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Schedule

Last time
Introduction to selection-on-unobservables designs
Instrumental variables (IV) and two-stage least squares (2SLS)

Today
Regression discontinuity†

Upcoming
Problem set 2!

† These notes largely follow notes from Michael Anderson, Imbens and Lemieux (2008), and notes from
Teppei Yamamoto.
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https://are.berkeley.edu/~mlanderson/ARE_Website/Home.html
https://www.sciencedirect.com/science/article/pii/S0304407607001091
http://web.mit.edu/teppei/www/
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Regression discontinuity

Setup
We're still in the game of estimating the effect of a potentially endogenous
treatment  on an outcome .

Regression discontinuity (RD) offers a particularly clear/clean research
design based upon an arbitrary threshold (the discontinuity).

That said, most RDs boil down to an implementation of IV.

In addition, while RD is all the rage in modern applied econometrics,
Thistlewaite and Campbell wrote about it back in 1960.

Di Yi
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https://obsstudies.org/wp-content/uploads/2017/01/regression_discontinuity_all_comments-1.pdf
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Regression discontinuity

Our framework
Back to our potential-outcome framework.

We want to know the effect of  on .

New: Suppose  is determined† by whether some variable  crosses a
threshold  (the discontinuity).

The variable  need not be randomly assigned—we will assume it is not
(i.e.,  correlates with  and ).

We will assume that  and  vary smoothly in .

Di Yi

Yi = DiY1i + (1 − Di)Y0i

Di Xi

c

† At least in part.

Xi

Xi Y0i Y1i

Y0i Y1i Xi
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An election candidate wins if her vote share exceeds her competitors.
Election runoffs are triggered if "winner" is below 50%.
Antidiscrimination laws only apply to �rms with >15 employees.
Prisoners are eligible for early parole if some score exceeds a threshold.
An individual is eligible for Medicare if her age is at least 65.
You get a ticket if your speed exceeds the speed limit.
Fifteen-percent discount at Sizzler if your age exceeds 60.
Counties with PM2.5 > 35 μg/m3 are out of attainment.
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We often apply regression-discontinuity designs in settings with some
arbitrary threshold embeded within some bureaucratic decision.

An election candidate wins if her vote share exceeds her competitors.
Election runoffs are triggered if "winner" is below 50%.
Antidiscrimination laws only apply to �rms with >15 employees.
Prisoners are eligible for early parole if some score exceeds a threshold.
An individual is eligible for Medicare if her age is at least 65.
You get a ticket if your speed exceeds the speed limit.
Fifteen-percent discount at Sizzler if your age exceeds 60.
Counties with PM2.5 > 35 μg/m3 are out of attainment.

In some cases, "treatment" is de�nite once we exceed the threshold.
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Sharp vs. fuzzy
We distinguish RDs by how strong/de�nitive the threshold is.

In sharp RDs, individuals move from control to treatment when their 
passes our threshold , i.e.,  switches from 0 to 1 when  moves across .

E.g., a politician wins an election when the difference between her vote
share and her competitor's vote share exceeds zero.

In fuzzy RDs, the probability of treatment  discontinuously
jumps at the threshold , but it does not move from 0 to 1.

E.g., crossing some GRE threshold discontinuously increases your chances
of getting into some grad schools (but doesn't guarantee admittance).

Xi

c Di Xi c

Pr(Di = 1)

c
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Sharp RDs

Setup
With sharp regression discontinuity, the probability of treatment changes
from 0 to 1 as  moves across threshold .

Thus, treatment status entirely depends upon whether , i.e.,

To estimate the causal effect of  on , we compare the mean of  just
above the threshold to the mean of  just below the threshold.

