
Data in/and R
EC 425/525, Lab 2
Edward Rubin
12 April 2019

Prologue

2 / 35

Schedule

Last time
Getting to know R—objects, functions, etc.

Today
Working with data in R.

The data.frame class
The dplyr package

Upcoming
Due Monday Step 1 of our research-project proposal.

3 / 35

Matrices

Quick review
1. mat �� matrix(data = 1�10, ncol = 2) creates a 5×2 matrix object
containing the numbers 1 through 10 (filled by column).

2. mat[1,] grabs the first row of our matrix mat .

3. mat[3,2] �� NA assigns NA to row-3 column-2 element of mat .

4. head(mat, 3) returns up to the first three rows of mat .

5. matrix(data = rnorm(100), ncol = 10) creates a 10×10 matrix filled
with random draws from .

6. mat[3,2] �� "Carrots" assigns the character object "Carrots" to the
[3,2] element of mat , forcing all elements of mat to character .

N(μ = 0,σ2 = 1)

4 / 35

Matrices

Next steps
Matrices are convenient two-dimensional arrays on which math "works."†

But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

† At least for numeric and logical matrices.
5 / 35

Matrices

Next steps
Matrices are convenient two-dimensional arrays on which math "works."†

But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.

† At least for numeric and logical matrices.
5 / 35

Matrices

Next steps
Matrices are convenient two-dimensional arrays on which math "works."†

But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table ?

† At least for numeric and logical matrices.
5 / 35

Matrices

Next steps
Matrices are convenient two-dimensional arrays on which math "works."†

But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table ? Or a data.frame ?

† At least for numeric and logical matrices.
5 / 35

Matrices

Next steps
Matrices are convenient two-dimensional arrays on which math "works."†

But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table ? Or a data.frame ?

We'll start with data.frame .

† At least for numeric and logical matrices.
5 / 35

Matrices

Next steps
Matrices are convenient two-dimensional arrays on which math "works."†

But matrices also require all elements to be of the same class.

Q What if we a datasets whose variables (columns) have different classes?

A We need a more flexible table-like object for our data.
Maybe a data.table ? Or a data.frame ?

We'll start with data.frame .

We will spend a good amount of time on data frames, as they make up a
huge part of your workflow.

† At least for numeric and logical matrices.
5 / 35

Data frames
A data.frame is R's base, spreadsheet-like object that holds variables.

6 / 35

Data frames
A data.frame is R's base, spreadsheet-like object that holds variables.

Example

6 / 35

Data frames
A data.frame is R's base, spreadsheet-like object that holds variables.

Example

#> id first_name fave_num is_tired loves_econ
#> 1 1 Karmin 68 TRUE FALSE
#> 2 2 Raychelle 57 TRUE TRUE
#> 3 3 Jemelle 10 TRUE TRUE
#> 4 4 Yusif 90 TRUE TRUE
#> 5 5 Catherine 24 TRUE TRUE
#> 6 6 Glory 4 TRUE TRUE
#> 7 7 Kaelah 33 FALSE TRUE
#> 8 8 Lysette 96 TRUE TRUE
#> 9 9 Cisco 89 TRUE TRUE
#> 10 10 Harman 69 TRUE TRUE
#> 11 11 Jennelle 64 TRUE TRUE
#> 12 12 Crayton 100 TRUE TRUE

6 / 35

Data frames
A data.frame is R's base, spreadsheet-like object that holds variables.

Example

#> name height mass gender homeworld species
#> 1 Luke Skywalker 172 77 male Tatooine Human
#> 2 C-3PO 167 75 <NA> Tatooine Droid
#> 3 R2-D2 96 32 <NA> Naboo Droid
#> 4 Darth Vader 202 136 male Tatooine Human
#> 5 Leia Organa 150 49 female Alderaan Human
#> 6 Owen Lars 178 120 male Tatooine Human
#> 7 Beru Whitesun lars 165 75 female Tatooine Human
#> 8 R5-D4 97 32 <NA> Tatooine Droid
#> 9 Biggs Darklighter 183 84 male Tatooine Human
#> 10 Obi-Wan Kenobi 182 77 male Stewjon Human
#> 11 Anakin Skywalker 188 84 male Tatooine Human
#> 12 Wilhuff Tarkin 180 NA male Eriadu Human

7 / 35

Data frames

Creation
The data.frame() function creates...

