Data in/and R
EC 425/525, Lab 2

Edward Rubin
12 April 2019

Prologue

2 &5

Schedule

Last time

Getting to know R—objects, functions, etc.

Today

Working with data in R.

e The data.frame class
e The dplyr package

Upcoming

Due Monday Step 1 of our research-project proposal.

3/35

Quick review

1. mat < matrix(data = 1:10, ncol = 2) creates a 5x2 matrix object
containing the numbers 1 through 10 (filled by column).

2. mat[1,] grabs the first row of our matrix mat .
3. mat[3,2] « NA assigns NA to row-3 column-2 element of mat.
4. head(mat, 3) returns up to the first three rows of mat.

5. matrix(data = rnorm(100), ncol = 10) creates a 10x10 matrix filled
with random draws from N(u = 0,02 = 1).

6. mat[3,2] « "Carrots" assigns the character object "Carrots" to the
[3,2] element of mat, forcing all elements of mat to character.

4 [35

Next steps

Matrices are convenient two-dimensional arrays on which math "works""

But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

T At least for numeric and logical matrices. 5/ 35

Next steps

Matrices are convenient two-dimensional arrays on which math "works""

But matrices also require all elements to be of the same class.
Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.

T At least for numeric and logical matrices. 5/ 35

Next steps
Matrices are convenient two-dimensional arrays on which math "works""
But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table?

T At least for numeric and logical matrices. 5/ 35

Next steps
Matrices are convenient two-dimensional arrays on which math "works""
But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table? Or a data.frame?

T At least for numeric and logical matrices. 5/ 35

Next steps

Matrices are convenient two-dimensional arrays on which math "works""

But matrices also require all elements to be of the same class.
Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table? Or a data.frame?

We'll start with data.frame.

T At least for numeric and logical matrices. 5/ 35

Next steps
Matrices are convenient two-dimensional arrays on which math "works""
But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table? Or a data.frame?

We'll start with data.frame.

We will spend a good amount of time on data frames, as they make up a
huge part of your workflow.

T At least for numeric and logical matrices. 5/ 35

A data.frame IS R'S base, spreadsheet-like object that holds variables.

6 /35

A data.frame IS R'S base, spreadsheet-like object that holds variables.

6 /35

Data frames

A data.frame IS R'S base, spreadsheet-like object that holds variables.

#> 1d first name fave num 1s_tired loves _econ
#> 1 1 Karmin 68 TRUE FALSE
#> 2 2 Raychelle 57 TRUE TRUE
#> 3 3 Jemelle 10 TRUE TRUE
#> 4 4 Yusif 90 TRUE TRUE
#> 5 5 Catherine 24 TRUE TRUE
#> 6 6 Glory 4 TRUE TRUE
#> 7 7 Kaelah 33 FALSE TRUE
#> 8 8 Lysette 96 TRUE TRUE
#> O 9 Cisco 89 TRUE TRUE
#> 10 10 Harman 69 TRUE TRUE
#> 11 11 Jennelle 64 TRUE TRUE
#> 12 12 Crayton 100 TRUE TRUE

6 /35

Data frames

A data.frame IS R'S base, spreadsheet-like object that holds variables.

#> name height mass gender homeworld species
#> 1 Luke Skywalker 172 77 male Tatoolne Human
#> 2 C-3PO 167 75 <NA> Tatooine Droid
#> 3 R2-D2 96 32 <NA> Naboo Droid
#> 4 Darth Vader 202 136 male Tatoolne Human
#> 5 Leia Organa 150 49 female Alderaan Human
#> 6 Owen Lars 178 120 male Tatooilne Human
#> 7 Beru Whitesun lars 165 75 female Tatooilne Human
#> 8 R5-D4 97 32 <NA> Tatooilne Droid
#> 9 Biggs Darklighter 183 84 male Tatooilne Human
#> 10 Obi-Wan Kenob1i 182 77 male Stewjon Human
#> 11 Anakin Skywalker 188 84 male Tatooine Human
#> 12 Wilhuff Tarkin 180 NA male Eriadu Human

7/ 35

Creation

The data.frame() function creates...

