
h0 ANN ANN ANN ...

x1 x2 x3

[
α1
β1

] [
α2
β2

] [
α3
β3

]

h1 h2 h3

WTTE-RNN : Weibull Time To Event
Recurrent Neural Network
A model for sequential prediction of time-to-event in the case
of discrete or continuous censored data, recurrent events or
time-varying covariates

Master’s thesis in Engineering Mathematics & Computational Science

EGIL MARTINSSON

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2016

Master’s thesis 2016

WTTE-RNN : Weibull Time To Event Recurrent
Neural Network

A model for sequential prediction of time-to-event in the case of
discrete or continuous censored data, recurrent events or

time-varying covariates

EGIL MARTINSSON

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2016

WTTE-RNN : Weibull Time To Event Recurrent Neural Network
A model for sequential prediction of time-to-event in the case of discrete or contin-
uous censored data, recurrent events or time-varying covariates.
EGIL MARTINSSON

© EGIL MARTINSSON, 2016.

Supervisor: Fredrik D. Johansson, Dep. of Computer Science and Engineering
Examiner: Peter Damaschke, Dep. of Computer Science and Engineering

Master’s Thesis 2016
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Simplest RNN architecture for the WTTE-RNN. In each timestep we
use features xt to update hidden state ht and predict a distribution over time to the
next event.

Typeset in LATEX
Latex Template adapted from Frisk (2015)
Gothenburg, Sweden 2016

iv

WTTE-RNN : Weibull Time To Event Recurrent Neural Network
A model for Sequential prediction of time-to-event in the case of discrete or contin-
uous censored data, recurrent events or time-varying covariates
EGIL MARTINSSON
egil.martinsson[at]gmail.com
Department of Computer Science and Engineering
Chalmers University of Technology
University of Gothenburg

Abstract
In this thesis we propose a new model for predicting time to events: the Weibull
Time To Event RNN. This is a simple framework for time-series prediction of the
time to the next event applicable when we have any or all of the problems of con-
tinuous or discrete time, right censoring, recurrent events, temporal patterns, time
varying covariates or time series of varying lengths. All these problems are frequently
encountered in customer churn, remaining useful life, failure, spike-train and event
prediction.

The proposed model estimates the distribution of time to the next event as having
a discrete or continuous Weibull distribution with parameters being the output of
a recurrent neural network. The model is trained using a special objective function
(log-likelihood-loss for censored data) commonly used in survival analysis. The
Weibull distribution is simple enough to avoid sparsity and can easily be regularized
to avoid overfitting but is still expressive enough to encode concepts like increasing,
stationary or decreasing risk and can converge to a point-estimate if allowed. The
predicted Weibull-parameters can be used to predict expected value and quantiles
of the time to the next event. It also leads to a natural 2d-embedding of future risk
which can be used for monitoring and exploratory analysis.

We describe the WTTE-RNN using a general framework for censored data which
can easily be extended with other distributions and adapted for multivariate pre-
diction. We show that the common Proportional Hazards model and the Weibull
Accelerated Failure time model are special cases of the WTTE-RNN.

The proposed model is evaluated on simulated data with varying degrees of
censoring and temporal resolution. We compared it to binary fixed window forecast
models and naive ways of handling censored data. The model outperforms naive
methods and is found to have many advantages and comparable performance to
binary fixed-window RNNs without the need to specify window size and the ability
to train on more data. Application to the CMAPSS-dataset for PHM-run-to-failure
of simulated Jet-Engines gives promising results.

Keywords: Censored, censoring, Weibull, Waiting Time, Recurrent Neural Net-
works, churn, time varying covariates, failure, Machine Learning, Deep Learning.

v

Acknowledgements
This thesis was in part written during an internship focusing on the problem at
hand. I’d like to thank all the smart people at Tictail, especially Natalie, Jens,
and Siavash for their help and inspiration. You gave me invaluable tutoring which
helped me in my professional development and in understanding the problem which
this thesis is aimed at solving. Working with this problem has been so fun that it
was hard to stop. I would therefore like to thank my grandmother Mette Åberg for
pushing me to finish up and hand in this thesis.

Egil Martinsson, Gothenburg, 2016

vii

Contents

List of Definitions xi

List of Figures xii

1 Introduction 1
1.1 Method . 3
1.2 Scope . 4
1.3 Thesis outline . 4

2 Preliminaries 7
2.1 Probability theory for waiting times 8

2.1.1 Waiting times for recurrent events 10
2.1.2 Discretized case . 11

2.2 Generating recurrent events using hazards 13
2.2.1 Example: Generating random events from a random process . 15

2.3 Censoring . 17
2.3.1 Log-Likelihood for right censored observations 18

2.4 Previous work: Models for censored data 23
2.4.1 Sliding box model : Binary prediction workaround 24
2.4.2 Making it a ‘learning to rank’-problem 26
2.4.3 Survival-approaches . 27

2.4.3.1 Threshold regression 28
2.4.3.2 Tobit Kalman Filter 28

2.4.4 Other . 29
2.5 The Weibull distribution . 30

2.5.1 Properties . 32
2.5.2 Log-Likelihood . 35

2.6 Recurrent Neural Networks . 36
2.6.1 Simple RNN example . 36

3 Proposed model 39
3.1 The optimization problem . 42

3.1.1 Objective functions . 42
3.1.1.1 The functional optimization problem 42
3.1.1.2 Weibull functional optimization problem 43
3.1.1.3 Recurrent Neural Network Parametrization 44

3.2 Properties of the Weibull-loss . 45

viii

Contents

3.2.1 Gradients . 45
3.2.1.1 Discrete case . 47

3.2.2 Extensions . 47
3.2.2.1 Multivariate . 47
3.2.2.2 Other distributions 48
3.2.2.3 Opportunities to regularize 48

3.3 Usage & Applications . 49
3.3.1 Example : A model for churn-prediction 49
3.3.2 A note on using sequences of varying length 50

4 Experiments 53
4.1 Basic gradient-based estimation with the Weibull distribution 53

4.1.1 Setup : Generate Weibull data 53
4.1.2 Results : Smooth learning with proper initialization 54
4.1.3 Notes on initialization . 57

4.2 C-MAPSS : high-dimensional uncensored data 59
4.2.1 Setup : Predict failure time of aircraft engines 59
4.2.2 Result : Promising performance 62

4.3 Naive strategies with censored data 65
4.3.1 Setup : Predict evenly spaced events 65
4.3.2 Result : Censored & regularized strategy wins 67

4.4 Comparison to the sliding-box-model 69
4.4.1 Setup : Generate random sequences of random length 70

4.4.1.1 Training . 73
4.4.1.2 Evaluation . 73

4.4.2 Results : Sliding box wins a rigged game 74

5 Discussion 79
5.1 Lessons from training and implementation 81
5.2 Future work . 81
5.3 Conclusion . 83

Bibliography 85

ix

Contents

x

List of Definitions

2.1 Waiting times . 7
2.2 Recurrent events . 7
2.3 Hazard Function λ(t) (HF) . 8
2.4 Cumulative Hazard Function (CHF) 8
2.7 Survival function . 9
2.8 Conditional Excess Distribution . 9
2.9 Recurrent Cumulative Hazard Function (RCHF) 10
2.10 Symmetric RCHF . 10
2.13 Step Cumulative Hazard Function d(t) (SCHF) 12
2.14 Conditional Excess Cumulative Mass Function P (t, s) (CECMF) . . . 12
2.15 Conditional Excess Probability Mass Function p(t, s) (CEPMF) . . . 12
2.16 Discrete survival function Sd(t) . 12
2.17 Discrete Hazard Function λd . 13
2.20 Censored data . 17
2.21 Informative censoring . 17
2.22 Likelihood function . 18
2.27 Sliding Box Model . 24
2.28 Cox Proportional Hazards model . 27
2.29 Accelerated Failure Time model . 27
2.30 PDF, CDF, CHF and HF of the Weibull distribution 30
2.34 CMF, PMF of the Discrete Weibull distribution 34

3.1 TTE-RNN . 39
3.2 WTTE-RNN . 39

4.1 Exponential MLE/initialization . 57
4.2 Geometric MLE/initialization . 58

xi

List of Definitions

xii

List of Figures

1.1 A timeline from the perspective of prediction 2
1.2 Timeline from the perspective of training 2

2.1 Induced distribution from a hazard 9
2.2 Example of Gaussian noise dX(t), its Brownian motion X(t), some

random hazard function |X(t)| = λ(t) and events generated from it
using d(t) = Λ(t+ 1)− Λ(t) ≈ λ(t) 16

2.3 How to reach optimal fit with data that is uncensored (a), censored
(b) or both (c). Result shown here are actual fits with f the Weibull
pdf. 22

2.4 Sliding Box-model . 25
2.5 Weibull PDF,CDF,CMF,HF,CHF . 31
2.6 RNN : In each step we input feature xt and hidden state ht−1, forward

hidden state ht and output predicted value yt 36

3.1 Predicting with the Weibull-Model 40
3.2 Continuous Weibull pdf fitted with and without censoring (occurring

at t = 10) to data generated from the high-resolution discretized
distribution of (a) λ(t) = 0.2(1 + cos(t)) and (b) λ(t) = 0.2(1 +
cos(π + t)) using standard algorithms [4]. Figure (c) shows how the
uncensored fit from (a). In many applications Weibull is an adequate
approximation of very unruly distributions and as we see censoring
has little effect on the resulting fit. 41

3.3 Basic architecture of the RNN. In each step we output estimated
Weibull-parameters giving us a distribution over time to the next
event. 44

3.4 Churn timelines . 50

4.1 Continuous Weibull α = 2, β = 2. Four different trajectories from
different initializations (circles). Contourplot shows log-likelihood for
a batch of 10000 datapoints. Histogram are overlaid with respective
final step (star in contourplot). 55

4.2 Discrete Weibull with different generating α. Trajectories from four
different initializations (circles). Contourplot shows log-likelihood for
a batch of 10000 datapoints. Histogram are overlaid with respective
final step (star in contourplot). 56

xiii

List of Figures

4.3 Training-error in blue (batch-size 1) smoothed with moving average
(window size 10). Test set-error (red) evaluated every 100th step until
25k iterations and every 200th step until the 61786th iteration. The
baseline is the simple geometric model evaluated on the test-set. . . . 60

4.4 Stacked timelines of predicted α and β for the test set. Sequences
ordered by sequence length. As α is the log-location it can be inter-
preted as a point estimate while β is roughly the inverse log-scale so
higher β is an indicator of confidence. We see that as we get closer to
failure the predicted failure time drops and the confidence gets higher. 60

4.5 Example of a predicted sequence in the test set. Features are the
26 sensor measurements in each timestep. The pmf shows the pre-
dicted probability of the location of the time to event as a heatmap.
Predicted MAP and expected value vs the actual time to event is
highlighted below. 61

4.6 Calibration of predicted probabilities in the test set. For a continuous
random variable Y we expect F (Y) ∼ Uniform so the histogram (a)
of the predicted CMF F evaluated at observed time to event F (Y)
should be approximately flat. The model is skinny tailed also implied
by QQ-plot (b). By calculating the mean of the predicted pmfs p̂(y)
and varying y we can compare the observed (blue) number of observed
time to events at Y = y to the predicted overall (black) and among
the observations at Y = y (green) and those not (red). 62

4.7 Predicted vs actual time to event in the test set colored by the
PHM-challenge score function. Blue line marks the sought region
predicted=actual. Here we use α as the point estimator reaching a
mean score of 275.3. 63

4.8 Showing the hidden graph-like structure in the distribution of pre-
dicted alpha and beta. In (a) and (b) we highlight the baseline pa-
rameters for reference. 64

4.9 Stacked timelines showing all sequences in the four datasets. 65
4.10 Example prediction for the uncensored model during training. 67
4.11 Minimum error per model for different datasets (event spacings) . . . 67
4.12 Test error and mean predicted α and β for the 10 runs of every model

and different spacing d. Thin line marks the real trajectory and thick
lines the mean over models. When any model experienced numerical
failure the mean was taken over the ’survivors’, marked with dashed
lines. The most viable strategy seemed to be using regularized cen-
sored log-likelihood (purple) when ground-truth data is unavailable
(green). 68

4.13 Realization of data generating process : Hazard function λ is a ran-
domly shifted sinusoid. Integrated over unit intervals it forms the
CEPMF p(t, s). Events generated as Vt = (Ut ≤ p(t, 0)) with U ∼
Uniform. Censored time to events in red. 71

xiv

List of Figures

4.14 Example of batch of 2000 generated sequences of length 100 for the
high- and low- setting vertically sorted by their randomly shifted pe-
riod. Histogram shows the distribution of real time to events cal-
culated from each of the 500 × 100 timesteps with the box-width
τ superimposed. During training we randomly chose the sequence
lengths n ∈ [10, 100] which can be seen as masking all but the first n
timesteps and calculating the censored time to event with step n be-
ing the horizon. Models were evaluated on the full 100 step sequences
after calculating the true time to event. 72

4.15 Weibull evaluation error for the models. Thin lines marks each seed
while thick lines marks mean over seeds. The more noisy ’low’-setting
lead to more noisy training even though learning rate was low and
diminishing and batch size was high. 74

4.16 Box evaluation error during training. Thin lines marks independent
runs, thick lines marks mean over the 5 runs. Dashed lines means
that some of the output contained numerical failures for some run
typically by giving predictions to close to 0 or 1. By Pr(T ≤ τ) we
mean the baseline probability of event in box. 75

4.17 The target indicator overlaid with the predicted probability for each
of the settings. Note that when τ = 1 it coincides with the event-
indicator. It’s easy to see that feature input for the models were
lagged event-indicators. 76

4.18 Minimum box-error achieved per model, setting and τ . The box-lstm
is right below the weibull lstm. 77

xv

1
Introduction

Times between events of interest are usually called event, survival, life, failure, hit-
ting, stopping, or waiting- times. Modeling and predicting them is one of the core
problems in classical statistics [1]. Examples are predicting the time between earth-
quakes or recessions, predicting the time a patient has left to live given treatment
history, predicting the remaining useful life of a machine, setting the premium for a
life insurance or estimating the timeframe in which a customer is expected to make
a repeat purchase if ever.

The usual perspective on these types of problems is to predict the time between
events. In this thesis we take the position that we want to make predictions about
the time to the next event from where we are right now. This means that in each
day, hour or second we want to use currently available data to update our prediction
about how close we are to the next event.

We assume that we have recorded events with timestamps. These are placed
on a timeline stretching from when we started recording until the last recording.
In the discrete case we get a sequence 0, 0, 1, 0, 0 . . . interpreted as occurence or
non-occurence of events in the subintervals. This is visualized in figure 1.1.

As we’re sequentially moving forward through time (x-axis) the current waiting
time (y-axis) drops to 0 when we reach the next event creating a reversed sawtooth-
wave. A coordinate (t, yt) on this wave thus represents the time t and how far yt it
is to the next event from t. This thesis is solely focused on trying to use information
available up to step t to approximate yt when we have any or all of the problems
of censoring, recurrent events, temporal patterns, time varying covariates or time
series of varying lengths. We will briefly motivate each of them below.

Between the last recorded event and the end of the observation window we only
know the lack of events. In that period we conclude that there was at least a certain
amount of time until the next unseen event. This partial data-problem is called
censoring [2]. See section 2.3 for details. Examples are when our dataset contains
live patients, online web-servers, dormant volcanoes or customers. The current time
to the next unseen event - be it death, downtime, eruptions or repeated purchases
- is always censored. Censored data contains valuable information so we don’t want
to throw it away. In order to do so we need to apply special techniques. In some
cases (i.e. death) an event nullifies the possibility of another. When this is not the
case we are dealing with recurrent events.

Often we have more data than the event-logs themselves. We may have both data
which is constant over time (static features) and data that changes over time (usually
called time-varying covariates [1, 3]). If we take the example of e-commerce
customers we typically have static data such as region and time of registration and

1

1. Introduction

t

predict
from here

use data from here

‘events’

t

some feature

Figure 1.1: A timeline from the perspective of sequential prediction. In each step
we want to use historic event- and feature- data to make predictions about time to
future event.

t
vt 0 0 1 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1

yt 1.5 0.5 1.5 0.5 3.5 2.5 1.5 0.5 2.5 1.5 0.5 0.5 5.5 4.5 3.5 2.5 1.5 0.5 0.5

ỹt 1.5 0.5 1.5 0.5 3.5 2.5 1.5 0.5 2.5 1.5 0.5 0.5 3.0 2.0 1.0 0.0

observed past future

tim
e
to

ev
en
t

now

‘censored’

yt

ỹt

Figure 1.2: From the perspective of training: We have recorded events until now,
written as indicators vt. Prior to the last recorded event we know the true time-
to-event so ỹt = yt. After we only have the censored time to event ỹt ≤ yt to train
on.

2

1. Introduction

time varying data like number of opened newsletters, clicked ads, lost carts and time
since last purchase. If we want to build a model with static features we can simply
treat each interval between events as the outcome of an experiment with parameters
as functions of the static features. If we want to use time varying covariates to
continuously update predictions we need other methods.

It’s easy to see that there may be temporal relationships in the data that
may have effect on the outcome. Unless we want to transform our variables to
explicitly take these into account we need some way of learning the temporal patterns
themselves. Examples could be to learn drug-interaction effects on patient life.

A further complication is that the length of each sequence may differ. If we don’t
have fixed-length sequences - which by the very nature of the problem we rarely have
- we need some flexible method of dealing with it.

We may summarize the problem as follows:

Given that we’ve observed sequences of features and events where each sequence
may be of varying length and time-to-event may be censored; find a way to to use
feature history at each step to predict the time to the next event.

A very simple example that sums up the whole problem can be seen in figure
1.2. Assume that we’ve taken feature measurements (ex. readings from a barometer)
and recorded some events, say lightning strikes. We want a model able to make real
time predictions. Here by predicting say time to the next lightning using historic
data of lightning strikes and barometric pressure.

This seems like a very generic forecasting problem. As such we’d expect there
to be an abundance of models. Rather surprisingly there’s no standard sequential
model for censored data. Instead, as we’ll show in section 2.4, the usual method
of tackling the issue of censoring, time-varying covariates and recurrent events in
waiting-time prediction seems to be by re-framing or avoiding it completely.

The goal with this thesis is to describe a model that seems like an intuitive, em-
pirically sound and computationally feasible way of learning long term dependencies
in sequences of varying length in order to continuously predict and make inference
about waiting-times.

The proposed solution is very simple and quite obvious. We discretize the time-
line into steps and assume a parametric distribution for the time to the next event.
We then let the parameters of this distribution be functions of data. This way
we may compare density at points (uncensored data) and probability over regions
(censored data) by utilizing a special log-likelihood for the parametric model as
loss-function. In particular, by letting the parameters in each step be outputs of a
recurrent neural network we may learn temporal patterns in sequences of varying
lengths. We focus on the Weibull model as the parametric model but this can easily
be switched out in the framework we will present.

1.1 Method
We have used mathematical methods to theoretically justify the model and experi-
ments to verify its performance. The experiments were designed to test performance

3

1. Introduction

and exemplify its use. In the first experiment (section 4.1) we explore the dynamics
of simple gradient based estimation using the model. This can be explicitly shown
since we controlled the parameters generating the data. In section 4.2 we tested
the model on a well known dataset of uncensored failure times and high dimensional
feature data. This shows how the model can be used in practice.

