
Getting to know R
EC 425/525, Lab 1
Edward Rubin
08 April 2019

Prologue

2 / 28

Schedule

Today
Get to know R

1. Basic features of R
2. Fun with functions
3. OLS (canned and custom)
4. Simulations

3 / 28

R intro

Object types/classes
As we discussed in class, R revolves around objects, e.g., test <- 123 .

4 / 28

R intro

Object types/classes
As we discussed in class, R revolves around objects, e.g., test <- 123 .
Note You can also assign values to objects via = , e.g., test = 123 .

4 / 28

R intro

Object types/classes
As we discussed in class, R revolves around objects, e.g., test <- 123 .
Note You can also assign values to objects via = , e.g., test = 123 .

Objects have types/classes.

4 / 28

R intro

Object types/classes
As we discussed in class, R revolves around objects, e.g., test <- 123 .
Note You can also assign values to objects via = , e.g., test = 123 .

Objects have types/classes.

1 , 2/3 , and are numeric .

4 / 28

R intro

Object types/classes
As we discussed in class, R revolves around objects, e.g., test <- 123 .
Note You can also assign values to objects via = , e.g., test = 123 .

Objects have types/classes.

1 , 2/3 , and are numeric .

"Hello" and 'cruel world' are both character .

4 / 28

R intro

Object types/classes
As we discussed in class, R revolves around objects, e.g., test <- 123 .
Note You can also assign values to objects via = , e.g., test = 123 .

Objects have types/classes.

1 , 2/3 , and are numeric .

"Hello" and 'cruel world' are both character .

TRUE , T , FALSE , and F are logical (as is the result of 3 > 2).

4 / 28

R intro

Object types/classes
As we discussed in class, R revolves around objects, e.g., test <- 123 .
Note You can also assign values to objects via = , e.g., test = 123 .

Objects have types/classes.

1 , 2/3 , and are numeric .

"Hello" and 'cruel world' are both character .

TRUE , T , FALSE , and F are logical (as is the result of 3 > 2).

The class(x) function tells you the class of object x .

4 / 28

1

#> [1] 1

"Clever/funny example words?"

#> [1] "Clever/funny example words?"

3 < 2

#> [1] FALSE

"Warriors" > "Bucks"

#> [1] TRUE

R intro

Object types/classes

5 / 28

1

#> [1] 1

"Clever/funny example words?"

#> [1] "Clever/funny example words?"

3 < 2

#> [1] FALSE

"Warriors" > "Bucks"

#> [1] TRUE

class(1)

#> [1] "numeric"

class("Clever/funny example words?")

#> [1] "character"

class(3 < 2)

#> [1] "logical"

class("Warriors" > "Bucks")

#> [1] "logical"

R intro

Object types/classes

5 / 28

R intro

Structure
In addition to having types/classes, objects have some type of structure.

1:3 , c(1, 2) , and seq(2, 8, 2) each produce a numeric -class vector .

6 / 28

R intro

Structure
In addition to having types/classes, objects have some type of structure.

1:3 , c(1, 2) , and seq(2, 8, 2) each produce a numeric -class vector .

c("Alright", "already") produces a vector of character class.

6 / 28

R intro

Structure
In addition to having types/classes, objects have some type of structure.

1:3 , c(1, 2) , and seq(2, 8, 2) each produce a numeric -class vector .

c("Alright", "already") produces a vector of character class.

c(1, 3, T, "Hello") produces a vector of character class.

6 / 28

R intro

Structure
In addition to having types/classes, objects have some type of structure.

1:3 , c(1, 2) , and seq(2, 8, 2) each produce a numeric -class vector .

c("Alright", "already") produces a vector of character class.

c(1, 3, T, "Hello") produces a vector of character class.

matrix(data = 1:15, ncol = 5) creates a matrix with class from data .

6 / 28

R intro

Structure
In addition to having types/classes, objects have some type of structure.

