
Running multiple analyses at once using the CohortMethod package

Martijn J. Schuemie, Marc A. Suchard and Patrick Ryan

2024-05-31

Contents
1 Introduction 1

2 General approach 1

3 Preparation for the example 2

4 Specifying hypotheses of interest 5

5 Specifying analyses 6
5.1 Covariate balance . 9

6 Executing multiple analyses 9
6.1 Restarting . 10

7 Retrieving the results 10
7.1 Empirical calibration and negative control distribution . 11

8 Exporting to CSV 17

9 View results in a Shiny app 18

10 Acknowledgments 18

1 Introduction
In this vignette we focus on running several different analyses on several target-comparator-outcome combi-
nations. This can be useful when we want to explore the sensitivity to analyses choices, include controls, or
run an experiment similar to the OMOP experiment to empirically identify the optimal analysis choices for a
particular research question.

This vignette assumes you are already familiar with the CohortMethod package and are able to perform
single studies. We will walk through all the steps needed to perform an exemplar set of analyses, and we have
selected the well-studied topic of the effect of coxibs versus non-selective nonsteroidal anti-inflammatory drugs
(NSAIDs) on gastrointestinal (GI) bleeding-related hospitalization. For simplicity, we focus on one coxib –
celecoxib – and one non-selective NSAID – diclofenac. We will execute various variations of an analysis for
the primary outcome and a large set of negative control outcomes.

2 General approach
The general approach to running a set of analyses is that you specify all the function arguments of the
functions you would normally call, and create sets of these function arguments. The final outcome models as

1

well as intermediate data objects will all be saved to disk for later extraction.

An analysis will be executed by calling these functions in sequence:

1. getDbCohortMethodData()
2. createStudyPopulation()
3. createPs() (optional)
4. trimByPs() or trimByPsToEquipoise() (optional)
5. matchOnPs(), matchOnPsAndCovariates(), stratifyByPs(), or stratifyByPsAndCovariates() (op-

tional)
6. computeCovariateBalance() (optional)
7. fitOutcomeModel() (optional)

When you provide several analyses to the CohortMethod package, it will determine whether any of the
analyses have anything in common, and will take advantage of this fact. For example, if we specify several
analyses that only differ in the way the outcome model is fitted, then CohortMethod will extract the data
and fit the propensity model only once, and re-use this in all the analyses.

The function arguments you need to define have been divided into four groups:

1. Hypothesis of interest: arguments that are specific to a hypothesis of interest, in the case of the
cohort method this is a combination of target, comparator, and outcome.

2. Analyses: arguments that are not directly specific to a hypothesis of interest, such as the washout
window, whether to include drugs as covariates, etc.

3. Arguments that are the output of a previous function in the CohortMethod package, such as the
cohortMethodData argument of the createPs function. These cannot be specified by the user.

4. Arguments that are specific to an environment, such as the connection details for connecting to the
server, and the name of the schema holding the CDM data.

There are a two arguments (excludedCovariateConceptIds, and includedCovariateConceptIds of the
getDbCohortMethodData() function) that can be argued to be part both of group 1 and 2. These arguments
are therefore present in both groups, and when executing the analysis the union of the two lists of concept
IDs will be used.

3 Preparation for the example
We need to tell R how to connect to the server where the data are. CohortMethod uses the DatabaseConnector
package, which provides the createConnectionDetails function. Type ?createConnectionDetails for
the specific settings required for the various database management systems (DBMS). For example, one might
connect to a PostgreSQL database using this code:
connectionDetails <- createConnectionDetails(dbms = "postgresql",

server = "localhost/ohdsi",
user = "joe",
password = "supersecret")

cdmDatabaseSchema <- "my_cdm_data"
cohortDatabaseSchema <- "my_results"
cohortTable <- "my_cohorts"
options(sqlRenderTempEmulationSchema = NULL)

The last few lines define the cdmDatabaseSchema, cohortDatabaseSchema, and cohortTable variables. We’ll
use these later to tell R where the data in CDM format live, and where we want to write intermediate
tables. Note that for Microsoft SQL Server, databaseschemas need to specify both the database and
the schema, so for example cdmDatabaseSchema <- "my_cdm_data.dbo". For database platforms that do
not support temp tables, such as Oracle, it is also necessary to provide a schema where the user has
write access that can be used to emulate temp tables. PostgreSQL supports temp tables, so we can set

2

options(sqlRenderTempEmulationSchema = NULL) (or not set the sqlRenderTempEmulationSchema at
all.)