In the remaining experiments we compare the models with some relevant base-
lines on generated data. This also served the purpose of exploring which negative
and biasing effect training with censored data had on predictions. In section 4.3 we
compared performance with some naive but realistic baselines. This was evaluated
using generated (non-random) ground truth data. In section 4.4 we compare our
model to a standard model type for censored data. Note that this approach (which
we call the sliding box model tackles the problem in a completely different way, but
as its output is a special case of the WTTE-RNN we can compare them.

1.2 Scope
In this thesis we touch on many subjects that come together to form the model. We
have tried to cover all of them but we have had to limit the depth of the analysis to
that which is relevant in answering the basic questions.

In the theoretical sections we cover the basics necessary to understand the quan-
tities that we are trying to predict and to give some probabilistic justification of
our model. The basic tools stems from the theory of stochastic processes and sur-
vival analysis which is a vast research-area meaning that we can only scratch the
surface. We limited ourselves to give the most basic tools and to craft a notational
machinery so that we can talk about waiting times in an efficient manner. This was
done by condensing some known theory and low-hanging mathematical fruit and
present them in the context of machine learning and optimization. For an in-depth
discussion on survival analysis we refer to [4].

Apart from the probabilistic background we focused on answering the questions
of whether there’s unique solutions, if we can guarantee convergence and which
numerical caveats that might be hidden when calculating gradients. We hope that
this this is useful for someone that wishes to understand, use and in particular extend
the model. We tried answering when the loss function leads to a probabilistic model
that makes sense. In the case of recurrent events we didn’t fully manage to construct
a complete generative scenario leading to our log-likelihood loss function. We did on
the other hand show through experiments that it works well in practice for a range
of problems.

We will briefly discuss Recurrent Neural Networks but for a more thorough in-
troduction we refer to [5].

1.3 Thesis outline
The findings can be divided into a theoretical background describing probabilistic
aspects of models for times to events, a theoretical description of how we assemble
these pieces into the proposed model and experiments where we test it.

4

1. Introduction

In preliminaries (chapter 2) we develop a mathematical framework to talk about
waiting times. This is used to show how data can be generated (section 2.2). We give
an introduction to the Weibull Distribution (section 2.5) to motivate its use and a
very short introduction to Recurrent Neural Networks (section 2.6). Previous work
and similar models is then described (section 2.4) using the machinery presented
earlier.

In chapter 3 we give a thorough description of the proposed model. The learning-
problem is defined in terms of an optimization problem which is given both theoret-
ical and practical motivations. We analyze numerical caveats and possible tweaks.
A proposed workflow for using it is given and some proposed applications, with
particular focus on churn-prediction.

In experiments (chapter 4) we show some results and performance with real and
generated data.

Discussion (chapter 5) summarizes the findings and discuss model strengths,
weaknesses and suggests further work.

5

1. Introduction

6

2
Preliminaries

In order to understand the WTTE-RNN we will give a description of its pieces. We
will start of with some definitions to lay the groundwork for a general discussion
about censoring and modeling of waiting times and censored data. We then use
this background to present some related models (section 2.4), which the reader can
skip to immediately if so inclined. Survival analysis is quite a mature field but we
have not found any single source covering it in a comprehensive mathematical and
minimal manner relevant to our problem. This is the motivation for this chapter.
Almost everything presented here are standard statistical concepts or conclusions
relying only on basic manipulations. It can be found in one form or another in
standard textbooks such as [4]. We have tried to condense the core results using
the most common notation and terminology when possible.

Definition 2.1 (Waiting times). We refer to data or random variables that are
modeling time between-, since- or to events as waiting times. We assume that
waiting times T are always positive and unbounded, T ∈ [0,∞). Waiting times may
either be continuous or discrete.

Some properties that makes this kind of data interesting is:

• Abundance of data. Whenever we have events with timestamps we have tim-
ings and times between such events.

• The experiment itself interferes with our ability to observe it. We can’t ob-
serve it until it’s over and the time it takes to conduct an experiment is the
experiment itself.

• Positive and unbounded. T ∈ [0,∞). This is an assumption that might not
always make sense.

In some contexts an event occurring nullifies the probability of another occurring.
This is the case when modeling survival e.g. lifelengths of patients. This can be seen
as a special case of the focus of this thesis, namely events happening on a timeline
in succession, recurrent events.

Definition 2.2 (Recurrent events). Given a timeline [0,∞) and marked points that
may be more than one, we call these points recurrent events. The time to the next
event from some position on this timeline is called time-to-event or less specific
waiting time. Time between such events are typically called interarrival times [4].

Time to events are easily visualized as a kind of reversed sawtooth-wave as shown
in figure 1.2.

7

2. Preliminaries

2.1 Probability theory for waiting times
This section gives the basic building blocks and terminology of survival-analysis in
the context of temporal problems. Another way to see it is that this section defines
the quantities that the WTTE-RNN is trying to predict.

We will start off with the case of the time to one event at a time and then adapt
it to the case when we have recurring events. Without loss of generality we initially
focus on continuous distributions and later show how to transform them to discrete
distribution. These can in turn be used to generate data.

All our theory stems from a useful representation of a positive probability dis-
tribution, the simple concept of hazard and cumulative hazard-functions.

Definition 2.3 (Hazard Function λ(t) (HF)). A hazard function λ is a function
with the properties:

1. 0 ≤ λ(t) ∀t ≥ 0

2.
∫∞

0 λ(w)dw =∞

Definition 2.4 (Cumulative Hazard Function (CHF)). We denote the integrated
Hazard Function with Λ (pronounced ’Lambda’) and call it a Cumulative Hazard
Function:

Λ(t) =
∫ t

0
λ(w)dw

Proposition 2.5. Λ(t) induces a CDF for a positive random variable T with CDF:

Pr (T ≤ t) = FT (t) = 1− e−
∫ t

0 λ(w)dw = 1− e−Λ(t)

and PDF:
fT (t) = F ′T (t) = ∂

∂t
(1− e−Λ(t)) = e−Λ(t)λ(t)

Proof. Observing that 0 ≤ λ(t) so Λ(t) is an increasing function and fT (t) ≥ 0.
Furthermore with e−Λ(0) = 1 → FT (0) = 0 and e−Λ(∞) = 0 → F (∞) = 1. We see
that the statement holds.

Conversely, for every distribution we may find Λ and λ as defined above:

Proposition 2.6. For each CDF FT there exists Λ such that Λ = − log(1− FT)

Proof is omitted since it’s self evident. Note that since Λ(t) is strictly increasing
it has an inverse and so the quantile function F−1

T (p) = Λ−1(−log(1− p)).
In terms of survival, higher values of the hazard function indicates higher mor-

tality given survival up to that point. This can also be seen from the identity

λ(t) = lim
ε→0

Pr(t < T ≤ t+ ε|T > t)
ε

This motivates why λ is also called the instantaneous risk or the failure rate [2].
In survival analysis we’re mainly concerned with the time remaining to an event

so we spend more time talking about the right tail of distributions. As a convenience
we introduce notation for this:

8

2. Preliminaries

Definition 2.7 (Survival function). The function for the probability of an event
occurring after time t (survival up to time t) is called the survival function S(t):

S(t) = Pr (t < T) = 1− F (t) = e−Λ(t)

In figure 2.1 we show an example of how the quantities so far are related.

λ(t) = 0.2 · (1 + cos(t))

Λ(t) = 0.2 · (t+ sin(t))

F (t) = 1− e−Λ(t)

f(t) = λ(t) · e−Λ(t)

Figure 2.1: Relationship between Cumulative Hazard Λ, Hazard λ = Λ′, Cumula-
tive Distribution Function F and Probability Density Function f = F ′.

In our context it’s also useful to define a shorthand for the distribution of T
given that an event have yet to occurred at time t:
Definition 2.8 (Conditional Excess Distribution). If Yt = {T − t}|{T > t} we call
Yt the conditional excess distribution of T at t. If T has CDF FT we denote the
CDF of Yt with F (t, s):

F (t, s) = Pr(Yt ≤ s) = Pr(T ≤ t+ s|T > t)

= Pr(T ≤ t+ s ∩ T > t)
Pr(T > t) = FT (t+ s)− FT (t)

1− FT (t)

= ST (t)− ST (t+ s)
ST (t) = e−Λ(t+s) − e−Λ(t)

e−Λ(t)

= 1− e−(Λ(t+s)−Λ(t))

We interpret this as ‘at time t the probability of an event within s time is F (t, s)’
Its PDF:

f(t, s) = ∂

∂s

FT (t+ s)− FT (t)
1− FT (t) = fT (t+ s)

1− FT (t) = fT (t+ s)
ST (t) = e−(Λ(t+s)−Λ(t))λ(t+ s)

9

2. Preliminaries

For notational convenience we will also use the survival-function in this context
and let 1− F (t, s) = S(t, s).

As will be shown, conditional excess distributions are very useful for modeling
recurrent events.

2.1.1 Waiting times for recurrent events
We are interested in recurring events over a timeline. Note how simple the con-
ditional excess distribution got when we formulated it using the general notion of
HFs and CHFs instead of regular CDF/PDF-notation. For recurrent events we’ve
constructed a more general concept which makes it easier to talk about waiting
time. We will construct the quantities discussed above using what we introduce as
a generalized Cumulative Hazard Function:

Definition 2.9 (Recurrent Cumulative Hazard Function (RCHF)). We call a func-
tion R : Rm × R+ → R+ such that ∀X ∈ Rm:

1. ∂R
∂s

(x, s) ≥ 0 ∀s ≥ 0

2. R(x, s)→∞ as s→∞

3. R(x, s) = 0∀s ≤ 0

a Recurrent Cumulative Hazard Function.

From the definition of a hazard function, ∂R
∂s

(x, s) = Rs(x, s) with x fixed is a
hazard for events over the coming time s ∈ [0,∞). By proposition 2.5 we know
that we may use this to create a probability distribution 1 − e−R(x,s). We can see
it as if Pr(S ≤ s|X = x) = 1 − e−R(x,s). The proposed model we will let x be the
input data.

For the generative framework we will be concerned with the special case when
x = t represents the current position on a timeline from where we want to make
predictions about the future, represented by s. In this framework the coordinate
(t, s) can be interpreted as looking s steps into the future from time t.

When Rs has an additional property that we will call symmetry we can seamlessly
connect it to conditional excess distributions.

Definition 2.10 (Symmetric RCHF). When the RCHF has the additional property
R(t, s) = R(0, t+ s)−R(0, t) we call it symmetric.

Proposition 2.11. For every symmetric RCHF there is some CDF FT (t) such that
its conditional excess CDF can be written F (t, s) = 1− e−R(t,s)

Proof. In order to show this we need to pick some R and create a valid CDF FT and
then show that this is identical to the definition of a conditional excess distribution
as in definition 2.8.

Clearly R(t, s) ≥ 0 and R(t, s) → ∞ ∀t as s → ∞ giving R(t, s) the desired
properties to define PDFs and CDFS in s for each fixed t like in proposition 2.5.
Abusing notation we define F and f as:

10

2. Preliminaries

F (t, s) = 1− e−R(t,s)

f(t, s) = ∂

∂s
F (t, s) = e−R(t,s)Rs(t, s)

Further set F (0, t) = 1− e−R(0,t) = FT (t). Now set the LHS as the definition of
a conditional excess CDF:

FT (t+ s)− FT (t)
ST (t) = (1− e−R(0,t+s))− (1− e−R(0,t))

e−R(0,t)

= 1− e−(R(0,t+s)−R(0,t)) = 1− e−R(t,s) = 1− F (t, s)

Where we used that R(t, s) = R(0, t+ s)−R(0, t).

This is really a reiteration of prop. 2.5 using the new notation. The concept
of symmetry is interesting as it tells us how the RCHF must look like to induce
a conditional excess distribution over the same time line and thus gives us a hint
about what to think about when analyzing random hazard-processes. It might be
apparent but its still worth mentioning, if R is symmetric there is a unique hazard
function integrated over [t, t+ s] which defines it:

Proposition 2.12. R(t, s) = R(0, t+ s)−R(0, t) ⇐⇒ R(t, s) = Λ(t+ s)− Λ(t)

Proof. =⇒ : If R is as above then Rs(t, s) = Rs(0, t+ s). As Rs has the properties
of a hazard function use the notation Rs(0, t+s) := λ(t+s). We thus have R(t, s) =∫ s

0 Rs(t, x)dx =
∫ s

0 λ(t+ x)dx = R(t, s)−R(t, 0) since R(t, 0) = 0. By the definition
of a cumulative hazard function we have R(t, s) = Λ(t+ s)− Λ(t).

⇐= : Conversely, with R(t, s) = Λ(t + s) − Λ(t) then it’s easily verified
that R has the properties of a recurrent cumulative hazard function. Furthermore
R(0, x) = Λ(x) and so Λ(t+ s)− Λ(t) = R(0, t+ s)−R(0, t) = R(t, s)

It might be helpful to consider (x, y, z) = (t, s, Rs(t, s)) as coordinates to a surface
in 3d for t, s ≥ 0. When R is symmetric the surface will be symmetric around t = s
as each absolute (wall clock) point in time has the same hazard value Rs(t, s). See
for example figure 4.13.

If R isn’t symmetric we may assign different different hazard values Rs(t, s)
to the same absolute time t + s depending on from which t we are making the
prediction. One interpretation of R(t, s) is therefore that it gives the belief at t
about the distribution over future events at time t+ s. See for example the induced
distribution of figure 4.5.

2.1.2 Discretized case
It’s common to deal with discrete time (seconds, days, months) so it’s useful to use
the same framework for discrete- as for continuous problems. We could deal with
discrete time by dividing the timeline using some arbitrary steplength and index the

11

2. Preliminaries

resulting intervals as done by [3]. To simplify calculations we will instead assume
unit steplength.

Here let Λ be some cumulative hazard function as above. Use the notation
Λ(t+ s)− Λ(t) = R(t, s) with R a symmetric RCHF

Definition 2.13 (Step Cumulative Hazard Function d(t) (SCHF)). We define the
SCHF d(t) to be the hazard function integrated over integer intervals [t, t + 1) for
t = 0, . . .

d(t) = R(t, 1) = Λ(t+ 1)− Λ(t) =
∫ t+1

t
λ(w)dw

We can extend our definition of conditional excess distributions to encompass
discretized random variables.

Definition 2.14 (Conditional Excess Cumulative Mass Function P (t, s) (CECMF)).
Let Td be the discretization of the random variable T with CHF Λ s.t Td = t ⇐⇒
T ∈ [t, t+ 1). We define the probability that there will be at least 1 event within s
timesteps from t as

P (t, s) = Pr(Td ≤ t+ s|Td ≥ t)
= Pr(T ≤ t+ s+ 1|T ≥ t)
= 1− exp (−R(t, s+ 1))

= 1− exp
(
−

t+s∑
k=t

d(k)
)

Definition 2.15 (Conditional Excess Probability Mass Function p(t, s) (CEPMF)).
The probability that there will be an event in s steps from t:

p(t, s) = Pr(Td = t+ s|Td ≥ t)
= Pr(T ∈ [t+ s, t+ s+ 1)|T ≥ t)
=S(t, s)− S(t, s+ 1)
=e−R(t,s) − e−R(t,s+1)

=e−R(t,s)(1− e−d(t+s))
=e−R(t,s+1)(ed(t+s) − 1)

=e−
∑t+s

k=t d(t)(ed(t+s) − 1)

Definition 2.16 (Discrete survival function Sd(t)). The discrete survival function
is the probability of survival of t steps or more i.e. that the event happens at step
t or later.

Sd(t) = Pr(Td ≥ t) = e−Λ(t) (2.1)

For a discretized variable Sd(t) = S(t) = Pr(T ≥ t). Note that even though the
SCHF have very similar properties to the continuous hazard function, we refrained
from using the name ’discrete hazard’. The reason being that we reserve the word
’hazard’ for its common usage, namely when it’s the quota between the probability of
event and the probability of no event so far, i.e. the PMF and the survival function.

12

2. Preliminaries

Definition 2.17 (Discrete Hazard Function λd). Let T be a positive random vari-
able. For the discrete random variable Td induced from it, we define its discrete
hazard as [3]:

λd(t) = Pr(Td = t)
Sd(t)

= Pr(Td = t|Td ≥ t) = Pr(T ∈ [t, t+ 1)|T ≥ t)

= F (t, 1) = 1− e−(R(t,1)) = 1− e−d(t)

An interesting aspect of the discrete hazard function is that we can factor the
survival function as Sd(t, s) = (1− λd(t)) · . . . · (1− λd(t + s)) = e−d(t)−...−d(t+s) [3].
A probabilistic interpretation is that for survival of s steps we need s independent
non-events to happen. This interpretation will prove useful when generating data.

Before moving on we will state a short proposition about the expected values of
a unit discretized distribution Td of T :

Proposition 2.18. E[T] ≤ E[Td] + 1

Proof. We can rewrite the expectations as:

E[T] =
∞∑
t=0

∫ t+1

t
xf(x)dx

E[Td] =
∞∑
t=0

t
∫ t+1

t
f(x)dx

And since xf(x) ≤ (t+ 1)f(x) for x ∈ [t, t+ 1] the same holds for the sum over
each t = 0, 1, . . . so:

E[T] ≤
∞∑
t=0

(t+ 1)
∫ t+1

t
f(x)dx = E[Td] + 1

So the expected value of a unit discretized random value is at most one step
above the expected value of the continuous distribution. This is a useful estimate
when we can calculate the continuous expected value but not the discretized or vice
versa.

2.2 Generating recurrent events using hazards
In this section we will show how continuous hazard functions can be discretized and
used to generate data.

We used this method to generate data for the experiments of chapter 4, but
discussing them here serves a more important purpose. In the real world we have no
idea what kind of processes that generated the data i.e where the data came from -
that’s why we are using machine learning in the first place. This model makes use of
probability theory and assumptions about the distribution over the time to the next
event for learning. The easiest way to understand these assumptions is to dwell in

13

2. Preliminaries

an idealized version of the real data-generating process (a generative model). This
makes it easier to recognize whether these assumptions holds in practice.

To generate event data define the random variable Vt as an event occurring or
not in intervals indexed t = 0, 1, 2, . . .:

Vt =

1 if Ut ≤ 1− e−d(t)

0 else

where Ut is a Uniform random variable. Inversely we get:

Pr(Vt = 1) = Pr (event in interval [t, t+ 1)) = 1− e−d(t)

So Vt is a Bernoulli-trial with parameter θt = 1 − e−d(t). We will show that at
each step, the time to the next event, i.e. the number of steps s to the next bit
which is turned on (Vt+s = 1) has the distribution described by the CECMF:

Proposition 2.19. By generating recurrent events as above, the distribution of the
time to the next event is given by the CEPMF

Proof. We may make the above statement a little more clear. Assume that we’re
standing at step t. Define Vk as above with k = t, If Tt is the discrete random
variable generated at step t indicating time to the next event with distribution
induced by Λ, then we claim that:

Pr(At time t there’s s steps to the next event) =
Pr(Vt = 0, Vt+1 = 0, . . . , Vt+s = 1) = Pr(Tt = s) = p(t, s)

We can get some intuition about this by thinking about how a geometrically dis-
tributed random variable X with PMF Pr(X = s) = (1 − θ)s−1θ is constructed.
Here we need a sequence of s− 1 failed independent Bernoulli-trials followed by one
success, where each trial has identical success probability θ. Let s > 0 and imagine a
geometric experiment with different probabilities of success, namely θt = 1− e−d(t):

Pr(Vt = 0, Vt+1 = 0, . . . , Vt+s = 1)
= Pr(Vt = 0) · Pr(Vt+1 = 0) · . . . · Pr(Vt+s = 1)

= Pr(Vt+s = 1)
t+s−1∏
k=t

Pr(Vk = 0)

= θt+s
t+s−1∏
k=t

(1− θk)

= (1− e−d(t+s))
t+s−1∏
k=t

e−d(k)

= (1− e−d(t+s))e−
∑s−1

k=0 d(t+k)

= p(t, s)

And since Pr(Vt = 1) = 1− e−d(t) = p(t, 0) we are done.

