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Schedule

Last time
Resampling methods

Today
A one-lecture introduction to machine-learning methods

Upcoming
The end is near—as are the last problem set and the �nal.
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What's different?
Machine-learning methods typically focus on prediction. What's different?

Up to this point, we've focused on causal identi�cation/inference of , i.e.,

meaning we want an unbiased (consistent) and precise estimate .
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Prediction: What's the goal?

What's different?
Machine-learning methods typically focus on prediction. What's different?

Up to this point, we've focused on causal identi�cation/inference of , i.e.,

meaning we want an unbiased (consistent) and precise estimate .

With prediction, we shift our focus to accurately estimating outcomes.

In other words, how can we best construct ?

β

Yi = Xiβ + ui

β̂

Ŷi

5 / 136



Prediction: What's the goal?

... so?
So we want "nice"-performing estimates  instead of .

Q Can't we just use the same methods (i.e., OLS)?

ŷ β̂
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Q Can't we just use the same methods (i.e., OLS)?

A It depends. How well does your linear-regression model approximate the
underlying data? (And how do you plan to select your model?)
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Prediction: What's the goal?

... so?
So we want "nice"-performing estimates  instead of .

Q Can't we just use the same methods (i.e., OLS)?

A It depends. How well does your linear-regression model approximate the
underlying data? (And how do you plan to select your model?)

Recall Least-squares regression is a great linear estimator and predictor.

ŷ β̂
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Data data be tricky†—as can understanding many relationships.

† "Tricky" might mean nonlinear... or many other things...



blah



Linear regression



Linear regression, linear regression (x4)



Linear regression, linear regression , KNN (100)(x4)



Linear regression, linear regression , KNN (100), KNN (10)(x4)



Linear regression, linear regression , KNN (100), KNN (10), random forest(x4)



Note That example only had one predictor...



What's the goal?

Tradeoffs
In prediction, we constantly face many tradeoffs, e.g.,

�exibility and parametric structure (and interpretability)
performance in training and test samples
variance and bias
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What's the goal?

Tradeoffs
In prediction, we constantly face many tradeoffs, e.g.,

�exibility and parametric structure (and interpretability)
performance in training and test samples
variance and bias

As your economic training should have predicted, in each setting, we need
to balance the additional bene�ts and costs of adjusting these tradeoffs.

Many machine-learning (ML) techniques/algorithms are crafted to optimize
with these tradeoffs, but the practitioner (you) still needs to be careful.
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Multi-class classi�cation problems

Rather than {0,1}, we need to classify  into 1 of K classes
E.g., ER patients: {heart attack, drug overdose, stroke, nothing}
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What's the goal?
There are many reasons to step outside the world of linear regression...

Multi-class classi�cation problems

Rather than {0,1}, we need to classify  into 1 of K classes
E.g., ER patients: {heart attack, drug overdose, stroke, nothing}

Text analysis and image recognition

Comb though sentences (pixels) to glean insights from relationships
E.g., detect sentiments in tweets or roof-top solar in satellite imagery

Unsupervised learning

You don't know groupings, but you think there are relevant groups
E.g., classify spatial data into groups

yi
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Flexibility is huge, but we still want to avoid over�tting.



Statistical learning

What is it good for?
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Statistical learning

What is it good for?
A lot of things. We tend to break statistical-learning into two(-ish) classes:

�. Supervised learning builds ("learns") a statistical model for predicting
an output  given a set of inputs , i.e., we want to build a
model/function 

that accurately describes  given some values of .

�. Unsupervised learning learns relationships and structure using only
inputs  without any supervising output—letting the data
"speak for itself."

(y) (x1, … , xp)

f

y = f(x1, … , xp)

y x1, … , xp

(x1, … , xp)
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Semi-supervised learning falls somewhere between these supervised and
unsupervised learning—generally applied to supervised tasks when labeled
outputs are incomplete.



Source

https://twitter.com/athena_schools/status/1063013435779223553


Statistical learning

Output
We tend to further break supervised learning into two groups, based upon
the output (the outcome we want to predict):
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Output
We tend to further break supervised learning into two groups, based upon
the output (the outcome we want to predict):

�. Classi�cation tasks for which the values of  are discrete categories  
E.g., race, sex, loan default, hazard, disease, �ight status

�. Regression tasks in which  takes on continuous, numeric values.  
E.g., price, arrival time, number of emails, temperature

Note1 The use of regression differs from our use of linear regression.
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Statistical learning

Output
We tend to further break supervised learning into two groups, based upon
the output (the outcome we want to predict):

�. Classi�cation tasks for which the values of  are discrete categories  
E.g., race, sex, loan default, hazard, disease, �ight status

�. Regression tasks in which  takes on continuous, numeric values.  
E.g., price, arrival time, number of emails, temperature

Note1 The use of regression differs from our use of linear regression.

Note2 Don't get tricked: Not all numbers represent continuous, numerical
values—e.g., zip codes, industry codes, social security numbers.†

y

y

† Q Where would you put responses to 5-item Likert scales?
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Statistical learning

The goal
As de�ned before, we want to learn a model to understand our data.
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Statistical learning

The goal
As de�ned before, we want to learn a model to understand our data.

�. Take our (numeric) output .
�. Imagine there is a function  that takes inputs   

and maps them, plus a random, mean-zero error term , to the output.

y

f X = x1, … , xp

ε

y = f(X) + ε
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Statistical learning

Learning from 
There are two main reasons we want to learn about 

�. Causal inference settings How do changes in  affect ?  
What we've done all quarter.

f̂

f

X y
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There are two main reasons we want to learn about 

�. Causal inference settings How do changes in  affect ?  
What we've done all quarter.

�. Prediction problems Predict  using our estimated , i.e.,

our black-box setting where we care less about  than .†

f̂

f

X y

y f

ŷ = f̂(X)

f ŷ

† You shouldn't actually treat your prediction methods as total black boxes.
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Statistical learning

Learning from 
There are two main reasons we want to learn about 

�. Causal inference settings How do changes in  affect ?  
What we've done all quarter.

�. Prediction problems Predict  using our estimated , i.e.,

our black-box setting where we care less about  than .†

Similarly, in causal-inference settings, we don't particulary care about .

f̂

f

X y

y f

ŷ = f̂(X)

f ŷ

† You shouldn't actually treat your prediction methods as total black boxes.