8 /35

Creation

The data.frame() function creates... data.frame objects.

8 /35

Creation

The data.frame() function creates... data.frame objects.

You'll generally define data frames by passing the function
(1) column names and (2) values for the columns.

data.frame(varl = 1:5, var2 = "apple", var3 = rnorm(5))

8 /35

Creation

The data.frame() function creates... data.frame objects.

You'll generally define data frames by passing the function
(1) column names and (2) values for the columns.

data.frame(varl = 1:5, var2 = "apple", var3 = rnorm(5))

You can also assign the values using already-existing objects, e.g.,

tmp < rnorm(5)

data.frame(varl = 1:5, var2 = "apple", var3 = tmp)

8 /35

Data frames

Creation

Creating the data frame

data.frame(varl = 1:5, var2 = "apple", var3 = rnorm(5))
#> varl var?2 var3

#> 1 1 apple -0.6250393

#> 2 2 apple -1.6866933

#> 3 3 apple 0.8377870

#> 4 4 apple 0.1533731

#> 5 5 apple -1.1381369

(What a beauty.)

9/35

Data frames

Creation

data.frame(varil 1:5, var2 = "apple", var3 = rnorm(5))

H> varl var?2 var3
#> 1 1 apple -0.6250393
#> 2 2 apple -1.6866933
#> 3 3 apple 0.8377870
#> 4 4 apple 0.1533731
#> 5 5 apple -1.1381369

(What a beauty.)

Notice that R assumes we want to repeat "apple" for the entire column.

9/35

Creation

You can also create data frames from other objects (e.g., matrices) using

the function as.data.frame() '

However, your data frame's columns will only have names if your matrix's
columns had names.

T Or just plain, old data.frame(). 10/ 35

Indexing

Consider a data frame our_df <« data.frame(x = 1:3, y = 4:6, z = 7:9).
Option 1 Index data frames just as you index matrices in R.

e our_df[1,1] grabs the value in the first row of the first variable.
e our_df[2,] returns the second row of our_df (as a data frame).
e our df[,3] returns the third column (variable) of our_df (as a vector).

1 /35

Indexing

Consider a data frame our_df <« data.frame(x = 1:3, y = 4:6, z = 7:9).
Option 1 Index data frames just as you index matrices in R.

e our_df[1,1] grabs the value in the first row of the first variable.
e our_df[2,] returns the second row of our_df (as a data frame).
e our df[,3] returns the third column (variable) of our_df (as a vector).

Option 2 Reference values/variables using columns' names.

e our_df$x returns the column named x (as a vector). New: $

e our_ df[,"x"] returns the column named x (as a vector).

e our df["x"] returns the column named x (as a data frame).

e our_df[,c("x","y")] returns a data frame with variables "x" and "y".

1 /35

Names (of columns)

The columns (variables) in your data frame have names.”

Q What if you want to see/know those names?

T If you don't name the columns, then R will.
12 / 35

Names (of columns)
The columns (variables) in your data frame have names.”

Q What if you want to see/know those names?

A You've got a few options.

T If you don't name the columns, then R will.
12 / 35

Names (of columns)
The columns (variables) in your data frame have names.”
Q What if you want to see/know those names?

A You've got a few options.

1. The names() function returns the names of an object.

T If you don't name the columns, then R will.
12 / 35

Names (of columns)

The columns (variables) in your data frame have names.”
Q What if you want to see/know those names?

A You've got a few options.

1. The names() function returns the names of an object.

2. head(your_df) will show you the first 6 rows of your_df.
Note: May provide too much output if you have a lot of columns.

T If you don't name the columns, then R will.
12 / 35

Names (of columns)

The columns (variables) in your data frame have names.”
Q What if you want to see/know those names?

A You've got a few options.

1. The names() function returns the names of an object.

2. head(your_df) will show you the first 6 rows of your_df.
Note: May provide too much output if you have a lot of columns.

