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Schedule

Last time

The CEF and least-squares regression

Today

Inference  
Read MHE 3.1

Upcoming

Lab (as usual) on Friday.  
Problem set 001 due April 7th  
Class project, step 1 due on April 15th
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Inference

Why?
Q What's the big deal with inference?
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Inference

Why?
Q What's the big deal with inference?

A We rarely know the CEF or the population (and its regression vector).

We can draw statistical inferences about the population using samples.

Important The issue/topic of statistical inference is separate from causality.

Separate questions

�. How do we interpret the estimated coef�cient ?
�. What is the sampling distribution of ?

β̂

β̂
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Inference

Moving from population to sample
Recall The population-regression function gives us the best linear
approximation to the CEF.
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Inference

Moving from population to sample
Recall The population-regression function gives us the best linear
approximation to the CEF.

We're interested in the (unknown) population-regression vector

which we estimate via the ordinary least squares (OLS) estimator†

β = E [XiX
′

i]
−1

E[XiYi]

β̂ = (∑
i

XiX
′

i)

−1

(∑
i

XiYi)

† MHE presents a method-of-moments motivation for this derivation, where  is our sample-

based estimated for . You've also seen others, e.g., minimizing MSE of  given .
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Inference

A classic
However you write it, this OLS estimator

is the same estimator you've been using since undergrad.
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Inference

A classic
However you write it, this OLS estimator

is the same estimator you've been using since undergrad.

Note I'm following MHE in de�ning .

β̂ = (X′X)
−1

X′y

= (∑
i

XiX
′

i)

−1
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XiYi)
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Inference

A classic
As you've learned, the OLS estimator

has asymptotic covariance
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Inference

A classic
As you've learned, the OLS estimator

has asymptotic covariance

which we estimate by (1) replacing  with  and (2) replacing

expectations with sample means, e.g.,  becomes .
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Inference

A classic
As you've learned, the OLS estimator

has asymptotic covariance

which we estimate by (1) replacing  with  and (2) replacing

expectations with sample means, e.g.,  becomes .

Standard errors of this �avor are known as heteroskedasticity-consistent
(or -robust) standard errors (or Eicker-Huber-White).
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Inference

Defaults
Statistical packages default to assuming homoskedasticity, i.e., 

 for all .E[e2

i ∣ Xi] = σ2 i
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 for all . With homoskedasticity,E[e2
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Inference

Defaults
Statistical packages default to assuming homoskedasticity, i.e., 

 for all . With homoskedasticity,

Now, returning to to the asym. covariance matrix of ,

E[e2

i ∣ Xi] = σ2 i

E[XiX
′

ie
2
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Inference

Defaults
Angrist and Pischke argue we should probably change our default to
heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression)
generates heteroskedasticity.
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generates heteroskedasticity.
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Inference

Defaults
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heteroskedasticity.
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Inference

Defaults
Angrist and Pischke argue we should probably change our default to
heteroskedasticity.

If the CEF is nonlinear, then our linear approximation (linear regression)
generates heteroskedasticity.

 

   

  

Thus, even if  has contant variance,  is heteroskedastic.
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Inference

Two notes
�. Heteroskedasticity is not our biggest concern in inference.

...as an empirical matter, heteroskedasticity may matter very
little... If heteroskedasticity matters a lot, say, more than a 30
percent increase or any marked decrease in standard errors,
you should worry about possible programming errors or
other problems. (MHE, p.47)

�. Notice that we've avoided "standard" stronger assumptions, e.g.,
normality, �xed regressors, linear CEF, homoskedasticity.
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Inference

Two notes
�. Heteroskedasticity is not our biggest concern in inference.

...as an empirical matter, heteroskedasticity may matter very
little... If heteroskedasticity matters a lot, say, more than a 30
percent increase or any marked decrease in standard errors,
you should worry about possible programming errors or
other problems. (MHE, p.47)

�. Notice that we've avoided "standard" stronger assumptions, e.g.,
normality, �xed regressors, linear CEF, homoskedasticity.

Following (2): We only have large-sample, asymptotic results (consistency)
rather than �nite-sample results (unbiasedness).
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Inference

Warning
Because many of properties we care about for the inference are large-
sample properties, they may not always apply to small samples.
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Inference

Warning
Because many of properties we care about for the inference are large-
sample properties, they may not always apply to small samples.

One practical way we can study the behavior of an estimator: simulation.