We need to define the exposures and outcomes for our study. Here, we will define our exposures using the
OHDSI Capr package. We define two cohorts, one for celecoxib and one for diclofenac. For each cohort we
require a prior diagnosis of ‘osteoarthritis of knee’, and 365 days of continuous prior observation. we restrict
to the first exposure per person:
library(Capr)

osteoArthritisOfKneeConceptId <- 4079750
celecoxibConceptId <- 1118084
diclofenacConceptId <- 1124300
osteoArthritisOfKnee <- cs(

descendants(osteoArthritisOfKneeConceptId),
name = "Osteoarthritis of knee"

)
attrition = attrition(

"prior osteoarthritis of knee" = withAll(
atLeast(1, conditionOccurrence(osteoArthritisOfKnee),

duringInterval(eventStarts(-Inf, 0)))
)

)
celecoxib <- cs(

descendants(celecoxibConceptId),
name = "Celecoxib"

)
diclofenac <- cs(

descendants(diclofenacConceptId),
name = "Diclofenac"

)
celecoxibCohort <- cohort(

entry = entry(
drugExposure(celecoxib, firstOccurrence()),
observationWindow = continuousObservation(priorDays = 365)

),
attrition = attrition,
exit = exit(endStrategy = drugExit(celecoxib,

persistenceWindow = 30,
surveillanceWindow = 0))

)
diclofenacCohort <- cohort(

entry = entry(
drugExposure(diclofenac, firstOccurrence()),
observationWindow = continuousObservation(priorDays = 365)

),
attrition = attrition,
exit = exit(endStrategy = drugExit(diclofenac,

persistenceWindow = 30,
surveillanceWindow = 0))

)
Note: this will automatically assign cohort IDs 1 and 2, respectively:
exposureCohorts <- makeCohortSet(celecoxibCohort, diclofenacCohort)

We’ll pull the outcome definition from the OHDSI PhenotypeLibrary:

3

library(PhenotypeLibrary)
outcomeCohorts <- getPlCohortDefinitionSet(77) # GI bleed

In addition to the outcome of interest, we also want to include a large set of negative control outcomes:
negativeControlIds <- c(29735, 140673, 197494,

198185, 198199, 200528, 257315,
314658, 317376, 321319, 380731,
432661, 432867, 433516, 433701,
433753, 435140, 435459, 435524,
435783, 436665, 436676, 442619,
444252, 444429, 4131756, 4134120,
4134454, 4152280, 4165112, 4174262,
4182210, 4270490, 4286201, 4289933)

negativeControlCohorts <- tibble(
cohortId = negativeControlIds,
cohortName = sprintf("Negative control %d", negativeControlIds),
outcomeConceptId = negativeControlIds

)

We combine the exposure and outcome cohort definitions, and use CohortGenerator to generate the cohorts:
allCohorts <- bind_rows(outcomeCohorts,

exposureCohorts)

library(CohortGenerator)
cohortTableNames <- getCohortTableNames(cohortTable = cohortTable)
createCohortTables(connectionDetails = connectionDetails,

cohortDatabaseSchema = cohortDatabaseSchema,
cohortTableNames = cohortTableNames)

generateCohortSet(connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTableNames = cohortTableNames,
cohortDefinitionSet = allCohorts)

generateNegativeControlOutcomeCohorts(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable,
negativeControlOutcomeCohortSet = negativeControlCohorts

)

If all went well, we now have a table with the cohorts of interest. We can see how many entries per cohort:
connection <- DatabaseConnector::connect(connectionDetails)
sql <- "SELECT cohort_definition_id, COUNT(*) AS count FROM @cohortDatabaseSchema.@cohortTable GROUP BY cohort_definition_id"
DatabaseConnector::renderTranslateQuerySql(

connection = connection,
sql = sql,
cohortDatabaseSchema = cohortDatabaseSchema,
cohortTable = cohortTable