3.In RStudio: View(your_df) or look in your Environment tab.

T If you don't name the columns, then R will.
12 / 35

Naming

The names() function will also help you rename any/all variables.

13/ 35

Naming

The names() function will also help you rename any/all variables.

Change the names of all variables (include a name for each variable):

names(our_df) <« c("namel", "name2", "name3")

13/ 35

Naming

The names() function will also help you rename any/all variables.

Change the names of all variables (include a name for each variable):

names(our_df) <« c("namel", "name2", "name3")

Change the name of the second variable (only):

names(our_df)[2] « "name2"

13/ 35

Adding variables

Just as we referenced existing variables using $var_name,
we can create new varirables using $new_var, e.g.,

Add a variable to our _df
our_df$new_var < 1:100

14 [35

Adding variables
Just as we referenced existing variables using $var_name,

we can create new varirables using $new_var, e.g.,

our_df$new_var < 1:100

If you want to use existing columns to create a new variable

our_df$xy <« our_df$x * our_df$y

14 [35

Adding variables

Just as we referenced existing variables using $var_name,
we can create new varirables using $new_var, e.g.,

our_df$new_var < 1:100

If you want to use existing columns to create a new variable

our_df$xy <« our_df$x * our_df$y

Q Isn't there a better/faster/less-typing way?

14 [35

Adding variables

Just as we referenced existing variables using $var_name,
we can create new varirables using $new_var, e.g.,

our_df$new_var < 1:100

If you want to use existing columns to create a new variable

our_df$xy <« our_df$x * our_df$y

Q Isn't there a better/faster/less-typing way?

A Yes. Enter dplyr

14 [35

Adding variables

Just as we referenced existing variables using $var_name,
we can create new varirables using $new_var, e.g.,

our_df$new_var < 1:100

If you want to use existing columns to create a new variable

our_df$xy <« our_df$x * our_df$y

Q Isn't there a better/faster/less-typing way?

A Yes. Enter dplyr (also: data.table, which we'll leave for the future).

14 [35

dplyr

Intro

It's a package.

15/ 35

dplyr

Intro

It's a package. dplyr is not installed by default, so you'll need to install it."

t orjust p_load(dpl after loadin)
j p_load(dplyr) g pacman 15/ 35

dplyr

Intro

It's a package. dplyr is not installed by default, so you'll need to install it."

dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-
based approach to programming/data work.

t orjust p_load(dplyr) after loadin)
J p_ plyr g pacman 15 / 35

https://dplyr.tidyverse.org/

dplyr

Intro

It's a package. dplyr is not installed by default, so you'll need to install it."

dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-
based approach to programming/data work.

e data compose the subjects of your stories

e dplyr provides the verbs (action words) :
filter(), mutate(), select(), group_by(), summarize(), arrange()

t orjust p_load(dplyr) after loadin)
J p_ plyr g pacman 15 / 35

https://dplyr.tidyverse.org/

dplyr

Intro

It's a package. dplyr is not installed by default, so you'll need to install it."

dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-
based approach to programming/data work.

e data compose the subjects of your stories

e dplyr provides the verbs (action words) :
filter(), mutate(), select(), group_by(), summarize(), arrange()

Bonus dplyr Is pretty fast and able to interact with SQL databases.

t orjust p_load(dplyr) after loadin)
J p_ plyr g pacman 15 / 35

https://dplyr.tidyverse.org/

dplyr

Manipulating variables: mutate()

dplyr streamlines adding/manipulating variables in your data frame.
Function mutate(.data, ...)

e Required argument .data, an existing data frame

o Additional arguments Names and values of the new variables

e Output An updated data frame

16 / 35

dplyr

Manipulating variables: mutate()

dplyr streamlines adding/manipulating variables in your data frame.
Function mutate(.data, ...)

e Required argument .data, an existing data frame

o Additional arguments Names and values of the new variables

e Output An updated data frame

mutate(.data = our_df, newl = 7, new2 = X * V)