Note You need to make sure your simulation can actually test/respond to
the question you are asking (e.g., bias vs. consistency).
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Inference

Simulation
Let's compare false- and true-positive rates† for

�. Homoskedasticity-assuming standard errors 
�. Heteroskedasticity-robust standard errors

† The false-positive rate goes by many names; another common name: type-I error rate.

(Var[ei|Xi] = σ2)
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Inference

Simulation
Let's compare false- and true-positive rates† for

�. Homoskedasticity-assuming standard errors 
�. Heteroskedasticity-robust standard errors

Simulation outline

1. Define data-generating process (DGP).

2. Choose sample size n.

3. Set seed.

4. Run 10,000 iterations of  

  a. Draw sample of size n from DGP.  

  b. Conduct inference.  

  c. Record inferences' outcomes.

† The false-positive rate goes by many names; another common name: type-I error rate.

(Var[ei|Xi] = σ2)
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Simulation

Data-generating process
First, we'll de�ne our DGP.
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Simulation

Data-generating process
First, we'll de�ne our DGP.

We've been talking a lot about nonlinear CEFs, so let's use one.

Let's keep the disturbances well behaved.

where  and .

Yi = 1 + e0.5Xi + εi

Xi ∼ Uniform(0, 10) εi ∼ N(0, 1)
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Simulation

Data-generating process

where  and .

Yi = 1 + e0.5Xi + εi

Xi ∼ Uniform(0, 10) εi ∼ N(0, 152)
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library(pacman)
p_load(dplyr)
# Choose a size
n = 1000
# Generate data
dgp_df = tibble(
  ε = rnorm(n, sd = 15),
  x = runif(n, min = 0, max = 10),
  y = 1 + exp(0.5 * x) + ε
)
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library(pacman)
p_load(dplyr)
# Choose a size
n = 1000
# Generate data
dgp_df = tibble(
  ε = rnorm(n, sd = 15),
  x = runif(n, min = 0, max = 10),
  y = 1 + exp(0.5 * x) + ε
)

#> # A tibble: 1,000 × 3
#>         ε     x      y
#>     <dbl> <dbl>  <dbl>
#>  1   8.78  9.53 127.  
#>  2  10.6   6.22  34.0 
#>  3  -1.64  5.32  13.6 
#>  4  -6.80  8.92  80.7 
#>  5   9.09  1.96  12.8 
#>  6 -27.3   8.84  57.0 
#>  7   9.45  2.18  13.4 
#>  8  -4.14  3.78   3.47
#>  9  -4.26  3.52   2.54
#> 10 -13.8   9.88 127.  
#> # … with 990 more rows

Simulation

Data-generating process

where  and .

Yi = 1 + e0.5Xi + εi

Xi ∼ Uniform(0, 10) εi ∼ N(0, 152)
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Our CEF
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Our population
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The population least-squares regression line
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Simulation

Iterating
To make iterating easier, let's wrap our DGP in a function.

fun_iter = function(iter, n = 30) {
  # Generate data
  iter_df = tibble(
    ε = rnorm(n, sd = 15),
    x = runif(n, min = 0, max = 10),
    y = 1 + exp(0.5 * x) + ε
  )
}

We still need to run a regression and draw some inferences.

Note We're defaulting to size-30 samples.
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Simulation
We will use lm_robust()  from the estimatr  package for OLS and inference.†

se_type = "classical"  provides homoskedasticity-assuming SEs
se_type = "HC2"  provides heteroskedasticity-robust SEs

lm_robust(y ~ x, data = dgp_df, se_type = "classical") %>% tidy() %>% select(1:5)

#>          term  estimate std.error statistic       p.value
#> 1 (Intercept) -21.14183  1.473496 -14.34807  1.383951e-42
#> 2           x  10.48074  0.257810  40.65294 6.560626e-214

lm_robust(y ~ x, data = dgp_df, se_type = "HC2") %>% tidy() %>% select(1:5)

#>          term  estimate std.error statistic       p.value
#> 1 (Intercept) -21.14183 1.4335274 -14.74812  1.112039e-44
#> 2           x  10.48074 0.3097606  33.83495 8.788638e-168

† lm()  works for "spherical" standard errors but cannot calculate het.-robust standard errors.
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Simulation

Inference
Now add these estimators to our iteration function...

fun_iter = function(iter, n = 30) {
  # Generate data
  iter_df = tibble(
    ε = rnorm(n, sd = 15),
    x = runif(n, min = 0, max = 10),
    y = 1 + exp(0.5 * x) + ε
  )
  # Estimate models
  lm1 = lm_robust(y ~ x, data = iter_df, se_type = "classical")
  lm2 = lm_robust(y ~ x, data = iter_df, se_type = "HC2")
  # Stack and return results
  bind_rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) %>% filter(term �� "x") %>%
    mutate(se_type = c("classical", "HC2"), i = iter)
}
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Simulation

Run it
Now we need to actually run our fun_iter()  function 10,000 times.
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Now we need to actually run our fun_iter()  function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

lapply() , e.g., lapply(X = 1�3, FUN = sqrt)
for() , e.g., for (x in 1�3) sqrt(x)
map()  from purrr , e.g., map(1�3, sqrt)
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Simulation

Run it
Now we need to actually run our fun_iter()  function 10,000 times.