8 / 35

Data frames

Creation
The data.frame() function creates... data.frame objects.

8 / 35

Data frames

Creation
The data.frame() function creates... data.frame objects.

You'll generally define data frames by passing the function
(1) column names and (2) values for the columns.

data.frame(var1 = 1:5, var2 = "apple", var3 = rnorm(5))

8 / 35

Data frames

Creation
The data.frame() function creates... data.frame objects.

You'll generally define data frames by passing the function
(1) column names and (2) values for the columns.

data.frame(var1 = 1:5, var2 = "apple", var3 = rnorm(5))

You can also assign the values using already-existing objects, e.g.,

An object with value
tmp �� rnorm(5)
Creating the data frame
data.frame(var1 = 1:5, var2 = "apple", var3 = tmp)

8 / 35

Data frames

Creation
Creating the data frame
data.frame(var1 = 1:5, var2 = "apple", var3 = rnorm(5))

#> var1 var2 var3
#> 1 1 apple -0.6250393
#> 2 2 apple -1.6866933
#> 3 3 apple 0.8377870
#> 4 4 apple 0.1533731
#> 5 5 apple -1.1381369

(What a beauty.)

9 / 35

Data frames

Creation
Creating the data frame
data.frame(var1 = 1:5, var2 = "apple", var3 = rnorm(5))

#> var1 var2 var3
#> 1 1 apple -0.6250393
#> 2 2 apple -1.6866933
#> 3 3 apple 0.8377870
#> 4 4 apple 0.1533731
#> 5 5 apple -1.1381369

(What a beauty.)

Notice that R assumes we want to repeat "apple" for the entire column.

9 / 35

Data frames

Creation
You can also create data frames from other objects (e.g., matrices) using
the function as.data.frame() †.

However, your data frame's columns will only have names if your matrix's
columns had names.

† Or just plain, old data.frame() .
10 / 35

Data frames

Indexing
Consider a data frame our_df �� data.frame(x = 1�3, y = 4�6, z = 7�9) .

Option 1 Index data frames just as you index matrices in R.

our_df[1,1] grabs the value in the first row of the first variable.
our_df[2,] returns the second row of our_df (as a data frame).
our_df[,3] returns the third column (variable) of our_df (as a vector).

11 / 35

Data frames

Indexing
Consider a data frame our_df �� data.frame(x = 1�3, y = 4�6, z = 7�9) .

Option 1 Index data frames just as you index matrices in R.

our_df[1,1] grabs the value in the first row of the first variable.
our_df[2,] returns the second row of our_df (as a data frame).
our_df[,3] returns the third column (variable) of our_df (as a vector).

Option 2 Reference values/variables using columns' names.

our_df$x returns the column named x (as a vector). New: $
our_df[,"x"] returns the column named x (as a vector).
our_df["x"] returns the column named x (as a data frame).
our_df[,c("x","y")] returns a data frame with variables "x" and "y" .

11 / 35

Data frames

Names (of columns)
The columns (variables) in your data frame have names.†

Q What if you want to see/know those names?

† If you don't name the columns, then R will.
12 / 35

Data frames

Names (of columns)
The columns (variables) in your data frame have names.†

Q What if you want to see/know those names?

A You've got a few options.

† If you don't name the columns, then R will.
12 / 35

Data frames

Names (of columns)
The columns (variables) in your data frame have names.†

Q What if you want to see/know those names?

A You've got a few options.

1. The names() function returns the names of an object.

† If you don't name the columns, then R will.
12 / 35

Data frames

Names (of columns)
The columns (variables) in your data frame have names.†

Q What if you want to see/know those names?

A You've got a few options.

1. The names() function returns the names of an object.

2. head(your_df) will show you the first 6 rows of your_df .
Note: May provide too much output if you have a lot of columns.

† If you don't name the columns, then R will.
12 / 35

Data frames

Names (of columns)
The columns (variables) in your data frame have names.†

Q What if you want to see/know those names?

A You've got a few options.

1. The names() function returns the names of an object.

2. head(your_df) will show you the first 6 rows of your_df .
Note: May provide too much output if you have a lot of columns.

3. In RStudio: View(your_df) or look in your Environment tab.

† If you don't name the columns, then R will.
12 / 35

Data frames

Naming
The names() function will also help you rename any/all variables.