ŷ
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Statistical learning

Prediction errors
As tends to be the case in life, you will make errors in predicting .

The accuracy of  depends upon two errors:
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�. Reducible error The error due to  imperfectly estimating .  
Reducible in the sense that we could improve .

�. Irreducible error The error component that is outside of the model .  
Irreducible because we de�ned an error term  unexplained by .
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ŷ
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Statistical learning

Prediction errors
As tends to be the case in life, you will make errors in predicting .

The accuracy of  depends upon two errors:

�. Reducible error The error due to  imperfectly estimating .  
Reducible in the sense that we could improve .

�. Irreducible error The error component that is outside of the model .  
Irreducible because we de�ned an error term  unexplained by .

Note As its name implies, you can't get rid of irreducible error—but we can
try to get rid of reducible errors.

y

ŷ

f̂ f

f̂

f

ε f

28 / 136



Statistical learning

Prediction errors
Why we're stuck with irreducible error

In less math:

If  exists, then  cannot perfectly explain .
So even if , we still have irreducible error.

E[{y − ŷ}
2] = E[{f(X) + ε + f̂ (X)}

2

]

= [f(X) − f̂ (X)]
2


Reducible

+ Var(ε)


Irreducible

ε X y

f̂ = f
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Statistical learning

Prediction errors
Why we're stuck with irreducible error

In less math:

If  exists, then  cannot perfectly explain .
So even if , we still have irreducible error.

Thus, to form our best predictors, we will minimize reducible error.

E[{y − ŷ}
2] = E[{f(X) + ε + f̂ (X)}

2

]

= [f(X) − f̂ (X)]
2


Reducible

+ Var(ε)


Irreducible

ε X y
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Model accuracy

MSE
Mean squared error (MSE) is the most common† way to measure model
performance in a regression setting.

Recall:  is our prediction error.

† Most common does not mean best—it just means lots of people use it.

MSE =
n

∑
i=1

[yi − f̂ (xi)]
21

n

yi − f̂ (xi) = yi − ŷ i

30 / 136



Model accuracy

MSE
Mean squared error (MSE) is the most common† way to measure model
performance in a regression setting.

Recall:  is our prediction error.

Two notes about MSE

�. MSE will be (relatively) very small when prediction error is nearly zero.
�. MSE penalizes big errors more than little errors (the squared part).

† Most common does not mean best—it just means lots of people use it.

MSE =
n

∑
i=1

[yi − f̂ (xi)]
21

n

yi − f̂ (xi) = yi − ŷ i
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Model accuracy

Training or testing?
Low MSE (accurate performance) on the data that trained the model isn't
actually impressive—maybe the model is just over�tting our data.†

What we want: How well does the model perform on data it has never seen?

† Recall the kNN performance for k=1.
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actually impressive—maybe the model is just over�tting our data.†

What we want: How well does the model perform on data it has never seen?

This introduces an important distinction:

�. Training data: The observations  used to train our model .
�. Testing data: The observations  that our model has yet to see—

and which we can use to evaluate the performance of .

† Recall the kNN performance for k=1.
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Training or testing?
Low MSE (accurate performance) on the data that trained the model isn't
actually impressive—maybe the model is just over�tting our data.†

What we want: How well does the model perform on data it has never seen?

This introduces an important distinction:

�. Training data: The observations  used to train our model .
�. Testing data: The observations  that our model has yet to see—

and which we can use to evaluate the performance of .

Real goal: Low test-sample MSE (not the training MSE from before).

† Recall the kNN performance for k=1.

(yi,xi) f̂

(y0,x0)

f̂
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Model accuracy

Regression and loss
For regression settings, the loss is our prediction's distance from truth, i.e.,

Depending upon our ultimate goal, we choose loss/objective functions.

Whatever we're using, we care about test performance (e.g., test MSE),
rather than training performance.

errori = yi − ŷ i lossi = ∣∣yi − ŷ i∣∣ = ∣∣errori∣∣

L1 loss = ∑
i

∣∣yi − ŷ i∣∣ MAE = ∑
i

∣∣yi − ŷ i∣∣

L2 loss = ∑
i

(yi − ŷ i)
2

MSE = ∑
i

(yi − ŷ i)
2

1

n

1

n
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Model accuracy

Classi�cation
For classi�cation problems, we often use the test error rate.

The Bayes classi�er

�. predicts class  when  exceeds all other classes.

�. produces the Bayes decision boundary—the decision boundary with
the lowest test error rate.

�. is unknown: we must predict .

n

∑
i=1

I(yi ≠ ŷ i)
1

n

j Pr(y0 = j∣∣X = x0)

Pr(y0 = j∣∣X = x0)
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Flexibility

The bias-variance tradeoff
Finding the optimal level of �exibility highlights the bias-variance tradeoff.

Bias The error that comes from inaccurately estimating .

More �exible models are better equipped to recover complex
relationships , reducing bias. (Real life is seldom linear.)
Simpler (less �exible) models typically increase bias.

Variance The amount  would change with a different training sample

If new training sets drastically change , then we have a lot of
uncertainty about  (and, in general, ).
More �exible models generally add variance to .

f

(f)

f̂

f̂

f f̂ ≉ f

f
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Flexibility

The bias-variance tradeoff
The expected value† of the test MSE can be written

The tradeoff in terms of model �exibility

Increasing �exibility from total in�exibility generally reduces bias more
than it increases variance (reducing test MSE).

At some point, the marginal bene�ts of �exibility equal marginal costs.

Past this point (optimal �exibility), we increase variance more than we
reduce bias (increasing test MSE).

E[(y0 − f̂ (X0))
2

] = Var(f̂ (X0))


Variance

+ [Bias(f̂ (X0))]
2


Bias

+ Var(ε)

Irr. error
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U-shaped test MSE with respect to model �exibility (KNN here).  
Increases in variance eventually overcome reductions in (squared) bias.



Resampling refresher
Resampling methods help understand uncertainty in statistical modeling.

The process behind the magic of resampling methods:

�. Repeatedly draw samples from the training data.
�. Fit your model(s) on each random sample.
�. Compare model performance (or estimates) across samples.
�. Infer the variability/uncertainty in your model from (3).