)
DatabaseConnector::disconnect(connection)

COHORT_DEFINITION_ID COUNT

4

1 2 176675
2 432867 31548471
3 77 733601
4 442619 772
5 317376 67020
6 1 109307
7 257315 918842
8 4182210 3650875
9 4174262 910846
10 380731 80707
11 444429 6
12 140673 6344090
13 29735 288675
14 436665 623024
15 4134454 15103
16 321319 971627
17 435140 1337
18 432661 990
19 197494 104253
20 433701 81191
21 435783 154047
22 433753 410743
23 314658 3032511
24 200528 878778
25 435524 308750
26 4286201 202230
27 436676 368572
28 4134120 43760
29 198199 215695
30 433516 214450
31 435459 140988

4 Specifying hypotheses of interest
The first group of arguments define the target, comparator, and outcome. Here we demonstrate how to create
one set, and add that set to a list:
outcomeOfInterest <- createOutcome(outcomeId = 77,

outcomeOfInterest = TRUE)
negativeControlOutcomes <- lapply(

negativeControlIds,
function(outcomeId) createOutcome(outcomeId = outcomeId,

outcomeOfInterest = FALSE,
trueEffectSize = 1)

)
tcos <- createTargetComparatorOutcomes(

targetId = 1,
comparatorId = 2,
outcomes = append(list(outcomeOfInterest),

negativeControlOutcomes)
)
targetComparatorOutcomesList <- list(tcos)

We first define the outcome of interest (GI-bleed, cohort ID 77), explicitly stating this is an outcome of

5

interest (outcomeOfInterest = TRUE), meaning we want the full set of artifacts generated for this outcome.
We then create a set of negative control outcomes. Because we specify outcomeOfInterest = FALSE, many
of the artifacts will not be saved (like the matched population), or even not generated at all (like the covariate
balance). This can save a lot of compute time and disk space. We also provide the true effect size for these
controls, which will be used later for empirical calibration. We set the target to be celecoxib (cohort ID 1),
and the comparator to be diclofenac (cohort ID 2).

A convenient way to save targetComparatorOutcomesList to file is by using the saveTargetComparatorOutcomesList
function, and we can load it again using the loadTargetComparatorOutcomesList function.

5 Specifying analyses
The second group of arguments are not specific to a hypothesis of interest, and comprise the majority of
arguments. For each function that will be called during the execution of the analyses, a companion function
is available that has (almost) the same arguments. For example, for the trimByPs() function there is the
createTrimByPsArgs() function. These companion functions can be used to create the arguments to be
used during execution:
covarSettings <- createDefaultCovariateSettings(

excludedCovariateConceptIds = c(1118084, 1124300),
addDescendantsToExclude = TRUE

)

getDbCmDataArgs <- createGetDbCohortMethodDataArgs(
washoutPeriod = 183,
restrictToCommonPeriod = FALSE,
firstExposureOnly = TRUE,
removeDuplicateSubjects = "remove all",
studyStartDate = "",
studyEndDate = "",
covariateSettings = covarSettings

)

createStudyPopArgs <- createCreateStudyPopulationArgs(
removeSubjectsWithPriorOutcome = TRUE,
minDaysAtRisk = 1,
riskWindowStart = 0,
startAnchor = "cohort start",
riskWindowEnd = 30,
endAnchor = "cohort end"

)

fitOutcomeModelArgs1 <- createFitOutcomeModelArgs(modelType = "cox")

Any argument that is not explicitly specified by the user will assume the default value specified in the function.
We can now combine the arguments for the various functions into a single analysis:
cmAnalysis1 <- createCmAnalysis(

analysisId = 1,
description = "No matching, simple outcome model",
getDbCohortMethodDataArgs = getDbCmDataArgs,
createStudyPopArgs = createStudyPopArgs,
fitOutcomeModelArgs = fitOutcomeModelArgs1

)

6

Note that we have assigned an analysis ID (1) to this set of arguments. We can use this later to link the
results back to this specific set of choices. We also include a short description of the analysis.