13 / 35

Data frames

Naming
The names() function will also help you rename any/all variables.

Change the names of all variables (include a name for each variable):

Set new names
names(our_df) �� c("name1", "name2", "name3")

13 / 35

Data frames

Naming
The names() function will also help you rename any/all variables.

Change the names of all variables (include a name for each variable):

Set new names
names(our_df) �� c("name1", "name2", "name3")

Change the name of the second variable (only):

Set new names
names(our_df)[2] �� "name2"

13 / 35

Data frames

Adding variables
Just as we referenced existing variables using $var_name ,
we can create new varirables using $new_var , e.g.,

Add a variable to our_df
our_df$new_var �� 1:100

14 / 35

Data frames

Adding variables
Just as we referenced existing variables using $var_name ,
we can create new varirables using $new_var , e.g.,

Add a variable to our_df
our_df$new_var �� 1:100

If you want to use existing columns to create a new variable

Create interaction: xy = x * y
our_df$xy �� our_df$x * our_df$y

14 / 35

Data frames

Adding variables
Just as we referenced existing variables using $var_name ,
we can create new varirables using $new_var , e.g.,

Add a variable to our_df
our_df$new_var �� 1:100

If you want to use existing columns to create a new variable

Create interaction: xy = x * y
our_df$xy �� our_df$x * our_df$y

Q Isn't there a better/faster/less-typing way?

14 / 35

Data frames

Adding variables
Just as we referenced existing variables using $var_name ,
we can create new varirables using $new_var , e.g.,

Add a variable to our_df
our_df$new_var �� 1:100

If you want to use existing columns to create a new variable

Create interaction: xy = x * y
our_df$xy �� our_df$x * our_df$y

Q Isn't there a better/faster/less-typing way?

A Yes. Enter dplyr

14 / 35

Data frames

Adding variables
Just as we referenced existing variables using $var_name ,
we can create new varirables using $new_var , e.g.,

Add a variable to our_df
our_df$new_var �� 1:100

If you want to use existing columns to create a new variable

Create interaction: xy = x * y
our_df$xy �� our_df$x * our_df$y

Q Isn't there a better/faster/less-typing way?

A Yes. Enter dplyr (also: data.table , which we'll leave for the future).

14 / 35

dplyr

Intro
It's a package.

15 / 35

dplyr

Intro
It's a package. dplyr is not installed by default, so you'll need to install it.†

† or just p_load(dplyr) after loading pacman .
15 / 35

dplyr

Intro
It's a package. dplyr is not installed by default, so you'll need to install it.†

dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-
based approach to programming/data work.

† or just p_load(dplyr) after loading pacman .
15 / 35

https://dplyr.tidyverse.org/

dplyr

Intro
It's a package. dplyr is not installed by default, so you'll need to install it.†

dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-
based approach to programming/data work.

data compose the subjects of your stories

dplyr provides the verbs (action words) :
 filter() , mutate() , select() , group_by() , summarize() , arrange()

† or just p_load(dplyr) after loading pacman .
15 / 35

https://dplyr.tidyverse.org/

dplyr

Intro
It's a package. dplyr is not installed by default, so you'll need to install it.†

dplyr is part of the tidyverse (Hadleyverse), and it follows a grammar-
based approach to programming/data work.

data compose the subjects of your stories

dplyr provides the verbs (action words) :
 filter() , mutate() , select() , group_by() , summarize() , arrange()

Bonus dplyr is pretty fast and able to interact with SQL databases.

† or just p_load(dplyr) after loading pacman .
15 / 35

https://dplyr.tidyverse.org/

dplyr

Manipulating variables: mutate()
dplyr streamlines adding/manipulating variables in your data frame.

Function mutate(.data, ���)

Required argument .data , an existing data frame

Additional arguments Names and values of the new variables

Output An updated data frame

16 / 35

dplyr

Manipulating variables: mutate()
dplyr streamlines adding/manipulating variables in your data frame.