Sounds familiar, right?
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Resampling

Hold out
Recall: We want to �nd the model that minimizes out-of-sample test error.

If we have a large test dataset, we can use it (once).

Q1 What if we don't have a test set?  
Q2 What if we need to select and train a model?  
Q3 How can we avoid over�tting our training† data during model selection?

† Also relevant for testing data.
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Resampling

Hold out
Recall: We want to �nd the model that minimizes out-of-sample test error.

If we have a large test dataset, we can use it (once).

Q1 What if we don't have a test set?  
Q2 What if we need to select and train a model?  
Q3 How can we avoid over�tting our training† data during model selection?

A1,2,3 Hold-out methods (e.g., cross validation) use training data to estimate
test performance—holding out a mini "test" sample of the training data
that we use to estimate the test error.

† Also relevant for testing data.
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Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Initial training set

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Validation (sub)set Training set: Model training

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Validation (sub)set Training set: Model training

Hold-out methods

Option 1: The validation set approach
To estimate the test error, we can hold out a subset of our training data
and then validate (evaluate) our model on this held out validation set.

The validation error rate estimates the test error rate
The model only "sees" the non-validation subset of the training data.
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Hold-out methods

Option 1: The validation set approach
Example We could use the validation-set approach to help select the
degree of a polynomial for a linear-regression model.
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Hold-out methods

Option 1: The validation set approach
Example We could use the validation-set approach to help select the
degree of a polynomial for a linear-regression model.

The goal of the validation set is to estimate out-of-sample (test) error.

Q So what?

Estimates come with uncertainty—varying from sample to sample.

Variability (standard errors) is larger with smaller samples.

Problem This estimated error is often based upon a fairly small sample
(<30% of our training data). So its variance can be large.
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Validation MSE for 10 different validation samples



True test MSE compared to validation-set estimates



Hold-out methods

Option 1: The validation set approach
Put differently: The validation-set approach has (≥) two major drawbacks:

�. High variability Which observations are included in the validation set
can greatly affect the validation MSE.

�. Inef�ciency in training our model We're essentially throwing away the
validation data when training the model—"wasting" observations.
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Option 1: The validation set approach
Put differently: The validation-set approach has (≥) two major drawbacks:

�. High variability Which observations are included in the validation set
can greatly affect the validation MSE.

�. Inef�ciency in training our model We're essentially throwing away the
validation data when training the model—"wasting" observations.

(2) ⟹ validation MSE may overestimate test MSE.

Even if the validation-set approach provides an unbiased estimator for test
error, it is likely a pretty noisy estimator.

46 / 136



Hold-out methods

Option 2: Leave-one-out cross validation
Cross validation solves the validation-set method's main problems.

Use more (= all) of the data for training (lower variability; less bias).
Still maintains separation between training and validation subsets.
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Hold-out methods

Option 2: Leave-one-out cross validation
Cross validation solves the validation-set method's main problems.

Use more (= all) of the data for training (lower variability; less bias).
Still maintains separation between training and validation subsets.

Leave-one-out cross validation (LOOCV) is perhaps the cross-validation
method most similar to the validation-set approach.

Your validation set is exactly one observation.
New You repeat the validation exercise for every observation.
New Estimate MSE as the mean across all observations.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 1's turn for validation produces MSE1.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 2's turn for validation produces MSE2.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 3's turn for validation produces MSE3.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 4's turn for validation produces MSE4.
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Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation 5's turn for validation produces MSE5.

52 / 136



Hold-out methods

Option 2: Leave-one-out cross validation
Each observation takes a turn as the validation set,  
while the other n-1 observations get to train the model.  

Observation n's turn for validation produces MSEn.
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Hold-out methods

Option 2: Leave-one-out cross validation
Because LOOCV uses n-1 observations to train the model,† MSEi (validation
MSE from observation i) is approximately unbiased for test MSE.

Problem MSEi is a terribly noisy estimator for test MSE (albeit ≈unbiased).

† And because often n-1 ≈ n.
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Hold-out methods

Option 2: Leave-one-out cross validation
Because LOOCV uses n-1 observations to train the model,† MSEi (validation
MSE from observation i) is approximately unbiased for test MSE.

Problem MSEi is a terribly noisy estimator for test MSE (albeit ≈unbiased). 
Solution Take the mean!

† And because often n-1 ≈ n.

CV(n) =
n

∑
i=1

MSEi

1

n
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Hold-out methods

Option 2: Leave-one-out cross validation
Because LOOCV uses n-1 observations to train the model,† MSEi (validation
MSE from observation i) is approximately unbiased for test MSE.

Problem MSEi is a terribly noisy estimator for test MSE (albeit ≈unbiased). 
Solution Take the mean!

�. LOOCV reduces bias by using n-1 (almost all) observations for training.
�. LOOCV resolves variance: it makes all possible comparison 

(no dependence upon which validation-test split you make).

† And because often n-1 ≈ n.

CV(n) =
n

∑
i=1

MSEi

1

n
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True test MSE and LOOCV MSE compared to validation-set estimates



Hold-out methods

Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy:  
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once 

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

k

k

k − 1
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�. Iterate over the  folds, treating each as a validation set once 

(training the model on the other  folds).
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�. Less computationally demanding (�t model  5 or 10 times; not ).
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Leave-one-out cross validation is a special case of a broader strategy:  
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once 

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.
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�. Less computationally demanding (�t model  5 or 10 times; not ).
�. Greater accuracy (in general) due to bias-variance tradeoff!
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Hold-out methods

Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy:  
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once 

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

Bene�ts?

�. Less computationally demanding (�t model  5 or 10 times; not ).
�. Greater accuracy (in general) due to bias-variance tradeoff!

Somewhat higher bias, relative to LOOCV:  vs. .

k

k

k − 1

k = n

n − 1 (k − 1)/k
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Option 3: k-fold cross validation
Leave-one-out cross validation is a special case of a broader strategy:  
k-fold cross validation.

�. Divide the training data into  equally sized groups (folds).
�. Iterate over the  folds, treating each as a validation set once 

(training the model on the other  folds).
�. Average the folds' MSEs to estimate test MSE.

