Capr for Templating Cohort Definitions

Contents

0.1 Building a Template e e
0.2 TImproving the Template L e
0.3 Building templates from concept setso
0.4 Saving Capr cohorts L e
0.5 Final thoughts e

W W NN

0.1 Building a Template

Capr is at its most valuable when it is used as a tool for templating cohort definitions. In a study we may
need multiple cohort definitions that use the same logic but vary by concept sets. For example, in a study we
need to create cohort covariates for various conditions. The cohort logic is simple, as condition occurrence
with at least 365 days of prior observation. The concept sets used could be various cardiovascular events like
stroke, hypertension, acute myocardial infarction, heart failure, and atrial fibrillation.

To build all these cohorts using a template, we can easily define the logic in Capr. Capr templates are
functions were the input is a concept set that differs in the logic.

cvEvents <- function(conceptSet) {
cd <- cohort(
entry = entry(
conditionOccurrence(conceptSet),
observationWindow = continuousObservation(365, 0)
P
exit = exit(
endStrategy = observationExit ()
)
)
return(cd)

}

The cohort template above describes the logic we desire. An entry event based on a condition occurrence
with 365 days of prior observation and the cohort exit is based on the last available date of observation.

Once we have a Capr template, our next step is to add concept sets into the template functions. Using
Athena, I look up the OMOP concept ids for the concepts of interest. With these concept ids, I can create a
concept set for each cardiovascular event

afib <- cs(descendants(313217), name = "Atrial Fibrillation")

stroke <- cs(descendants(4310996), name = "Ischemic Stroke")
hyp <- cs(descendants(320128), name = "Hypertension")
mi <- cs(descendants(4329847), name = "Myocardial Infarction")

hf <- cs(descendants(316139), name = "Heart Failure")

Once I have my concept sets, I could build each cohort one at a time. What is preferred is to use the R
functional factories in order to not write code for each concept set. It is recommended to use the function
factories provided in the purrr package. Below is an example of how we can use purrr to build multiple
cohorts from our Capr template. The cvCohorts object returns a list of four Capr Cohort class objects.

https://athena.ohdsi.org/
https://purrr.tidyverse.org/

cvSet <- list(afib, stroke, hyp, mi, hf)
cvCohorts <- purrr::map(cvSet, ~cvEvents(.x))

0.2 Improving the Template

In the previous example, our cvEvents function returned a Capr Cohort object. What if we wanted the
output to be json and even better save to a folder? We can improve the Capr template function to create the
json object; an example is provided below.

cvEvents2 <- function(conceptSet) {

#Capr template logic
cd <- cohort(
entry = entry(
conditionOccurrence(conceptSet),
observationWindow = continuousObservation(365, 0)
)’
exit = exit(
endStrategy = observationExit ()

)

#coerce cohort to json

cohortJson <- cd %>%
toCirce() %>%
jsonlite::toJSON(pretty = TRUE, auto_unbox = TRUE) %>
as.character()

return(cohortJson)

0.3 Building templates from concept sets

Sometimes a single concept is insufficient for defining a clinical idea and we need multiple concepts in the set.
Also we may want to use a concept set developed previously. The Capr function readConceptSet allows one
to import a concept set from a .csv or .json file that we can use towards the cohort template. We update our
Capr template function to handle the import of a concept set, as shown below.

cvEvents3 <- function(file) {

get file mame
name <- tools::file_path_sans_ext(basename(file))

#retreive concept set
conceptSet <- Capr::readConceptSet(path = file, name = name)

#Capr template logic
cd <- cohort(
entry = entry(
conditionOccurrence(conceptSet),
observationWindow = continuousObservation(365, 0)
)¢
exit = exit(
endStrategy = observationExit()

#coerce cohort to json

cohortJson <- cd %>%
toCirce () %>%
jsonlite::toJSON(pretty = TRUE, auto_unbox = TRUE) %>%
as.character()

return(cohortJson)

}

Let’s use the example of acute myocardial infarction. For the cohort, we want to use a concept set that
includes MI but excludes old MI. Luckily, we have a concept set from ATLAS that we used in a previous
study that has this already detailed. We can import the csv file for this concept set and apply it to the Capr
template.

miPath <- fs::path_package("Capr", "extdata/acuteMI.csv")
miCohort <- cvEvents3(miPath)
cat (miCohort)

0.4 Saving Capr cohorts

Once you have built the cohorts you need for your study using Capr, you want to save them to a directory
to use them in the study. Taking the miCohort as an example, we can save the json output to file using
readr::write_file or the base R equivalent.

outputPath <- fs::path(here::here("cohorts"), "miCohort", ext = "json")
readr: :write_file(miCohort, file = outputPath)

To save multiple cohorts from a list we can functionalize the readr: :write_file using purrr: :walk.

0.5 Final thoughts

Cohort templating is a very powerful application of Capr. Instead of defining the cohort logic for multiple
inputs, we can create a template to iterate across inputs. Your template can be as simple or as complex as
you wish. By following the Capr syntax, a user can build cohorts how they please and iterate! The templates
become more manageable when using function factories in R offered by the purrr package.

	Building a Template
	Improving the Template
	Building templates from concept sets
	Saving Capr cohorts
	Final thoughts