1:3 , c(1, 2) , and seq(2, 8, 2) each produce a numeric -class vector .

c("Alright", "already") produces a vector of character class.

c(1, 3, T, "Hello") produces a vector of character class.

matrix(data = 1:15, ncol = 5) creates a matrix with class from data .

data.frame(x = 1:2, y = c("a", "b"), z = T) produces a data.frame
with three columns and two rows. The first column (x) is numeric ; the
second column (y) is character , and the third column (z) is logical.

6 / 28

Our matrix

matrix(data = 1:15, ncol = 5)

#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1 4 7 10 13
#> [2,] 2 5 8 11 14
#> [3,] 3 6 9 12 15

R intro

Object types

7 / 28

Our matrix

matrix(data = 1:15, ncol = 5)

#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1 4 7 10 13
#> [2,] 2 5 8 11 14
#> [3,] 3 6 9 12 15

Our first data.frame !

data.frame(x = 1:3, y = T)

#> x y
#> 1 1 TRUE
#> 2 2 TRUE
#> 3 3 TRUE

R intro

Object types

7 / 28

Our matrix

matrix(data = 1:15, ncol = 5)

#> [,1] [,2] [,3] [,4] [,5]
#> [1,] 1 4 7 10 13
#> [2,] 2 5 8 11 14
#> [3,] 3 6 9 12 15

Our first data.frame !

data.frame(x = 1:3, y = T)

#> x y
#> 1 1 TRUE
#> 2 2 TRUE
#> 3 3 TRUE

R intro

Object types

Notice how R helps 'fill' out the columns when lengths don't match.

7 / 28

class(matrix(1:9, ncol = 3))

#> [1] "matrix"

is.matrix(matrix(1:9, ncol = 3))

#> [1] TRUE

is.data.frame(matrix(1:9, ncol = 3))

#> [1] FALSE

R intro

Object types
R can help you check object's type.

8 / 28

class(matrix(1:9, ncol = 3))

#> [1] "matrix"

is.matrix(matrix(1:9, ncol = 3))

#> [1] TRUE

is.data.frame(matrix(1:9, ncol = 3))

#> [1] FALSE

class(data.frame(x = 1:3))

#> [1] "data.frame"

is.matrix(data.frame(x = 1:3))

#> [1] FALSE

is.data.frame(data.frame(x = 1:3))

#> [1] TRUE

R intro

Object types
R can help you check object's type.

8 / 28

R intro

Object types/classes
Q What happens when we mix classes, e.g., c(12, "B", F) ?

9 / 28

c(12, "B")

#> [1] "12" "B"

c(12, F)

#> [1] 12 0

c("B", F)

#> [1] "B" "FALSE"

c(12, "B", F)

#> [1] "12" "B" "FALSE"

R intro

Object types/classes
Q What happens when we mix classes, e.g., c(12, "B", F) ?

A R applies the class that can apply to all objects.

9 / 28

Change numbers to characters.

as.character(1:3)

#> [1] "1" "2" "3"

Change logical to numeric.

as.numeric(c(T, F))

#> [1] 1 0

Change vector to matrix.

as.matrix(1:3)

#> [,1]
#> [1,] 1
#> [2,] 2
#> [3,] 3

R intro

Changing types and classes

10 / 28

R intro

Packages
Straight out of the box, R has a ton of useful features, but it really gets its
power from the additional packages (libraries) that users create.

Open-source greatness Users find needs and create amazing solutions.

Caveat utilitor There are a lot of packages, each with a lot of functions.
Mistakes can happen.

Open-source greatness2 Again, R is open source: Check the code!

11 / 28

R intro

Packages
Straight out of the box, R has a ton of useful features, but it really gets its
power from the additional packages (libraries) that users create.

Open-source greatness Users find needs and create amazing solutions.

Caveat utilitor There are a lot of packages, each with a lot of functions.
Mistakes can happen.