16 / 35

dplyr

mutate()

Take the data frame

my _df < data.frame(x = 1:4, y = 5:8)

17 / 35

dplyr

mutate()

Take the data frame

my _df < data.frame(x = 1:4, y = 5:8)

mutate() allows us to create many new variables with one call.

mutate(.data = my_df,
Xy = X * vy,

x2 = x"2,

y2 = y"2,

xy2 = xy"2,

is x_max = x = max(x)

17 / 35

dplyr

mutate()

Take the data frame
my _df < data.frame(x = 1:4, y = 5:8)

mutate() allows us to create many new variables with one call.

mutate(.data = my_df, #> Xy Xy X2 y2 Xy2 1s_Xx_max
Xy = X %y, #> 115 5 1 25 25 FALSE
x2 = x"2, #>2 26 12 4 36 144 FALSE
y2 = y™2 #> 3 3 7 21 9 49 441 FALSE
R = PR, #> 4 4 8 32 16 64 1024 TRUE
is_x_max = x = max(x) _

) Notice mutate() returns the

original and new columns.

17 / 35

dplyr

mutate() VS. transmute()

As their names imply, mutate() and transmute() are very similar functions.
o mutate() returnsthe original and new columns (variables).

e transmute() returns only the new columns (variables).

18 / 35

dplyr

mutate() VS. transmute()

As their names imply, mutate() and transmute() are very similar functions.
o mutate() returnsthe original and new columns (variables).
e transmute() returns only the new columns (variables).

Note Both functions return a new object as output—they do not update the
object in R's memory. (This is the case for all functions in dplyr.)

18 / 35

dplyr

Pipes

We can't go much deeper into the land of dplyr without mentioning pipes.

19/ 35

dplyr

Pipes

We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

19/ 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

In dplyr, the expression for a pipe Is %>%.

19/ 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

In dplyr, the expression for a pipe Is %>%.

R's pipe specifically plugs the returned object to the left of the pipe into
the first argument of the function on the right fo the pipe, e.g.,

19/ 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

In dplyr, the expression for a pipe Is %>%.

R's pipe specifically plugs the returned object to the left of the pipe into
the first argument of the function on the right fo the pipe, e.g.,

rnorm(10) %>% mean()

#> [1] 0.4854731

19/ 35

dplyr

Pipes

Pipes help avoid lots of nested functions, prevent excessive writing to your
disc, and increase the readability of our R scripts.

20 / 35

dplyr

Pipes

Pipes help avoid lots of nested functions, prevent excessive writing to your
disc, and increase the readability of our R scripts.

Three ways to draw 100 N(0,1) observations and calculate the
interquartile range (IQR: difference between the 75" and 25" percentiles).

draw < rnorm(100)

end_points <« quantile(draw, probs = c(0.25, 0.75))
diff(end_points)

diff(quantile(rnorm(100), probs = c(0.25, 0.75)))

rnorm(100) %>% quantile(probs = c(0.25, 0.75)) %>% diff()

20 / 35

dplyr

Pipes

By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

21/ 35

dplyr

Pipes

By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %% fun(3) iIs equivalentto fun(argl = a, arg2 = 3).

21/ 35

dplyr

Pipes

By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %% fun(3) iIs equivalentto fun(argl = a, arg2 = 3).

If you want to pipe output into a different argument, you use a period (.).

21/ 35

dplyr

Pipes

By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %% fun(3) iIs equivalentto fun(argl = a, arg2 = 3).
If you want to pipe output into a different argument, you use a period (.).

e b %% fun(argl = 3, .) Isequivalentto fun(argl = 3, arg2 = b).
e b %% fun(3, .) Isalso equivalentto fun(argl = 3, arg2 = b).