We can easily create more analyses, for example by using matching, stratification, inverse probability of
treatment weighting, or by using more sophisticated outcome models:
createPsArgs <- createCreatePsArgs() # Use default settings only

matchOnPsArgs <- createMatchOnPsArgs(maxRatio = 100)

computeSharedCovBalArgs <- createComputeCovariateBalanceArgs()

computeCovBalArgs <- createComputeCovariateBalanceArgs(
covariateFilter = getDefaultCmTable1Specifications()

)

fitOutcomeModelArgs2 <- createFitOutcomeModelArgs(
modelType = "cox",
stratified = TRUE

)

cmAnalysis2 <- createCmAnalysis(
analysisId = 2,
description = "Matching",
getDbCohortMethodDataArgs = getDbCmDataArgs,
createStudyPopArgs = createStudyPopArgs,
createPsArgs = createPsArgs,
matchOnPsArgs = matchOnPsArgs,
computeSharedCovariateBalanceArgs = computeSharedCovBalArgs,
computeCovariateBalanceArgs = computeCovBalArgs,
fitOutcomeModelArgs = fitOutcomeModelArgs2

)

stratifyByPsArgs <- createStratifyByPsArgs(numberOfStrata = 5)

cmAnalysis3 <- createCmAnalysis(
analysisId = 3,
description = "Stratification",
getDbCohortMethodDataArgs = getDbCmDataArgs,
createStudyPopArgs = createStudyPopArgs,
createPsArgs = createPsArgs,
stratifyByPsArgs = stratifyByPsArgs,
computeSharedCovariateBalanceArgs = computeSharedCovBalArgs,
computeCovariateBalanceArgs = computeCovBalArgs,
fitOutcomeModelArgs = fitOutcomeModelArgs2

)

fitOutcomeModelArgs3 <- createFitOutcomeModelArgs(
modelType = "cox",
inversePtWeighting = TRUE

)

cmAnalysis4 <- createCmAnalysis(
analysisId = 4,
description = "Inverse probability weighting",

7

getDbCohortMethodDataArgs = getDbCmDataArgs,
createStudyPopArgs = createStudyPopArgs,
createPsArgs = createPsArgs,
fitOutcomeModelArgs = fitOutcomeModelArgs3

)

Note: Using propensity scores but not computing covariate balance
fitOutcomeModelArgs4 <- createFitOutcomeModelArgs(

useCovariates = TRUE,
modelType = "cox",
stratified = TRUE

)

cmAnalysis5 <- createCmAnalysis(
analysisId = 5,
description = "Matching plus full outcome model",
getDbCohortMethodDataArgs = getDbCmDataArgs,
createStudyPopArgs = createStudyPopArgs,
createPsArgs = createPsArgs,
matchOnPsArgs = matchOnPsArgs,
fitOutcomeModelArgs = fitOutcomeModelArgs4

)

Note: Using propensity scores but not computing covariate balance
interactionCovariateIds <- c(

8532001, # Female
201826210, # T2DM
21600960413 # concurrent use of antithrombotic agents

)

fitOutcomeModelArgs5 <- createFitOutcomeModelArgs(
modelType = "cox",
stratified = TRUE,
interactionCovariateIds = interactionCovariateIds

)

cmAnalysis6 <- createCmAnalysis(
analysisId = 6,
description = "Stratification plus interaction terms",
getDbCohortMethodDataArgs = getDbCmDataArgs,
createStudyPopArgs = createStudyPopArgs,
createPsArgs = createPsArgs,
stratifyByPsArgs = stratifyByPsArgs,
fitOutcomeModelArgs = fitOutcomeModelArgs5

)

Note: Using propensity scores but not computing covariate balance

These analyses can be combined in a list:
cmAnalysisList <- list(cmAnalysis1,

cmAnalysis2,
cmAnalysis3,
cmAnalysis4,

8

cmAnalysis5,
cmAnalysis6)

A convenient way to save cmAnalysisList to file is by using the saveCmAnalysisList function, and we can
load it again using the loadCmAnalysisList function.