Bene�ts?

�. Less computationally demanding (�t model  5 or 10 times; not ).
�. Greater accuracy (in general) due to bias-variance tradeoff!

Somewhat higher bias, relative to LOOCV:  vs. .
Lower variance due to high-degree of correlation in LOOCV MSEi.🤯
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

Our  5 folds.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k =
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

Each fold takes a turn at validation. The other  folds train.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k − 1
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=1.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 1
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=2.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 2
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=3.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 3
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=4.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 4
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE as

For , fold number  as the validation set produces MSEk=5.

k

CV(k) =
k

∑
i=1

MSEi

1

k

k = 5 5
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Hold-out methods

Option 3: k-fold cross validation
With -fold cross validation, we estimate test MSE ask

CV(k) =
k

∑
i=1

MSEi

1

k
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Test MSE vs. estimates: LOOCV, 5-fold CV (20x), and validation set (10x)



Note: Each of these methods extends to classi�cation settings, e.g., LOOCV

CV(n) =
n

∑
i=1

I(yi ≠ ŷ i)
1

n



Hold-out methods

Caveat
So far, we've treated each observation as separate/independent from each
other observation.

The methods that we've de�ned so far actually need this independence.
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Hold-out methods

Goals and alternatives
You can use CV for either of two important modeling tasks:

Model selection Choosing and tuning a model

Model assessment Evaluating a model's accuracy
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Hold-out methods

Goals and alternatives
You can use CV for either of two important modeling tasks:

Model selection Choosing and tuning a model

Model assessment Evaluating a model's accuracy

Alternative approach: Shrinkage methods

�t a model that contains all  predictors
simultaneously: shrink† coef�cients toward zero

Idea: Penalize the model for coef�cients as they move away from zero.

p

† Synonyms for shrink: constrain or regularize
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Shrinkage

Why?
Q How could shrinking coef�cients twoard zero help or predictions?
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Shrinkage

Why?
Q How could shrinking coef�cients twoard zero help or predictions?

A Remember we're generally facing a tradeoff between bias and variance.

Shrinking our coef�cients toward zero reduces the model's variance.†

Penalizing our model for larger coef�cients shrinks them toward zero.
The optimal penalty will balance reduced variance with increased bias.

† Imagine the extreme case: a model whose coef�cients are all zeros has no variance.
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Shrinkage

Why?
Q How could shrinking coef�cients twoard zero help or predictions?

A Remember we're generally facing a tradeoff between bias and variance.

Shrinking our coef�cients toward zero reduces the model's variance.†

Penalizing our model for larger coef�cients shrinks them toward zero.
The optimal penalty will balance reduced variance with increased bias.

Now you understand shrinkage methods.

Ridge regression

Lasso

Elasticnet

† Imagine the extreme case: a model whose coef�cients are all zeros has no variance.
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Ridge regressionRidge regression



Ridge regression

Back to least squares (again)
Remember OLS? Least-squares regression �nds 's by minimizing RSSβ̂j

min
β̂

RSS = min
β̂

n

∑
i=1

e2
i = min

β̂

n

∑
i=1

(yi − [β̂0 + β̂1xi,1 + ⋯ + β̂pxi,p]


=ŷ i

)
2
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Ridge regression

Back to least squares (again)
Remember OLS? Least-squares regression �nds 's by minimizing RSS

Ridge regression makes a small change

adds a shrinkage penalty = the sum of squared coef�cents 

minimizes the (weighted) sum of RSS and the shrinkage penalty

β̂j

min
β̂

RSS = min
β̂

n

∑
i=1

e2
i = min

β̂

n

∑
i=1

(yi − [β̂0 + β̂1xi,1 + ⋯ + β̂pxi,p]
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)
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(λ∑
j
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Ridge regression

Back to least squares (again)
Remember OLS? Least-squares regression �nds 's by minimizing RSS

Ridge regression makes a small change

adds a shrinkage penalty = the sum of squared coef�cents 

minimizes the (weighted) sum of RSS and the shrinkage penalty

β̂j

min
β̂

RSS = min
β̂

n

∑
i=1

e2
i = min

β̂

n

∑
i=1

(yi − [β̂0 + β̂1xi,1 + ⋯ + β̂pxi,p]


=ŷ i

)
2

(λ∑
j
β2
j
)

min
β̂
R

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

β2
j

71 / 136



Ridge regression Least squares

Ridge regression
 
 
 
 

 is a tuning parameter for the harshness of the penalty.  
 implies no penalty: we are back to least squares.

min
β̂
R

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

β2
j min

β̂

n

∑
i=1

(yi − ŷ i)
2

λ (≥ 0)

λ = 0
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Ridge regression
 
 
 
 

 is a tuning parameter for the harshness of the penalty.  
 implies no penalty: we are back to least squares. 

Each value of  produces a new set of coef�cents.
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2

+ λ

p

∑
j=1

β2
j min

β̂

n

∑
i=1

(yi − ŷ i)
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Ridge regression Least squares

Ridge regression
 
 
 
 

 is a tuning parameter for the harshness of the penalty.  
 implies no penalty: we are back to least squares. 

Each value of  produces a new set of coef�cents.

Ridge's approach to the bias-variance tradeoff: Balance

reducing RSS, i.e., 
reducing coef�cients' magnitudes (ignoring the intercept)

 determines how much ridge "cares about" these two quantities.†

min
β̂
R

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

β2
j min

β̂

n

∑
i=1

(yi − ŷ i)
2

λ (≥ 0)

λ = 0

λ

∑i (yi − ŷ i)
2

λ

† With , least-squares regression only "cares about" RSS.λ = 0
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Ridge regression

 and penalization
Choosing a good value for  is key.

If  is too small, then our model is essentially back to OLS.
If  is too large, then we shrink all of our coef�cients too close to zero.

λ

λ

λ

λ
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 and penalization
Choosing a good value for  is key.

If  is too small, then our model is essentially back to OLS.
If  is too large, then we shrink all of our coef�cients too close to zero.

Q So what do we do?
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Ridge regression

 and penalization
Choosing a good value for  is key.

If  is too small, then our model is essentially back to OLS.
If  is too large, then we shrink all of our coef�cients too close to zero.

