
Droidcon Italy 2015

@rejasupotaro
Kentaro Takiguchi

Improving UX
through performance

Tokyo is only
15 hours away!

Ruby is developed
by Matz in Japan

Cookpad is a
recipe sharing service

written in RoR

2 million recipes
50 million UU / month
20 million downloads

https://speakerdeck.com/a_matsuda/the-recipe-for-the-worlds-largest-rails-monolith

https://speakerdeck.com/a_matsuda/the-recipe-for-the-worlds-largest-rails-monolith

Cookpad is expanding
our businesses to new markets

Emerging market is
leading smartphone growth

I was in Indonesia for a month
to experience actual life in Indonesia

Not everyone is on a fast phone
Not everyone is on a fast network

• Low bandwidth
• Low spec devices

The greatest challenges

…

Connection speed
in Indonesia is

5x slower
than in Japan

http://en.wikipedia.org/wiki/List_of_countries_by_Internet_connection_speeds

http://en.wikipedia.org/wiki/List_of_countries_by_Internet_connection_speeds

Performance is a Feature

It is becoming increasingly important
for mobile engineers

to guarantee stable service
under any environment

I’m rebuilding the Android app
for new markets

• Efficient HTTP communication
• Image optimization
• API design

Agenda

Efficient HTTP
communication

Nginx

Ruby on Rails ElastiCache

HTTP Client

ElastiCache

Nginx

Ruby on Rails

HTTP Client

Stetho

A debug bridge for Android applications
https://github.com/facebook/stetho

We can see network

We can see view hierarchy

We can access SQLite database

Compressing Data
An easy and convenient way to reduce the bandwidth

90%
GZIP reduce the size of response

Compression is a
simple, effective way

Nginx

Ruby on Rails Memcached

Rack::Cache

HTTP Client

Stetho How do we
compress data?

Nginx Rails

HTTP Client

Accept-Encoding: gzip

Content-Encoding: gzip

http {
 ...
 gzip on;
 gzip_disable "msie6";

 gzip_vary on;
 gzip_proxied any;
 gzip_comp_level 6;
 gzip_buffers 16 8k;
 gzip_http_version 1.1;
 gzip_types text/plain text/css application/json
}

nginx.conf

Nginx Rails

HTTP Client

GZIP decoder

// Set "Accept-Encoding: gzip" when you send a request
connection.setRequestProperty(
 "Accept-Encoding", “gzip");

// Decompress input stream when you receive a response
inputStream = new GZIPInputStream(
 connection.getInputStream());

• AndroidHttpClient
• HttpUrlConnection
• OkHttp

HTTP clients for Android
Don’t support GZIP by default

support GZIP by default

• AndroidHttpClient
• HttpUrlConnection
• OkHttp

HTTP clients for Android
@Deprecated

No longer maintained

We had used Volley
as API client before

Volley has
2 HTTP clients internally

public static RequestQueue newRequestQueue(…) {
 ...
 if (stack == null) {
 if (Build.VERSION.SDK_INT >= 9) {
 // use HttpUrlConnection
 stack = new HurlStack();
 } else {
 // use AndroidHttpClient
 stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
 }
 }

2.3+: HttpUrlConnection
<2.2: AndroidHttpClient

Volley

4.4+: OkHttp
<4.4: HttpUrlConnection

HttpUrlConnection

HttpUrlConnection uses
OkHttp internally

4.4+: OkHttp
<4.4: HttpUrlConnection

Different behavior of HTTP clients

<2.3: AndroidHttpClient

Inside of Volley

Simple is better

I recommend to use
OkHttp

* GZIP
* Connection Pool
* WebSocket
* HTTP/2.0

OkHttp + RxJava = Reactive Data Store

View

Adapter

Service

API Client

Server

OkHttp

RxJava

SQLite Database

SharedPreferences

Caching Data
Effective cache controls will dramatically reduce server load

OkHttp
Disk Cache

OkHttp core

Caching in HTTP

cache-request-directive =
 "no-cache"
 | "no-store"
 | "max-age" "=" delta-seconds
 | "max-stale" ["=" delta-seconds]
 | "min-fresh" "=" delta-seconds
 | "no-transform"
 | "only-if-cached"
 | cache-extension

cache-response-directive =
 "public"
 | "private" ["=" <"> 1#field-name <">]
 | "no-cache" ["=" <"> 1#field-name <">]
 | "no-store"
 | "no-transform"
 | "must-revalidate"
 | "proxy-revalidate"
 | "max-age" "=" delta-seconds
 | "s-maxage" "=" delta-seconds
 | cache-extension

OkHttpClient client = new OkHttpClient();
Cache cache = new Cache(cacheDir, MAX_CACHE_SIZE);
client.setCache(cache);