14

2. Preliminaries

To convert the event indicators to discrete time-to-event data we simply count
the steps to the next event:

yt = arg min
k

vt+k

s.t vt+k = 1 OR k = n

Note that yt = 0 ⇐⇒ vt = 0. This should be interpreted as if, at time t, there
will be an event in the coming time-interval [t, t+ 1) which is not known at time t.

The case when there is no event until the end of time, k = n means we have
censored data so we set ut = 0.

To generate non-censored data we generate events over a longer time-horizon,
say t = 0, . . . , n, . . . , N choosing N >> n such that the probability of no events for
t = n, . . . , N is negligible Pr(Vn = Vn+1 . . . = VN = 0) ≈ 0. Calculate the waiting
times as

yt = arg min
k

vt+k

s.t vt+k = 1 OR k = N

and keep yj for t = 0, . . . , n.
With this in mind the we may get some more intuition around hazard func-

tions. When we discretize the timeline p(t, 0) = λd(t) gives us the probability of
an event in each of them indexed t = 0, By shrinking the width ε of this
interval and generating events, eventually λd → 0 as ε → 0. Recall the iden-
tity λ(t) = limε→0

Pr(t<T≤t+ε|T>t)
ε

. This motivates why λ(t) indicates how high
concentration-, or the rate of events we are expected to encounter around t.

Note that we do not need an explicit form of λ(t) to generate events, only some
positive values d(t). This fact will be used in the following example to show how
events can be generated.

2.2.1 Example: Generating random events from a random
process

In this example we will show how events can be generated using a RCHF. This is
then used to illustrate the difficulties in predicting it.

Assume that we have an event-density i.e hazard determined by the process given
by the solution to some Stochastic Differential Equation (SDE), the Ito-integral:

X(t) = X(0) +
∫ t

0
σ(s)dB(s) +

∫ t

0
µ(s)ds

where we informally write its stochastic differential :

dX(t) = σ(t)dB(t) + µ(t)dt

with µ(s) and σ(s) deterministic functions and B(t) brownian motion so that
dB(t) = B(t+ dt)−B(t) [6]. Now set λ(t) = |X(t)| and Λ(t) =

∫ t
0 |X(t)|dt s.t

15

2. Preliminaries

Pr(event within s time at time t) = 1− exp(−
∫ s

0
|X(t+ τ)| dτ)

So the hazard function is a Markov random process.

Figure 2.2: Example of Gaussian noise dX(t), its Brownian motion X(t), some
random hazard function |X(t)| = λ(t) and events generated from it using d(t) =
Λ(t+ 1)− Λ(t) ≈ λ(t)

At prediction-time we only - at best - have information about the processX([0, t])
and event-times leading up to present time t. We may not have information about
the future hazard as it hasn’t yet been realized. Note that the expected trajectory of
the hazard will change depending on its current state or rather what we know about
its current state. The goal is therefore to estimate E [Λ(t+ s)− Λ(t)|Info at time t] :=
R(t, s).

The info at time t are the features. Realistically these could be a sequence of
snapshots of the process {X(ti)}ni=1. More realistically still, we’ve only observed
transitions in a noise-variable, say the transitions {dB(ti) = B(ti)−B(ti−1)}ni=1.

At training-time, if we’ve observed the hazard-function we want to find a way
to predict its trajectory. Since this is an unrealistic assumption, we really only have
feature-history and the events themselves rather than their event-density to infer
the process.

16

2. Preliminaries

2.3 Censoring
In this section we will define the problem of censoring and present the common loss
function (log-likelihood) used when we have this type of data.

Censoring is one of the special problems with waiting times. As the time it takes
to conduct a waiting-time experiment is the experiment itself we may not always be
able to observe it from start to end. This phenomena is called censoring:

Definition 2.20 (Censored data). Let T be some positive random variable indicat-
ing time-to-event. We say that a datapoint/observation of T is censored whenever
we haven’t observed it pointwise. It may also be useful to talk about it as the actual
and observed time of the experiment. The actual waiting time is always contained
in the observed. When the actual is equal to the observed we have an uncensored
observation and otherwise a censored observation. In particular, we call it:

Uncensored: When T is known to have been t: T = t. Event occurred exactly
at time t.

Left censored: When T is known to have been below a treshold t but unknown
by how much: T ∈ (0, t). After time t we know that the event has occurred but not
exactly when.

Right censored: When T is known to have been above a treshold t but unknown
by how much: T ∈ (t,∞). After time t we know that the event hasn’t occurred but
we know it will eventually.

Interval censored: T is known to have been in an interval, T ∈ [a, b].

Even though all three types of censoring are frequently encountered in the wild,
this thesis will solely focus on right-censoring. This follows from that if we have an
uninterrupted observation window and looking forward, the time to event can only
be right censored.

The random process leading up to right censoring is usually described as if we’ve
observed the random variable pair (X,∆) to equal (x, u) where X = min(T,C) with
T the waiting time, C the random censoring variable and ∆ = I(T ≤ C) the failure
indicator s.t:

C < T ∆ = 0 Observation censored
C ≥ T ∆ = 1 Observation uncensored

A high-level distinction between the processes causing censoring is if the censor-
ing is informative or non-informative. For more detailed descriptions we recommend
[4].

Definition 2.21 (Informative censoring). Let X = min(T,C) with T parameterized
by θ. If

1. C ⊥ T |θ

2. C ⊥ θ

17

2. Preliminaries

We say that we have non-informative censoring, otherwise we call the censoring
process informative. In the latter case, observing C gives us information about the
distribution of T or its parameters.

Even if both conditions needs to hold for non-informative censoring it’s useful
to separate them. The first implies that Pr(C, T |θ) = Pr(C|θ) Pr(T |θ) while the
second furthermore implies Pr(C, T |θ) ∝ Pr(T |θ). If for example T and C are IID
random variables with common parameter θ we have 1) but not 2).

The assumption of non-informative censoring will be central motivating the use
of observations (xi, δi) to estimate the distribution of T .

2.3.1 Log-Likelihood for right censored observations
The idea for using log-likelihood for censored data is that we assume the censoring
process to be independent from the parameter we are optimizing for meaning that
we can factor it out from the likelihood function. In this section we will prove
that under the assumption of non-informative censoring we get a very nice log-
likelihood formulation. Before going into details we present the basic definition of
Log Likelihood using the notation of Casella [7].

Definition 2.22 (Likelihood function). Let fX|θ(x) denote the joint pdf or pmf of
the sample X = {X1, . . . , Xn} where f has parameter θ. Then given that X = x =
{x1, . . . , xn} is observed, the function

L(x, θ) = fX|θ(x) (2.2)

Is called the likelihood function, or likelihood for short [7].

We are interested in the likelihood as a loss function for θ. By maximizing the
likelihood function we maximize the probability (or ’likelihood’ when we have a
continuous distribution) of our observation X = x given its parameter θ. Note that
if X consists of independent identically distributed random variables observed as
Xk = xk then their joint distribution factor and L(x, θ) = ∏n

k=1 fX|θ(xk) and so the
log of the likelihood will be a sum of some function φ(xk, θ) involving θ and those not
g(xk), meaning that the g(xk)’s have no influence on the maximization-procedure
why we disregard them and say that the likelihood is proportional (∝) the right
hand side.

log(L(x, θ)) =
n∑
k=1

log(fX|θ(xk)) =
n∑
k

φ(xk, θ) + g(xk) ∝
n∑
k

φ(xk, θ) (2.3)

We are now ready to discuss the loss-function that we are interested in.

Theorem 2.23 (Likelihood for right-censored data). Let T be a random waiting-
time parametrized by θ. Under the assumption of Non-informative right censoring
we can write the likelihood as: [8]:

L(t, θ) ∝

Pr(T = t|θ) if uncensored
Pr(T > t|θ) if right censored

18

2. Preliminaries

Proof. LetX = min(T,C) with T the waiting time, C the random censoring variable
and ∆ = I(T ≤ U) the failure indicator. The joint PDF for (X,∆) can be written
as:

fX,∆(x, u) = d

dx
FX,∆(x, u) = lim

h→0

1
h

Pr({x ≤ X ≤ x+ h} ∩ {∆ = u})

Where we skip writing out that the pdfs contain θ to simplify notation. Since we
have non-informative censoring the joint PDF of (T,C) is:

T ⊥ C =⇒ fT,C(t, c) = fT (t)fC(c) (2.4)

Consider the case when we have censored data so that u = 0:

1
h

Pr({x ≤ X ≤ x+ h} ∩ {∆ = 0}) =
1
h

Pr({x ≤ min(T,C) ≤ x+ h} ∩ {T < C}) =
1
h

Pr({x ≤ T ≤ x+ h} ∩ {T < C}) =
1
h

∫ x+h

x

∫ ∞
t

fT (t)fC(c)dcdt =

1
h

∫ x+h

x
fT (t)

∫ ∞
t

fC(c)dcdt =

1
h

∫ x+h

x
fT (t)SC(t)dt→fT (x)SC(x)

So fX,∆(x, 0) = fT (t)SC(t).
Now consider the case when we have uncensored data so that u = 1:

1
h

Pr({x ≤ X ≤ x+ h} ∩ {∆ = 1}) =
1
h

Pr({x ≤ min(T,C) ≤ x+ h} ∩ {C ≤ T}) =
1
h

Pr({x ≤ C ≤ x+ h} ∩ {C ≤ T}) =
1
h

∫ x+h

x

∫ ∞
c

fC(c)fT (t)dtdc =

1
h

∫ x+h

x
fC(c)ST (c)dc→fC(x)ST (x)

So fX,∆(x, 1) = fC(x)ST (x).
This means that given C ⊥ T |θ we can factor the likelihood as:

fX,∆(x, u) = (fT (x)SC(x))u·(fC(x)ST (x))1−u =
[
fT (x)uST (x)1−u

]
·
[
fC(x)1−uSC(x)u

]
(2.5)

19

2. Preliminaries

And if furthermore C ⊥ θ we know that fC and SC are not functions of θ so the
likelihood will have the form:

L(t, θ) = fX,∆(x, u) ∝ fT (x)1−uST (x)u (2.6)

Corollary 2.24 (Likelihood for right-censored data, discrete case). Let T , C, X,
∆ be as above but now T and C are discrete with support {0, 1, . . .}. Then

L(t, θ) ∝

Pr(T = t|θ) if uncensored
Pr(T > t|θ) if right censored

Proof. We will show as above that the joint distribution of (X,∆) neatly factors.
Censored case:

Pr({min(T,C) = x} ∩ {C < T}) =
Pr({C = x} ∩ {T ∈ {x+ 1, x+ 2, . . .}}) =

Pr(C = x) · Pr(T > x)

Uncensored case:

Pr({min(T,C) = x} ∩ {T ≤ C}) =
Pr({T = x} ∩ {C ∈ {x, x+ 1, . . .}}) =

Pr(T = x) · Pr(C ≥ x)

Using the above we see that the likelihood factors as:

Pr(X = x ∩∆ = u) =
[
Pr(T = x)u · Pr(T > x)1−u

]
·
[
Pr(C = x)1−u · Pr(C > x)u

]

Note the risk of doing an off-by-one error. Even though it’s similar to the con-
tinuous likelihood we have Pr(Td > t|θ) = Sd(t+ 1).

As a final remark, there’s one censoring process which is particularly relevant
for the problem we have. If the censoring time C is fixed in advance we will show
that we only need the first condition for non-informative censoring to get the sought
likelihood function. One can argue that if we have recorded events for a week and
want to train our model today then from a week ago the censoring time would be
C = 7 and so X = min(T, 7).

Corollary 2.25 (Likelihood when censoring time C is fixed and T ⊥ C|θ). Let
X = min(T,C), T a waiting time, C a censoring variable and ∆ = I(T ≤ C)
a failure indicator as in theorem 2.23 but assume that C = c is known. Assume
further that we only have T ⊥ C|θ, not necessarily C ⊥ θ Then the joint distribution
of (X,∆)|(C, θ) is

20

2. Preliminaries

Pr({X ≤ t} ∩ {∆ = u}|{C = c} ∩ {θ}) =

Pr(T ≤ min(t, c)|θ) u = 1
Pr(T > c|θ) u = 0, t ≤ c

0 u = 0, t > c

Meaning that the log-likelihood will factor as in theorem 2.23.

Proof. We show this by expanding the events explicitly and use basic identities for
conditional probability to show that the proposed right hand side follows.

In the first case, for uncensored data when ∆ = u = 1:

Pr({X ≤ t} ∩ {∆ = 1}|{C = c} ∩ θ) =
Pr({min(T,C) ≤ t} ∩ {T ≤ C}|{C = c} ∩ θ) =

Pr({T ≤ t} ∩ {T ≤ c}|{C = c} ∩ θ) =
Pr(T ≤ min(t, c)|{C = c} ∩ θ) ∗=

Pr(T ≤ min(t, c)|θ)

And for uncensored data when ∆ = u = 0:

Pr({X ≤ t} ∩ {∆ = 0}|{C = c} ∩ θ) =
Pr({min(T,C) ≤ t} ∩ {T > C}|{C = c} ∩ θ) =

Pr({C ≤ t} ∩ {T > c}|{C = c} ∩ θ) ∗=Pr(T > c|θ) u = 0, t ≤ c

0 u = 0, t > c

Where ‘ ∗=’ follows from {T ⊥ C}|θ ⇐⇒ Pr(T |C ∩ θ) = Pr(T |θ).

We could have simply stated thm. 2.23, cor. 2.24 and 2.25 without proof as
the results are well known. As we discovered, this fact seems to have led to some
kind of tragedy of the commons leading most treatments of the subject to simply
disregard to state the detailed assumptions and proofs. We need to understand these
details to be able to safely make assumptions and understand the biases that may
be introduced in the model if they are violated. Since we couldn’t find a succinct
treatment we wrote it down here.

Even though the probabilistic justification of the likelihood is quite abstract, we
could have constructed it using intuition alone by designing some loss-function that
rewards correct point estimates (uncensored points) and penalizes incorrect region
estimates (censored points i.e pointing out unvisited regions). We illustrate this
with figure 2.3:

21

2. Preliminaries

y

max
θ
f(y|θ)

(a) Uncensored observation: Push the pdf up at event

ỹ

max
θ

∫∞
ỹ f(s|θ)ds

(b) Censored observation: Push mass over the point of censoring

y ỹ

max
θ
f(y|θ) ·

∫∞
ỹ f(s|θ)ds

(c) Uncensored and censored observation: Compromise

Figure 2.3: How to reach optimal fit with data that is uncensored (a), censored
(b) or both (c). Result shown here are actual fits with f the Weibull pdf.

So to maximize terms from censored observations we push the density function
over to the right of the point of censoring. To maximize terms from uncensored ob-
servations we push the density function upwards around those points. As pdfs/cmfs
always integrates to 1 these are competing interests for the likelihood function and
so the optimal θ (if it exists) will be a compromise.

The form of the likelihood presented above might be easier for interpretation but
there’s other formulations that’s much better for calculation.

Proposition 2.26 (Likelihood for right-censored data, alternative form). Let (t, u)
be an observation with u the failure indicator s.t u = 1 means that we have an un-
censored observation and u = 0 a right censored observation. Under the assumption
of non-informative censoring we may write:

log (L) = u · log (λ(t))− Λ(t)

22

2. Preliminaries

in the continuous case and
log (Ld) =u · log(p(t))− (1− u)Λ(t+ 1)

=u · log
(
ed(t) − 1

)
− Λ(t+ 1)

in the discretized case.
Proof. Continuous case:

L =f(t)u · Pr (T > t)1−u

=f(t)u · S(t)1−u

=e−u·Λ(t) · λ(t)u · e−(1−u)·Λ(t)

=λ(t)u · e−(u+1−u)·Λ(t)

=λ(t)u · S(t)
⇐⇒

log (L) =u · log (λ(t))− Λ(t)
Discretized case:
Let Td be the discretization of random variable T s.t Td = t ⇐⇒ T ∈ [t, t+ 1)

with t integer:
Ld = Pr(Td = t)u · Pr (Td > t)1−u (2.7)

= Pr(Td = t)u · Sd(t+ 1)1−u (2.8)
= Pr (T ∈ [t, t+ 1))u · Pr (T ≥ t+ 1)1−u (2.9)
= (S(t)− S(t+ 1))u · S(t+ 1)1−u (2.10)
=
(
e−Λ(t) − e−Λ(t+1)

)u
· e−(1−u)·Λ(t+1) (2.11)

=e−u·Λ(t+1) ·
(
e(Λ(t+1)−Λ(t)) − 1

)u
· e(u−1)·Λ(t+1) (2.12)

=
(
ed(t) − 1

)u
· e−Λ(t+1) (2.13)

⇐⇒ (2.14)
log (Ld) =u · log

(
ed(t) − 1

)
− Λ(t+ 1) (2.15)

Where we used the definition d(t) = Λ(t+ 1)− Λ(t).

Some of the intuition about optimization with censored data is more explicitly
shown in these equation. We see that for discrete and continuous, censored or not,
the log-likelihood will always have a negative term −Λ strictly decreasing with t
that punishes us whenever t↗.

2.4 Previous work: Models for censored data
This section surveys the most notable models for censored data. We have identified
a few central approaches to tackling the problem. These involve workarounds like
reformulating it as a binary (or categorical) prediction problem, seeing it as a ’learn-
ing to rank’-problem and survival approaches. We will start with the cumbersome
- but very popular - workaround [9–14].

23

2. Preliminaries

2.4.1 Sliding box model : Binary prediction workaround

The idea of this model is to hard code the inference questions into binary states
for each timestep. We do this by predicting whether an event will happen within a
preset timeframe. This means that any classification algorithm can be used at the
expense of having to create (arguably mind-bending) predefined definitions of the
target-values.

Formally we describe the setup for this problem as trying to estimate the param-
eter θt in a bernoulli-distribution. We will call this model the ‘Sliding Box Model’:

Definition 2.27 (Sliding Box Model).

Bt ∼ Bernoulli(θt)

bt =

1 If event happened in [t, t+ τ)
0 Else

Pr(Bt = bt) = θbtt · (1− θt)1−bt

Here τ is some preset treshold parameter and θt is the probability of event within
τ time from timestep t. We set θt as a function of data available at that time
θt = g(x0:t), i.e. estimate the probability of an event happening in our sliding box
of width τ .

maximize
θt

L(θt) := θbtt · (1− θt)1−bt

An example is to predict each day whether an event happens in the coming
month (τ = 30).

24

2. Preliminaries

t
bt 1 1 1 1 0 0 1 1 0 1 1 1 0 0 ? ? ? ? ? ?