5.1 Covariate balance
In our code, we specified that covariate balance must be computed for some of our analysis. For computational
reasons, covariate balance has been split into two: We can compute covariate balance for each target-
comparator-outcome-analysis combination, and we can compute covariate balance for each target-comparator-
analysis, so across all outcomes. The latter is referred to as ‘shared covariate balance’. Since there can be
many outcomes, it is often not feasible to recompute (or store) balance for all covariates for each outcome.
Moreover, the differences between study populations for the various outcomes are likely very small; the only
differences will arise from removing those having the outcome prior, which will exclude different people from
the study population depending on the outcome. We therefore typically compute the balance for all covariates
across all outcomes (shared balance), and only for a small subset of covariates for each outcome. In the code
above, we use all covariates for the shared balance computation, which we typically use to evaluate whether
our analysis achieved covariate balance. We limit the covariates for the per-outcome balance computations
to only those used for the standard ‘table 1’ definition used in the getDefaultCmTable1Specifications()
function, which we can use to create a ‘table 1’ for each outcome.

6 Executing multiple analyses
We can now run the analyses against the hypotheses of interest using the runCmAnalyses() function. This
function will run all specified analyses against all hypotheses of interest, meaning that the total number of
outcome models is length(cmAnalysisList) * length(targetComparatorOutcomesList) (if all analyses
specify an outcome model should be fitted). Note that we do not want all combinations of analyses and
hypothesis to be computed, we can can skip certain analyses by using the analysesToExclude argument of
the runCmAnalyses().
multiThreadingSettings <- createDefaultMultiThreadingSettings(parallel::detectCores())

result <- runCmAnalyses(
connectionDetails = connectionDetails,
cdmDatabaseSchema = cdmDatabaseSchema,
exposureDatabaseSchema = cohortDatabaseSchema,
exposureTable = cohortTable,
outcomeDatabaseSchema = cohortDatabaseSchema,
outcomeTable = cohortTable,
outputFolder = folder,
cmAnalysisList = cmAnalysisList,
targetComparatorOutcomesList = targetComparatorOutcomesList,
multiThreadingSettings = multiThreadingSettings

)

In the code above, we first specify how many parallel threads CohortMethod can use. Many of the com-
putations can be computed in parallel, and providing more than one CPU core can greatly speed up the
computation. Here we specify CohortMethod can use all the CPU cores detected in the system (using the
parallel::detectCores() function).

We call runCmAnalyses(), providing the arguments for connecting to the database, which schemas and tables
to use, as well as the analyses and hypotheses of interest. The folder specifies where the outcome models
and intermediate files will be written.

9

6.1 Restarting
If for some reason the execution was interrupted, you can restart by re-issuing the runCmAnalyses() command.
Any intermediate and final products that have already been completed and written to disk will be skipped.

7 Retrieving the results
The result of the runCmAnalyses() is a data frame with one row per target-target-outcome-analysis combi-
nation. It provides the file names of the intermediate and end-result files that were constructed. For example,
we can retrieve and plot the propensity scores for the combination of our target, comparator, outcome of
interest, and last analysis:
psFile <- result %>%

filter(targetId == 1,
comparatorId == 2,
outcomeId == 77,
analysisId == 5) %>%

pull(psFile)
ps <- readRDS(file.path(folder, psFile))
plotPs(ps)

0

1

2

0.00 0.25 0.50 0.75 1.00
Preference score

D
en

si
ty

Target Comparator

Note that some of the file names will appear several times in the table. For example, analysis 3 and 5 only
differ in terms of the outcome model, and will share the same propensity score and stratification files.