There are a lot of ways to run a single function over a list/vector of values.

lapply() , e.g., lapply(X = 1�3, FUN = sqrt)
for() , e.g., for (x in 1�3) sqrt(x)
map()  from purrr , e.g., map(1�3, sqrt)

We're going to go with map()  from the purrr  package because it easily
parallelizes across platforms using the furrr  package.
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Run our function 10,000 times

# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)

Simulation

Run it!
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Run our function 10,000 times

# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)

Parallelized 10,000 iterations

# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multiprocess)
# Run 10,000 iterations
sim_list = future_map(
  1:1e4, fun_iter,
  .options = future_options(seed = T)
)
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Run our function 10,000 times

# Packages
p_load(purrr)
# Set seed
set.seed(12345)
# Run 10,000 iterations
sim_list = map(1:1e4, fun_iter)

Parallelized 10,000 iterations

# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multiprocess)
# Run 10,000 iterations
sim_list = future_map(
  1:1e4, fun_iter,
  .options = future_options(seed = T)
)

Simulation

Run it!

The furrr  package ( future  + purrr ) makes parallelization easy and fun!😸
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Simulation

Run it!!
Our fun_iter()  function returns a data.frame , and future_map()  returns a
list  (of the returned objects).

So sim_list  is going to be a list  of data.frame  objects. We can bind
them into one data.frame  with bind_rows() .

# Bind list together
sim_df = bind_rows(sim_list)
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Simulation

Run it!!
Our fun_iter()  function returns a data.frame , and future_map()  returns a
list  (of the returned objects).

So sim_list  is going to be a list  of data.frame  objects. We can bind
them into one data.frame  with bind_rows() .

# Bind list together
sim_df = bind_rows(sim_list)

So what are the results?
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Comparing the distributions of standard errors for the coef�cient on x
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Comparing the distributions of  statistics for the coef�cient on t x
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Q All of these test are for a false H0. How would the simulation change to
enforce a true null hypothesis?
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Simulation

Updating to enforce the null
Let's update our simulation function to take arguments γ  and δ  such that

where .

Yi = 1 + eγXi + εi

εi ∼ N(0, σ2Xδ
i )
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Simulation

Updating to enforce the null
Let's update our simulation function to take arguments γ  and δ  such that

where .

In other words,

 implies no relationship between  and .
 implies homoskedasticity.

Yi = 1 + eγXi + εi

εi ∼ N(0, σ2Xδ
i )

γ = 0 Yi Xi

δ = 0
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Simulation

Updating to enforce the null
Updating the function...

flex_iter = function(iter, γ = 0, δ = 1, n = 30) {
  # Generate data
  iter_df = tibble(
    x = runif(n, min = 0, max = 10),
    ε = rnorm(n, sd = 15 * x^δ),
    y = 1 + exp(γ * x) + ε
  )
  # Estimate models
  lm1 = lm_robust(y ~ x, data = iter_df, se_type = "classical")
  lm2 = lm_robust(y ~ x, data = iter_df, se_type = "HC2")
  # Stack and return results
  bind_rows(tidy(lm1), tidy(lm2)) %>%
    select(1:5) %>% filter(term �� "x") %>%
    mutate(se_type = c("classical", "HC2"), i = iter)
}
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Simulation

Run again!
Now we run our new function flex_iter()  10,000 times

# Packages
p_load(purrr, furrr)
# Set options
set.seed(123)
# Tell R to parallelize
plan(multiprocess)
# Run 10,000 iterations
null_df = future_map(
  1:1e4, flex_iter,
  # Enforce the null hypothesis
  γ = 0,
  # Specify heteroskedasticity
  δ = 1,
  .options = future_options(seed = T)
) %>% bind_rows()
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Comparing the distributions of standard errors for the coef�cient on x
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Comparing the distributions of  statistics for the coef�cient on t x
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Distributions of p-values: both methods slightly over-reject the (true) null
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