Open-source greatness2 Again, R is open source: Check the code!
(Maybe. Sometimes it's very hard.)

11 / 28

R intro

Packages
Straight out of the box, R has a ton of useful features, but it really gets its
power from the additional packages (libraries) that users create.

Open-source greatness Users find needs and create amazing solutions.

Caveat utilitor There are a lot of packages, each with a lot of functions.
Mistakes can happen.

Open-source greatness2 Again, R is open source: Check the code!
(Maybe. Sometimes it's very hard.)

Examples ggplot2 (plotting), dplyr (data work that can link with SQL), sf
and raster (geospatial work), lfe (high-dimensional fixed-effect
regression), data.table (fast and efficient data work)

11 / 28

R intro

Installing packages
Once you find a function/package that you need to install,† you'll typically
install it via install.packages("newAmazingPackage") .††

We'll use the package dplyr throughout the course. Let's install it.

Install 'dplyr' package
install.packages("dplyr")

† Tool #1: Google. †† The quotation marks are important.
12 / 28

R intro

Installing packages
Once you find a function/package that you need to install,† you'll typically
install it via install.packages("newAmazingPackage") .††

We'll use the package dplyr throughout the course. Let's install it.

Install 'dplyr' package
install.packages("dplyr")

Aside Notice the comment above the actual code (R uses # for comments).

† Tool #1: Google. †† The quotation marks are important.
12 / 28

R intro

Installing packages
Once you find a function/package that you need to install,† you'll typically
install it via install.packages("newAmazingPackage") .††

We'll use the package dplyr throughout the course. Let's install it.

Install 'dplyr' package
install.packages("dplyr")

Aside Notice the comment above the actual code (R uses # for comments).
While not necessary for R to work, comments are necessary for research.

† Tool #1: Google. †† The quotation marks are important.
12 / 28

R intro

Using packages
Once you install a package, it is on your machine.

You don't need to install it again—though you probably should update
them from time to time.

13 / 28

R intro

Using packages
Once you install a package, it is on your machine.

You don't need to install it again—though you probably should update
them from time to time.

To load a package, use the library(package) function†, e.g., to load dplyr

Load 'dplyr'
library(dplyr)

† Notice library() doesn't need quotation marks. I know...
13 / 28

R intro

Using packages
Once you install a package, it is on your machine.

You don't need to install it again—though you probably should update
them from time to time.

To load a package, use the library(package) function†, e.g., to load dplyr

Load 'dplyr'
library(dplyr)

Now all functions contained in dplyr are available (until you close R).

† Notice library() doesn't need quotation marks. I know...
13 / 28

R intro

Package management
All of this installing, loading, updating, checking-for-existance-and-then-
loading can get old.

As can typing library(pacakge1) , library(package2) , ...

14 / 28

R intro

Package management
All of this installing, loading, updating, checking-for-existance-and-then-
loading can get old.

As can typing library(pacakge1) , library(package2) , ...

[Enter] The pacman package... for package management, of course.

14 / 28

R intro

Package management
All of this installing, loading, updating, checking-for-existance-and-then-
loading can get old.

As can typing library(pacakge1) , library(package2) , ...

[Enter] The pacman package... for package management, of course.

After installing (install.packages("pacman")), you can

Install and load packages via p_load(package1, ..., packageN)

Update packages via p_update()

The p_load paradigm is especially helpful for collaboarations or projects
across multiple machines.

14 / 28

Basic algebra: scalars a and b

Addition
a + b
Subtraction
a - b
Multiplication
a * b
Division
a / b
Mod
a �� b
Integer division
a %/% b
Exponents
a^b

R intro

Math in R

15 / 28

Basic algebra: scalars a and b

Addition
a + b
Subtraction
a - b
Multiplication
a * b
Division
a / b
Mod
a �� b
Integer division
a %/% b
Exponents
a^b

Matrix algebra: matrices A and B

Addition
A + B
Subtraction
A - B
Multiplication
A %*% B
Inverse
solve(A)
Transpose
t(A)
Diagonal
diag(A)
Dimensions
dim(A); nrow(A); ncol(A)

R intro

Math in R

15 / 28

R intro

Vectorization
One great feature in R: vectorization.