Q So what do we do? 
A Cross validate!

(You saw that coming, right?)

λ

λ

λ

λ
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Ridge regression

Penalization and standardization
Important Predictors' units can drastically affect ridge regression results.

Why?
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Important Predictors' units can drastically affect ridge regression results.

Why? Because 's units affect , and ridge is very sensitive to .

Example Let  denote distance.

Least-squares regression  
If  is meters and , then when  is km, .  
The scale/units of predictors do not affect least squares' estimates.

xj βj βj

x1

x1 β1 = 3 x1 β1 = 3, 000
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If  is meters and , then when  is km, .  
The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for  than .  
You will not get the same (scaled) estimates when you change units.
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Ridge regression

Penalization and standardization
Important Predictors' units can drastically affect ridge regression results.

Why? Because 's units affect , and ridge is very sensitive to .

Example Let  denote distance.

Least-squares regression  
If  is meters and , then when  is km, .  
The scale/units of predictors do not affect least squares' estimates.

Ridge regression pays a much larger penalty for  than .  
You will not get the same (scaled) estimates when you change units.

Solution Standardize your variables, i.e., x_stnd = (x - mean(x))/sd(x) .

xj βj βj

x1

x1 β1 = 3 x1 β1 = 3, 000

β1 = 3, 000 β1 = 3
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Lasso

Intro
Lasso simply replaces ridge's squared coef�cients with absolute values.
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Lasso

Intro
Lasso simply replaces ridge's squared coef�cients with absolute values.

Ridge regression

Lasso

Everything else will be the same—except one aspect...

min
β̂
R

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

β2
j

min
β̂
L

n

∑
i=1

(yi − ŷ i)
2

+ λ

p

∑
j=1

∣∣βj∣∣
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Lasso

Shrinkage
Unlike ridge, lasso's penalty does not increase with the size of .

You always pay  to increase  by one unit.

βj

λ ∣∣βj∣∣
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Lasso

Shrinkage
Unlike ridge, lasso's penalty does not increase with the size of .

You always pay  to increase  by one unit.

The only way to avoid lasso's penalty is to set coef�cents to zero.

This feature has two bene�ts

�. Some coef�cients will be set to zero—we get "sparse" models.
�. Lasso can be used for subset/feature selection.

βj

λ ∣∣βj∣∣
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Lasso

Shrinkage
Unlike ridge, lasso's penalty does not increase with the size of .

You always pay  to increase  by one unit.

The only way to avoid lasso's penalty is to set coef�cents to zero.

This feature has two bene�ts

�. Some coef�cients will be set to zero—we get "sparse" models.
�. Lasso can be used for subset/feature selection.

We will still need to carefully select .

βj

λ ∣∣βj∣∣

λ
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Ridge regression coef�cents for  between 0.01 and 100,000λ



Lasso coef�cents for  between 0.01 and 100,000λ



Machine learning

Summary
Now you understand the basic tenants of machine learning:

How prediction differs from causal inference
Bias-variance tradeoff (the bene�ts and costs of �exibility)
Cross validation: Performance and tuning
In- vs. out-of-sample performance

But there's a lot more...
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Trees (🌲🌴🌳)

Fundamentals
Decision trees

split the predictor space (our ) into regions
then predict the most-common value within a region

X
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Trees (🌲🌴🌳)

Fundamentals
Decision trees

split the predictor space (our ) into regions
then predict the most-common value within a region

Decision trees

�. work for both classi�cation and regression
�. are inherently nonlinear
�. are relatively simple and interpretable
�. often underperform relative to competing methods
�. easily extend to very competitive ensemble methods (many trees)🌲

X

🌲  Though the ensembles will be much less interpretable.
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Example: A simple decision tree classifying credit-card default



Let's see how the tree works



Let's see how the tree works—starting with credit data (default: Yes vs. No).



The �rst partition splits balance at $1,800.



The second partition splits balance at $1,972, (conditional on bal. > $1,800).



The third partition splits income at $27K for bal. between $1,800 and $1,972.



These three partitions give us four regions...



Predictions cover each region (e.g., using the region's most common class).



Predictions cover each region (e.g., using the region's most common class).



Predictions cover each region (e.g., using the region's most common class).



Predictions cover each region (e.g., using the region's most common class).



Q Where do trees come from?

A Seeds!🌱



Q Where do trees come from?

A Seeds!🌱🙄



Q How do we train (grow) trees?



Decision trees

Growing trees
We will start with regression trees, i.e., trees used in regression settings.
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Growing trees
We will start with regression trees, i.e., trees used in regression settings.

As we saw, the task of growing a tree involves two main steps:

�. Divide the predictor space into  regions (using predictors )J x1, … , xp
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Decision trees

Growing trees
We will start with regression trees, i.e., trees used in regression settings.

As we saw, the task of growing a tree involves two main steps:

�. Divide the predictor space into  regions (using predictors )

�. Make predictions using the regions' mean outcome.  
For region  predict  where

J x1, … , xp

Rj ŷRj

ŷRj
= ∑

i∈Rj

y
1

nj
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Decision trees

Growing trees
We choose the regions to minimize RSS across all  regions, i.e.,J

J

∑
j=1

(yi − ŷRj
)

2
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Decision trees

Growing trees
We choose the regions to minimize RSS across all  regions, i.e.,

Problem: Examining every possible partition is computationally infeasible.

J

J

∑
j=1

(yi − ŷRj
)

2
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Decision trees

Growing trees
We choose the regions to minimize RSS across all  regions, i.e.,

Problem: Examining every possible partition is computationally infeasible.

Solution: a top-down, greedy algorithm named recursive binary splitting

recursive start with the "best" split, then �nd the next "best" split, ...
binary each split creates two branches—"yes" and "no"
greedy each step makes best split—no consideration of overall process

J

J

∑
j=1

(yi − ŷRj
)

2
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Decision trees

Growing trees: Choosing a split
Recall Regression trees choose the split that minimizes RSS.

To �nd this split, we need

�. a predictor, 
�. a cuto�  that splits  into two parts: (1)  and (2) 

xj

s xj xj < s xj ≥ s
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Decision trees

Growing trees: Choosing a split
Recall Regression trees choose the split that minimizes RSS.

