that lists some select population characteristics before and
after matching/stratification/trimming. This is usually the first table, and so will be referred to as ‘table 1’.
To generate this table, you can use the createCmTable1 function:
createCmTable1(balance)

Before matching After matching
Target Comparator Target Comparator

Characteristic % % Std. diff % % Std. diff
Age group

40 - 44 0.0 0.0 0.00 0.0 0.0 0.00
45 - 49 0.0 0.0 0.00 0.0 0.0 0.00
50 - 54 0.2 0.2 0.00 0.2 0.2 -0.01
55 - 59 0.4 0.5 -0.01 0.5 0.5 0.00
60 - 64 1.0 1.3 -0.02 1.2 1.2 0.00
65 - 69 22.2 19.2 0.07 22.5 22.3 0.00
70 - 74 28.2 25.9 0.05 27.4 27.2 0.00
75 - 79 22.1 21.6 0.01 21.4 21.6 0.00
80 - 84 15.1 16.2 -0.03 15.2 15.3 0.00
85 - 89 7.7 9.9 -0.08 8.1 8.1 0.00
90 - 94 2.6 4.0 -0.08 2.9 2.9 0.00
95 - 99 0.5 1.0 -0.06 0.6 0.6 0.00

100 - 104 0.1 0.1 -0.02 0.0 0.1 -0.01
105 - 109 0.0 0.0 0.00 0.0

Gender: female 64.2 67.8 -0.08 66.2 66.1 0.00
Medical history: General

Acute respiratory disease 22.7 25.6 -0.07 23.9 23.8 0.00
Attention deficit hyperactivity disorder 0.2 0.2 0.00 0.2 0.2 0.01
Chronic liver disease 1.1 1.4 -0.03 1.1 1.1 0.00
Chronic obstructive lung disease 10.0 11.6 -0.05 9.9 9.8 0.00
Crohn's disease 0.4 0.4 -0.01 0.4 0.4 0.01
Dementia 2.7 4.3 -0.08 2.9 2.9 0.00
Depressive disorder 9.6 11.9 -0.07 10.1 10.0 0.00
Diabetes mellitus 22.5 27.2 -0.11 23.7 23.5 0.01
Gastroesophageal reflux disease 17.1 19.5 -0.06 17.3 17.0 0.01
Gastrointestinal hemorrhage 3.7 4.0 -0.01 2.3 2.3 0.00
Human immunodeficiency virus infection 0.0 0.1 -0.01 0.1 0.1 0.00
Hyperlipidemia 45.6 53.2 -0.15 48.2 47.3 0.02
Hypertensive disorder 64.2 69.3 -0.11 65.0 64.5 0.01
Lesion of liver 0.5 0.8 -0.03 0.5 0.5 0.00
Obesity 9.4 10.6 -0.04 8.9 8.7 0.01
Osteoarthritis 87.9 83.2 0.13 85.5 85.3 0.00
Pneumonia 4.6 5.6 -0.04 4.4 4.5 -0.01
Psoriasis 1.5 1.7 -0.02 1.5 1.5 0.00
Renal impairment 7.0 12.9 -0.19 7.6 7.5 0.00
Rheumatoid arthritis 3.5 4.3 -0.04 3.7 3.7 0.00
Schizophrenia 0.1 0.1 0.00 0.1 0.1 0.00
Ulcerative colitis 0.5 0.6 -0.01 0.5 0.5 0.00
Urinary tract infectious disease 11.7 13.9 -0.07 12.0 12.0 0.00
Viral hepatitis C 0.2 0.3 -0.02 0.2 0.2 0.00

Medical history: Cardiovascular disease
Atrial fibrillation 9.9 12.1 -0.07 9.7 9.8 0.00
Cerebrovascular disease 11.2 12.6 -0.04 11.2 11.1 0.00
Coronary arteriosclerosis 19.4 21.5 -0.05 18.6 18.7 0.00
Heart disease 43.9 45.6 -0.03 41.7 41.8 0.00
Heart failure 8.0 10.6 -0.09 7.6 7.6 0.00
Ischemic heart disease 9.1 9.8 -0.02 8.3 8.4 -0.01
Peripheral vascular disease 9.2 12.6 -0.11 9.7 9.7 0.00
Pulmonary embolism 1.1 1.3 -0.01 1.1 1.1 0.00
Venous thrombosis 2.9 3.5 -0.03 3.0 3.0 0.00