21/ 35

dplyr

Pipes

By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %% fun(3) iIs equivalentto fun(argl = a, arg2 = 3).
If you want to pipe output into a different argument, you use a period (.).

e b %% fun(argl = 3, .) Isequivalentto fun(argl = 3, arg2 = b).
e b %% fun(3, .) Isalso equivalentto fun(argl = 3, arg2 = b).
e b %% fun(., .) ISequivalentto fun(argl = b, arg2 = b).

21/ 35

dplyr

Pipes

By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %% fun(3) iIs equivalentto fun(argl = a, arg2 = 3).
If you want to pipe output into a different argument, you use a period (.).

e b %% fun(argl = 3, .) Isequivalentto fun(argl = 3, arg2 = b).
e b %% fun(3, .) Isalso equivalentto fun(argl = 3, arg2 = b).
e b %% fun(., .) ISequivalentto fun(argl = b, arg2 = b).

The magrittr package contains even more piping power.'

T magrittr = Magritte (of this is not a pipe fame) plus R. /35

https://en.wikipedia.org/wiki/The_Treachery_of_Images

dplyr

%>% and dplyr

Each dplyr function begins with a .data argument so that you can easily
pipe in data frames (recall: mutate(.data, ...)).

22 [35

dplyr

%>% and dplyr

Each dplyr function begins with a .data argument so that you can easily
pipe in data frames (recall: mutate(.data, ...)).

The common workflow in dplyr will look something like
new _df <« old df %>% mutate(cool stuff here)

which takes old_df, does some cool stuff with mutate(), and then saves

the output of mutate() as new_df.

22 [35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

23/ 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

some_df ¢« data.frame(
x = 1:10,
y 11:20

)

23/ 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

some_df ¢« data.frame(some_df %>% filter(x = 3)
x = 1:10,
y = 11:20 H#> Xy

) #> 1 3 13

23/ 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

some_df ¢« data.frame(some_df %>% filter(x > 7)
x = 1:10,
y = 11:20 H#> Xy
) #> 1 8 18
#> 2 9 19
#> 3 10 20

24 | 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

some_df ¢« data.frame(some_df %>% filter(y/x > 3)
x = 1:10,
y = 11:20 H#> Xy
) #> 1 1 11
#> 2 2 12
#> 3 3 13
#> 4 4 14

25/ 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

some_df ¢« data.frame(some_df %>%
x = 1:10, filter(x > 7 | y < 12)
y = 11:20
) #> X 'y
#> 1 1 11
#> 2 8 18
#> 3 9 19
#> 4 10 20

26 / 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

some_df ¢« data.frame(some_df %>%
x = 1:10, filter(between(y, 15, 18))
y = 11:20
) H#> X oy
#> 1 5 15
#> 2 6 16
#> 3 7 17
#> 4 8 18

27 | 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

some_df ¢« data.frame(some_df %>% filter(y > 20)
x = 1:10,
y = 11:20 #> [1] x vy
) #> <0 rows> (or 0-length row.names)

If you filter your data frame down to nothing, R returns a 0-row data frame
with the names/number of columns from the original data frame.

28 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(varl®, varl00)

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(varl®, varl00)

you can select columns using their numbers
our_df %>% select(10, 100)

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(varl®, varl00)

you can select columns using their numbers
our_df %>% select(10, 100)

or you can select columns using helper fuctions
our_df %>% select(starts with("vario"))

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(varl®, varl00)

you can select columns using their numbers
our_df %>% select(10, 100)

or you can select columns using helper fuctions
our_df %>% select(starts with("vario"))

select() helps you narrow down a dataset to its necessary features.

29 / 35

dplyr

summarize()

Hopefully you're starting to see that functions' names in dplyr tell you
what the function does.

summarize() ' summarizes variables—you choose the variables and the
summaries (e.g., mean() or min()).

T or i if you @ E=
summarise() if you @ 30/ 35

dplyr

summarize()

Hopefully you're starting to see that functions' names in dplyr tell you
what the function does.

summarize() ' summarizes variables—you choose the variables and the
summaries (e.g., mean() or min()).

the df %>% summarize(
mean(x), mean(y), mean(z),
min(x), max(x),

)

would return a 1x5 data frame with the means of x, y, and z; the
minimum of x:and the maximum of x.