To �nd this split, we need

�. a predictor, 
�. a cuto�  that splits  into two parts: (1)  and (2) 

Searching across each of our predictors  and all of their cutoffs ,  
we choose the combination that minimizes RSS.

xj

s xj xj < s xj ≥ s

j s
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Decision trees

Example: Splitting
Example Consider the dataset

i pred. y x1 x2

1 0 0 1 4

2 0 8 3 2

3 0 6 5 6

98 / 136



Decision trees

Example: Splitting
Example Consider the dataset

i pred. y x1 x2

1 0 0 1 4

2 0 8 3 2

3 0 6 5 6

With just three observations, each variable only has two actual splits.🌲

🌲  You can think about cutoffs as the ways we divide observations into two groups.
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Decision trees

Example: Splitting
One possible split: x1 at 2, which yields (1) x1 < 2 vs. (2) x1 ≥ 2

i pred. y x1 x2

1 0 0 1 4

2 7 8 3 2

3 7 6 5 6
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Decision trees

Example: Splitting
One possible split: x1 at 2, which yields (1) x1 < 2 vs. (2) x1 ≥ 2

i pred. y x1 x2

1 0 0 1 4

2 7 8 3 2

3 7 6 5 6

This split yields an RSS of 02 + 12 + (-1)2 = 2.
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Decision trees

Example: Splitting
One possible split: x1 at 2, which yields (1) x1 < 2 vs. (2) x1 ≥ 2

i pred. y x1 x2

1 0 0 1 4

2 7 8 3 2

3 7 6 5 6

This split yields an RSS of 02 + 12 + (-1)2 = 2.

Note1 Splitting x1 at 2 yields the same results as 1.5, 2.5—anything in (1, 3).
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Decision trees

Example: Splitting
One possible split: x1 at 2, which yields (1) x1 < 2 vs. (2) x1 ≥ 2

i pred. y x1 x2

1 0 0 1 4

2 7 8 3 2

3 7 6 5 6

This split yields an RSS of 02 + 12 + (-1)2 = 2.

Note1 Splitting x1 at 2 yields the same results as 1.5, 2.5—anything in (1, 3). 
Note2 Trees often grow until they hit some number of observations in a leaf.
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Decision trees

Example: Splitting
An alternative split: x1 at 4, which yields (1) x1 < 4 vs. (2) x1 ≥ 4

i pred. y x1 x2

1 4 0 1 4

2 4 8 3 2

3 6 6 5 6

This split yields an RSS of (-4)2 + 42 + 02 = 32.
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Decision trees

Example: Splitting
An alternative split: x1 at 4, which yields (1) x1 < 4 vs. (2) x1 ≥ 4

i pred. y x1 x2

1 4 0 1 4

2 4 8 3 2

3 6 6 5 6

This split yields an RSS of (-4)2 + 42 + 02 = 32.

Previous: Splitting x1 at 4 yielded RSS = 2. (Much better)
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Decision trees

Example: Splitting
Another split: x2 at 3, which yields (1) x1 < 3 vs. (2) x1 ≥ 3

i pred. y x1 x2

1 3 0 1 4

2 8 8 3 2

3 3 6 5 6

This split yields an RSS of (-3)2 + 02 + 32 = 18.
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Decision trees

Example: Splitting
Final split: x2 at 5, which yields (1) x1 < 5 vs. (2) x1 ≥ 5

i pred. y x1 x2

1 4 0 1 4

2 4 8 3 2

3 6 6 5 6

This split yields an RSS of (-4)2 + 42 + 02 = 32.
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Decision trees

Example: Splitting
Across our four possible splits (two variables each with two splits)

x1 with a cutoff of 2: RSS = 2
x1 with a cutoff of 4: RSS = 32
x2 with a cutoff of 3: RSS = 18
x2 with a cutoff of 5: RSS = 32

our split of x1 at 2 generates the lowest RSS.
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Split 1: A|B|C vs. D
Split 2: A|B|D vs. C
Split 3: A|C|D vs. B
Split 4: B|C|D vs. A

Split 5: A|B vs. C|D
Split 6: A|C vs. B|D
Split 7: A|D vs. B|C

Note: Categorical predictors work in exactly the same way.  
We want to try all possible combinations of the categories.

Ex: For a four-level categorical predicator (levels: A, B, C, D)

we would need to try 7 possible splits.



Decision trees

More splits
Once we make our a split, we then continue splitting,  
conditional on the regions from our previous splits.

So if our �rst split creates R1 and R2, then our next split  
searches the predictor space only in R1 or R2.🌲

🌲  We are no longer searching the full space—it is conditional on the previous splits.
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Decision trees

More splits
Once we make our a split, we then continue splitting,  
conditional on the regions from our previous splits.

So if our �rst split creates R1 and R2, then our next split  
searches the predictor space only in R1 or R2.🌲

The tree continue to grow until it hits some speci�ed threshold,  
e.g., at most 5 observations in each leaf.

🌲  We are no longer searching the full space—it is conditional on the previous splits.
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Decision trees

Too many splits?
One can have too many splits.

Q Why?
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Decision trees

Too many splits?
One can have too many splits.

Q Why?

A "More splits" means

�. more �exibility (think about the bias-variance tradeoff/over�tting)
�. less interpretability (one of the selling points for trees)
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Decision trees

Too many splits?
One can have too many splits.

Q Why?

A "More splits" means

�. more �exibility (think about the bias-variance tradeoff/over�tting)
�. less interpretability (one of the selling points for trees)

Q So what can we do?

A Prune your trees!
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Decision trees

Pruning
Pruning allows us to trim our trees back to their "best selves."

The idea: Some regions may increase variance more than they reduce bias.  
By removing these regions, we gain in test MSE.

Candidates for trimming: Regions that do not reduce RSS very much.
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Decision trees

Pruning
Pruning allows us to trim our trees back to their "best selves."

The idea: Some regions may increase variance more than they reduce bias.  
By removing these regions, we gain in test MSE.

Candidates for trimming: Regions that do not reduce RSS very much.

Updated strategy: Grow big trees  and then trim  to an optimal subtree.

Updated problem: Considering all possible subtrees can get expensive.

T0 T0
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Decision trees

Pruning
Cost-complexity pruning🌲  offers a solution.