We can always retrieve the file reference table again using the getFileReference() function:
result <- getFileReference(folder)

10

We can get a summary of the results using getResultsSummary():
resultsSum <- getResultsSummary(folder)
resultsSum

A tibble: 216 x 29
analysisId targetId comparatorId outcomeId trueEffectSize targetSubjects comparatorSubjects targetDays comparatorDays targetOutcomes comparatorOutcomes rr ci95Lb ci95Ub p oneSidedP
<int> <int> <int> <int> <dbl> <int> <int> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 2 77 NA 84392 147052 11643339 11338557 583 673 0.889 0.792 0.999 4.85e- 2 0.976
2 1 1 2 29735 1 86648 152055 12032544 11718690 140 179 0.821 0.650 1.03 9.64e- 2 0.952
3 1 1 2 140673 1 81984 140789 11563630 10978561 513 922 0.626 0.559 0.701 3.77e-16 1
4 1 1 2 197494 1 87506 154512 12154570 11901883 12 27 0.533 0.253 1.06 8.46e- 2 0.958
5 1 1 2 198185 1 87665 155007 12170791 11937554 0 0 NA NA NA NA NA
6 1 1 2 198199 1 87123 153565 12084754 11821962 79 73 1.07 0.764 1.49 7.01e- 1 0.351
7 1 1 2 200528 1 87003 153149 12075798 11803297 133 139 1.01 0.784 1.29 9.65e- 1 0.483
8 1 1 2 257315 1 86649 152232 12011786 11723640 157 210 0.763 0.613 0.946 1.43e- 2 0.993
9 1 1 2 314658 1 78225 133312 10686354 10274481 1201 1230 0.964 0.887 1.05 3.96e- 1 0.802
10 1 1 2 317376 1 87534 154542 12151315 11904632 36 39 1.01 0.628 1.62 9.63e- 1 0.481
i 206 more rows
i 13 more variables: logRr <dbl>, seLogRr <dbl>, llr <dbl>, mdrr <dbl>, targetEstimator <chr>, calibratedRr <dbl>, calibratedCi95Lb <dbl>, calibratedCi95Ub <dbl>, calibratedP <dbl>,
calibratedOneSidedP <dbl>, calibratedLogRr <dbl>, calibratedSeLogRr <dbl>, ease <dbl>

This tells us, per target-comparator-outcome-analysis combination, the estimated relative risk and 95%
confidence interval, as well as the number of people in the treated and comparator group (after trimming
and matching if applicable), and the number of outcomes observed for those groups within the specified risk
windows.

7.1 Empirical calibration and negative control distribution
Because our study included negative control outcomes, our analysis summary also contains calibrated
confidence intervals and p-values. We can also create the calibration effect plots for every analysis ID. In each
plot, the blue dots represent our negative control outcomes, and the yellow diamond represents our health
outcome of interest: GI bleed. An unbiased, well-calibrated analysis should have 95% of the negative controls
between the dashed lines (ie. 95% should have p > .05).
install.packages("EmpiricalCalibration")
library(EmpiricalCalibration)

Analysis 1: No matching, simple outcome model
ncs <- resultsSum %>%

filter(analysisId == 1,
outcomeId != 77)

hoi <- resultsSum %>%
filter(analysisId == 1,

outcomeId == 77)
null <- fitNull(ncs$logRr, ncs$seLogRr)
plotCalibrationEffect(logRrNegatives = ncs$logRr,

seLogRrNegatives = ncs$seLogRr,
logRrPositives = hoi$logRr,
seLogRrPositives = hoi$seLogRr, null)

11

0.0

0.5

1.0

1.5

0.25 0.5 1 2 4 6 8 10
Relative risk

S
ta

nd
ar

d
E

rr
or

Analysis 2: Matching
ncs <- resultsSum %>%

filter(analysisId == 2,
outcomeId != 77)

hoi <- resultsSum %>%
filter(analysisId == 2,

outcomeId == 77)
null <- fitNull(ncs$logRr, ncs$seLogRr)
plotCalibrationEffect(logRrNegatives = ncs$logRr,

seLogRrNegatives = ncs$seLogRr,
logRrPositives = hoi$logRr,
seLogRrPositives = hoi$seLogRr, null)

12

0.0

0.5

1.0

1.5

0.25 0.5 1 2 4 6 8 10
Relative risk

S
ta

nd
ar

d
E

rr
or

Analysis 3: Stratification
ncs <- resultsSum %>%

filter(analysisId == 3,
outcomeId != 77)

hoi <- resultsSum %>%
filter(analysisId == 3,

outcomeId == 77)
null <- fitNull(ncs$logRr, ncs$seLogRr)
plotCalibrationEffect(logRrNegatives = ncs$logRr,

seLogRrNegatives = ncs$seLogRr,
logRrPositives = hoi$logRr,
seLogRrPositives = hoi$seLogRr, null)