Xi c

Xi ≥ c

Di = I{Xi ≥ c}

Di Yi Yi

Yi

10 / 53



Sharp RDs

More formally
We can write the comparison of means at the threshold as

limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]

11 / 53



Sharp RDs

More formally
We can write the comparison of means at the threshold as

limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]

= limx↓c E[Y1i ∣ Xi = x] − limx↑c E[Y0i ∣ Xi = x]

11 / 53



Sharp RDs

More formally
We can write the comparison of means at the threshold as

limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]

= limx↓c E[Y1i ∣ Xi = x] − limx↑c E[Y0i ∣ Xi = x]

= τSRD

11 / 53



Sharp RDs

More formally
We can write the comparison of means at the threshold as

Assumption  and  are continuous in .

limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]

= limx↓c E[Y1i ∣ Xi = x] − limx↑c E[Y0i ∣ Xi = x]

= τSRD

E[Y1i ∣ Xi = x] E[Y0i ∣ Xi = x] x

11 / 53



Sharp RDs

More formally
We can write the comparison of means at the threshold as

Assumption  and  are continuous in .

limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]

= limx↓c E[Y1i ∣ Xi = x] − limx↑c E[Y0i ∣ Xi = x]

= τSRD

E[Y1i ∣ Xi = x] E[Y0i ∣ Xi = x] x

⟹ τSRD = E[Y1i − Y0i ∣ Xi = c]

11 / 53



Sharp RDs

More formally
We can write the comparison of means at the threshold as

Assumption  and  are continuous in .

I.e., Because we don't observe  for treated individuals, we extrapolate 
 to  for small .

limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]

= limx↓c E[Y1i ∣ Xi = x] − limx↑c E[Y0i ∣ Xi = x]

= τSRD

E[Y1i ∣ Xi = x] E[Y0i ∣ Xi = x] x

⟹ τSRD = E[Y1i − Y0i ∣ Xi = c]

Y0i

E[Y0i ∣ Xi = c − ε] E[Y0i ∣ Xi = c + ε] ε
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Sharp RDs
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Sharp RDs

Estimation
Thus, we estimate

as the diffrence between two regression functions estimated "near" .

We must stay "near" to  to minimize the bias from extrapolating 
 to  (and assuming continuity).

τSRD = lim
x↓c

E[Yi ∣ Xi = x] − lim
x↑c

E[Yi ∣ Xi = x]

c

c

E[Y0i ∣ Xi = c − ε] E[Y0i ∣ Xi = c + ε]
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Ex. Is there effect of a political party winning an election on that party's
likelihood of winning the following election?

Is there a bene�t of incumbency (at the party level)?†

† Lee (2008) addresses this question via RD. Caughey and Sekhon (2011) discuss RD in this setting.

https://www.sciencedirect.com/science/article/pii/S0304407607001121
https://doi.org/10.1093/pan/mpr032
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Let's start with  and .E[Y0i ∣ Xi] E[Y1i ∣ Xi]



You only win an election if your margin of victory exceeds zero.



 at the discontinuity gives .E[Y1i ∣ Xi] − E[Y0i ∣ Xi] τSRD



Real data are a bit trickier. We must estimate  and .E[Y1i ∣ Xi] E[Y0i ∣ Xi]



Questions

�. How should we estimate  and ?

�. How much data should we use—i.e., what is the right bandwidth size?

E[Y1i ∣ Xi] E[Y0i ∣ Xi]



Option 1a Linear regression with constant slopes (and all data)
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Option 1b Linear regression with constant slopes; limited to +/- 50%.



Option 2a Linear regression with differing slopes (and all data)



Option 2b Linear regression with differing slopes; limited to +/- 50%.



Option 2c Linear regression with differing slopes; limited to +/- 25%.



Option 3 Differing quadratic regressions (limited to +/- 50%).



Option 4a Differing local (LOESS) regressions (limited to +/- 50%).



Option 4b Differing local (LOESS) regressions (all data).
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Note Functional form can be very important.



The continuity of  (in ) is also very important. No sorting.E[Y0i ∣ Xi = x] x



Sharp RDs

In practice
Gelman and Imbens (2018) on functional form:

We argue that controlling for global high-order polynomials in
regression discontinuity analysis is a �awed approach with three
major problems: it leads to noisy estimates, sensitivity to the
degree of the polynomial, and poor coverage of con�dence
intervals. We recommend researchers instead use estimators
based on local linear or quadratic polynomials or other smooth
functions.
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Gelman and Imbens (2018) on functional form:

We argue that controlling for global high-order polynomials in
regression discontinuity analysis is a �awed approach with three
major problems: it leads to noisy estimates, sensitivity to the
degree of the polynomial, and poor coverage of con�dence
intervals. We recommend researchers instead use estimators
based on local linear or quadratic polynomials or other smooth
functions.