θ̂t 0.1 0.4 0.3 0.1 0.23 0.25 0.1 0.4 0.5 0.8 0.9 0.2 0.1 0.15 0.4 0.8

t = 2 t = 6 t = 10 t = 14

txt

Figure 2.4: Sliding Box model. Estimate the probability θt using features xt that
there’ll be an event (blue stars) within τ time from current position (vertical lines).
Here we illustrate how target values bt are calculated by sliding the box of width
τ = 2 over the timeline and setting bt = 1 if any future event is covered by the box.
For prediction we estimate P̂r(Bt = 1) = θ̂t = g(xt), here shown as box-height, as a
function g from features xt. The last τ steps of recorded data can be predicted but
can’t be trained on as we can’t conclude target values. See also figure 1.11.23.1

The most obvious strength with the sliding-box model is its simplicity. This
simplicity might hide very tough modeling decisions such as choosing a τ to make
sense. By tempering with τ we change both the meaning, usage and training of the
model which can be a slow, iterative and biasing process in a modeling situation.

Another limitation is loss of τ timesteps of training data at the end of the se-
quence. As illustrated in figure 2.4 we can’t use the last steps to learn the distri-
bution Pr(Vt|θt) as we can’t exclude that an event won’t happen just beyond the
boundary. To predict further ahead in time (raising τ) we get less data to train on
which is worrisome as we expect that we need more training data to predict further
into the future.

The binary states can be defined in obvious (dead/alive in next timestep at t), or
arbitrary ways (Customer will make a purchase within τ days at timestep t). Here
inference is limited to predicting one timestep ahead. Forward-looking formulations
(Customer will stay with company) [9] are particularily pervasive in churn-prediction
(see section 3.3). It’s not rare that there’s an underlying arbitrary definition as the
one mentioned lurking behind such formulations.

Models for more fine-grained prediction have been built using the same frame-
work but turning it into a multi-category classification problem. This can be done
by letting target vector ~v represent J fixed intervals controlled by τ0 = 0 < τ1 <
τ2 . . . , τJ i.e vj = 1 ⇐⇒ T ∈ [τj, τj+1), see [15, 16].

In churn-modeling there’s been recent interest in using RNNs together with the

25

2. Preliminaries

sliding box, see the popular blog post by [17] and the paper by [18]. In section 4.4
we compare this to the proposed model.

2.4.2 Making it a ‘learning to rank’-problem
Often we only need to be able to order the predicted waiting times among subjects.
Examples are ordering patients according to their predicted time left to live, predict
in which order machines are expected to fail or to rank customers according to when
they are expected to return. In statistics this type of data is called data measured
on an ordinal scale.

Consider ordering a set of observations t1, t2, and t3. Note that the the order of
a sequence can be reduced to a set of pairwise comparisons:

Dij = I(ti ≤ tj)

Resulting in an upper triangular matrix if the ti’s are indexed according to their
ordering:

t1 = 1.2
t2 = 1.9
t3 = 5.4

=⇒ D =

1 1 1
0 1 1
0 0 1

We can call this matrix D the actual ordering.

The machine-learning task - learning to rank - is thus to chose a function (model)
f that combines features to predict/estimate the true ordering, D̂ij = f(xi, xj).

It’s easy to show that the sum ∑
i 6=j |Dij − D̂ij| is proportional to the Wilcoxon-

or Mann-Whitney-U statistic and after normalization equivalent to the Area Under
the Curve or Gini-index for pairwise comparison of scores and true class [19]. This
problem can be relaxed with the appropriate model and loss function to transform
it into a differentiable binary classification problem. Maximizing the sum is then
optimization for the Area Under the Curve.

Imagine now that instead of observing t2 we only observed its censoring time
x2 = 1.5 = min(t2, c2), so we know that 1.5 ≤ t2. This means that we only have
partially ordered observations. The observed ordering is therefore:

t1 = 1.2
t2 ≤ 1.5
t3 = 5.4

=⇒ D̃ =

1 1 1
0 1 ?
0 ? 1

Where we know that D̃2,1 = 1 and D̃1,2 = 0 since t1 ≤ 1.5 ≤ t2 but we cannot

infer the ordering of t2 and t3 by only knowing the censoring time for t2. The
machine-learning task is then the same as above but during training we disregard-
or center the ‘?’-elements in the loss-function.

When we have partially ordered sets, the mean correctness of prediction of the
known elements of D̃ is called the Concordance Index or Area Under The Survival
Curve. Building models optimizing for this and variants of it is a new and busy

26

2. Preliminaries

field. There’s notable ongoing research on using neural networks [20] and gradient
boosting [21, 22] for applications to waiting-time prediction.

The fact that we are explicitly predicting an ordering give us some robustness
but the computational cost is high as the number of pairs grows quadratically with
the number of observations. If we have many sequences each consisting of many
timesteps this quickly gets out of hand.

2.4.3 Survival-approaches
Survival Analysis can be seen as the statistical field dealing with random waiting
times and censored observations. As the name reveals, the main focus is typically
analysis so predictive black-box-models has long been standing down against clas-
sical frequentist lightweight approaches. The overwhelmingly most popular models
for prediction- and analysis of covariate effect on outcome are the Accelerated Fail-
ure Time-model (AFT) and the Proportional Hazards- model (PH) [3, 4]. In both
cases we fix some baseline hazard-function λ0(t) and some function of feature data
g(x).

Definition 2.28 (Cox Proportional Hazards model).

λ(t, x) = eg(x) · λ0 (t)
log(L) = u · [g(x) + log(λ0(t))]− eg(x) · Λ0 (t)

∝
g
u · g(x)− eg(x) · Λ0 (t)

So the PH-model uses features to vertically stretch the hazard function.

Definition 2.29 (Accelerated Failure Time model).

λ(t, x) = eg(x) · λ0
(
t · eg(x)

)
log(L) = u ·

[
g(x) + log(λ0(t · eg(x)))

]
− Λ0

(
t · eg(x)

)
And the AFT uses features to stretch the hazard function vertically and hori-

zontally.
Typically λ0 is the exponential hazard function i.e a constant and the link func-

tion g(x) = wTx where the latter makes it a linear-regression problem. One can
show that the only λ0 making the AFT and PH coincide are the Weibull baseline
hazard with the exponential as a special case [4].

It’s arguably even more popular to discretize time so the problem becomes es-
timating the probability of event in each such interval. The loss in the PH-case is
then called partial likelihood. For details regarding this formulation see [4] but we’ll
give a a brief description. If yi is the waiting time for observation i and ui indicates
if this is uncensored, the loss for the i’th observation becomes:

log(Li) = (1− u) · log
[

eg(xi)∑
j:yi≤yj e

g(xj)

]

27

2. Preliminaries

Where the baseline probability of event in the interval [byic, byic+1) is canceled out
because it appears in both the numerator and the denominator. This is the models
main feature making it ideal for comparing risks among subjects.

So far so good but both these models aren’t very expressive, i.e in statistical
jargon they rely on strict assumptions on the data and can’t capture many nonlinear-
relationships or interaction effects. This is particularly true when using linear link-
function g (regression) which is overwhelmingly the most popular approach [4, 23].
But there are examples of using other g’s.

PH-models have been extended with ANNs [23–25] and SVM’s [26]. AFTs have
been ensembled through gradient boosting [27]. For these models they assumed
random censoring and optimized the partial likelihood. Other related approaches
that’s been proposed been to minimizing log-likelihood weighted by estimations of
the inverse censoring-probability, most famously implemented for survival forests
[8]. See [28] for a discussion about inverse censoring-probability weighting (IPCW).

To use time-varying covariates or recurrent events one typically uses the same
(non-temporal) models with modified input data. For each subject, each observation
of the time-to-events yt, time-varying features xt and censoring-indicators ut at time
t are treated as a single observation pair (yt, xt, ut) [4].

2.4.3.1 Threshold regression

First Hitting Time Model is a collection of methods for time-to-event and survival
modeling. Here events are seen as the result of some stochastic process {X(t)}. The
time to those events from a previous point in time are referred to as a first hitting
time (FHT) from the idea of an event as occurring when an observable- or non-
observable (latent) stochastic process reaches a threshold/boundary. This random
process could for example be the gasoline-level in a car resulting in a stop when it
reaches zero. This perspective is called first passage time models. In other cases the
hazard function itself is seen as the random process [29] reminiscent of the example
in preliminaries, section 2.2.1.

The process determining events are called the parent process. Typically this
process is assumed to be equipped with Markov-properties [1, 30–32]. To incorporate
time-varying covariates we let the parent process vary with some observable marker
process {Y (t)} that gives us information about the progress of the parent process
[30].

In summary this perspective seems most popular in the life-sciences. Research
here is often limited by small datasets, lots of censoring and high dimensional fea-
ture data warranting careful understanding of the underlying assumed process. We
have not found any general framework that can easily be extended with arbitrary
distributions for the waiting time.

2.4.3.2 Tobit Kalman Filter

A problem-setting which closely resembles ours can be found in the context of Prog-
nostics & Health Monitoring (PHM). The focus is predicting what they call RUL
(Remaining Useful Life) [33] of machines, synonymous to a failure time. Usually
this is predicted over a timeline using time series of sensor data i.e time-varying

28

2. Preliminaries

covariates. Data often stems from run-to-failure experiments so censoring is not a
central topic of discussion. In section 4.2 we apply the proposed model to a RUL-
dataset stemming from a machine learning competition (CMAPSS-dataset [34]).
Point-estimating Recurrent Neural Networks with Kalman-filter preprocessing won
the original competition, see [34, 35]. As they where point-estimating with un-
censored data these RNN-implementations are regular regression-RNNs and hence
have little overlap with our method. This is the reason why we chose not to do any
deeper comparisons with our model.

As expected in a classical engineering field, Kalman Filters and their variations
are the most common approaches. Kalman filters have been extended to accommo-
date censored data, and research on this topic seems to have come in fashion quite
recently [36–40]. These models are known as Tobit Kalman-filters.

Tobit-models are part of the standard toolbox of economic research, in particular
Tobit-Regression. The model is nothing but a Normal distribution with some added
link-function to let the mean-parameter µ be a function of features. The weights are
found by optimizing over the censored log-likelihood discussed in section 2.3. partial
regression [16] is a closely related framework. Tobit Kalman filters are Kalman
Filters where the latent variable is sometimes only partially observed (censored) [40].

We did not go deeper into either Tobit-Regression in general or the the Tobit
Kalman-filters in particular. First of all this thesis is not about comparing RNNs to
Kalman filters which is a wider research question. Second, standard Normal Kalman
filters are not appropriate for waiting time data. Normal distribution assumes values
on the whole real line while Waiting times are positive so the normal assumption
is erroneous. As we will see in chapter 3 the proposed framework can easily be
extended to use a Normal distribution making it a sort of Tobit model. To train
with discretized or censored data we need to compute its CDF and as the Normal
distribution has no closed form CDF it gets computationally cumbersome.

Apart from the Tobit Kalman Filter we have not found any inherently tem-
poral application or adaptation of any of the models discussed. All models using
time-varying covariates to predict time-to-event have used fixed-width feature vec-
tors with modified input data. The timeline is split into intervals (such as months,
days), features aggreated over them and treated like single observations. Tempo-
ral information are explicitly stored (typically from window-functions like cumsum,
cummean, cummax, lag, change) which needs to be hand-engineered. The models
themselves are memoryless.

2.4.4 Other
There are approaches that are harder to categorize such as modeling the process
afterwards. This is relevant in the context of stochastic processes such as change-
point detection [41]. Other notable methods is to see it as a density-estimation
problem i.e estimation of the hazard function. There are numerous examples of
wavelets being used for this purpose such as [42] who posteriori- fitted wavelets to
recurrent event-data. We would argue that explicit modeling of a process after its
done using observations from its outcome is a very different problem than predicting
its future states using feature-data.

29

2. Preliminaries

2.5 The Weibull distribution

Distributions appropriate for waiting times as we’ve defined them are positive and
has infinite support. This covers a very large class of distributions. The most
commonly used distributions in survival-analysis and reliability engineering are the
exponential-, Log-logistic-, Exponential-logarithmic- gamma-,Rayleigh, Erlang and
the Weibull distribution in the continuous case and the poisson-, geometric and the
discrete weibull in the discrete case [4, 43, 44].

In this thesis we will use the Weibull- distribution and its discrete variant. This
distribution has some some great properties which motivates the choice:

• Numerically stable closed form CDF and Quantile function

• Easily discretized

• Unimodal but expressive

• Empirically feasible

• Location-Scale transformation

• Regularization mechanisms

Here we will show these properties one by one. Why each of them matters to
our model will become clear in the next chapter (3).

The continuous Weibull distribution is usually parametrized as:

Definition 2.30 (PDF, CDF, CHF and HF of the Weibull distribution).

F (x) = 1− exp
[
−
(
t

α

)β]

f(x) = β

α

(
t

α

)β−1
exp

[
−
(
t

α

)β]

Λ(x) =
(
t

α

)β
λ(x) =

(
t

α

)β−1
· β
α

Where t ∈ [0,∞), scale paramater α ∈ (0,∞), shape parameter β ∈ (0,∞). We
say that a random variable T ∼Weibull(α, β)

There’s many other parametrizations of the Weibull functions. Among notable
variations is to use a = α−β s.t Λ(t) = atβ.

30

2. Preliminaries

0 1 2 3 4
0

0.5

1

1.5

2

2.5

x

f
(x

)

(a) PDF

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

Pr
(X

=
x

)

α = 1 β = 0.75
α = 1 β = 1
α = 1 β = 2
α = 1 β = 3
α = 2 β = 3

(b) PMF

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

F
(x

)

(c) CDF

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

x

Pr
(X
≤
x

)

(d) CMF

0 1 2 3 4
0

2

4

6

8

x

λ
(x

)

(e) Hazard Function

0 1 2 3 4
0

2

4

6

8

x

Λ(
x

)

(f) Cumulative Hazard Function

Figure 2.5: Distribution functions for the continuous and discrete Weibull

31

2. Preliminaries

2.5.1 Properties
The Weibull distribution is unimodal meaning it has at most one peak. Apart from
that it’s extremely expressive. When β ≤ 1 the PDF is strictly decreasing, when
β = 1 the hazard is constant. When β = 1 we have the exponential in the continuous
case and the geometric distribution in the discrete case. If Zk ∼ N(0, σ), k = 1, 2
one can show that |Z| ∼Weibull(

√
2σ, 2) also called the Rayleigh-distribution [45].

As β gets larger more and more mass is concentrated as a peak around t = α.
In the limit β → ∞ it converges to a degenerate distribution, i.e. a deterministic
distribution with pdf being the Dirac delta-function.

mean : αΓ(1 + 1/β)
median : α(ln(2))1/β

mode :

α
(
β−1
β

) 1
β β > 1

0 β ≤ 1
quantile function F−1(p) : α · (− log(1− p))

1
β

variance : α2
[
Γ
(
1 + 2

β

)
−
(
Γ
(
1 + 1

β

))2
]

characteristic function : ∑∞
n=0

(it)nαn
n! Γ(1 + n/β)

Table 2.1: Basic quantitities of the Weibull-Distribution

To generate Weibull-data, let U ∼ Uniform and use the quantile function F−1(U) =
α · (− log(U))

1
β ∼ Weibull. A rule of thumb is that t = α is always approximately

the 0.632th quantile, which stems from the fact that F (α) = 1− e−1 ≈ 0.632 [45].
In order to get an understanding of what the parameters does its useful to con-

sider them after doing a location-scale-transformation [45].

Proposition 2.31. (Location-Scale transformation)
If T ∼Weibull(α, β) then log(T) ∼ Gumbel(log(α), 1

β
)

Proof. If Y ∼ Gumbel(µ, σ) it has CDF 1 − exp
[
− exp

[
y−µ
σ

]]
where µ ∈ R and

σ > 0 are location- and scale- parameters respectively.

Pr(log(X) ≤ y) = Pr(X ≤ ey) = 1− exp
[
−
(
ey

α

)β]
=1− exp [− exp [β (y − logα)]]

=1− exp
− exp

y − logα
1
β

=1− exp

[
− exp

[
y − µ
σ

]]

Here the log of the Weibull α is a location parameter and 1/β a scale-parameter.
This type of parametrization should make sense to someone confident with the

32

2. Preliminaries

Normal distribution. When training Weibull-regression models the goal is usually
to estimate µ = log(α) as a linear combination of features [45].

Another property is the Minimum closure property:

Proposition 2.32. (Minimum Closure-property)
If Tk ∼ Weibull (αk, β) and Tk ⊥ Tj then min(T1, . . . , Tn) is again Weibull with

α∗ = (∑n
i=1 αi

−β)−
1
β . [45]

Proof.

Pr(min(T1 . . . , Tn) > t) =
∏
k

Pr(Tk > t) = exp
[
−tβ

∑
k

α−βk

]
= exp

[
−
(
t

α∗

)β]

So the minimum of independent Weibulls with the same β are again Weibull.
This is a property which brings the thoughts to the closedness of the Normal dis-
tribution under summation [45]. Considering how expressive the Weibull is, this is
a pretty powerful property. If we have a system that breaks whenever one of its
components breaks, each of them having independent failure times as above, then
the failure of the whole system is Weibull. This in itself should be a hint to why
the Weibull often fits well. But there’s an even stronger theorem called the Fisher-
Tippett-Gnedenko theorem, or the extreme value theorem. The theorem states that
the limiting distribution of a sequence that shifts and scales the min or max over an
increasing set of IID random variables only has three different possible forms where
one is the Weibull-distribution [46].

We have adapted the original proof of by Fisher [46] to the special case of the
minimum of positive random variables. We will show that if the distribution of
a minimum of n positive IID random variables scaled by a sequence an converges
to a non-degenerate distribution as n → ∞ then this limit must be the Weibull
distribution. The name comes from the implication that if a system breaks with the
failure of the weakest of its identical components the failure time is approximately
Weibull distributed [45].

Theorem 2.33 (Weakest Link Property). Let Tn = min {X1, . . . , Xn} where Xk

are positive IID random variables. If Pr
(
Tn
an
≤ t

)
→ Pr (T ≤ t) where T is not

degenerate =⇒ T ∼ Weibull.

Proof. First note that if

Pr
(
Tn
an
≤ t

)
= Pr (X1 > a1 · t) · . . . · Pr (Xn > an · t) = SX(ant)n → S(t)

Then so is the case for Tnm as n → ∞. By then letting m → ∞ we can see it
as taking the minimum of the minimums of m sets of n random variables. As the
limiting distribution in each subgroup should be the same as that of the limit over
those groups we expect the following functional equation of the limiting survival
function S to hold:

S(ant)n = S(t) (2.16)

33

2. Preliminaries

By evaluating equation 2.16 at t = x
an

we observe that S(x)n = S(x
an

) and since
an is arbitrary so far we may write:

S(t)n = S(ant)

By evaluating the above at amt we get

S(amt)n = S(t)mn = S(amnt) = S(an · amt)

So amn = an · am. This leads us to a differential equation for an:

a(xy) = a(x)a(y) =⇒

ya′(xy) = a(x)′a(y)
xa′(xy) = a(x)a(y)′

=⇒ a′(x)a(y)
y

= a(x)a(y)′
x

⇐⇒ x
a′(x)
a(x) = y

a(y)′
a′(y)

=⇒ a′(x)
a′(x) = − 1

βx
⇐⇒ log(a(x)) = − 1

β
log(x) + d ⇐⇒ a(x) = d · x−

1
β

Where S(t)1 = S(a1t) =⇒ a(1) = d = 1. So

Sn(n−
1
β t) = S(t) =⇒ nΛ(n−

1
β t) = Λ(t)

Now try Λ(t) = tβ :

nΛ(n−
1
β t) = n(n−

1
β t)β = tβ = Λ(t)

The weakest link- and minimum closure property gives us a hint that whenever
the life of a system is dependent on the life of all its independent components, we
expect the Weibull to be a good model for it’s failure time. The Weibull has been
found useful in modeling structural failures, maximal annual rainfall, earthquake
return times [47] strength of textile fibers [46] and more.

