
Adventures in Simulation in R
EC 425/525, Lab 6
Edward Rubin
11 May 2019

Prologue

2 / 28

Schedule

Last time
Plotting

Today
Simulation

3 / 28

Simulation

4 / 28

Simulation

Motivation
As we've discussed, simulation can be a quick and effective way to better
understand how an estimator performs/behaves.

You just need to be careful to ask a clear, answerable question and then
run a simulation that corresponds/answers this question.

In addition, simulations can be computationally intense—they are often the
first time you have to really think about efficiency in coding.

5 / 28

Simulation

Generic outline
The general outline for a simulation is fairly consistent.

1. Define the population via a data-generating process (DGP).†

2. Iterate. In each iteration:

Sample from your population.
Construct estimates/inferences that relate to your original question.

3. Summarize results.

† Some people prefer to actually construct the population in this step and then repeatedly sample from
this fixed population. Others stick with a population defined by the DGP.

6 / 28

Simulation

Practical issues
This semi-theoretical framework needs a few practical reminders.

1. Always set a seed at the beginning of your simulation (set.seed()).

1. Parallelize where/when possible (e.g., the furrr package).

1. Writing a function for a single iteration can be helpful (see above).

1. There is a (big) difference between unbiasedness and consistency.

1. You build simulations/DGPs with assumptions.

1. Analytical results can inform and/or replace simulations.

7 / 28

Example simulation

8 / 28

Simulation

The question
Q We've shown that instrumental variables (IV) is consistent, how does it
perform (i.e., is it unbiased) in finite (small) samples?

Note This question is definitely answerable analytically.

Nevertheless, let's see how IV performs at several small-ish sample sizes.

While we're at it, let's confirm OLS is indeed biased in this setting.

9 / 28

Simulation

DGP
We want a valid instrument for a setting in which treatment is endogenous.

So we want

1. Endogenous treatment:
2. Predictive:
3. Excludability:

where (2) and (3) imply is a valid instrument.

Yi = α + τDi + εi

Cov(Di, εi) ≠ 0

Cov(Zi, Di) ≠ 0

Cov(Zi, εi) = 0

Zi

10 / 28

Simulation

DGP
In other words, the variance-covariance matrix of , , and is

If we assume unit variances and covariances are 0.6, then

Di εi Zi

Σ =

⎡
⎢ ⎢
⎣

σ
2
D

σD,ε σD,Z

σD,ε σ
2
ε 0

σD,Z 0 σ
2
Z

⎤
⎥ ⎥
⎦

Σ =

⎡
⎢
⎣

1 0.6 0.6

0.6 1 0

0.6 0 1

⎤
⎥
⎦

11 / 28

Simulation

DGP
To simplify our lives, let's assume that , , and come from a
multivariate normal distribution.

We defined their covariance matrix. We need to define their means.

, , and .

Finally, we need to define the way in which and affect .

i.e., .

Di εi Zi

μD = 10 με = 0 μZ = 3

Di εi Yi

Yi = 7 + 1 × Di + εi

τ = 1

12 / 28

Simulation

DGP
Lucky for us, R's MASS package has a function mvrnorm() that draws n
random observations from a multivariate normal distribution with means
mu and variance-covariance matrix Sigma .

13 / 28

Simulation

Sampling from our DPG
We're ready to write a function that performs one iteration.

Our function will accept a single argument n , the sample size.

sim_iter �� function(n) {
 # Define our variance�covariance matrix (D, ε, Z)
 Σ �� matrix(data = c(1, 0.6, 0.6, 0.6, 1, 0, 0.6, 0, 1), ncol = 3)
 # Our vector of means (D, ε, Z)
 μ = c(10, 0, 3)
 # Draw n observations; convert to tibble
 sample_df �� MASS��mvrnorm(n = n, mu = μ, Sigma = Σ) %>% tibble()
 # Name variables
 names(sample_df) �� c("D", "ε", "Z")
 # Calculate Y
 sample_df %��% mutate(Y = 7 + 1 * D + ε)
}

14 / 28

Simulation

Estimation
Now we just need to estimate and . We'll use estimatr .