With vectorization, R automatically applies functions to each element of a
vector—no iteration required.

16 / 28

Multiply a scalar by a scalar
3 * 4

#> [1] 12

Multiply a scalar by a vector
3 * c(4, 5, 6)

#> [1] 12 15 18

Multiply a vector by a vector
1:3 * c(4, 5, 6)

#> [1] 4 10 18

Vectorization can be confusing.

c(0.5, 0.9) + c(1, 2, 3)

#> [1] 1.5 2.9 3.5

R will send you a warning, but it
won't stop you.

R intro

Vectorization

17 / 28

Summaries for samples x and y

Mean
mean(x)
Median
median(x)
Std. dev. and variance
sd(x)
var(x)
Min. and max.
min(x)
max(x)
Correlation/covariance
cor(x, y)
cov(x, y)
Quartiles and mean
summary(x)

R intro

Statistics in R

18 / 28

Summaries for samples x and y

Mean
mean(x)
Median
median(x)
Std. dev. and variance
sd(x)
var(x)
Min. and max.
min(x)
max(x)
Correlation/covariance
cor(x, y)
cov(x, y)
Quartiles and mean
summary(x)

Sampling

Set the seed
set.seed(246)
4 random draws from N(3,5)
rnorm(n = 4, mean = 3, sd = sqrt(5))
CDF for N(0,1) at z=1.96
pnorm(q = 1.96, mean = 0, sd = 1)
Sample 5 draws from x w/ repl.
sample(
 x = x,
 size = 5,
 replace = T
)
First and last 3
head(x, 3)
tail(x, 3)

R intro

Statistics in R

18 / 28

R intro

Indexing vectors
Because vectors are so central to R, being able to index your vectors is
important. Note: Vectors have one dimension.

Take the vector x (e.g., x <- c(2, 4, 6, 9)).

x[3] will give us the third element of the vector—i.e., 6 .
x[2:3] will give us the second and third elements—i.e., c(4, 6) .
x[-1] returns all elements except the first—i.e., c(4, 6, 9) .
x[2] <- 0 replaces the second element with 0—i.e., c(2, 0, 6, 9) .

19 / 28

R intro

Indexing vectors
Because vectors are so central to R, being able to index your vectors is
important. Note: Vectors have one dimension.

Take the vector x (e.g., x <- c(2, 4, 6, 9)).

x[3] will give us the third element of the vector—i.e., 6 .
x[2:3] will give us the second and third elements—i.e., c(4, 6) .
x[-1] returns all elements except the first—i.e., c(4, 6, 9) .
x[2] <- 0 replaces the second element with 0—i.e., c(2, 0, 6, 9) .

Lists, e.g., list(1, 2, 3) , are similar but use double brackets, e.g., y[[3]] .

19 / 28

R intro

Indexing matrices
Because matrices (and data frames) have two dimensions, we need to
index both dimensions.

For matrix A (e.g., A <- matrix(1:9, ncol = 3))

A[3,1] references the element in the 3rd row and 1st column.
A[3,] references all elements in the 3rd row (across all columns).
A[,1] references all elements in the 1st column (across all rows).
A[-2,] returns all elements in A except for the 2nd row.
A[2,3] <- 0 replaces the element A[2,3] with zero.

20 / 28

R intro

Indexing matrices
Because matrices (and data frames) have two dimensions, we need to
index both dimensions.

For matrix A (e.g., A <- matrix(1:9, ncol = 3))

A[3,1] references the element in the 3rd row and 1st column.
A[3,] references all elements in the 3rd row (across all columns).
A[,1] references all elements in the 1st column (across all rows).
A[-2,] returns all elements in A except for the 2nd row.
A[2,3] <- 0 replaces the element A[2,3] with zero.