13

0.0

0.5

1.0

1.5

0.25 0.5 1 2 4 6 8 10
Relative risk

S
ta

nd
ar

d
E

rr
or

Analysis 4: Inverse probability of treatment weighting
ncs <- resultsSum %>%

filter(analysisId == 4,
outcomeId != 77)

hoi <- resultsSum %>%
filter(analysisId == 4,

outcomeId == 77)
null <- fitNull(ncs$logRr, ncs$seLogRr)
plotCalibrationEffect(logRrNegatives = ncs$logRr,

seLogRrNegatives = ncs$seLogRr,
logRrPositives = hoi$logRr,
seLogRrPositives = hoi$seLogRr, null)

14

0.0

0.5

1.0

1.5

0.25 0.5 1 2 4 6 8 10
Relative risk

S
ta

nd
ar

d
E

rr
or

Analysis 5: Stratification plus full outcome model
ncs <- resultsSum %>%

filter(analysisId == 5,
outcomeId != 77)

hoi <- resultsSum %>%
filter(analysisId == 5,

outcomeId == 77)
null <- fitNull(ncs$logRr, ncs$seLogRr)
plotCalibrationEffect(logRrNegatives = ncs$logRr,

seLogRrNegatives = ncs$seLogRr,
logRrPositives = hoi$logRr,
seLogRrPositives = hoi$seLogRr, null)

15

0.0

0.5

1.0

1.5

0.25 0.5 1 2 4 6 8 10
Relative risk

S
ta

nd
ar

d
E

rr
or

Analysis 6 explored interactions with certain variables. The estimates for these interaction terms are stored
in a separate results summary. We can examine whether these estimates are also consistent with the null.
In this example we consider the interaction with ‘concurrent use of antithrombotic agents’ (covariate ID
21600960413):
interactionResultsSum <- getInteractionResultsSummary(folder)

Analysis 6: Stratification plus interaction terms
ncs <- interactionResultsSum %>%

filter(analysisId == 6,
interactionCovariateId == 21600960413,
outcomeId != 77)

hoi <- interactionResultsSum %>%
filter(analysisId == 6,

interactionCovariateId == 21600960413,
outcomeId == 77)

null <- fitNull(ncs$logRr, ncs$seLogRr)
plotCalibrationEffect(logRrNegatives = ncs$logRr,

seLogRrNegatives = ncs$seLogRr,
logRrPositives = hoi$logRr,
seLogRrPositives = hoi$seLogRr, null)

Warning in checkWithinLimits(yLimits, c(seLogRrNegatives, seLogRrPositives), : Values are outside plotted range. Consider adjusting yLimits parameter

Warning: Removed 1 rows containing missing values (`geom_vline()`).

16

0.0

0.5

1.0

1.5

0.25 0.5 1 2 4 6 8 10
Relative risk

S
ta

nd
ar

d
E

rr
or

8 Exporting to CSV
The results generated so far all reside in binary object on your local file system, mixing aggregate statistics
such as hazard ratios with patient-level data including propensity scores per person. How could we share our
results with others, possibly outside our organization? This is where the exportToCsv() function comes in.
This function exports all results, including diagnostics to CSV (comma-separated values) files. These files
only contain aggregate statistics, not patient-level data. The format is CSV files to enable human review.
exportToCsv(

folder,
exportFolder = file.path(folder, "export"),
databaseId = "My CDM",
minCellCount = 5,
maxCores = parallel::detectCores()

)

Any person counts in the results that are smaller than the minCellCount argument will be blinded, by
replacing the count with the negative minCellCount. For example, if the number of people with the outcome
is 3, and minCellCount = 5, the count will be reported to be -5, which in the Shiny app will be displayed as
‘<5’.