Previous OLS estimates of the effect of x on y

lm_robust(y ~ x)

New IV estimates of the effect of x on y with instrument z

iv_robust(y ~ x | z)

βIV βOLS

15 / 28

sim_iter �� function(n) {
 # Define our variance�covariance matrix (D, ε, Z)
 Σ �� matrix(data = c(1, 0.6, 0.6, 0.6, 1, 0, 0.6, 0, 1), ncol = 3)
 # Our vector of means (D, ε, Z)
 μ = c(10, 0, 3)
 # Draw n observations; convert to tibble
 smpl_df �� MASS��mvrnorm(n = n, mu = μ, Sigma = Σ) %>% data.frame()
 # Name variables
 names(smpl_df) �� c("D", "ε", "Z")
 # Calculate Y
 smpl_df %��% mutate(Y = 7 + 1 * D + ε)
 # Estimates
 est_df �� bind_rows(
 # The OLS estimates
 lm_robust(Y ~ D, data = smpl_df) %>% tidy() %>% mutate(est = "OLS"),
 # The IV estimates
 iv_robust(Y ~ D | Z, data = smpl_df) %>% tidy() %>% mutate(est = "IV")
)
 return(est_df)
}

16 / 28

Simulation

Repeat
Now we want run sim_iter() many times.

And we're going to do it in parallel—using the furrr package.

The output of sim_iter() is a data frame, so we can actually use a function
from furrr that expects outputted data frames, namely, future_map_dfr .

The suffix _dfr means the function will row-bind the data frames returned
by individual iterations.

We'll also use the rep() function which repeats things, e.g., rep("a", 3)
repeats "a" three times.

17 / 28

Simulation
Assuming we've already entered sim_iter() into memory, we can run our
simulation 5,000 times, each with sample size 50—in parallel!

Load furrr
p_load(furrr)
Tell R to parallelize with 4 cores
plan(multiprocess, workers = 4)
Set a seed
set.seed(12345)
Run simulation with sample size 50
sim50 �� future_map_dfr(
 # Repeat sample size 50 for 5000 times
 rep(50, 5000),
 # Our function
 sim_iter,
 # Let furrr know we want to set a seed
 .options = future_options(seed = T)
)

18 / 28

Sample size 50 (5,000 iterations)

19 / 28

Let's vary the sample size and see what happens.

20 / 28

Sample size 10 (5,000 iterations)

21 / 28

Sample size 25 (5,000 iterations)

22 / 28

Sample size 50 (5,000 iterations)

23 / 28

Sample size 100 (5,000 iterations)

24 / 28

Simulation

Assumptions
Keep in mind that we made several assumptions about

the distribution (joint normality is very restrictive)
variance (all equal, independent, and homoskedastic)
covariances (again, all equal)
strong instrument

25 / 28

Simulation

Looping
There are many ways to iterate/loop in R:

for() , while() , etc.
lapply() , mapply() , etc.
parallel : mclapply() , mcmapply() , etc.
foreach

future , furrr , and future.apply : future_lapply() , future_map() , etc.

They are not all equal/identical.

Few can access values from previous iterations (for() and foreach).
A subset is parallelizable (parallel , foreach , the future family).
Behavior can be OS specific (especially parallel).

26 / 28

Simulation

for()

You'll often hear that you should never use for() loops in R.

This opinion is a bit extreme, but there are a few reasons to avoid them.

1. for() is not parallelized (though foreach can be).

2. for() doesn't clean up after itself—leaving objects in memory between
iterations and after the loop finishes.†

3. for() loops generally "grow" data which can be slow/inefficient.

See Grant McDermott's lectures for further justification.

† This feature can be desirable—e.g., linking iterations.
27 / 28

https://privefl.github.io/blog/why-loops-are-slow-in-r/
https://github.com/uo-ec607

Simulation
1. Motivation
2. Generic outline
3. Example

The question
DGP
Sampling from the DGP
Iterating
Assumptions

4. Loops

Table of contents

28 / 28