Medical history: Neoplasms
Malignant lymphoma 0.8 1.0 -0.01 0.8 0.8 0.00
Malignant neoplasm of anorectum 0.3 0.3 0.01 0.3 0.3 0.01
Malignant neoplastic disease 18.7 19.5 -0.02 18.8 18.7 0.00
Malignant tumor of breast 3.8 4.2 -0.02 4.0 4.0 0.00
Malignant tumor of colon 0.7 0.7 0.00 0.6 0.6 0.00
Malignant tumor of lung 0.4 0.6 -0.02 0.4 0.5 -0.01
Malignant tumor of urinary bladder 0.8 0.9 0.00 0.8 0.8 0.00
Primary malignant neoplasm of prostate 3.7 3.4 0.02 3.4 3.5 0.00

Medication use
Agents acting on the renin-angiotensin system 50.6 53.9 -0.07 52.2 51.7 0.01
Antibacterials for systemic use 69.7 71.8 -0.05 69.4 69.3 0.00
Antidepressants 29.4 31.7 -0.05 30.7 30.6 0.00
Antiepileptics 21.4 23.1 -0.04 21.3 21.4 0.00
Antiinflammatory and antirheumatic products 36.9 35.6 0.03 37.2 37.1 0.00
Antineoplastic agents 5.0 5.8 -0.03 5.3 5.2 0.00
Antipsoriatics 0.9 1.3 -0.03 0.9 0.9 -0.01
Antithrombotic agents 30.0 25.6 0.10 24.3 24.5 0.00
Beta blocking agents 37.4 41.8 -0.09 38.2 38.0 0.00
Calcium channel blockers 28.7 31.7 -0.07 29.3 29.2 0.00
Diuretics 46.0 47.9 -0.04 46.1 46.0 0.00
Drugs for acid related disorders 43.1 45.6 -0.05 41.4 41.7 -0.01
Drugs for obstructive airway diseases 52.0 55.1 -0.06 53.5 53.1 0.01
Drugs used in diabetes 18.4 21.7 -0.08 19.1 19.2 0.00
Immunosuppressants 4.6 6.0 -0.06 5.0 5.0 0.00
Lipid modifying agents 55.6 59.3 -0.08 57.8 57.2 0.01
Opioids 51.6 45.1 0.13 46.2 46.4 0.00
Psycholeptics 35.3 34.8 0.01 35.0 35.0 0.00
Psychostimulants, agents used for adhd and nootropics 2.0 2.1 -0.01 2.1 2.1 0.00
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5.6 Generalizability
The goal of any propensity score adjustments is typically to make the target and comparator cohorts
comparably, to allow proper causal inference. However, in doing so, we often need to modify our population,
for example dropping subjects that have no counterpart in the other exposure cohort. The population we
end up estimating an effect for may end up being very different from the population we started with. An
important question is: how different? And it what ways? If the populations before and after adjustment are
very different, our estimated effect may not generalize to the original population (if effect modification is
present). The getGeneralizabilityTable() function informs on these differences:
getGeneralizabilityTable(balance)

# A tibble: 78,589 x 5
covariateId covariateName beforeMatchingMean afterMatchingMean stdDiff

<dbl> <chr> <dbl> <dbl> <dbl>
1 2101660504 ...joint; total knee arthroplasty 0.115 0.0115 0.324
2 38003162804 ...s and Devices - Other Implants 0.122 0.0170 0.321
3 2105103504 ...cing (total knee arthroplasty) 0.112 0.0113 0.318
4 38003208804 ...vices - General Classification 0.135 0.0290 0.310
5 38003390804 ... Room - General Classification 0.130 0.0276 0.305
6 38003213804 ...hesia - General Classification 0.118 0.0244 0.290
7 38003138804 ...rmacy - General Classification 0.174 0.0668 0.283
8 38003245804 ... - Evaluation Or Re-Evaluation 0.116 0.0289 0.272
9 2101660502 ...joint; total knee arthroplasty 0.168 0.0705 0.261

10 2105103502 ...cing (total knee arthroplasty) 0.163 0.0671 0.259
# i 78,579 more rows

In this case, because we used PS matching, we are likely aiming to estimate the average treatment effect in
the treated (ATT). For this reason, the getGeneralizabilityTable() function automatically selected the
target cohort as the basis for evaluating generalizability: it shows, for each covariate, the mean value before
and PS adjustment in the target cohort. Also shown is the standardized difference of mean, and the table is
reverse sorted by the absolute standard difference of mean (ASDM).