As we’ve shown (2.1.2), we can easily transform a continuous distribution to a
discrete one. Let T and Td be the continuous and discrete Weibull respectively:

Definition 2.34 (CMF, PMF of the Discrete Weibull distribution).

Pr(Td ≤ t) = Pr(T ≤ t+ 1) = 1− exp
[
−
(
t+ 1
α

)β]

Pr(Td = t) = Pr(t ≤ T ≤ t+ 1) = exp
[
−
(
t

α

)β]
− exp

[
−
(
t+ 1
α

)β]

This parametrization differs from the most popular one. We chose this for compu-
tational reasons and to make the switch between discrete- and continuous seamless.
The regular parametrization is to set the CMF to 1− q(t+1)β with q ∈ (0, 1) [48].

34

2. Preliminaries

2.5.2 Log-Likelihood
Before we dig into the likelihood properties it’s useful to summarize some of the
hazard-related quantities for the Weibull. For the continuous Weibull we have

Λ(t) =
(
t

α

)β
λ(t) =

(
t

α

)β−1 β

α

To calculate the loss with censored observations we need to evaluate the log of
the survival function. In the case of the Weibull distribution this is easily done.
Using the alternative form of the likelihood from proposition 2.26 might make us
overlook this feature. In the continuous case we write the log-likelihood as:

log (L) = log
[
f(t)u · S(t)1−u

]
= u · log [λ(t)]− Λ(t)

= u · log
[
tβ−1α−β+1α−1β

]
−
(
t

α

)β
= u · log

[
tβ−1α−β · β

]
−
(
t

α

)β
= u · [(β − 1) · log(t)− β · log(α) + log(β)]−

(
t

α

)β
∝ u · [β · [log(t)− log(α)] + log(β)]−

(
t

α

)β
= u ·

[
β · log(t

α
) + log(β)

]
−
(
t

α

)β
Where in the last step we dropped the −u · log(t)-term since it’s not a function

of α or β so it doesn’t influence the maximization-procedure. Here ∝ should be read
’proportional to’.

The discrete log-likelihood is not as nice, but it’s closed form which is not the
case for many discrete distributions.

log (Ld) = u · log
(
ed(t) − 1

)
− Λ(t+ 1)

= u · log
[
exp

(
α−β ·

(
(t+ 1)β − tβ

))
− 1

]
− α−β (t+ 1)β

Where we used

d(t) =
(
t+ 1
α

)β
−
(
t

α

)β
= α−β ·

(
(t+ 1)β − tβ

)
Note that

(
t
α

)β
= eβ·log(t

α) where the right hand side gives us a better idea of how
the expression is evaluated on a computer. We need to be careful whenever α ≈ 0
and t = 0 especially when using auto-differentiation. In implementations where the
gradients aren’t compiled like Tensorflow we need to write out the optimizations
explicitly. One such is that we only need to evaluate (t+ 1)β, tβ and α−β once.

35

2. Preliminaries

2.6 Recurrent Neural Networks

h0 ANN ANN ANN ...

x1 x2 x3

y1 y2 y3

h1 h2 h3

Figure 2.6: RNN : In each step we input feature xt and hidden state ht−1, forward
hidden state ht and output predicted value yt

Recurrent Neural Networks (RNNs) is a method of applying Artificial Neural Net-
works (ANNs) to temporal data such as sequences, time-series, speech or text by
feeding neural outputs ht of the activations of the preceding step back into the
network.

Essentially it’s a state-space model like Hidden Markov Models, mapping se-
quence history to hidden space. One can also imagine RNNs as a deep neural
network (DNN) that reuses parameters in each layer corresponding to a timestep.

Training of RNNs is just like gradient-based training of a deep neural network.
In practice we encounter some technical issues as the number of layers (timesteps)
will be large and that each layer has the same parameters. We call this training
procedure back-propagation through time (BPT) [5].

RNNs are extremely expressive and flexible. In theory RNNs are turing complete
and can thus learn to perform computation and recognize any temporal pattern. The
most famous type of RNN-architecture that avoids many of the practical issues of
Gradient Descent-based learning with RNNs is the Long Short Term Memory-RNN
(LSTM) and the simpler Gated Recurrent Unit (GRU). Most notable applications
of RNNs have been using these types of architectures [5].

2.6.1 Simple RNN example
Say that the RNN outputs ŷt in each step and we have square loss:

errort = (yt − ŷt)2 (2.17)
In order to learn the weights we need gradients for the function to answer the

question ‘how much does a change in parameter effect the loss function?´ and move
the parameters in the direction where the loss gets smaller. The direction is given
by the gradient w.r.t the parameters:

∇errort = −2(yt − ŷt)∇ŷt (2.18)
I.e we have a DNN where we get feedback on how good the prediction is at each

layer. Since a change in parameter will change every layer in the DNN (timestep)

36

2. Preliminaries

and every layer contributes to the forthcoming outputs this needs to be accounted
for.

Take a simple one neuron-one layer network to see this, with xt some input
feature at timestep t and ŷt the previous prediction:

ŷt+1 =f(a+ bxt + cŷt)
∂

∂a
ŷt+1 =f ′(a+ bxt + cŷt) · c ·

∂

∂a
ŷt

∂

∂b
ŷt+1 =f ′(a+ bxt + cŷt) · (xt + c · ∂

∂b
ŷt)

∂

∂c
ŷt+1 =f ′(a+ bxt + cŷt) · (ŷt + c · ∂

∂c
ŷt)

⇐⇒

∇ŷt+1 =f ′(a+ bxt + cŷt) ·

 0
xt
ŷt

+ c∇ŷt

We see is that in order to calculate ∇ŷt+1 we calculate i.e roll out ∇ŷt which can

be done recursively.
With δ the learning rate one training step is then:ãb̃

c̃

←
ab
c

+ δ · (yt − ŷt)∇ŷt (2.19)

By choosing appropriate loss-functions LSTM’s have been used to learn dis-
tributions [49]. Most commonly this distribution is a Bernoulli- or a categorical
distribution for classification tasks but it can be anything. Let

ht = f(xt, ht−1, w)

Be the update of the hidden state vector where w are the weights for the hidden
layer. With

θt = g(xt, ht−1, w̃)

as the output layer where theta is parametrizing p(y|θt), p being some assumed
distribution for the target value y that we’re interested in predicting.

We will not go deeper into the intricacies of using and training RNNs. For a
more thorough introduction we recommend [5].

37

2. Preliminaries

38

3
Proposed model

In this chapter we formulate the model and discuss it and its usage from a theoretical
standpoint. We will start of with an abstract definition of the model (definition 3.1,
3.2). We will then reiterate this using more details (section 3.1).

Definition 3.1 (TTE-RNN). Let

1. y be an observed waiting time,

2. u be an indicator s.t u = 1 if y is uncensored u = 0 else.

3. R(θ, y) = Λ(y) be some RCHF parametrized by θ

4. θ be the output of a recurrent neural network

If y ∈ (0,∞) is continuous and the loss function is

error = − log(f(y)uS(y)1−u) = −u · log [λ(y)] + Λ(y) (3.1)

With λ(y) = Λ′(y) or if y ∈ {0, 1, . . .} is discrete and the loss function is

error = − log(p(y)uS(y + 1)1−u) = −u · log
[
ed(y) − 1

]
+ Λ(y + 1) (3.2)

With d(t) = Λ(y + 1)− Λ(y) we call the resulting model a TTE-RNN.

Definition 3.2 (WTTE-RNN). The Weibull Time To Event RNN is a special case
of definition 3.1. When Λ(y) =

(
y
α

)β
we call the model a WTTE-RNN.

In order to understand the model think about what we want to do : In each
step we want to make a good guess about the time to the next event using historic
information available.

Since we need to be able to compare regions (censored observations) and points
(uncensored observations) we need to map observations to some kind of space where
this is possible. In preliminaries (chapter 2) we discussed different ways of doing
this. We propose to see this as the problem of estimating a probability distribution
over the location of the next event. In other words, trying to predict the time to
the next event. With censored data this makes it a survival-problem.

To mathematically motivate the use of the loss function we need at least indepen-
dence between waiting time and the censoring point (cor. 2.25). This is usually the
case if the day that we train the model (censoring point) doesn’t have any specific
meaning for the outcomes that we’re trying to predict.

39

3. Proposed model

t

αt 1.1 0.5 1.5 0.5 3.5 2.5 0.9 0.5 2.5 1.5 0.5 0.5 3.0 4.5 3.5 2.5 ? ? ? ?

βt 1.5 1.4 0.9 1.0 0.8 0.7 2.5 1.4 1.5 1.8 1.9 1.2 5.0 0.6 0.5 1.5

f

xt

t = 1 t = 7 t = 13

t

Figure 3.1: Illustrated prediction with the Weibull-model. We have outlined the
pdf-prediction f(s;αt, βt) from steps t = 1, 7, 13. Here we imagine that αt and βt
are functions of features xt

When we have time-to-events over a timeline the target value will behave like a
time series of countdowns and jumps (see figure 1.2). To motivate a loss function of
being a sum of log-loss terms we also need independence between timesteps. Here we
will make the (unproven) Markov assumption of independence given hidden RNN-
state. This way we can use the log-likelihood for censored data with good conscience.

We want to stress that the probabilistic arguments above should not worry the
reader too much. The optimization problem could be formulated the same way
without the probabilistic reasoning: When we have uncensored data we want to
concentrate the mass towards an observed point. When we have right censored data
we want to push away mass from the region we know not to have contained an
observation. See figure 2.3. This is exactly what the log-likelihood for censored
observations does.

Without specifying a parametric model we can pose this as a functional opti-
mization problem, i.e. trying to find a function minimizing an objective function.
Here we want to approximate the true RCHF by finding a R̂(x, s) that maximizes
the log-likelihood of the data. By approximating the true R(x, s) by some simple
enough parametric model we get a tractable problem. We argue that the Weibull
distribution is such a model, see figure 3.2.

40

3. Proposed model

λ(t) = 0.2(1 + cos(t))

t

D
e
n
s
it
y

0 5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 censoring point

f
^

w censoring

f
^

w no censoring

(a)

λ(t) = 0.2(1 + cos(π + t))

t

D
e
n
s
it
y

0 5 10 15 20 25 30

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 censoring point

f
^

w censoring

f
^

w no censoring

(b)

λ̂(t)

λ(t)

Λ(t)

F (t)

f(t)

(c)

Figure 3.2: Continuous Weibull pdf fitted with and without censoring (occurring
at t = 10) to data generated from the high-resolution discretized distribution of (a)
λ(t) = 0.2(1 + cos(t)) and (b) λ(t) = 0.2(1 + cos(π + t)) using standard algorithms
[4]. Figure (c) shows how the uncensored fit from (a). In many applications Weibull
is an adequate approximation of very unruly distributions and as we see censoring
has little effect on the resulting fit.

41

3. Proposed model

3.1 The optimization problem
In this section we will give a minimal mathematical description of the setup of the
optimization problem and the chosen simplification.

Variables and parameters

Parameters

Symbol Range Description
Indices & sets
t 0, 1, 2, . . . , T Timesteps of a sequence
J 1, 2, . . . # Features

Data
yt [0,∞) Time to event at timestep t
ut {0,1} 0 if timestep t is right censored. 1 otherwise

xt RJ Feature vector at timestep t
x0:t Rt+1×J Seq. of feature vectors until t

Functionals & Variables

Symbol Range Description
Functionals
R̂(x0:t, s) [0,∞) Estimated RCHF evaluated at s
α(x0:t),β(x0:t) (0,∞) Positive functions

Variables
w Rm Parameters for RNN
Where we used the notation R̂(x0:t, s) to stress that at time t we estimate a

cumulative hazard function using input data x0:t and evaluate it over the future
s ∈ [0,∞). Here s is a variable that we control when using R for prediction while
x0:t is the history of features known at t i.e. the input data governing the shape of
the function R(x0:t, s) = g(s).

3.1.1 Objective functions
All the objective functions below have the same basic shape, namely as either maxi-
mizing the pdf or the survival-function: log [f(t)u · S(t)1−u]. Here we just put them
on the alternative form described in proposition 2.26.

3.1.1.1 The functional optimization problem

Assume we don’t have any distributional assumptions on where the data comes from.
We are merely trying to find a functional (function) that fits it.

42

3. Proposed model

The main problem is then to find a functional R̂ that maximizes the log-likelihood
for censored observed waiting times y given feature data x0:t observed until timesteps
t for each timestep:

maximize
R̂∈S

L(R̂, y, u, x) : =
T∑
t=0

(
ut · log

[
R̂s(x0:t, yt)

]
− R̂(x0:t, yt)

)
(3.3)

where R̂ ∈ S s.t. ∀x : (3.4)
R̂s(x, s) ≥ 0 ∀ s ≥ 0 (3.5)
R̂(x, s)→∞ as s→∞ (3.6)
R̂(x, 0) = 0 ∀ s ≤ 0 (3.7)

(3.8)

The optimum is some Recurrent Cumulative Hazard function R which fits the
data. When y represents discrete data we use the the discrete log-likelihood from
proposition 2.26 with d̂(x0:t, yt) = R̂(x0:t, yt + 1)− R̂(x0:t, yt) as:

maximize
R̂∈S

Ld(R̂, y, u, x) : =
T∑
t=0

(
ut · log

[
ed̂(x0:t,yt) − 1

]
− R̂(x0:t, yt + 1)

)
(3.9)

3.1.1.2 Weibull functional optimization problem

The space S above in which to search for a solution is vast. Note that x0:t may
contain any information available at time t including the position on the timeline t
itself and information about previous events.

Proceeding from here we choose to zoom in on a tiny subspace where the cumu-
lative hazard function has the shape of the Weibull distribution.

Let the parameters α and β of the Weibull-distribution be functions of input
data x0:t available at timestep t and yt time to next event at t as above. Using the
Weibull Cumulative Hazard:

R̂(x0:t, yt) =
(

yt
α(x0:t)

)β(x0:t)

R̂s(x0:t, yt) =
(
β(x0:t)
α(x0:t)

)(
yt

α(x0:t)

)β(x0:t)−1

So from 2.5.2 the new functional optimization problem becomes:

maximize
α>0
β>0

L(α, β, y, u, x) : =
T∑
t=0

ut · log
(β(x0:t)

α(x0:t)

)(
yt

α(x0:t)

)β(x0:t)−1
− (yt

α(x0:t)

)β(x0:t)

∝
T∑
t=0

ut ·
[
β(x0:t) · log(yt

α(x0:t)
) + log(β(x0:t))

]
−
(

yt
α(x0:t)

)β(x0:t)

(3.10)

43

3. Proposed model

Where we can drop the constraints on α and β by letting them be some inter-
mediary continuous positive function g : R→ R+ such as ez, max(ε, z), log(1 + ez).
When we have discrete data we use the discretized form of the log-likelihood i.e the
log-likelihood for the discrete Weibull.

From here we may proceed and let z be the outputs of any type of model that
can be trained using a differentiable loss-function. This include models trained with
Gradient Descent such as artificial neural networks and gradient boosting machines.
As our stated goal is to learn temporal patterns and use the whole feature-sequence
x0:t we proceed with describing the case when the parameters are outputs of an
RNN.

3.1.1.3 Recurrent Neural Network Parametrization

In each step we let α, β be the outputs of a RNN with positive output layer. There’s
endless possible configurations and architectures for such an RNN. The only limita-
tion we set is that the RNN is outputting a strictly positive and arguably unbounded
vector of two components in each step. RNNs with step-to-step (many to many)
output is usually (particularly in the Tensorflow-community) referred to as a ’char-
level-rnn’ [50]. In order to get an understanding for the model we will describe a
basic architecture:

h0 ANN ANN ANN ...

x1 x2 x3

[
α1
β1

] [
α2
β2

] [
α3
β3

]

h1 h2 h3

Figure 3.3: Basic architecture of the RNN. In each step we output estimated
Weibull-parameters giving us a distribution over time to the next event.

Let ht = i(xt, ht−1, wh) be the hidden state vector, a function of previous hidden
state ht−1, feature data xt at timestep t and weights for the hidden layer wh. Let
~zt = o(ht, wo) ∈ R2 be some two-dimensional output from the output-layer and let
g be some positive activation function. This can be described as:

44

3. Proposed model

ht = i(xt, ht−1, wh)
zt = o(ht, wo) ∈ R2[

αt
βt

]
= g(zt)

We can of course simplify this by writing the outputs in each step as:

[
αt
βt

]
= f(xt, ht−1, w)

Where f is some neural network and ht−1 the value of its activation-functions at
the previous step. The network architecture is showed in 3.3.

The unconstrained optimization problem in the continuous and discrete case
respectively is then to find w maximizing the log-loss:

maximize
w

log(L(w, y, u, x)) : =
T∑
t=0

(
ut ·

[
βt · log(yt

αt
) + log(βt)

]
−
(
yt
αt

)βt)

maximize
w

log(Ld(w, y, u, x)) : =
T∑
t=0

(
ut ·

[
exp

[(
yt + 1
αt

)βt
−
(
yt
αt

)βt]
− 1

]
−
(
yt + 1
αt

)βt)

See section 2.6 and [5] on how we do gradient based learning for optimal w.

3.2 Properties of the Weibull-loss

3.2.1 Gradients

In this section we will discuss the theoretical properties of the Weibull log-loss. The
main result that we will discuss is that the continuous-time Weibull loss has a unique
optimum.

45

3. Proposed model

The gradients of the continuous Weibull log-likelihood can be written

log (L) ∝ u · [β · [log(t)− log(α)] + log(β)]−
(
t

α

)β

∂ log (L)
∂β

= u ·
[
log(t

α
) + β−1

]
− log(t

α
) · α−βtβ

= u · β−1 + log(t
α

) · (u− α−βtβ)

∂ log (L)
∂β2 = −u · β−2 − log(t

α
)2 · α−βtβ

∂ log (L)
∂α

= −u · β · α−1 + β · tβα−β−1 = α−1β · (−u+ tβα−β)

∂ log (L)
∂α2 = u · β · α−2 − β · (β + 1) · tβα−β−2

= α−2β · (u− (β + 1) · tβα−β)

∂ log (L)
∂α∂β

= −u · α−1 + tβα−β−1 + β · α−1 ∂

∂β
eβ·log(t

α
)

= −u · α−1 + tβα−β−1 + β · tβ · α−β−1 · log(t
α

)

= α−1
[
−u+ tβα−β

[
1 + β · log(t

α
)
]]

The regular technique for regression and estimation with the Weibull is to focus
on the loss after using the location-scale-transformation (proposition 2.31) and work
on the Gumbel-random variable Y = log(T) directly. In doing so, Scholz (1996)
showed how the MLE is unique for multiply censored data and can be found using
standard algorithms as there’s no other local maximas [51]. We will not reiterate
his proof since it’s quite long, instead we make a short appeal to the intuition why
this is the case. The Gumbel CHF,Hazard and logloss are:

ΛG(y) = e
y−µ
σ (3.11)

λG(y) = 1
σ
e
y−µ
σ (3.12)

=⇒ (3.13)

log(LG) = u ·
[
y − µ
σ
− log(σ)

]
− e

y−µ
σ (3.14)

Think about having a sum of one uncensored observation and many censored ob-
servations. The log-likelihood (equation 3.14) for all observations will have the the
(rightmost) term −ΛG(t) = −e y−µ

σ which is always maximized when µ ↗ ∞. Cen-
sored observations only consists of this term since u = 0. Uncensored observations
(u = 1) will have the term y−µ

σ
which is always maximized when µ ↘ −∞. When

46

3. Proposed model

we maximize the whole log-likelihood we thus get a competition between pushing µ
up contributing exponentially decreasing returns for all observations and linear costs
for the uncensored observations and pushing µ down contributing exponentially in-
creasing costs and linear returns. Somewhere in the middle we find the optimum.
A similar argument can be made about σ [45].