Enable cache

default
=> Cache-Control: max-age=0, private, must-revalidate

expires_in(1.hour, public: true)
=> Cache-Control: max-age=3600, public

expires_now
=> Cache-Control: no-cache Rails

OkHttp core

GET /recipesResponse

Cache

Response key GET /recipesResponse

OkHttp core

Cache

Response key GET /recipesResponse

= urlToKey(request)

OkHttp core

Cache

PUT /recipes/:idResponse

PUT /recipes/:idResponse

Response key

= urlToKey(request)

In some situations,
such as after a user clicks a 'refresh' button,

it may be necessary to skip the cache,
and fetch data directly from the server

Cache-Control: no-cache

// RecipeService.java
public Observable<Response<Recipe>> get(…) {
 ...
 return request(GET, “/recipes/:id”)
 .noCache()
 .noStore()
 .to(RECIPE);
}

// ApiClient.java
if (isConnected) {
 headers.put(CACHE_CONTROL, “only-if-cached");
} else if (noCache && noStore) {
 headers.put(CACHE_CONTROL, "no-cache, no-store");
} else if (noCache) {
 headers.put(CACHE_CONTROL, "no-cache");
} else if (noStore) {
 headers.put(CACHE_CONTROL, "no-store");
}

HttpRequestCreator

RecipeService
ApiClient

Users can see
contents quickly

even if device
is not connected

Object Type Duration

Categories 1 day

Search recipes 3 hours

Users Do not cache

To enjoy the benefits of caching,
you need to write

carefully crafted cache control policies

Image Optimization

Image size is much larger
than JSON response

{"result":{"id":1,"title":"Penne with Spring Vegetables”,”description”:”..."

Each pixel takes up 4 bytes

We need to know
what image loading is

• Specify URL to HTTP client
• Get Input Steam
• Decode Input Stream to Bitmap
• Set Bitmap to ImageView

Simple Image Loading

?
Do you fetch images

from the server every time
you want to display

images?

The answer may be

“NO”

In addition, we want to

• reuse worker threads
• set the priority of requests
• cache decoded images

Fresco

Picasso

There are some great libraries

Caching Data
The best way to display images quickly

OkHttp core

Picasso

Disk Cache

Memory Cache

Expiration times of cache is
also following cache controls

Expiration time

Picasso setup cache automatically
You don’t need to do anything

Enable cache

Thread Pool
Creating new threads for each task incur the overhead

Main Thread Worker Thread

Request Image

CloudFront

• Transform
• Decode
• Cache

Worker ThreadWorker Thread

new ThreadPoolExecutor(
 corePoolSize, // The number of threads to keep in the pool
 maximumPoolSize, // The maximum number of threads to allow in the pool
 keepAliveTime, // the maximum time that excess idle threads will wait for new tasks
 timeUnit, // for the keepAliveTime argument
 workQueue, // the queue to use for holding tasks before they are executed
 threadFactory // The factory to use when the executor creates a new thread
);

Task Result

Producer-consumer pattern

Send a request
from main thread

Control order
of requests Receive a request through channel.

Send result through Hander.

There is a trade-off
between capacity and resource

If there are many workers,
tasks are processed concurrently.

If there are too many workers,
consume memory wastefully.

switch (info.getType()) {
 case ConnectivityManager.TYPE_WIFI:
 case ConnectivityManager.TYPE_WIMAX:
 case ConnectivityManager.TYPE_ETHERNET:
 setThreadCount(4);
 break;
 case ConnectivityManager.TYPE_MOBILE:
 switch (info.getSubtype()) {
 case TelephonyManager.NETWORK_TYPE_LTE: // 4G
 case TelephonyManager.NETWORK_TYPE_HSPAP:
 case TelephonyManager.NETWORK_TYPE_EHRPD:
 setThreadCount(3);
 break;
 case TelephonyManager.NETWORK_TYPE_UMTS: // 3G
 case TelephonyManager.NETWORK_TYPE_CDMA:
 case TelephonyManager.NETWORK_TYPE_EVDO_0:
 case TelephonyManager.NETWORK_TYPE_EVDO_A:
 case TelephonyManager.NETWORK_TYPE_EVDO_B:
 setThreadCount(2);
 break;
 case TelephonyManager.NETWORK_TYPE_GPRS: // 2G
 case TelephonyManager.NETWORK_TYPE_EDGE:
 setThreadCount(1);
 break;

Runtime.getRuntime().availableProcessors()

Picasso Glide

Which setting is better?