6 Follow-up and power
Before we start fitting an outcome model, we might be interested to know whether we have sufficient power to
detect a particular effect size. It makes sense to perform these power calculations once the study population
has been fully defined, so taking into account loss to the various inclusion and exclusion criteria (such as no
prior outcomes), and loss due to matching and/or trimming. Since the sample size is fixed in retrospective
studies (the data has already been collected), and the true effect size is unknown, the CohortMethod package
provides a function to compute the minimum detectable relative risk (MDRR) instead:
computeMdrr(

population = studyPop,
modelType = "cox",
alpha = 0.05,
power = 0.8,
twoSided = TRUE

)
## targetPersons comparatorPersons targetExposures comparatorExposures targetDays comparatorDays totalOutcomes mdrr se
## 1 96050 155990 96050 155990 13420729 12173355 1366 1.168921 0.05571178

In this example we used the studyPop object, so the population before any matching or trimming. If we
want to know the MDRR after matching, we use the matchedPop object we created earlier instead:
computeMdrr(

population = matchedPop,
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modelType = "cox",
alpha = 0.05,
power = 0.8,
twoSided = TRUE

)
## targetPersons comparatorPersons targetExposures comparatorExposures targetDays comparatorDays totalOutcomes mdrr se
## 1 57916 57916 57916 57916 8315101 4824715 649 1.246007 0.07850687

Even thought the MDRR in the matched population is higher, meaning we have less power, we should of
course not be fooled: matching most likely eliminates confounding, and is therefore preferred to not matching.

To gain a better understanding of the amount of follow-up available we can also inspect the distribution of
follow-up time. We defined follow-up time as time at risk, so not censored by the occurrence of the outcome.
The getFollowUpDistribution can provide a simple overview:
getFollowUpDistribution(population = matchedPop)

## 100% 75% 50% 25% 0% Treatment
## 1 2 60 60 134 4373 1
## 2 2 45 60 74 3833 0

The output is telling us number of days of follow-up each quantile of the study population has. We can also
plot the distribution:
plotFollowUpDistribution(population = matchedPop)
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7 Outcome models
The outcome model is a model describing which variables are associated with the outcome.
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7.1 Fitting a simple outcome model
In theory we could fit an outcome model without using the propensity scores. In this example we are fitting
an outcome model using a Cox regression:
outcomeModel <- fitOutcomeModel(population = studyPop,

modelType = "cox")
outcomeModel

## Model type: cox
## Stratified: FALSE
## Use covariates: FALSE
## Use inverse probability of treatment weighting: FALSE
## Target estimand: ate
## Status: OK
##
## Estimate lower .95 upper .95 logRr seLogRr
## treatment 0.88455 0.79111 0.98880 -0.12268 0.0569

But of course we want to make use of the matching done on the propensity score:
outcomeModel <- fitOutcomeModel(population = matchedPop,

modelType = "cox",
stratified = TRUE)

outcomeModel

## Model type: cox
## Stratified: TRUE
## Use covariates: FALSE
## Use inverse probability of treatment weighting: FALSE
## Target estimand: att
## Status: OK
##
## Estimate lower .95 upper .95 logRr seLogRr
## treatment 1.010431 0.851306 1.195755 0.010377 0.0867

Note that we define the sub-population to be only those in the matchedPop object, which we created earlier
by matching on the propensity score. We also now use a stratified Cox model, conditioning on the propensity
score match sets.