Function mutate(.data, ���)

Required argument .data , an existing data frame

Additional arguments Names and values of the new variables

Output An updated data frame

Example

mutate(.data = our_df, new1 = 7, new2 = x * y)

16 / 35

dplyr

mutate()

Example Take the data frame

my_df �� data.frame(x = 1:4, y = 5:8)

17 / 35

mutate(.data = my_df,
 xy = x * y,
 x2 = x^2,
 y2 = y^2,
 xy2 = xy^2,
 is_x_max = x �� max(x)
)

dplyr

mutate()

Example Take the data frame

my_df �� data.frame(x = 1:4, y = 5:8)

mutate() allows us to create many new variables with one call.

17 / 35

mutate(.data = my_df,
 xy = x * y,
 x2 = x^2,
 y2 = y^2,
 xy2 = xy^2,
 is_x_max = x �� max(x)
)

#> x y xy x2 y2 xy2 is_x_max
#> 1 1 5 5 1 25 25 FALSE
#> 2 2 6 12 4 36 144 FALSE
#> 3 3 7 21 9 49 441 FALSE
#> 4 4 8 32 16 64 1024 TRUE

Notice mutate() returns the
original and new columns.

dplyr

mutate()

Example Take the data frame

my_df �� data.frame(x = 1:4, y = 5:8)

mutate() allows us to create many new variables with one call.

17 / 35

dplyr

mutate() vs. transmute()
As their names imply, mutate() and transmute() are very similar functions.

mutate() returns the original and new columns (variables).

transmute() returns only the new columns (variables).

18 / 35

dplyr

mutate() vs. transmute()
As their names imply, mutate() and transmute() are very similar functions.

mutate() returns the original and new columns (variables).

transmute() returns only the new columns (variables).

Note Both functions return a new object as output—they do not update the
object in R's memory. (This is the case for all functions in dplyr .)

18 / 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

19 / 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

19 / 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

In dplyr , the expression for a pipe is %>% .

19 / 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

In dplyr , the expression for a pipe is %>% .

R's pipe specifically plugs the returned object to the left of the pipe into
the first argument of the function on the right fo the pipe, e.g.,

19 / 35

dplyr

Pipes
We can't go much deeper into the land of dplyr without mentioning pipes.

A pipe in programming allows you to take the output of one function and
plug it into another function as an argument/input.

In dplyr , the expression for a pipe is %>% .

R's pipe specifically plugs the returned object to the left of the pipe into
the first argument of the function on the right fo the pipe, e.g.,

rnorm(10) %>% mean()

#> [1] 0.4854731

19 / 35

dplyr

Pipes
Pipes help avoid lots of nested functions, prevent excessive writing to your
disc, and increase the readability of our R scripts.

20 / 35

dplyr

Pipes
Pipes help avoid lots of nested functions, prevent excessive writing to your
disc, and increase the readability of our R scripts.

Example Three ways to draw 100 N(0,1) observations and calculate the
interquartile range (IQR: difference between the 75th and 25th percentiles).

Save each intermediate step
draw �� rnorm(100)
end_points �� quantile(draw, probs = c(0.25, 0.75))
diff(end_points)
Lots of nesting
diff(quantile(rnorm(100), probs = c(0.25, 0.75)))
Piping �
rnorm(100) %>% quantile(probs = c(0.25, 0.75)) %>% diff()

20 / 35

dplyr

Pipes
By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

21 / 35

dplyr

Pipes
By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %>% fun(3) is equivalent to fun(arg1 = a, arg2 = 3) .

21 / 35

dplyr

Pipes
By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %>% fun(3) is equivalent to fun(arg1 = a, arg2 = 3) .

If you want to pipe output into a different argument, you use a period (.).

21 / 35

dplyr

Pipes
By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %>% fun(3) is equivalent to fun(arg1 = a, arg2 = 3) .

If you want to pipe output into a different argument, you use a period (.).

b %>% fun(arg1 = 3, .) is equivalent to fun(arg1 = 3, arg2 = b) .
b %>% fun(3, .) is also equivalent to fun(arg1 = 3, arg2 = b) .

21 / 35

dplyr

Pipes
By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %>% fun(3) is equivalent to fun(arg1 = a, arg2 = 3) .

If you want to pipe output into a different argument, you use a period (.).

b %>% fun(arg1 = 3, .) is equivalent to fun(arg1 = 3, arg2 = b) .
b %>% fun(3, .) is also equivalent to fun(arg1 = 3, arg2 = b) .
b %>% fun(., .) is equivalent to fun(arg1 = b, arg2 = b) .