Just as we did with lasso, cost-complexity pruning forces the tree to pay a
price (penalty) to become more complex.

Complexity here is de�ned as the number of regions .

🌲  Also called: weakest-link pruning.

|T |
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Decision trees

Pruning
Speci�cally, cost-complexity pruning adds a penalty of  to the RSS, i.e.,

For any value of , we get a subtree .

α|T |

|T |

∑
m=1

∑
i:x∈Rm

(yi − ŷRm
)

2
+ α|T |

α(≥ 0) T ⊂ T0
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Decision trees

Pruning
Speci�cally, cost-complexity pruning adds a penalty of  to the RSS, i.e.,

For any value of , we get a subtree .

 generates , but as  increases, we begin to cut back the tree.

We choose  via cross validation.

α|T |

|T |

∑
m=1

∑
i:x∈Rm

(yi − ŷRm
)

2
+ α|T |

α(≥ 0) T ⊂ T0

α = 0 T0 α

α
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Decision trees

Classi�cation trees
Classi�cation with trees is very similar to regression.
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Regression trees

Predict: Region's mean
Split: Minimize RSS
Prune: Penalized RSS
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Regression trees

Predict: Region's mean
Split: Minimize RSS
Prune: Penalized RSS

Classi�cation trees

Predict: Region's mode
Split: Min. Gini or entropy🌲

Prune: Penalized error rate🌴

Decision trees

Classi�cation trees
Classi�cation with trees is very similar to regression.

An additional nuance for classi�cation trees: We typically care about the
proportions of classes in the leaves—not just the �nal prediction.

🌲  De�ned on the next slide. 🌴  ... or Gini index or entropy
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Decision trees

The Gini index
Let  denote the proportion of observations in class  and region .p̂mk k m
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Decision trees

The Gini index
Let  denote the proportion of observations in class  and region .

The Gini index tells us about a region's "purity"🌲

if a region is very homogeneous, then the Gini index will be small.

Homogenous regions are easier to predict.  
Reducing the Gini index yields to more homogeneous regions  
∴ We want to minimize the Gini index.

p̂mk k m

G =
K

∑
k=1

p̂mk (1 − p̂mk)

🌲  This vocabulary is Voldemort's contribution to the machine-learning literature.
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Decision trees

Entropy
Let  denote the proportion of observations in class  and region .

Entropy also measures the "purity" of a node/leaf

Entropy is also minimized when  values are close to 0 and 1.

p̂mk k m

D = −
K

∑
k=1

p̂mk log(p̂mk)

p̂mk
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Decision trees

Rational
Q Why are we using the Gini index or entropy (vs. error rate)?
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Decision trees

Rational
Q Why are we using the Gini index or entropy (vs. error rate)?

A The error rate isn't suf�ciently sensitive to grow good trees.  
The Gini index and entropy tell us about the composition of the leaf.
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Leaf 1

A: 51, B: 49, C: 00
Error rate: 49%
Gini index: 0.4998
Entropy: 0.6929

Leaf 2

A: 51, B: 25, C: 24
Error rate: 49%
Gini index: 0.6198
Entropy: 1.0325

Decision trees

Rational
Q Why are we using the Gini index or entropy (vs. error rate)?

A The error rate isn't suf�ciently sensitive to grow good trees.  
The Gini index and entropy tell us about the composition of the leaf.

Ex. Consider two different leaves in a three-level classi�cation.

The Gini index and entropy tell us about the distribution.
114 / 136



Decision trees

Classi�cation trees
When growing classi�cation trees, we want to use the Gini index or entropy.

However, when pruning, the error rate is typically �ne—especially if
accuracy will be the �nal criterion.
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Q How do trees compare to linear models?



Q How do trees compare to linear models?

A It depends how linear the true boundary is.



Linear boundary: trees struggle to recreate a line.

Source: ISL, p. 315



Nonlinear boundary: trees easily replicate the nonlinear boundary.

Source: ISL, p. 315



Strengths  
+ Easily explained/interpretted  
+ Include several graphical options  
+ Mirror human decision making?  
+ Handle num. or cat. on LHS/RHS🌳

Decision trees

Strengths and weaknesses
As with any method, decision trees have tradeoffs.

🌳  Without needing to create lots of dummy variables!  
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Strengths  
+ Easily explained/interpretted  
+ Include several graphical options  
+ Mirror human decision making?  
+ Handle num. or cat. on LHS/RHS🌳

Weaknesses  
- Outperformed by other methods  
- Struggle with linearity  
- Can be very "non-robust"

Decision trees

Strengths and weaknesses
As with any method, decision trees have tradeoffs.

Non-robust: Small data changes can cause huge changes in our tree.

Next: Create ensembles of trees🌲  to strengthen these weaknesses.🌴

🌳  Without needing to create lots of dummy variables!    
🌲  Forests! 🌴  Which will also weaken some of the strengths.
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Ensemble methods

Intro
Rather than focusing on training a single, highly accurate model,  
ensemble methods combine many low-accuracy models into a meta-model.
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Ensemble methods

Intro
Rather than focusing on training a single, highly accurate model,  
ensemble methods combine many low-accuracy models into a meta-model.

Today: Three common methods for combining individual trees

�. Bagging

�. Random forests

�. Boosting

Why? While individual trees may be highly variable and inaccurate,  
a combination of trees is often quite stable and accurate.🌲

🌲  We will lose interpretability.
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Ensemble methods

Bagging
Bagging creates additional samples via bootstrapping.
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Ensemble methods

Bagging
Bagging creates additional samples via bootstrapping.

Q How does bootstrapping help?

A Recall: Individual decision trees suffer from variability (non-robust).

This non-robustness means trees can change a lot based upon which
observations are included/excluded.

We're essentially using many "draws" instead of a single one.🌴

🌴  Recall that an estimator's variance typically decreases as the sample size increases.
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Ensemble methods

Bagging
Bootstrap aggregation (bagging) reduces this type of variability.

�. Create  bootstrapped samples

�. Train an estimator (tree)  on each of the  samples

�. Aggregate across your  bootstrapped models:

This aggregated model  is your �nal model.