Information on the data model used to generate the CSV files can be retrieved using getResultsDataModelSpecifications():
getResultsDataModelSpecifications()

A tibble: 188 x 8
tableName columnName dataType isRequired primaryKey minCellCount deprecated description

17

<chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>
1 cm_attrition sequence_number int Yes Yes No No "The place in the sequence of steps defining the final analysis cohort. 1 indicates the original exposed po~
2 cm_attrition description varchar Yes No No No "A description of the last restriction, e.g. \"Removing persons with the outcome prior\"."
3 cm_attrition subjects int Yes No Yes No "The number of subjects in the cohort."
4 cm_attrition exposure_id bigint Yes Yes No No "The identifier of the exposure cohort to which the attrition applies. Can be either the target or comparat~
5 cm_attrition target_id bigint Yes Yes No No "The identifier for the target cohort."
6 cm_attrition comparator_id bigint Yes Yes No No "The identifier for the comparator cohort."
7 cm_attrition analysis_id int Yes Yes No No "The identifier for the outcome cohort."
8 cm_attrition outcome_id bigint Yes Yes No No "Foreign key referencing the cm_analysis table."
9 cm_attrition database_id varchar Yes Yes No No "Foreign key referencing the database."
10 cm_follow_up_dist target_id bigint Yes Yes No No "The identifier for the target cohort."
i 178 more rows

9 View results in a Shiny app
Finally, we can view the results in a Shiny app. For this we must first load the CSV files produced by
exportToCsv() into a database. We could use the uploadExportedResults() function for this. However, if
we just want to view the results ourselves we can create a small SQLite database ourselves without having to
set up a database server. In any case we need to specify the names of the exposure and outcome cohorts we
used in our study. We can create the SQLite database using:
cohorts <- data.frame(

cohortId = c(
1,
2,
77),

cohortName = c(
"Celecoxib",
"Diclofenac",
"GI Bleed"

)
)

insertExportedResultsInSqlite(
sqliteFileName = file.path(folder, "myResults.sqlite"),
exportFolder = file.path(folder, "export"),
cohorts = cohorts

)

Next we launch the Shiny app using:
launchResultsViewerUsingSqlite(

sqliteFileName = file.path(folder, "myResults.sqlite")
)

10 Acknowledgments
Considerable work has been dedicated to provide the CohortMethod package.
citation("CohortMethod")

To cite package 'CohortMethod' in publications use:
##
Schuemie M, Suchard M, Ryan P (2024). _CohortMethod: New-User Cohort Method with Large Scale Propensity and Outcome Models_. https://ohdsi.github.io/CohortMethod,
https://github.com/OHDSI/CohortMethod.

18

Figure 1: CohortMethod Shiny app

19

##
A BibTeX entry for LaTeX users is
##
@Manual{,
title = {CohortMethod: New-User Cohort Method with Large Scale Propensity and Outcome
Models},
author = {Martijn Schuemie and Marc Suchard and Patrick Ryan},
year = {2024},
note = {https://ohdsi.github.io/CohortMethod,
https://github.com/OHDSI/CohortMethod},
}

Further, CohortMethod makes extensive use of the Cyclops package.
citation("Cyclops")

To cite Cyclops in publications use:
##
Suchard MA, Simpson SE, Zorych I, Ryan P, Madigan D (2013). "Massive parallelization of serial inference algorithms for complex generalized linear models." _ACM Transactions on
Modeling and Computer Simulation_, *23*, 10. <https://dl.acm.org/doi/10.1145/2414416.2414791>.
##
A BibTeX entry for LaTeX users is
##
@Article{,
author = {M. A. Suchard and S. E. Simpson and I. Zorych and P. Ryan and D. Madigan},
title = {Massive parallelization of serial inference algorithms for complex generalized linear models},
journal = {ACM Transactions on Modeling and Computer Simulation},
volume = {23},
pages = {10},
year = {2013},
url = {https://dl.acm.org/doi/10.1145/2414416.2414791},
}

This work is supported in part through the National Science Foundation grant IIS 1251151.

20

	Introduction
	General approach
	Preparation for the example
	Specifying hypotheses of interest
	Specifying analyses
	Covariate balance

	Executing multiple analyses
	Restarting

	Retrieving the results
	Empirical calibration and negative control distribution

	Exporting to CSV
	View results in a Shiny app
	Acknowledgments