21 / 35

dplyr

Pipes
By default, R pipes the output from the LHS of the pipe into
the first argument of the function on the RHS of the pipe.

E.g., a %>% fun(3) is equivalent to fun(arg1 = a, arg2 = 3) .

If you want to pipe output into a different argument, you use a period (.).

b %>% fun(arg1 = 3, .) is equivalent to fun(arg1 = 3, arg2 = b) .
b %>% fun(3, .) is also equivalent to fun(arg1 = 3, arg2 = b) .
b %>% fun(., .) is equivalent to fun(arg1 = b, arg2 = b) .

The magrittr package contains even more piping power.†

† magrittr = Magritte (of this is not a pipe fame) plus R.
21 / 35

https://en.wikipedia.org/wiki/The_Treachery_of_Images

dplyr

%>% and dplyr
Each dplyr function begins with a .data argument so that you can easily
pipe in data frames (recall: mutate(.data, ���)).

22 / 35

dplyr

%>% and dplyr
Each dplyr function begins with a .data argument so that you can easily
pipe in data frames (recall: mutate(.data, ���)).

The common workflow in dplyr will look something like

new_df �� old_df %>% mutate(cool stuff here)

which takes old_df , does some cool stuff with mutate() , and then saves
the output of mutate() as new_df .

22 / 35

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

23 / 35

Create a dataset
some_df �� data.frame(
 x = 1:10,
 y = 11:20
)

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

23 / 35

Create a dataset
some_df �� data.frame(
 x = 1:10,
 y = 11:20
)

Only keep rows where x is 3
some_df %>% filter(x �� 3)

#> x y
#> 1 3 13

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

23 / 35

Create a dataset
some_df �� data.frame(
 x = 1:10,
 y = 11:20
)

Only keep rows where x > 7
some_df %>% filter(x > 7)

#> x y
#> 1 8 18
#> 2 9 19
#> 3 10 20

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

24 / 35

Create a dataset
some_df �� data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where y/x > 3
some_df %>% filter(y/x > 3)

#> x y
#> 1 1 11
#> 2 2 12
#> 3 3 13
#> 4 4 14

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

25 / 35

Create a dataset
some_df �� data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where x>7 OR y<12
some_df %>%
 filter(x > 7 | y < 12)

#> x y
#> 1 1 11
#> 2 8 18
#> 3 9 19
#> 4 10 20

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

26 / 35

Create a dataset
some_df �� data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where 15��y��18
some_df %>%
 filter(between(y, 15, 18))

#> x y
#> 1 5 15
#> 2 6 16
#> 3 7 17
#> 4 8 18

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

27 / 35

Create a dataset
some_df �� data.frame(
 x = 1:10,
 y = 11:20
)

Keep rows where y > 20
some_df %>% filter(y > 20)

#> [1] x y
#> <0 rows> (or 0-length row.names)

dplyr

filter()

The filter() function does what its name implies: it filters the rows of
your data frame based upon logical conditions.

Example

If you filter your data frame down to nothing, R returns a 0-row data frame
with the names/number of columns from the original data frame.

28 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(var10, var100)

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(var10, var100)

you can select columns using their numbers
our_df %>% select(10, 100)

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(var10, var100)

you can select columns using their numbers
our_df %>% select(10, 100)

or you can select columns using helper fuctions
our_df %>% select(starts_with("var10"))

29 / 35

dplyr

select()

Just as filter() grabs row-based subsets of your data frame,
select() grabs column-based subsets.

You can select columns using their names
our_df %>% select(var10, var100)

you can select columns using their numbers
our_df %>% select(10, 100)

or you can select columns using helper fuctions
our_df %>% select(starts_with("var10"))

select() helps you narrow down a dataset to its necessary features.

29 / 35

dplyr

summarize()

Hopefully you're starting to see that functions' names in dplyr tell you
what the function does.

summarize() † summarizes variables—you choose the variables and the
summaries (e.g., mean() or min()).

† or summarise() if you ❤ �
30 / 35

dplyr

summarize()

Hopefully you're starting to see that functions' names in dplyr tell you
what the function does.

summarize() † summarizes variables—you choose the variables and the
summaries (e.g., mean() or min()).

the_df %>% summarize(
 mean(x), mean(y), mean(z),
 min(x), max(x),
)

would return a 1×5 data frame with the means of x , y , and z ; the
minimum of x ; and the maximum of x .