T or i if you @ E=
summarise() if you @ 30/ 35

dplyr

summarize() and group_by()

While sample-wide summarizes are certainly interesting, dplyr has one
last gem for us: group_by().

group_by() groups your observations by the variable(s) that you name.

31/ 35

dplyr

summarize() and group_by()

While sample-wide summarizes are certainly interesting, dplyr has one
last gem for us: group_by().

group_by() groups your observations by the variable(s) that you name.

Specifically, group_by() returns a grouped data frame that you can then
feed to summarize(), mutate(), Or transmuate to perform grouped
calculations, e.g., each group's mean.

31/ 35

dplyr

Example: Grouped summaries

Create a new data frame
our_df ¢« data.frame(

X = 1:6,

y = c(o, 1),

grp = rep(c("A", "B"), each = 3)

)

#> Xy grp
#> 11 0 A
#H> 2 2 1 A
#> 3 3 0 A
> 4 4 1 B
#> 550 B
#> 6 6 1 B

32 /35

dplyr

Example: Grouped summaries

Create a new data frame # For dataset 'our df’'...
our_df ¢« data.frame(our_df %>%
x =1:6, # Group by 'grp'’
y = c(0, 1), group_by(grp) %>%
grp = rep(c("A", "B"), each = 3) # Take means of 'x' and 'y'
) summarize(mean(x), mean(y))
#> x y grp #> # A tibble: 2 x 3
#> 110 A #> grp “mean(x)” “mean(y)’
#> 2 2 1 A #> <fct> <dbl> <dbl>
#> 3 3 0 A #> 1 A 2 0.333
> 4 4 1 B #> 2 B 5 0.667
#> 550 B
#> 6 6 1 B

32 /35

dplyr

Example: Grouped mutation

Create a new data frame
our_df ¢« data.frame(

H#>
H>
#>
H#>
#>
H#>
#>

X

S O B~Ww N

S U B~ W N X

1:6,

c(o, 1),
= rep(c("A", "B"), each

W W W > > > O

33 /35

dplyr

Example: Grouped mutation

our_df ¢« data.frame(our_df %>%
X = 1:6, group_by(grp) %>%
y = c(o, 1), mutate(
grp = rep(c("A", "B"), each = 3) x_ m = mean(x), y_m = mean(y)
))
#> x y grp #> # A tibble: 6 x 5
#> 110 A #> # Groups: grp [2]
#> 2 2 1 A #> X y grp X_m y_m
#> 3 3 0 A #> <1nt> <dbl> <fct> <dbl> <dbl>
> 4 4 1 B #> 1 1 0 A 2 0.333
#> 550 B #> 2 2 1A 2 0.333
#> 6 6 1 B #> 3 3 0 A 2 0.333
#> 4 4 1B 5 0.667
#> 5 5 OB 5 0.667
#> 6 6 1B 5 0.667

33 /35

dplyr

arrange()

arrange() will sorts the rows of a data frame using the inputted columns.

R defaults to starting with the "lowest" (smallest) at the top of the data
frame. Use a - in front of the variable's name to reverse sort.

our_df our_df %>% arrange(y, grp, -x)
#> Xy grp #> Xy grp
#> 1 1 0 A #> 1 3 0 A
#> 2 2 1 A #> 2 1 0 A
#> 3 3 0 A #> 3 5 0 B
> 4 4 1 B > 4 2 1 A
#> 5 5 0 B #> 5 6 1 B
#> 6 6 1 B > 6 4 1 B

34 /35

Table of contents

Data and R dplyr

1. Schedule 1. Intro

2. Matrix review 2. mutate()

3. The data.frame 3. transmute()
o Basic examples 4. Pipes (%>%)
o Creating 5 filter()
o Indexing 6. select()
o Names /. summarize
o Adding variables 8. summarize() and group_by()

9. arrange()

35/ 35