Instead of matching or stratifying we can also perform Inverse Probability of Treatment Weighting (IPTW):
outcomeModel <- fitOutcomeModel(population = ps,

modelType = "cox",
inversePtWeighting = TRUE)

outcomeModel

## Model type: cox
## Stratified: FALSE
## Use covariates: FALSE
## Use inverse probability of treatment weighting: TRUE
## Target estimand: att
## Status: OK
##
## Estimate lower .95 upper .95 logRr seLogRr
## treatment 0.950147 0.765720 1.182588 -0.051139 0.1109
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7.2 Adding interaction terms
We may be interested whether the effect is different across different groups in the population. To explore this,
we may include interaction terms in the model. In this example we include three interaction terms:
interactionCovariateIds <- c(8532001, 201826210, 21600960413)
# 8532001 = Female
# 201826210 = Type 2 Diabetes
# 21600960413 = Concurent use of antithrombotic agents
outcomeModel <- fitOutcomeModel(population = matchedPop,

modelType = "cox",
stratified = TRUE,
interactionCovariateIds = interactionCovariateIds)

outcomeModel
## Model type: cox
## Stratified: TRUE
## Use covariates: FALSE
## Use inverse probability of treatment weighting: FALSE
## Target estimand: ate
## Status: OK
##
## Estimate lower .95 upper .95 logRr seLogRr
## treatment 0.895362 0.717886 1.116420 -0.110528 0.1126
## treatment * gender = FEMALE 1.081270 0.865675 1.350739 0.078136 0.1135
## treatment * condition_era group during day -365 through 0 days relative to index: Type 2 diabetes mellitus 0.859767 0.673606 1.094958 -0.151094 0.1239
## treatment * drug_era group during day 0 through 0 days relative to index: ANTITHROMBOTIC AGENTS 0.792793 0.626300 1.003387 -0.232193 0.1202

Note that you can use the grepCovariateNames to find covariate IDs.

It is prudent to verify that covariate balance has also been achieved in the subgroups of interest. For example,
we can check the covariate balance in the subpopulation of females:
balanceFemale <- computeCovariateBalance(population = matchedPop,

cohortMethodData = cohortMethodData,
subgroupCovariateId = 8532001)

plotCovariateBalanceScatterPlot(balanceFemale)
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7.3 Adding covariates to the outcome model
One final refinement would be to use the same covariates we used to fit the propensity model to also fit
the outcome model. This way we are more robust against misspecification of the model, and more likely to
remove bias. For this we use the regularized Cox regression in the Cyclops package. (Note that the treatment
variable is automatically excluded from regularization.)
outcomeModel <- fitOutcomeModel(population = matchedPop,

cohortMethodData = cohortMethodData,
modelType = "cox",
stratified = TRUE,
useCovariates = TRUE)

outcomeModel

## Model type: cox
## Stratified: TRUE
## Use covariates: TRUE
## Use inverse probability of treatment weighting: FALSE
## Target estimand: att
## Status: OK
## Prior variance: 0.0075309854039699
##
## Estimate lower .95 upper .95 logRr seLogRr
## treatment 0.964765 0.796861 1.163935 -0.035871 0.0967

7.4 Inspecting the outcome model
We can inspect more details of the outcome model:
exp(coef(outcomeModel))

## 900000010805
## 0.9647651
exp(confint(outcomeModel))

## [1] 0.7968613 1.1639351

We can also see the covariates that ended up in the outcome model:
getOutcomeModel(outcomeModel, cohortMethodData)

## coefficient id name
## 1 -0.03587062 9e+11 Treatment

7.5 Kaplan-Meier plot
We can create the Kaplan-Meier plot:
plotKaplanMeier(matchedPop, includeZero = FALSE)
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Note that the Kaplan-Meier plot will automatically adjust for any stratification, matching, or trimming that
may have been applied.

7.6 Time-to-event plot
We can also plot time-to-event, showing both events before and after the index date, and events during
and outside the defined time-at-risk window. This plot can provide insight into the temporal pattern of the
outcome relative to the exposures:
plotTimeToEvent(cohortMethodData = cohortMethodData,

outcomeId = 77,
firstExposureOnly = FALSE,
washoutPeriod = 0,
removeDuplicateSubjects = "keep all",
minDaysAtRisk = 1,
riskWindowStart = 0,
startAnchor = "cohort start",
riskWindowEnd = 30,
endAnchor = "cohort end")
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Note that this plot does not show any adjustment for the propensity score.
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Further, CohortMethod makes extensive use of the Cyclops package.
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