† or summarise() if you ❤ �
30 / 35

dplyr

summarize() and group_by()
While sample-wide summarizes are certainly interesting, dplyr has one
last gem for us: group_by() .

group_by() groups your observations by the variable(s) that you name.

31 / 35

dplyr

summarize() and group_by()
While sample-wide summarizes are certainly interesting, dplyr has one
last gem for us: group_by() .

group_by() groups your observations by the variable(s) that you name.

Specifically, group_by() returns a grouped data frame that you can then
feed to summarize() , mutate() , or transmuate to perform grouped
calculations, e.g., each group's mean.

31 / 35

Create a new data frame
our_df �� data.frame(
 x = 1:6,
 y = c(0, 1),
 grp = rep(c("A", "B"), each = 3)
)

#> x y grp
#> 1 1 0 A
#> 2 2 1 A
#> 3 3 0 A
#> 4 4 1 B
#> 5 5 0 B
#> 6 6 1 B

dplyr

Example: Grouped summaries

32 / 35

Create a new data frame
our_df �� data.frame(
 x = 1:6,
 y = c(0, 1),
 grp = rep(c("A", "B"), each = 3)
)

#> x y grp
#> 1 1 0 A
#> 2 2 1 A
#> 3 3 0 A
#> 4 4 1 B
#> 5 5 0 B
#> 6 6 1 B

For dataset 'our_df'���
our_df %>%
 # Group by 'grp'
 group_by(grp) %>%
 # Take means of 'x' and 'y'
 summarize(mean(x), mean(y))

#> # A tibble: 2 x 3
#> grp `mean(x)` `mean(y)`
#> <fct> <dbl> <dbl>
#> 1 A 2 0.333
#> 2 B 5 0.667

dplyr

Example: Grouped summaries

32 / 35

Create a new data frame
our_df �� data.frame(
 x = 1:6,
 y = c(0, 1),
 grp = rep(c("A", "B"), each = 3)
)

#> x y grp
#> 1 1 0 A
#> 2 2 1 A
#> 3 3 0 A
#> 4 4 1 B
#> 5 5 0 B
#> 6 6 1 B

dplyr

Example: Grouped mutation

33 / 35

Create a new data frame
our_df �� data.frame(
 x = 1:6,
 y = c(0, 1),
 grp = rep(c("A", "B"), each = 3)
)

#> x y grp
#> 1 1 0 A
#> 2 2 1 A
#> 3 3 0 A
#> 4 4 1 B
#> 5 5 0 B
#> 6 6 1 B

Add grp means for x and y
our_df %>%
 group_by(grp) %>%
 mutate(
 x_m = mean(x), y_m = mean(y)
)

#> # A tibble: 6 x 5
#> # Groups: grp [2]
#> x y grp x_m y_m
#> <int> <dbl> <fct> <dbl> <dbl>
#> 1 1 0 A 2 0.333
#> 2 2 1 A 2 0.333
#> 3 3 0 A 2 0.333
#> 4 4 1 B 5 0.667
#> 5 5 0 B 5 0.667
#> 6 6 1 B 5 0.667

dplyr

Example: Grouped mutation

33 / 35

As is
our_df

#> x y grp
#> 1 1 0 A
#> 2 2 1 A
#> 3 3 0 A
#> 4 4 1 B
#> 5 5 0 B
#> 6 6 1 B

As is
our_df %>% arrange(y, grp, �x)

#> x y grp
#> 1 3 0 A
#> 2 1 0 A
#> 3 5 0 B
#> 4 2 1 A
#> 5 6 1 B
#> 6 4 1 B

dplyr

arrange()

arrange() will sorts the rows of a data frame using the inputted columns.

R defaults to starting with the "lowest" (smallest) at the top of the data
frame. Use a - in front of the variable's name to reverse sort.

34 / 35

Data and R

1. Schedule
2. Matrix review
3. The data.frame

Basic examples
Creating
Indexing
Names
Adding variables

dplyr

1. Intro
2. mutate()
3. transmute()
4. Pipes (%>%)
5. filter()
6. select()
7. summarize
8. summarize() and group_by()
9. arrange()

Table of contents

35 / 35