You can also name rows/columns in matrices—and can use these names
for referencing.

20 / 28

"Special" values

Inf is ∞, i.e., 1/0. -Inf is -∞.
NA is missing.
NaN is not a number.
NULL is null.

R intro

Other

21 / 28

"Special" values

Inf is ∞, i.e., 1/0. -Inf is -∞.
NA is missing.
NaN is not a number.
NULL is null.

Standard logical operators

== for equality
!= is not equal.
> , >= , < , <=
& is and; | is or.

R intro

Other

21 / 28

"Special" values

Inf is ∞, i.e., 1/0. -Inf is -∞.
NA is missing.
NaN is not a number.
NULL is null.

Standard logical operators

== for equality
!= is not equal.
> , >= , < , <=
& is and; | is or.

R intro

Other

R orders by number, lowercase, then uppercase.

Ordering
1 < "a"

#> [1] TRUE

21 / 28

NA �� NA

#> [1] NA

NA �� NA

#> [1] NA

NA > 0

#> [1] NA

NA + 0

#> [1] NA

is.vector(NA)

#> [1] TRUE

R intro

NA

Finally, NA contains no information in R

22 / 28

R intro

Functions
In general, a function takes some arguments, performs some internal tasks,
and returns some output.

Typical function in R: some_fun(arg1, arg2, arg3 = 0)

For some_fun to run, you must define arg1 and arg2 , e.g.,
some_fun(arg1 = 12, arg2 = -1)

Optional arguments If you do not assign a value for arg3 , then
some_fun defaults to arg3 = 0

Omitted: some_fun(arg1 = 12, arg2 = -1)
Equivalent: some_fun(arg1 = 12, arg2 = -1, arg3 = 0)

23 / 28

R intro

Functions
Functions in R are flexible.

Examples

c(arg1, arg2, ... argN) returns a vector of the inputted arguments
Note c() takes many inputs and returns one output.

ls() lists all user-defined objects in the current environment
Note ls works without any inputs and returns a character vector.

rm(obj) removes the object obj from the current environment
Note rm can take many inputs and returns no output.

24 / 28

R intro

User-defined functions
R makes it easy to define your own functions.†

Standard example A function that returns the product of three numbers.

Our function 'our_product' takes three arguments
our_product �� function(num1, num2, num3) {
 # Calculate the product
 tmp_product �� num1 * num2 * num3
 # Return the answer
 return(tmp_product)
}

You could get away without using return() but that's not recommended.

† We'll delve more deeply into this topic soon.
25 / 28

R intro

User-defined functions
Our function in action...

our_product(1, 2, 3)

#> [1] 6

26 / 28

R intro

User-defined functions
Our function in action...

our_product(1, 2, 3)

#> [1] 6

our_product(1, 2, NA)

#> [1] NA

26 / 28

R intro

Exercises
1. Using the tools we've covered, generate a dataset such that

where and .

2. Estimate the relationship via OLS using only matrix algebra. Recall

3. Harder Write a function that estimates OLS coefficients using matrix
algebra. Compare your results with the canned function from R (lm).

4. Hardest Bring it all together: Use your DGP (1) and function (3) to run a
simulation that illustrates the unbiasedness of OLS.

(n = 50)

yi = 12 + 1.5xi + εi

xi ∼ N(3, 7) εi ∼ N(0, 1)

β̂
OLS

= (X ′X)−1
X ′y

27 / 28

Table of contents
Introduction to R

1. Schedule
2. Object types and classes

Data structures
Mixing types/classes
Changing

3. Packages
4. Math in R
5. Vectorization
6. Statistics and simulation
7. Indexing
8. NA and logical operators
9. Functions

10. User-defined functions
11. Exercise

28 / 28