Uniqueness is of course not true if we only have censored observations. Intuitively
we know that a censored observation T > t motivates us to push the mass over to
the other side of t. More mass comes over as α → ∞ with diminishing returns for
the loss function so the gradient will tend to 0 but never disappear. Consider when
u = 0 so that ∂ log(L)

∂α
= βtβα−β−1 := 0. This is only achieved when α → ∞ or

β → 0. To reach β = 0 via gradient descent we would need ∂ log(L)
∂β

< 0 which is
never the case when t < α so for highly censored data β is expected to remain stable
while α will explode but settle at a large value. If there’s only censored observations
α→∞. Numerical instability and exploding gradients with highly censored data is
a well known problem. This happens when we are far away from the optimum and
the log-likelihood is −∞. Extra care is therefore recommended to be taken during
initial learning and if we experience overflow we can reinitialize [51]. When we are
using stochastic gradient descent there is a (slim) probability that we will get a
sequence of gradient-steps with batches only containing censored observations. The
probability of this happening is proportional to the share of censored observations.

3.2.1.1 Discrete case

The gradient of the discrete Weibull is too complex to get any useful analysis from
writing it out explicitly. Note instead that in general for discretized distributions
we have:

log (Ld) ∝ u · log
(
ed(t) − 1

)
− Λ(t+ 1) =⇒

∂ log (Ld)
∂θ

= u · ed(t)

ed(t) − 1 ·
∂d(t)
∂θ
− ∂Λ(t+ 1)

∂θ

= u · Λθ(t+ 1)− Λθ(t)
1− e−d(t) − Λθ(t+ 1)

We need to think about all the numerical caveats of the continuous distribution
discussed above but here we see that we also need to be particularly worried about
when 1− e−d(t) ≈ 0 and ed(t)−1 ≈ 0. We have not found any convincing proofs that
the discretized loss has the uniqueness-properties of the continuous distribution. We
have on the other hand had very good empirical results when using it with proper
initialization. See the experiments in section 4.1 for intuition about how it works.

3.2.2 Extensions

3.2.2.1 Multivariate

It’s easy to imagine situations where we want to predict the time to multiple types
of events using the same feature-data, say a vector of random waiting times ~Tt.

If we make the naive assumption that the components are independent given
their parameters, T k ⊥ T l|θ, with θ the output of the same neural network, the

47

3. Proposed model

appropriate loss function is simply the sum of the log-likelihood for each component.
This would be akin to the Naive Bayes Classifier. To make it a truly multivariate
problem we need to think up some appropriately expressive covariance structure but
easy enough to have a closed form calculation of its integral.

One application of a multivariate model could be to predict ‘when and how much’
meaning that one of the components wouldn’t even be derived from events.

In other circumstances we might think its multivariate problem but it really
isn’t. If we’re really interested in the time to the first of these events we can use
the regular 1d Weibull. This follows from the minimum closure- and Weakest Link-
property (prop 2.32 and thm 2.33).

3.2.2.2 Other distributions

We have intentionally formulated us s.t it should be easy to switch out the Weibull
to something else. Note that we only need a valid hazard function to specify a
model. This could also be learned directly. Note that hazard functions (and CHFs)
are closed under positive linear combinations. This means that we can create new
multimodal distributions by combining simple basis CHFs Λ(t) = ∑

k Λk(t). These
could for example be Weibull CHFs.

3.2.2.3 Opportunities to regularize

As we have shown, when β ↗ ∞ all mass of the distribution is centered around
t = α. Remember the location-scale transformation of section 2.5. Here we showed
that σ = 1/β is a scale parameter for the log of the Weibull. Just as we can
control the peakedness of a normal-distribution when using a Gaussian Kernel by
not allowing σ ↘ 0 we could avoid overfitting data by penalizing large values of β.

To regularize we simply add some growing function g of βt, say g(x) = eδx−l, to
the original loss-function:

L̃(w, y0:t, u0:t, x0:t) = L(w, y0:t, u0:t, x0:t)− g(βt) (3.15)

In the experiments we also found that for numerical stability it was useful to
initialize and keep β close to 1 to let α settle in as β would go to 0 if α was
initialized too small. Properly initializing α was the simpler alternative which we
recommend over this technique.

48

3. Proposed model

3.3 Usage & Applications
In order to implement this model we only need a step-to-step implementation of
some RNN where we switch out the loss-function to the Weibull-loss function.
That is, assuming that we have defined the sequences of features, time-to-events
and censoring-indicators. In this section we discuss some of the intricacies of doing
this discussed in an applied context churn prediction.

3.3.1 Example : A model for churn-prediction
Predicting customer churn is the problem of trying to predict whether a customer
will stay or not. Creating a good definition of this business-critical concept is known
to be a hard modeling problem. The typical way of modeling this is to frame it as
a binary prediction problem using the sliding-box model (section 2.4.1) [14].

Usually we have recurrent events (like repeat purchases, payment of subscription)
and actions (contacted support, opened newsletter, browsed page, lost cart etc) and
static features (sex, country, currency etc). Even though the concept of a customer
not returning is easy to grasp, defining what should constitute churn is hard. One
may find some baseline (’did buy alot, now buys a little’) or some line in sand
(’hasn’t bought for 100 days’). When using the sliding box model we need to hard-
code this into the target-value by setting some threshold. When someone goes
above this treshold they are considered churned. With our approach we only need
to define what the qualifying event should be and predict the time to it, pushing
the tresholding problem to after the model is trained. Here churn would be the
predicted lack of events. When customers have a rise in their predicted time of
returning we can quickly act, even using different thresholds for different groups or
base it upon the change in predicted value.

At prediction time we only need to update the hidden state with the daily feature
state. From the predicted α and β assigned to each customer and day we get an
embedding that can be used to compare customers and predict the churn rate for
our whole customer stock. By adding the individual densities we can easily visualize
how many of the current customers are expected to have made a repeat purchase
in the upcoming month or so. This might also be useful in estimating the expected
lifetime value of the whole customer stock.

From the estimated parameters we can directly read out metrics such as expected
mean, median and characteristics of their event rate (hazard function). By analyzing
the predicted hazard we can operationalize useful concepts like whether customers
are predicted to have a decreasing (β < 1), constant (β = 1), or increasing (β > 1)
event rate and how much this rate will be (α).

Fixing α one can interpret this as:

• β < 1 : Rate of event expected to be decreasing (They return now or never).

• β = 1 : Rate of event expected to be constant (We don’t know).

• β > 1 : Rate will increase (and the probability will peak around a specific
time ex. Christmas).

49

3. Proposed model

Plotting customers onto a α × β grid should be very helpful in understanding
how the current customer base looks like. Weibull-plots are well known concepts
in reliability engineering and can therefore be interpreted by many engineers. The
path that a customer has taken on this plane may tell a story about where in the
customer life-cycle they are and have been before. See figure 4.8 to see an example.
It may also be useful to use the hidden state of the RNN for a wider embedding
based on recency- and frequency of customers. This could be used for exploratory
analysis to find clusters among customers or to train other models.

3.3.2 A note on using sequences of varying length
With sequences of varying length we need to interpret the probabilistic aspects
of the model accordingly or weight the model during training to get the sought
interpretation. We will use the case of churn-prediction to illustrate this.

Imagine that we have recorded data for users since the first signup and we’d had
exponential growth since. By stacking these timelines from when they started we
get something like figure 3.4.

O
ct

1

N
ov

1

D
ec

1

Ja
n
1

Fe
b
1

M
ar

1

A
pr

1

M
ay

1

Ju
n
1

Ju
l1

N
ow

First user

Most recent user

Figure 3.4: Stacked timelines of available data per user

This type of data-collecting process is typically called staggered entry. The

50

3. Proposed model

continuous- or high-resolution data will be aggregated at fixed times and indexed
per user n and timestep t = 0, . . . , Tn. These intervals can be cut out from every
second to every 30 days in user- or in wall-clock- time. To avoid confusion, note
that our indexing is always per user. We will briefly discuss different schemes of
weighting the loss function and its implications.

Let `nt = log(Ln
t) be the log-likelihood for timestep t sequence n and ω(t, T) be a

weighting-function. Consider the goal of maximizing the loss function, the weighted
sum ˜̀= ∑N

n

∑Tn
t g(t, Tn)`nt . In practice we will use stochastic gradient descent and

sample terms in this sum randomly but this makes no difference for the discussion.
A non-exhaustive list of possibilities is then:

1) g(t, Tn) = I(τ1 < t+ (T0 − Tn))I(τ2 < Tn) Use timesteps in some rectangle*
2) g(t, Tn) = 1 Timesteps has same influence
3) g(t, Tn) = 1

Tn
Users has same influence

4) g(t, Tn) = g̃(t
Tn

) Weight by recency, user time
5) g(t, Tn) = g̃(t, Tn, T0) Weight by recency, wall-clock time

Now consider how we can interpret the prediction at time t. Assume that we
have feature data for new users xn0:Tn that we’ve used to estimate the parameter θnt .
Fix ρ and set yn s.t ρ := P̂r(W ≤ yn|θt). As an example, if ρ = 0.5 then yn is the
predicted median.

1) Use timesteps in some rectangle*: Here we choose only the last τ timesteps
from sequences that we’ve observed for at least τ timesteps. This can be seen as
selecting/inscribing a fitted rectangle among the stacked timelines in figure 3.4. As
each user contributes the same to the loss, a (hypothesized) interpretation of ρ is:

- If we repeat the experiment (ρ · 100)% of the predicted users will have an event
within τ days

Which seems close to what we would hope to get out from such a model.
Note that when τ is smaller we get more users represented in the dataset (rect-

angle gets higher) but observe them for shorter times and with more censoring as it
will only contain the most recent timesteps.

2) Timesteps has same influence This is what happens if we don’t apply
weighting. An interpretation of ρ is:

- In (ρ · 100)% of recorded timesteps an event will occur within y days
So this is a retrospective probability of what has occurred in the dataset of given

shape. Note that long-time users will have a big influence on the loss.
If we disregard probabilistic aspects and use the model to rank users according

to their risk-set, this could make sense as we know more about these users and if
the individual patterns are apparent one can speculate that it wouldn’t skew the
RNN-weights too bad. One such pattern could be ’no activity’ which might be easily
learned.

3) Users has same influence This is what happens when we take mean-error
per sequence. Every user will then have the same influence on the loss regardless

51

3. Proposed model

of how long they’ve been observed. In all the experiments we trained using this
formulation.

In experiment of section 4.2 we evaluated calibration using 2), i.e over all the
timesteps and the calibration was found to be decent. In experiment of section 4.4
we evaluated using 1) and had similar results. Apart from that we have not dug
deeper into how weighting affects the prediction as we’ve found very little written
about it. We assume that the underlying data distribution has big effect on the
outcome. One thing to keep an eye on is that we assume waiting times to be in
range (0,∞). Big values of waiting times may not even be possible to observe if
they occur at all. This will likely lead to some consistent bias. Ways to tackle this
is proposed as future work.

52

4
Experiments

In this chapter we will show the model in action. We implemented the loss function
in Tensorflow which supports automatic differentiation.

def weibul l_logLik_cont inuous (a_ , b_, y_, u_, name=None) :
ya = t f . d iv (y_+1e−35,a_)
return (

t f . mul (u_,
t f . l og (b_)+ t f . mul (b_, t f . l og (ya))

)−
t f .pow(ya ,b_)

)

def we ibu l l_ logL ik_d i s c r e t e (a_ , b_, y_, u_, name=None) :
with t f . name_scope (name) :

hazard0 = t f .pow(t f . d iv (y_+1e−35,a_) ,b_)
hazard1 = t f .pow(t f . d iv (y_+1,a_) ,b_)

return (t f . mul (u_, t f . l og (t f . exp (hazard1−hazard0)−1.0))−hazard1)

We added some small numbers 1e− 35 to avoid numerical instability.

4.1 Basic gradient-based estimation with theWeibull
distribution

In this experiment we performed sanity checks of our implementation and showed
how gradient descent-based estimation works when using the censored likelihood-
loss.

4.1.1 Setup : Generate Weibull data

The goal was to see whether we can recover the correct parameters when from
Weibull data with different levels of censoring. This was shown for continuous and
discrete generated data with medium (α = 20) and low (α = 2) resolution and
different initializations. β was kept at 2 during all experiments.

Data was generated using the censoring- and discretization- mechanism described

53

4. Experiments

in section 2.3:

U ∼ Uniform([0, 1])

W = α · (− log(U))
1
β

Wd = floor(W)
X = min(W, c)
Xd = min(Wd, c)
∆ = W ≤ c

With X = x and the failure indicators ∆ = u being the variable we can observe.
Here we fix c s.t a predetermined % of the observations were censored during the
experiments. This censoring boundary is shown as a vertical line in the histogram
of figure 4.1 and 4.2. In the real world this type of censoring would occur when
we want to estimate parameters after observing an experiment for c days.

In all of the experiments we let parameters be a softplus-function of an un-
bounded bias-weight which we optimize for. Batch size was fixed to 10000 datapoints
generated for each of the 1000 training-steps. In the plots we show trajectories from
when we used the RMSprop-optimizer but using Adam-optimizer gave similar re-
sults.

4.1.2 Results : Smooth learning with proper initialization

Initialization was found to be very important. If initialized too far from the true
value the gradients has a high probability of exploding resulting in parameters going
NaN . This was particularly apparent for the discrete Weibull and becomes an
increasing problem with more and more censoring. After this conclusion α̂ and β̂
was initialized close (factor of 0.5 and 1.5) to their actual values. This was less
of a problem when using optimizers without momentum such as RMSprop. When
initialized adequately close we had no exploding gradients regardless of choice of
optimizers or learning rate. We chose to display the results with RMSprop here as
the path is more steadfast while Adam tended to jump to the correct point in the
first couple of iterations.

54

4. Experiments

0 200 400 600 800 1000 1200 1400 1600
0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5
W

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
d
f

censoring

actual

(a) No censoring

0 200 400 600 800 1000 1200 1400 1600
0.04

0.05

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0 1 2 3 4 5
W

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
d
f

censoring

actual

(b) > 99% censoring

0 200 400 600 800 1000 1200 1400 1600
0.000

0.005

0.010

0.015

0.020

0.025

0 1 2 3 4 5
W

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
d
f

censoring

actual

(c) > 99.9% censoring

Figure 4.1: Continuous Weibull α = 2, β = 2. Four different trajectories from dif-
ferent initializations (circles). Contourplot shows log-likelihood for a batch of 10000
datapoints. Histogram are overlaid with respective final step (star in contourplot).

In the experiment with continuous Weibull (see figure 4.1) we could set almost
any level of censoring and would still converge to the correct parameters. This is
expected as it’s shown that the likelihood function for censored data has a unique
optimum that we’re expected to reach with gradient descent (see section 3.2.1).

With high censoring the convergence was markedly slower and more noisy. This
is probably due to the fact that with more censoring the probability of seeing an
uncensored value gets smaller so there’s less to learn shape, from explaining the
speed. The log likelihood will also have a larger magnitude for censored observations
which explains the noise. Note that in the real world we have finite data so if the
censoring probability is high the few observations below the censoring-threshold will
have high influence on determining the shape of the distribution.

In the contour-plots of figure 4.1 we see how - regardless of censoring, the
optimizer will find its way down into the valley and step towards the optimum. In
our plots there’s some apparent differences between initializing above or below the
generating alpha. When plotting the scale parameter α on a logarithmic the rate of
convergence looks almost identical.

55

4. Experiments

0 200 400 600 800 1000 1200 1400 1600
3

4

5

6

7

8

9

10

11

12

0 10 20 30 40 50
Wd

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

p
m

f

censoring

actual

(a) (α = 20) No censoring

0 200 400 600 800 1000 1200 1400 1600
1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 10 20 30 40 50
Wd

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

p
m

f

censoring

actual

(b) (α = 20) > 73.9% censoring

0 200 400 600 800 1000 1200 1400 1600
0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0 10 20 30 40 50
Wd

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

p
m

f

censoring

actual

(c) (α = 20) > 91.4% censoring

0 200 400 600 800 1000 1200 1400 1600
1.0

1.5

2.0

2.5

3.0

3.5

0 1 2 3 4 5
Wd

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
m

f

censoring

actual

(d) (α = 2) No censoring

0 200 400 600 800 1000 1200 1400 1600
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0 1 2 3 4 5
Wd

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

p
m

f

censoring

actual

(e) (α = 2) > 36.8% censoring

0 200 400 600 800 1000 1200 1400 1600
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0 1 2 3 4 5
Wd

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

p
m

f

censoring

actual

(f) (α = 2) > 77.9% censoring

Figure 4.2: Discrete Weibull with different generating α. Trajectories from four dif-
ferent initializations (circles). Contourplot shows log-likelihood for a batch of 10000
datapoints. Histogram are overlaid with respective final step (star in contourplot).56

4. Experiments

In the discrete experiments we found - as expected - that higher resolution, i.e
higher scale-parameter α, will lead to a more robust fit (figure 4.2) as the the
problem will look more and more like a continuous one. For discrete Weibull we’ve
found no mathematical proof that the likelihood has a unique optimum for all levels
of censoring. In practice we found that with no censoring the correct parameters
were recovered. With higher censoring it seems, judging by the contour plots, that
the optimum is shifting away from the generating parameters.

In the discrete case the behavior during convergence has alot to do with the
number of bins that the discretization induces. When fixing C = c (seen as the
vertical red dotted line in the histograms) s.t only one bin is shown green and
yellow got stuck in a local minimum. 4.2f.

With one bin available too us the only information given is the probability of
Wd = 0. The resulting log-likelihood will be identical to a Bernoulli-log-likelihood
with a numerically unstable representation θ = Pr(Wd = 0) = 1− e−α−β . Any point
(α̂, β̂) on this line is as good of a guess. This means that it’s only luck determining
if the guess is right or not.

With more bins, i.e Wd ∈ {0, 1, . . . C} we can see it as if it gets easier to fit a
line to match the observed bins. As the censored observations will push mass to the
right the error typically shows up in the form of a too fat right tail but initialization
clearly plays an important role here. This is most apparent in the contour-plots in
figure 4.2b and 4.2c.

4.1.3 Notes on initialization

Initializing α below the true value seems to slowly push α and β down until the
gradient is vanishing leading to convergence. By the logarithmic nature of α it takes
longer to go one unit step from above to down to the correct value than from below
up to the correct value. For other values of the actual β the loss surface ravine gets
narrower but less steep in the α-direction, making convergence of α even harder.

One idea for initializing α is to take the 1 − e−1 ≈ 0.63’th quantile in the con-
tinuous case as its an estimator for α. This does not work in the discrete case.
For simplicity we found that initializing the model as an exponential- or geometric
distribution (β = 1) with a parameter given by this distributions Maximum Likeli-
hood for censored data worked well for a range of values of α and β. The MLEs are
defined in the following.

57

4. Experiments

Definition 4.1 (Exponential MLE/initialization).