B

f̂ b(x) B

B

f̂ bag(x) =
B

∑
b=1

f̂ b(x)
1

B

f̂ bag(x)
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Ensemble methods

Bagging trees
When we apply bagging to decision trees,

we typically grow the trees deep and do not prune

for regression, we average across the  trees' regions

for classi�cation, we have more options—but often take plurality

B
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Ensemble methods

Bagging trees
When we apply bagging to decision trees,

we typically grow the trees deep and do not prune

for regression, we average across the  trees' regions

for classi�cation, we have more options—but often take plurality

Individual (unpruned) trees will be very �exible and noisy,  
but their aggregate will be quite stable.

The number of trees  is generally not critical with bagging.  
 often works �ne.

B

B

B = 100
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Ensemble methods

Out-of-bag error estimation
Bagging also offers a convenient method for evaluating performance.
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Ensemble methods

Out-of-bag error estimation
Bagging also offers a convenient method for evaluating performance.

For any bootstrapped sample, we omit ~n/3 observations.

Out-of-bag (OOB) error estimation estimates the test error rate using
observations randomly omitted from each bootstrapped sample.

For each observation :

�. Find all samples  in which  was omitted from training.

�. Aggregate the  predictions , e.g., using their mean or mode

�. Calculate the error, e.g., 

i

Si i

|Si| f̂ b(xi)

yi − f̂ i,OOB,i(xi)
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Ensemble methods

Out-of-bag error estimation
When  is big enough, the OOB error rate will be very close to LOOCV.B
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Ensemble methods

Out-of-bag error estimation
When  is big enough, the OOB error rate will be very close to LOOCV.

Q Why use OOB error rate?

A When  and  are large, cross validation—with any number of folds—can
become pretty computationally intensive.

B

B n
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Ensemble methods

Bagging
Bagging has one additional shortcoming...

If one variable dominates other variables, the trees will be very correlated.
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Ensemble methods

Bagging
Bagging has one additional shortcoming...

If one variable dominates other variables, the trees will be very correlated.

If the trees are very correlated, then bagging loses its advantage.

Solution We should make the trees less correlated.
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Ensemble methods

Random forests
Random forests improve upon bagged trees by decorrelating the trees.
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Random forests
Random forests improve upon bagged trees by decorrelating the trees.

In order to decorrelate its trees, a random forest only considers a random
subset of  predictors when making each split (for each tree).

Restricting the variables our tree sees at a given split

nudges trees away from always using the same variables,

increasing the variation across trees in our forest,

which potentially reduces the variance of our estimates.
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Ensemble methods

Random forests
Random forests improve upon bagged trees by decorrelating the trees.

In order to decorrelate its trees, a random forest only considers a random
subset of  predictors when making each split (for each tree).

Restricting the variables our tree sees at a given split

nudges trees away from always using the same variables,

increasing the variation across trees in our forest,

which potentially reduces the variance of our estimates.

If our predictors are very correlated, we may want to shrink .

m (≈ √p)

m
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Ensemble methods

Random forests
Random forests thus introduce two dimensions of random variation

�. the bootstrapped sample

�. the  randomly selected predictors (for the split)

Everything else about random forests works just as it did with bagging.🎄

m

🎄  And just as it did with plain, old decision trees.
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Ensemble methods

Boosting
So far, the elements of our ensembles have been acting independently:  
any single tree knows nothing about the rest of the forest.
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Boosting
So far, the elements of our ensembles have been acting independently:  
any single tree knows nothing about the rest of the forest.

Boosting allows trees to pass on information to eachother.

Speci�cally, boosting trains its trees🌲  sequentially—each new tree trains on
the residuals (mistakes) from its predecessors.

We add each new tree to our model  (and update our residuals).

Trees are typically small—slowly improving  where it struggles.

🌲  As with bagging, boosting can be applied to many methods (in addition to trees).

f̂

f̂
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Ensemble methods

Boosting
Boosting has three tuning parameters.

�. The number of trees  can be important to prevent over�tting.B
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Ensemble methods

Boosting
Boosting has three tuning parameters.

�. The number of trees  can be important to prevent over�tting.

�. The shrinkage parameter , which controls boosting's learning rate
(often 0.01 or 0.001).

�. The number of splits  in each tree (trees' complexity).

Individaul trees are typically short—often  ("stumps").

Remember Trees learn from predecessors' mistakes, 
so no single tree needs to offer a perfect model.

B

λ

d

d = 1
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Ensemble methods

How to boost
Step 1: Set , which yields residuals  for all .f̂ (x) = 0 ri = yi i
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How to boost
Step 1: Set , which yields residuals  for all .

Step 2: For  do:

A. Fit a tree  with  splits.

B. Update the model  with "shrunken version" of new treee 

C. Update the residuals: .

f̂ (x) = 0 ri = yi i

b = 1, 2 … , B

f̂ b d

f̂ f̂ b

f̂ (x) ← f̂ (x) + λ f̂ b(x)

ri ← ri − λ f̂ b(x)
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Ensemble methods

How to boost
Step 1: Set , which yields residuals  for all .

Step 2: For  do:

A. Fit a tree  with  splits.

B. Update the model  with "shrunken version" of new treee 

C. Update the residuals: .

Step 3: Output the boosted model: .

f̂ (x) = 0 ri = yi i

b = 1, 2 … , B

f̂ b d

f̂ f̂ b

f̂ (x) ← f̂ (x) + λ f̂ b(x)

ri ← ri − λ f̂ b(x)

f̂ (x) = ∑
b
λ f̂ b(x)
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Comparing boosting parameters—notice the rates of learning



Tree ensembles and the number of trees



Sources
Sources (articles) of images

Deep learning and radiology
Parking lot detection
New Yorker writing
Gender Shades

Tree-classi�cation boundary examples come from ISL.

I pulled the comic from Twitter.
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https://www.smart2zero.com/news/algorithm-beats-radiologists-diagnosing-x-rays
https://www.smart2zero.com/news/algorithm-beats-radiologists-diagnosing-x-rays
https://www.newyorker.com/magazine/2019/10/14/can-a-machine-learn-to-write-for-the-new-yorker
http://gendershades.org/overview.html
https://www.statlearning.com/
https://twitter.com/athena_schools/status/1063013435779223553/photo/1