See Imbens and Kalyanaraman (2012) for optimal bandwidth selection.
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https://amstat.tandfonline.com/doi/abs/10.1080/07350015.2017.1366909
https://academic.oup.com/restud/article-abstract/79/3/933/1533189
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Sharp RDs

Estimation
�. Trim data to a reasonable window around the threshold .

�. Recode  (the "forcing variable") as deviation from , i.e., 

 if 
 if  and thus 
 if  and thus 

�. Determine a model to estimate  for  above and below 0

Linear with common slopes for  and 

Linear/quadratic/polynomial with differing slopes
LOESS, kernel regression, etc.

c

Xi c X̃i = Xi − c

X̃i = 0 Xi = c

X̃i < 0 Xi < c Di = 0

X̃i > 0 Xi > c Di = 1

E[Yi ∣ X̃i] X̃i

E[Yi ∣ X̃i < 0] E[Yi ∣ X̃i > 0]
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Estimation: Linear, common slope
Assumptions

�.  is linear in , i.e., 
�. Treatment effect does not depend upon , i.e., 

where (1) comes from linearity and (2) comes from common slopes.

E[Y0i|Xi = x] x E[Y0i ∣ Xi] = α + βXi

Xi E[Y1i − Y0i ∣ Xi] = τ
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Sharp RDs

Estimation: Linear, common slope
Assumptions

�.  is linear in , i.e., 
�. Treatment effect does not depend upon , i.e., 

where (1) comes from linearity and (2) comes from common slopes.

Recall our de�nition of .

  
   

which we can estimate by regressing  on  and .

E[Y0i|Xi = x] x E[Y0i ∣ Xi] = α + βXi

Xi E[Y1i − Y0i ∣ Xi] = τ

⟹ E[Y1i ∣ Xi] = τ + E[Y0i ∣ Xi] = τ + α + βXi

Yi = DiY1i + (1 − Di)Y0i

E[Yi ∣ Xi, Di] = Di E[Y1i ∣ Xi] + (1 − Di) E[Y0i ∣ Xi]

= α + τDi + βXi = α + τDi + β(X̃i + c) = α̃ + τDi + βX̃i

Yi Di X̃i
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Now treatment effects can vary with .
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E[Y0i ∣ Xi] = α0 + β0Xi E[Y1i ∣ Xi] = α1 + β1Xi
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Sharp RDs

Estimation: Linear, differing slopes
Assumption  and  are linear in , i.e., 

 and 

Now treatment effects can vary with .

  

 

 is the LATE at  . Estimate: Regress  in , , and .†

E[Y0i|Xi = x] E[Y1i|Xi = x] x

E[Y0i ∣ Xi] = α0 + β0Xi E[Y1i ∣ Xi] = α1 + β1Xi

Xi

⟹ E[Y1i − Y0i ∣ Xi] = (α1 − α0) + (β1 − β0) Xi

E[Yi ∣ Xi, Di] = Di E[Y1i ∣ Xi] + (1 − Di) E[Y0i ∣ Xi]

E[Yi ∣ Xi, Di] = α0 + β0Xi + (α1 − α0)Di + (β1 − β0)DiXi
∣
∣∣

E[Yi ∣ Xi, Di] = α̃ + β0X̃i + τDi + β̃DiX̃i

τ X̃i = 0 (Xi = c) Yi X̃i Di DiX̃i

† See Appendix for omitted steps.
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Formally,

Ex., Exceeding a minimum GRE requirement for graduate school.

c

Xi c
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x↓c
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Fuzzy RDs

Threshold effects
We now have two effects of  crossing our threshold .

�. The effect of  crossing  on our outcome

�. The effect of  crossing  on the probability of treatment

The treatment effect de�ned by a fuzzy RD is the ratio of (1) to (2)

Xi c

Xi c

lim
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E[Yi ∣ Xi = x] − lim
x↑c
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Fuzzy RDs

An old friend
This de�nition of the fuzzy-RD treatment effect

should remind you of something—IV, where .

Accordingly, fuzzy RDs are going to have the same requirements and
interpretation as IV.

τFRD =
limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]
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Fuzzy RDs

More formally
Let  denote the potential treatment status of  with threshold .

Why write potential treatment status  a function of the threshold?

Changing the threshold (e.g., voting age) generally makes more sense than
changing  (e.g., age).†

I.e., changing the threshold changes treatment statuses at the marginal.