Y ∼exp(α) ≡ Weibull(α, 1)

Λ(y) = y

α

log(L(α)) =
∑
i

ui · log(1
α

)− yi
α

=− nu · log(α)−
∑
i yi
α

⇐⇒

αMLE = yi
nu

With a continuous WTTE-RNN, If we initialize the biases using this MLE we call
it exponential initialization
Definition 4.2 (Geometric MLE/initialization).

Y ∼Geometric(α) ≡ Weibulld(α, 1)

d(y) =Λ(y + 1)− Λ(y) = 1
α

log(L(α)) =
∑
i

ui · log(e 1
α − 1)− yi + 1

α

=nu · log(e 1
α − 1)− n+∑

i yi
α

⇐⇒

αMLE =− 1
log(1− nu

n+
∑

i
yi

)

With a discrete WTTE-RNN, If we initialize the biases using this MLE we call it
geometric initialization

Initializing using this assumption is the same as initializing the model in the
continuous case as a Proportional Hazards-model or equivalently an exponential
Accelerated Failure Time model. This means we make no assumption on whether
the hazard is increasing- or decreasing. A problem with this strategy is that in
most real world situations we have thinner tails than the exponential and geometric
distribution assumes since the true data distribution does not contain infinity. If
the real distribution has β << 1, β >> 1 or small α we get thin tails. Using
the geometric/exponential assumption (β = 1) would in that case lead to a gross
overestimation of the true α. As seen from these experiments initializing above
the actual values is worse than below. One middle way is therefore to use domain
knowledge to guess a reasonable truncated expected value and then set β to 1 or
naively setting nu = n in the MLE and treat all observations as uncensored, leading
to a smaller α. More research on this would be worthwhile.

As initialization of parameters has alot of influence on stability and convergence,
having variational nodes [49] (nodes which are perturbed with some noise during
forward propagation) at the output layer could be a remedy if one gets stuck. We
did not test this but propose it as future work.

58

4. Experiments

4.2 C-MAPSS : high-dimensional uncensored data

In this section we will illustrate an application of the model to dataset without cen-
soring. The CMAPSS dataset [33] is well known in the Prognostics and Health Man-
agement (PHM) community as a reference for evaluating predictive performance.
The data comes from hundreds of simulated run-to-failure experiments of aircraft
engines. Each experiment is a sequence of length proportional to the survival length
of the machine. The experiments are all initialized using different initial values and
operational settings and during simulation mixed with random effects. This results
in sequences of 26 noisy sensor measurements. The goal is to use the features for
stepwise prediction of the remaining useful life (RUL) or failure time of the aircraft
engines.

The dataset was first used in the PHM08 Prognostics Data Challenge [34] where
a training set was made available and a test- and validation set was kept by the
organizers. The test- and validation- set came from a shifted and different distri-
bution of data and had added outliers in it. Researchers were allowed to evaluate
their predictions on the test data multiple times while the final score was evaluated
on a final third validation set.

4.2.1 Setup : Predict failure time of aircraft engines

We did not follow the PHM08-challenge way of treating data as their test/train-
data split wasn’t done using regular cross-validation techniques. Instead we created
our own random fold by choosing a subset of the CMAPSS data (trainFD002 and
trainFD004) resulting in a dataset of 418 sequences. This was then randomly split
to 169 validation- and 249 training-sequences. None of the engines brake down
before 128 steps. To limit training time this uneventful period was removed and
the longest sequence was then truncated to 254 steps. Figure 4.4 gives a good
indication of the distribution of sequence lengths.

The architecture of the LSTM was 26 × 100 × 10 × 2 with the 100-node layer
being the only recurrent i.e the hidden state size was 100. All hidden layers used
tanh-activation except the softPlus output-layer. Feature data was normalized using
training-set weights. Even though the waiting times spanned a large range (0-254)
the existence of 0-time observations and the inherently discrete nature of the data
led us to use the discrete Weibull model.

The biases of the output layer was initialized so that we get a baseline geometric
model i.e β̂ = 1 and α̂ = 71.04 with α̂ the MLE for the geometric distribution with
p̂ = 1−e− 1

α calculated using the mean tte ȳ from training data i.e α̂ = − 1
log(1− 1

ȳ+1) ≈
ȳ. Loss was calculated as mean over timesteps. With batch-size 1 this means that
each individual training sequence was given equal weight regardless of length. The
model was trained for 60k iterations as shown in figure 4.3.

59

4. Experiments

0 10000 20000 30000 40000 50000 60000

iteration

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5
e
rr

o
r

baseline

train

test

Figure 4.3: Training-error in blue (batch-size 1) smoothed with moving average
(window size 10). Test set-error (red) evaluated every 100th step until 25k iterations
and every 200th step until the 61786th iteration. The baseline is the simple geometric
model evaluated on the test-set.

(a) Predicted α (b) Predicted β

Figure 4.4: Stacked timelines of predicted α and β for the test set. Sequences
ordered by sequence length. As α is the log-location it can be interpreted as a
point estimate while β is roughly the inverse log-scale so higher β is an indicator of
confidence. We see that as we get closer to failure the predicted failure time drops
and the confidence gets higher.

60

4. Experiments

Figure 4.5: Example of a predicted sequence in the test set. Features are the 26
sensor measurements in each timestep. The pmf shows the predicted probability of
the location of the time to event as a heatmap. Predicted MAP and expected value
vs the actual time to event is highlighted below.

61

4. Experiments

4.2.2 Result : Promising performance

A big strength with the Weibull-model over models doing naked-point estimates is
its probabilistic interpretation. To safely use these probabilities one needs good cal-
ibration i.e that the predicted number of events should happen within the predicted
time. This seems roughly to be the case looking at figure 4.6.

0.0 0.2 0.4 0.6 0.8 1.0

predicted F(Y)

0.00

0.05

0.10

0.15
histogram

(a)

0 50 100 150 200 250 300

time to event y

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p
ro

b
a
b
ili

ty

predicted & actual mean PMF

p̂(y)|true
p̂(y)

p̂(y)|false
p(y)

(b)

0.0 0.2 0.4 0.6 0.8 1.0

actual ECDF(F(Y))

0.0

0.2

0.4

0.6

0.8

1.0

p
re

d
ic

te
d
 F

(Y
)

QQ-plot

(c)

0 50 100 150 200 250 300

time to event y

10
9
8
7
6
5
4
3
2
1

lo
g
(p

ro
b
a
b
ili

ty
)

predicted & actual log-mean PMF

log(p̂(y)|true)
log(p̂(y))

log(p̂(y)|false)
log(p(y))

(d)

Figure 4.6: Calibration of predicted probabilities in the test set. For a continuous
random variable Y we expect F (Y) ∼ Uniform so the histogram (a) of the predicted
CMF F evaluated at observed time to event F (Y) should be approximately flat. The
model is skinny tailed also implied by QQ-plot (b). By calculating the mean of the
predicted pmfs p̂(y) and varying y we can compare the observed (blue) number of
observed time to events at Y = y to the predicted overall (black) and among the
observations at Y = y (green) and those not (red).

Here we updated the model using mean loss per sequence meaning that each
sequence have the same influence on the loss function regardless of its length as dis-
cussed in section 3.3.2. In figure 4.6 we show performance in terms of unweighted pre-
diction, so each sequence step contributes the same meaning that longer sequences

62

4. Experiments

have more influence. As the models aren’t trained on this metric we expected much
poorer performance than what we found so this is a good result.

There are of course some problems and we should therefore to be careful when
interpreting the probabilities. In figure 4.6a it’s apparent that the model is skinny
tailed (left skewed) i.e putting to low probability on high times to event. We can
see this highlighted in figure 4.6b and 4.6d. The mean predicted PMF (black line
covered by the red line) is below the observed number of time to events (blue) as
it gets higher. The fact that the probability for observations observed at y (green
line) is far above those not (red line) is an indicator of both good calibration and
performance.

In the original PHM08-conference challenge a predefined score-function was used
to compare algorithm performance which penalized late predictions with the argu-
ment that an unexpected breakdown is worse than unnecessary maintenance [33].
This was calculated by taking the mean of

s =

e
y−ŷ
13 − 1 ŷ < y

e
ŷ−y
10 − 1 ŷ > y

(4.1)

Since we split the dataset in a different way than in the original PHM08 challenge
the scores are not directly comparable but the top 20 researchers on the leader board
had scores ranging from 436 to 2400. The two top-scoring contestants used intricate
proprietary algorithms that trained Recurrent Neural Networks after preprocessing
data with Kalman-Filters [35]. With our approach the only preprocessing done was
training-set normalization. When using α (roughly the 63d predicted percentile) as
a point-predictor (shown in figure 4.7) we got a mean test-set score of 275.3. Using
the 67th predicted percentile lead to the lowest predicted score (244.5).

Figure 4.7: Predicted vs actual time to event in the test set colored by the PHM-
challenge score function. Blue line marks the sought region predicted=actual. Here
we use α as the point estimator reaching a mean score of 275.3.

Besides using the parameters for point estimation, analyzing them could possibly
be a useful way of mapping sequences to a two-dimensional plane as suggested in
section 3.3.1. When plotting the predicted α and β as shown in figure 4.8 we

63

4. Experiments

uncover some kind of hidden graph-like pattern. When plotting one sequence at a
time it’s apparent that each sequence traverses this graph on its way to failure.

20 0 20 40 60 80 100 120 140 160
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

β

baseline

(a) scatterplot of β vs α

20 0 20 40 60 80 100 120 140 160
α

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

β

baseline

(b) 2d histogram showing density

(c) 3d-scatter with highlighted trajectory (right to left) of the sequence shown in
figure 4.5.

Figure 4.8: Showing the hidden graph-like structure in the distribution of predicted
alpha and beta. In (a) and (b) we highlight the baseline parameters for reference.

In an applied setting analyzing and clustering sequences based on which region
they are in the α − β-grid could be useful way of getting actionable rules for when
to do maintenance.

64

4. Experiments

4.3 Naive strategies with censored data

The purpose of this experiment was to compare performance of the WTTE-RNN
with different strategies of handling censored data. We call these baselines naive
because they are the most obvious and off-the-shelf way of trying to avoid making
assumptions about the censoring process and thus use the censored log-likelihood loss
functions. As we will show, all these methods lead to severe bias and deteriorating
performance on test set data compared the proposed method.

4.3.1 Setup : Predict evenly spaced events
Imagine that we have an infinite sequences of evenly spaced events, say with spacing
d. If we place an observation window of width n = 30 over this sequence we can
observe a total of d different sequences. The goal is to predict the number of steps
to the next event without knowing which of these sequences we’re shown i.e were
in the the sequence we start out. The only feedback is whether an event occured in
the previous step. Sequences that does not have an event at the last step will get
censored observations from the last observed event until the end of the sequence.
We used 4 different datasets created using spacing d = 15, 20, 25, 30 leading to less
and less recurrent events and more and more censoring. When d = 30 only 1/30
sequences are uncensored at the last timestep.

(a) (Uncensored) Time to event

(b) Censoring indicator

Figure 4.9: Stacked timelines showing all sequences in the four datasets.

Since we know the ground truth in this data we can compare performance of
different modeling strategies, all having identical architecture but with different loss
functions:

65

4. Experiments

Without censored data : Train on the ground truth target value. No points are
censored

Use censored points : Train using log-likelihood for censored observations. We
also tried this with penalized β for numerical stability.

Pretend: Train the model with the censored waiting times but with regular log-
likelihood i.e as above but flag all waiting times as uncensored.

Discard: Simply remove the timesteps that are censored from the objective func-
tion.

We used LSTMs with 1 feature input, 4 hidden state nodes and 2 output layer
nodes. The architectures was thus 1×4×2. The output-layer biases were initialized
s.t β = 1 and for α we used the mean of the ground truth waiting times to estimate
the scale parameter of the assumed geometric distribution (geometric initialization
using ground truth data, see definition 4.2). The reason for using ground truth data
was that the alternative - inferring this parameter with censored waiting timess -
would overestimate the biases more than we already would. This in turn leads to
numerical hardships and differences between the strategies that was not the focus of
this experiment. In a real world application the location of the mean of the waiting
times can most likely be corrected using domain knowledge.

In each training step all d possible sequences was passed. The only random
elements in training was the initialization which was controlled through iterating
over the same 10 different seeds for each model. As feature data we fed a single
binary variable was_event being 1 whenever the last step was an event else 0 and
0.5 in the first sequence timestep. Every 50th trainingstep we calculate the error
using ground truth targets and save the mean of the predicted α’s and β’s.

We trained using RMSPropOptimizer with epsilon set to 1e−5. Using optimizers
with momentum such as Adamoptimizer led to more numerical instability. When
getting close to (near attainable) perfect fit momentum-optimizers would start rush-
ing, causing exploding gradients. In more random circumstances we found this to
be a useful behavior but here we were more interested in the general trend over the
1000 iterations. Learning rate was set to 1

100+0.4i so it decreased from 0.01 to 0.002.
For the censored log-likelihood-model we tried both with and without regular-

ization. In the regularized version we added a regularization term as discussed in
section 3.2.2.3

penalty = −eδ(β−β̄) = −e1.25(β−8)

creating an artificial boundary after β = 8. This prevented β from becoming too
high thus hindering overconfident predictions. This in turn led to numerical stability.

66

4. Experiments

(a) iteration 1 (b) iteration 100 (c) iteration 200

Figure 4.10: Example prediction for the uncensored model during training.

4.3.2 Result : Censored & regularized strategy wins

15 20 25 30

event spacing

1.0

1.5

2.0

2.5

3.0

3.5

4.0

m
in

im
u
m

 e
rr

o
r pretend

discard

use

use (reg.)

without

Figure 4.11: Minimum error per model for different datasets (event spacings)

With increased spacing there’s more and more steps in the beginning where the
model can’t know the true value. Here it will learn to update its prediction as it
gets more information in form of non-events. This means that larger event-spacing
means more noise and larger total error. This also leads to more censoring.

In all the experiments pretend and discard had deteriorating performance on
test data. As expected, the predicted α’s drops too low for these models as they
mistakenly underestimate by learning to predict the censored times instead of the
time to events.

In figure 4.12 we see that some models tended to fail during training due to
numerical overflow. This typically happens when β grows too big too fast. We
stopped training whenever any of the predicted parameters would beNaN . This was
particularly common for the censored model without regularization. The regularized
version had a 100% survival rate throughout training. Even though we didn’t train
until convergence here we found no significant loss in performance.

67

4. Experiments

(a) d = 15 (b) d = 20 (c) d = 25 (d) d = 30

Figure 4.12: Test error and mean predicted α and β for the 10 runs of every model
and different spacing d. Thin line marks the real trajectory and thick lines the mean
over models. When any model experienced numerical failure the mean was taken
over the ’survivors’, marked with dashed lines. The most viable strategy seemed
to be using regularized censored log-likelihood (purple) when ground-truth data is
unavailable (green).

68

4. Experiments

4.4 Comparison to the sliding-box-model
In this experiment we compared the Weibull model to the the standard modeling
approach, what we call the sliding box model. The purpose was to compare perfor-
mance in a realistic use case. See section 2.4.1 for a description of this model.

The relevance of this baseline solely depends on its wide use. Comparison is of
course problematic as the models predicts different things and optimized for different
tasks. The biggest theoretical strength of our model is its promise of giving a sense
of magnitude of the time to the next event. Note that if predicted box probability θt
from the sliding box model is small it only tells us that the probability of an event
within τ days is small. Interpreting this as if the probability of an event in τ + 1 is
small too is an extrapolation that we do not explicitly optimize for in the sliding-box
model. Making actionable decisions on this model could therefore be problematic
and the inference questions need to be explicitly formulated before training.

But since we can compare the models we will. We will compare the models on
how much mass the WTTE-RNN assigns before τ vs θt. Formally, let F (t) be the
predicted Weibull CDF, then the probability of at least one event inside the box is

θ̂ = F (τ)

Using this estimation we have

L̂ = θ̂v · (1− θ̂)1−v

= F (τ)v · S(τ)1−v

= (1− e−Λ(τ))v · e−(1−v)·Λ(τ)

= (eΛ(τ) − 1)v · e−Λ(τ)

Note how this is identical to the discrete likelihood in equation 2.14 where
we’ve discretized a continuous variable using step-length τ and observe it only when
Wd = 0 and know that it’s censored otherwise. By the scale invariance- property
of the Weibull we may also see it as simply a Weibull with α ∝ τ . I.e. the sliding-
box model is a censored discrete Weibull with poor time-resolution w.r.t the fixed
censoring variable τ . The theoretical conclusion should be that the box-model is
expected to be as good as this special case of the Weibull model. To have an identical
comparison we could use this fact and corrupt the input data for the Weibull model
leading to this special case. This wouldn’t teach us much as they’d be almost
identical apart from the output layer. Instead we trained the Weibull model just
like we would do normally, teaching it to learn the distribution over all possible
values 0, 1, . . . of the target value and then compare predictions.

69

4. Experiments

4.4.1 Setup : Generate random sequences of random length

We’re trying to simulate a situation were we have recorded event-sequences of vary-
ing lengths, for example when we have customers that entered our dataset at dif-
ferent times. Here we let sequences vary randomly between 10 and 100 steps. We
can imagine this as if a company started 100 days (or months, years) ago and that
we only consider customers that been around for more than 10 days. We simulated
data by using a randomly generated hazard function:

λj(t) = c0 + c1(1 + cos(2πUj + c2t))

Λj(t+ s)− Λj(t) = (c0 + c1) · s+ c1

c2
(sin(2πUj + c2(t+ s))− sin(2πUj + c2t))

Uj ∼ Uniform[0, 1]

With two different settings for the constants: high and low probability of event.

To generate the data we used the technique of section 2.2 which can be sum-
marized as discretely generating events for each unit timestep t = 1, . . . , n in each
sequence j with probability 1 − e−dj(t). The transformations involved is shown in
figure 4.13.

The settings was chosen to simulate two types of signals. One is the case when the
signal from the underlying process is strong and the event probability is high. We call
this the high-setting. In the other we have more noise and lower event probability.
This is called the low-setting. The high-setting leads to a low resolution discrete
distribution, i.e small predicted α for the Weibull model and low levels of censoring.
The low-setting leads to noisy long-term dependencies and lots of censoring (see
(red) censored time to event of example sequence in figure 4.14b).

The sliding-box model described in section 2.4.1 transforms the problem into a
binary prediction problem by discretely predicting whether an event will take place
within a preset τ steps. We refer to this happening as an event in box. For the high
and low setting we chose values of τ so that this probability was low, medium and
high. Vertical lines in the histograms of figure 4.14 illustrates where the box-widths
τ lies in the respective raw time-to-event distributions.

70

4. Experiments

(a) ‘high’ : high signal/low censoring (b) ‘low’ : low signal/high censoring

Figure 4.13: Realization of data generating process : Hazard function λ is a
randomly shifted sinusoid. Integrated over unit intervals it forms the CEPMF p(t, s).
Events generated as Vt = (Ut ≤ p(t, 0)) with U ∼ Uniform. Censored time to events
in red.

71

4. Experiments

0 10 20 30

time to event

0.0

0.2

0.4

0.6

p
ro

b
a
b
ili

ty

histogram

τ

(a) Setting : high

0 100 200 300

time to event

0.00

0.02

0.04

0.06

p
ro

b
a
b
ili

ty

histogram

τ

(b) Setting : low

Figure 4.14: Example of batch of 2000 generated sequences of length 100 for the
high- and low- setting vertically sorted by their randomly shifted period. Histogram
shows the distribution of real time to events calculated from each of the 500× 100
timesteps with the box-width τ superimposed. During training we randomly chose
the sequence lengths n ∈ [10, 100] which can be seen as masking all but the first n
timesteps and calculating the censored time to event with step n being the horizon.
Models were evaluated on the full 100 step sequences after calculating the true time
to event.