It is depending on network environment,
device spec, image size, transformation, …

Fresco
A new image loading library
developed by Facebook

NUM_IO_BOUND_THREADS = 2;
NUM_CPU_BOUND_THREADS = Runtime.getRuntime().availableProcessors();

Process Kind of Executor

forLocalStorageRead IoBoundExecutor

forLocalStorageWrite IoBoundExecutor

forDecode CpuBoundExecutor

forBackground CpuBoundExecutor

Fresco has multiple Executors

Queue Management
Control order of requests

PriorityBlockingQueue

The elements order themselves
according to whatever priority you decided

in your Comparable implementation

We can set priority to request

Picasso.with(this)
 .load(url)
 .priority(HIGH)
 .into(imageView);

Glide.with(this)
 .load(url)
 .priority(HIGH)
 .into(imageView);

How priority works?

When a user open recipe detail screen,
requests are added to the end of the queue

How priority works?

When the user open recipe detail screen,
set HIGH priority to the main image

HIGH

HIGH

How priority works?

when the user back to recipe list screen,
call “cancelTag” to dispose useless requests

Glide has lifecycle integration

notify lifecycle events

Requests in search result screen
are paused automatically

Glide manage the queue automatically

Requests in search recipe list
is restarted automatically

Glide manage the queue automatically

Requests in recipe detail screen
are cancelled automatically

Notice:
Glide adds view-less fragment to each Activity

to observe lifecycle events.

Bitmap Pool
Reuse memory when new Bitmap is requested

Each pixel takes up 4 bytes
FFFD7222

25 px * 21 px * 4 byte = 2,400 byte

Memory management for Bitmap

width, height, config Bitmap

Request a Bitmap

Glide has Bitmap Pool

4.4+: SizeStrategy
<4.4: AttributeStrategy

reuse resources to avoid unnecessary allocations

4.4+: SizeStrategy
<4.4: AttributeStrategy

Image Format
We are using WebP that is an image format developed by Google

WebP lossless images are 26% smaller in size compared to PNGs
WebP lossy images are 25-34% smaller in size compared to JPEGs

Comparison of image size

jpeg webp (q = 90) webp (q = 70) webp (q = 50)webp (q = 80) webp (q = 60)

74%

90,602 bytes

30,214 bytes
23,550 bytes
20,882 bytes
18,344 bytes

51,288 bytes

Image Size
Request an appropriate image size

Nexus 5

Nexus S

Nexus 9

target.getWidth() => 1080

http://.../1080x756/photo.webp

target.getHeight() => 756

http://.../1080x756/photo.webp

We are using image transformation
server called Tofu.

Tofu transforms images on the fly.

TofuDecoder S3

https://...

101001010101…

CloudFront
(Transformation)(Cache)

• Fixed Width: (\d+)
• Fixed Height: x(\d+)
• Fixed Width and Height: (\d+)x(\d+)
• Smaller than: (\d+)?(x\d+)?s
• Cropping: (\d+)x(\d+)c
• Manual Cropping: (\d+)x(\d+)c(\d+)_(\d+)_(\d+)_(\d+)_(\d+)
• Quality Factor: [geometry]q(\d+)
• …

Tofu has these functions

Request different image size
depends on network quality

Picasso

ConnectivityObserver

ImageLoader

ImageRequestCreator

EXCELLENT: (1080 * 756) * 1.0 LOW: (756 * 530) * 0.7

86KB 49KB

LOW images are 40% smaller
than full images

API Design

If API responses become faster,
users become happier. ?

Of course, the answer is

“Yes”

Let’s use partial response
to reduce data size

But be careful,
Android has state and

screen transition

Users go back and forth to decide a recipe

Thing we have to do is
Optimizing UX > response time

…

10,000 ms

200 ms or below

Distance between phone and server is
very very very … long

Particularly in emerging markets

Reduce unnecessary fields
Get necessary relations

GOODBad

One more thing
to improve experience

0.4KB

{
 “id":1,
 "title":"Penne with Spring Vegetables”,
 “thumbnail_data_uri": “…”,
 “description”: “…”
}

10px

10px

Response include thumbnail_data_uri
Base64 encoded image

Data size is small but
there is a big improvement

Documentation

Keeping the documentation updated
in real time is hard

We are working on
separated timezone

Hi, can I ask you a question about API?

Today

…

Sorry for late reply

JSON Schema
We are using

as the format for describing our APIs

JSON Schema provides
• Request Validation
• Response Validation
• Document generation

RequestValidation ResponseValidation

Check request/response automatically

Generate API documentation
from schema file

We don’t need to update
documentation manually.

And we can see latest
documentation any time.

Conclusion

GZIP
Cache Controls

Stetho

Base64 encoded thumbnail
Partial response

Appropriate data model

Stetho

WebP
Prioritized request

Appropriate image size

Generate documentation
Auto validation

App server

Image server

@rejasupotaro
Kentaro Takiguchi

Thank you!