Assumption  is non-increasing in  at .

This is our monotonicity assumption for fuzzy RDs. If we raise  from  to 
, no one joins treatment—no de�ers.

Di (x∗) i x∗

Di

Xi

† This observation/motivation can help with inference.

Di (x∗) x∗ x∗ = c

x∗ c

c + ϵ

38 / 53
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Fuzzy RDs

Compliance
Our compliers in this setting are individuals such that

i.e., compliers are only treated when  (the threshold) is below their .

Back to the fuzzy RD treatment effect

 is a complier and .

Thus,  can be a very local LATE.

lim
x∗↓Xi

Di (x∗) = 0 lim
x∗↑Xi

Di (x∗) = 1

x∗ Xi

τFRD =
limx↓c E[Yi ∣ Xi = x] − limx↑c E[Yi ∣ Xi = x]
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τFRD
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General
RD analyses hinge on their graphical analyses.

If the discontinuity is not graphically apparent, most people are not going
to care about the results of a few tortured regressions.
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Graphical analysis

General
RD analyses hinge on their graphical analyses.

If the discontinuity is not graphically apparent, most people are not going
to care about the results of a few tortured regressions.

You're arguing you know that treatment assignment changes across the
threshold. If your reader/viewer cannot see it, they're likely not going to
believe your regression tables.†

† This skepticism may be well founded. We know RDs are sensitive to functional form—and researchers
have been known to p-hack.
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Graphical analysis

Three �gures
Most RD analyses will have some subset of three types of �gures.

�. Outcomes by the running/forcing variable  
Do we observe a treatment effect across the discontinuity?

�. Covariates by the running/forcing variable  
Are covariates smooth/balanced across the discontinuity?

�. Density of running/forcing variable  
Is there evidence of sorting into treatment (across the threshold)?

(Xi)

(Xi)

(Xi)
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Outcomes by running variable
These �gures tend to show the average value of the outcome  at evenly
spaced bins of the running variable .

We have two parameter choices

�. Binwidth 
�. Numbers of bins below and above threshold 

that yield  bins 

We then calculate summaries for each bin.

Yi

Xi

(h)

(K0, K1)

K = K0 + K1 (k = 1, … , K)

bk = c − (K0 − k + 1) × h
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Graphical analysis

Outcomes by running variable
The bin's number of observations, Nk

Nk =
N

∑
i=1

I {bk < Xi ≤ bk+1}
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Graphical analysis

Outcomes by running variable
The bin's number of observations, 

The average treatment level in the bin,  (for fuzzy RDs)

The average outcome in the bin, 

Nk

Nk =
N

∑
i=1

I {bk < Xi ≤ bk+1}

¯̄̄ ¯̄
Dk

¯̄̄ ¯̄
Dk =

N

∑
i=1
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1

Nk

¯̄¯̄
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Graphical analysis

Outcomes by running variable
And then plot  against the midpoint of each bin.

Q Does crossing  clearly affect our outcome ? (Fuzzy RD reduced form)

¯̄¯̄
Yk

c Yi

46 / 53



Graphical analysis

Covariates by running variable
Now we apply the same approach to covariates .(Zi)
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Graphical analysis

Density of running variable
Finally we looking for other violations of smoothness—particularly in form
gaming the threshold.

In other words: Are individuals bunching just above or just below the
threshold?

If so, folks just below the threshold don't give us the clean counterfactual
that we want for the folks just above the threshold.

McCrary (2008) suggests testing the density of  at .Xi c
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Graphical analysis

Density of running variable
Likely bunching (problem)

Q Is the distribution of  smooth across ?Xi c
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Graphical analysis

Additional points
�. No bin should cross the threshold.
�. Are there discontinuities other than ? Should there be? Smoothness?c
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Graphical analysis

Additional points
�. No bin should cross the threshold.
�. Are there discontinuities other than ? Should there be? Smoothness?

Again, if these graphs are not clear and convincing, it's going to be hard to
make the case that you have a true/credible discontinuity.

c
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Appendix

Estimation: Linear, differing slopes
De�nitions of terms that magically appear

α̃ = α0 + β0c

τ = (α1 − α0) + (β1 − β0) c

β̃ = (β1 − β0)
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