72

4. Experiments

4.4.1.1 Training

To get some reference how well the WTTE-RNN worked we also trained a Weibull
baseline model (constant model), a Weibull-ANN, a Weibull LSTM and a sliding-
box LSTM. The latter is the WTTE-RNN and the focus of the study. Feature input
was a shifted event-indicator was_event, i.e xt+1 = 1 if an event happened in the
previous step i.e vt = 1.

The architecture of the models is summarized below.

Weibull Baseline (W-bl) 0× 2 softplus
Weibull ANN (W-ann) 1× 2 softplus
Weibul LSTM (W-lstm) 1× 30× 2 tanh × softplus
Sliding Box LSTM (box-lstm) 1× 30× 2× 1 tanh × tanh × sigmoid

Note that the box-lstm had 1 extra layer compared to the W-lstm.
The models were trained for 1500 training steps were all models were fed the

same data, randomly generated in each step. This was repeated 5 times for all
combinations of settings and box-width i.e 5 · 2 · 3 times. Weibull models were not
in any way affected by the box-width τ apart from fixing the random seeds so that
the Sliding Box- and Weibull models that were compared was also trained on the
same data.

With a sliding box model of width τ , given sequence length n we would in a real
situation only be able to train the model on the first n − τ steps of the recorded
sequences since we wouldn’t know how to define target-value for the τ last steps.
With the Weibull model we can train on all n steps but censored datapoints will
be frequent towards the rightmost boundary. Weibull models were trained using
discrete Weibull log-likelihood for censored data. Sliding box-model was trained us-
ing cross-entropy loss (Bernoulli-log likelihood) optimized for sigmoid output layer.
Each training step can be summarized as:

1. Randomly pick a sequence length n ∈ [10, 100]

2. Generate batch_size (censored) sequences of length n.

- Update box model using the n− τ first generated sequence steps
- Update Weibull using all sequence steps.

batch_size was set to 200 for the high- and 500 for the low- setting. We initialized
the output-layer biases for each model and seed using data from a first training-
batch. We used geometric-distribution MLE for censored data to initialize the biases
of the Weibull model. The sliding-box model bias was initialized s.t given centered
input it would output the baseline probability of event in box.

4.4.1.2 Evaluation

Every 100th training step 2000 random sequences (and uncensored waiting time
data) of length 100 was generated. Weibull models were evaluated on uncensored
data to see training progress as seen in figure 4.15. Sliding box and and Weibull-
models prediction of probability in box was evaluated similarly. The sliding box

73

4. Experiments

prediction in each sequencestep is compared with the Weibull-models (trained and
evaluated using the same seed) predicted in-box-probability θW

t = F (τ).

0 500 1000 1500

training step

1.3

1.4

1.5

1.6

E
rr

o
r

high

bl

ann

lstm

(a) Setting : high

0 500 1000 1500

training step

3.95

4.00

E
rr

o
r

low

(b) Setting : low

Figure 4.15: Weibull evaluation error for the models. Thin lines marks each seed
while thick lines marks mean over seeds. The more noisy ’low’-setting lead to more
noisy training even though learning rate was low and diminishing and batch size
was high.

4.4.2 Results : Sliding box wins a rigged game
In figure 4.16a and 4.16b we show the comparison in performance with the box-
model. As expected, the sliding box model outperforms the Weibull model on nearly
all the tasks. In nearly all the tasks the W-lstm beats the baseline and the ANN.
Evaluated using the Weibull-log likelihood with uncensored data the Weibull LSTM
beat both the baseline and the ANN both in terms of mean evaluation error during
training (highlighted in figure 4.15) and in minimum error during training.

High-setting With the high-setting, were we had very little noise and a clear
signal to pick up, the race was close (figure 4.16a). When τ = 1 it’s the same as
binary predicting event or not in next step. Baseline probability of this was high
already (0.582) so this is a comparison roughly to the area of the predicted Weibull
pdf before the median. When raising τ W-lstm must have been very confident
as we get some numerical errors (see τ = 9 of figure 4.16a) which implies that
the predicted probabilities approached 0 or 1. The few datpoints we see shows a
training-trajectory which is on level with the box-model.

Low-setting With the low setting the box-model had a mean-error obviously
below the Weibull models for all settings of τ . For the extreme cases of τ = 50,
Pr(T ≤ τ) = 0.925 the Weibull baseline- and ANN even outperformed the W-lstm
(see figure 4.16a- 4.16b). How did this happen?

74

4. Experiments

0 500 1000 1500

training step

0.50

0.55

0.60

0.65

E
rr

o
r

Pr(T< τ) = 0.58
τ= 1

box-bl

W-bl

W-ann

W-lstm

box-lstm

0 500 1000 1500

training step

0.4

0.5

0.6

E
rr

o
r

Pr(T< τ) = 0.737
τ= 2

0 500 1000 1500

training step

0.15

0.20

E
rr

o
r

Pr(T< τ) = 0.95
τ= 9

(a) Setting : high

0 500 1000 1500

training step

0.200

0.205

0.210

E
rr

o
r

Pr(T< τ) = 0.053
τ= 1

box-bl

W-bl

W-ann

W-lstm

box-lstm

0 500 1000 1500

training step

0.66

0.67

0.68

0.69

E
rr

o
r

Pr(T< τ) = 0.517
τ= 15

0 500 1000 1500

training step

0.22

0.24

0.26

E
rr

o
r

Pr(T< τ) = 0.935
τ= 50

(b) Setting : low

Figure 4.16: Box evaluation error during training. Thin lines marks independent
runs, thick lines marks mean over the 5 runs. Dashed lines means that some of the
output contained numerical failures for some run typically by giving predictions to
close to 0 or 1. By Pr(T ≤ τ) we mean the baseline probability of event in box.

A tempting explanation would be that it’s due to the Weibull model being poorly
specified in the right tail, but as we had no such problems for the high setting at
τ = 9 it doesn’t cut it. As the non-temporal ANN and baseline didn’t have problems
for the low-setting it’s a hint that the LSTM learned to recognize that it approaches
a censoring point. This behavior would be very problematic. We saw this behavior
when lowering the signal even further and letting the model train for 100k iterations.
This would lead the model to ‘learn artifacts’ by recognizing the censoring point.
The effect is that α gets predicted higher and higher for the later part of the sequence
eventually causing test error to deteriorate (overfitting).

There’s some problem with this explanation on this data using τ = 50. When
only looking at the box error in the first part of the sequence (first τ steps) we
found that the W-LSTM box-error was still higher than the other models (but not
as much).

The best explanation is therefore that the heavy censoring shifted the distribu-
tion to the right which had a big impact on the right tail probabilities causing poor
calibration for this task. Note that we did not have particularly poor calibration for

75

4. Experiments

other values of τ at the high setting as the W-lstm performed relatively well there.
Taking into account that the W-lstm performed better than the ANN and baseline
evaluated using Weibull-loss and uncensored data (4.15b) we conclude that during
optimization the gain being good in the left tail must have outweighed the cost of
error in the right tail.

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty

high τ= 1

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty

low τ= 1

W-bl

W-ann

W-lstm

box-lstm

box-bl

in box

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty

high τ= 2

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty

low τ= 15

0 20 40 60 80 100

t

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty

high τ= 9

0 20 40 60 80 100

t

0.0

0.2

0.4

0.6

0.8

1.0

p
ro

b
a
b
ili

ty

low τ= 50

Figure 4.17: The target indicator overlaid with the predicted probability for each
of the settings. Note that when τ = 1 it coincides with the event-indicator. It’s easy
to see that feature input for the models were lagged event-indicators.

Analysis of predictions The box-errors (Bernoulli-log-likelihood) are mainly re-
liant on the calibration of the predicted probabilities. This explains some of the
box-lstms lead. If we look at the actual predictions we see another image appear.
We generated a sequence of events for both settings and made predictions for all the
models at the end of training. The result is shown in figure 4.17.

Looking at the predicted baselines (green and dotted) we see a perfect overlap
for all values of τ . This essentially says that the predicted number of events within τ
steps using the Weibull-models roughly corresponds to the observed. In other words
Weibull models (in general) are fairly calibrated and the censoring doesn’t seem to
have shifted the distribution in any notable way.

For the most problematic task, the low-setting with τ = 50 (bottom right) the
box-lstm doesn’t seem to have learned anything. The W-lstm on the other hand
clearly reacts to input data and temporal patterns in what looks like a reasonable
way. What seems to be wrong is the location (i.e calibration) of the predicted
probabilities not the relative size of them.

This gives some basis to believe the Weibull model could perform better than the
Box-model after proper calibration when we have very rare events. The first reason
is that the Weibull model gets to see longer sequences as it can use all training data.
The second is that that the Weibull model will get continuous feedback in each step

76

4. Experiments

unlike the box-model which only gets binary feedback. We did not evaluate the
models performance on scale-invariant measures such as AUC. A hypothesis is that
the Weibull models would outperform the Box-model but verifying this is proposed
as future work.

The remaining question is why the Weibull model gets a higher error than the
box-model in all tasks, as seen in figure 4.16. The first explanation is that the
Weibull model is not trained specifically for any of the tasks, it’s trained for all of
them. The box-model is only trained for one specific τ at a time so theoretically
this would always win, assuming that it could find a minimum. So as stated before
it’s a rigged competition favoring the box-model. The second answer is that the
difference was remarkably small. When taking the minimum achieved score during
training (figure 4.18) we can barely tell the difference (but it’s there). See figure
4.18.

1 2 9
box width τ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

m
in

im
u
m

 e
rr

o
r W-bl

W-ann

W-lstm

box-lstm

box-bl

(a) Setting : high

1 15 50
box width τ

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

m
in

im
u
m

 e
rr

o
r

(b) Setting : low
High Low

τ 1 2 9 1 15 50
W-bl 0.68 0.574 0.193 0.203 0.692 0.229
W-ann 0.616 0.499 0.184 0.203 0.692 0.229
W-lstm 0.509 0.364 0.136 0.2 0.663 0.235
box-lstm 0.507 0.362 0.133 0.199 0.659 0.223

Figure 4.18: Minimum box-error achieved per model, setting and τ . The box-lstm
is right below the weibull lstm.

To summarize this experiment we conclude that the sliding box will probably
outperform the W-lstm on predefined tasks but after proper recalibration it’s possi-
ble that the W-lstm could be better than the sliding box when we have long temporal
patterns and rare events. In all circumstances we conclude that if we do want to
build a sliding box model, it’s reasonable to first train a Weibull-model and play
around with it to figure out a reasonable hyperparameter τ .

77

4. Experiments

78

5
Discussion

We framed the problem as if we from a given point in time want to predict where
the next event might be, or equivalently the value of the current time to event.

Instead of making a point-estimate of where the current time to event is, we use
a probability distribution (think about kernels) that predicts the region where the
time of this event is likely to be. One may think of it as a heatmap were we use
a function to assign more heat to where we believe the next value is. By choosing
a basic shape of how this region may look, we can extrapolate to regions which we
don’t have any data for i.e very large waiting times. This means that we can choose
an ordering over where we think it’s more likely to see an event and rank predictions
for new observations. By choosing this heat function to be positive and integrate to
1 we get a sense of magnitude. Instead of just being able to order the observations,
the heat-level or density gets a fixed probabilistic interpretation. By the fact that a
distribution sums to 1, a non-observation, i.e knowing that an observation was not in
a region is information about where it must have been. This makes our model a type
of latent variable model where we’re trying to predict the distribution generating
waiting times. By choosing a known probability distribution the quantities and
computations associated with it are easily interpreted and communicated. We chose
the discrete and continuous Weibull distribution as a model for this region.

We’ve shown that the Weibull-distribution can take many shapes by adjusting
its two parameters. This makes it expressive enough for many applications. We
have shown that the shape of the distribution can be controlled to avoid over-fitting
by penalizing to large β’s. In experiments this also proved to lead to more numerical
stability. As a model for inference we’ve given theoretical and empirical justifications
through the Weakest-link property (Fisher-Tippett-Gnedenko theorem 2.33) why
the time to the next event tends to have a distribution similar to the Weibull. We
may liken this to the fact that the shape of the Gaussian distribution makes it
expressive enough to be useful as a kernel with the added benefit that this shape
frequently occurs in nature (explained by the central limit theorem).

To estimate parameters we described the log-likelihood loss function used in
survival analysis. We discussed necessary assumptions to use it. We argue that the
likelihood for censored data should be used with less anxiety because in experiments
we’ve seen that it works well in practice even when all assumptions are not met.
This can be likened to the fact that in many machine-learning applications we use
for example Gaussian kernels and optimize different likelihood functions without
worrying too much about probabilistic assumptions. The most convincing argument
so far is the fact that it works in practice.

By discretizing the continuous distribution we get a discrete time model with

79

5. Discussion

the same expressiveness and shape, and we may extend much of what we know
about the continuous model to the discrete case. One can argue that if the process
generating events is truly continuous then the Weakest Link Property is an argument
to assume an underlying continuous Weibull distribution for the time to the next
event. If the continuous random variable is Weibull it follows that the discretized
random variable is a discrete Weibull.

From experiments we’ve seen that the resolution of the waiting time has a large
effect on how robust the model is to levels of censoring. If the distribution is truly
continuous we would recover the correct parameters for almost any level of censoring.
In practice we will almost always have some type of discreteness in the data. In these
scenarios using the discrete likelihood is more justified.

We’ve also given a general framework for going from continuous to discrete mod-
els and back again by using continuous distributions to generate discrete events and
by using smaller and smaller intervals we again get back to the continuous distribu-
tion. The seamless switching between discrete- and continuous can be a very helpful
feature to speed up the initial process of testing out a model when using different
event- and feature-definitions and time-resolutions. The model can seamlessly be
extended to using other types of distributions by switching out the hazard-functions.
It already has some known distributions built in as special cases. By fixing β = 1 we
have a regular exponential RNN in the continuous case and a geometric RNN in the
discrete case. In the continuous case this would be called a Proportional Hazards
RNN. By fixing β to any scalar value we have an Accelerated Failure Time RNN.
By fixing β = 2 we could also call it a continuous- or discrete Rayleigh-RNN or
Rayleigh AFT-RNN.

In the results we saw that the model is - surprisingly - very close in performance
to a sliding box model, defined on a metric that is not optimized for. It’s clear that
the Weibull model answers more questions and is much more actionable than the
sliding-box model as we don’t need to specify a threshold beforehand. If this is not
an issue we found that the Sliding box is the better alternative as it achieved lower
errors on test data. We did find some small empirical evidence that the Weibull
model might be better if the box-width τ is very large even though the predictions
had some problems with calibration. This is motivated by the fact that the Weibull
model can be trained on more data and that it gets continuous feedback during
training on how far off it is in the prediction. The sliding box will by its very nature
only get binary feedback.

The point with this thesis is to describe a model that’s useful for applications.
We’ve identified and described the problem of churn-prediction and failure time
prediction as natural usecases. We’ve discussed how one can use the β’s and α’s
directly to spot different tendencies, like high immediate risk, peaks of activity and
more. When using this at a large scale - with many sequences like customer or health
data - we could have a powerful tool to effectively monitor and identify changing
behavior indicating a lost interest or declining health.

To implement this model one needs first to decide how to aggregate features,
what constitutes an event, which time resolution to chose for prediction and event-
aggregation and whether to use discrete or continuous time. The answers to these
questions are domain-specific with no definite answers. Once we have sequences of

80

5. Discussion

features xn0:t, censoring indicators un0:t and time-to-events ynt for each sequence n the
practicalities moves to the domain of choosing a good RNN-architecture. The only
constraints on the RNN we need to know is that we need a step-to-step architecture
with an output-vector of two components that are strictly positive and unbounded.
We may then train the network just like any RNN but with the Weibull-log likelihood
loss-function. The details of training RNNs was deemed outside the scope of the
thesis but as we propose modifying the output layer and the loss function, we will
summarize some of the main points.

5.1 Lessons from training and implementation
To learn with the continuous- and discrete Weibull loss we need to be vary of ini-
tialization of output layer bias. This is no different from initialization of other types
of neural networks but as the Weibull loss involves exponentials and logarithms we
may avoid numerical difficulties with a few simple steps. One technique could be to
normalize the magnitude of the target value yt, leading to low magnitude bias and
weights for the output layer for scale parameter α. The reason for not adopting this
this approach in the experiments was that it added another step in order to do infer-
ence. Instead we used unnormalized waiting times for all the experiments which in
retrospect led to more hazzle than proper normalization might have done. Here we
found that initializing the bias of the output layer for the respective parameters s.t
they initially operate below their predicted mean values was safer than initializing
above. As a rule of thumb, setting β ≈ 1 and α to the mean of the censored waiting
times worked well for high resolution time to event. With low resolution discrete
waiting times the geometric MLE is more reasonable. Using the MLE for censored
waiting times typically leads to overestimation of the α-bias. In both censored and
uncensored discrete- and continuous case the MLE is a function of the mean waiting
time. We therefore recommend using domain knowledge to set this as a reasonable
initial value.

We didn’t test the effect of using the continuous log loss with discrete values but
one may assume that it can lead to numerical difficulties and have biasing effect if
we really have discrete values. We’ve shown that the discrete Weibull model works
well with high resolution problems. Whenever α >> 200 the chance of numerical
failures would grow but it seemed like the predicted β was the main culprit. Forcing
β < 10 through regularization was an efficient remedy.

5.2 Future work
Finding a TTE-process motivating the log-loss One of the hardest problems
that we’ve faced was the problem of trying to define a generative framework that
holds a Markov property, justifying the use of a log-loss assuming independence
between timesteps. The time to the next event - if it’s predictable now - is necessarily
dependent on the future. Despite this it might be possible to formulate a random
process for the hazard function s.t the MLE would coincide with the censored log-
loss. One approach that we tried (and failed) was to try to find a positive random

81

5. Discussion

process Λ having the property that its expected value at a future step given current
feature state is an RCHF of predetermined form, i.e E[Λ(t + s)|X(t)] = R(X(t), s)
with R being the Weibull RCHF as a function of the feature state vector X(t). It
would be interesting to see if this is possible.

Effect of varying length and weighting We only briefly discussed the ramifi-
cations of different weighting schemes on the loss function. The calibration in all
experiments were reasonable even when trained with a different weighting-scheme
than how it was evaluated. There was some bias here and if we’re not careful its easy
to introduce systematic bias in the probabilistic interpretation. This could have big
and dangerous consequences in certain applications if the probabilities are not taken
with a grain or salt or its interpretation adapted to the situation.

In the experiments we also found that after long training the RNNs would oc-
casionally ‘learn’ to identify censoring, i.e overestimate the waiting time as it gets
closer to the censoring point. This behavior - a kind of overfitting - is unwanted.
Using Inverse Censoring Probability Weighting (see section 2.4) seems like a promis-
ing method of steering away the model from learning artifacts of censoring but we
found no clear way on how to implement this for our problem.

Extensions We did not extend the model with multivariate target or other para-
metric models. This should be fairly easy to implement and may be useful in appli-
cations. Of particular interest would be to see computationally feasible multivariate
covariance structures. There might even be reasons to use multivariate models to
speed up training of univariate models. Consider the case when we’re predicting
an event defined by the realization of a set of events i.e a compound event. This
could for example be a user having to perform a sequence of steps in order to be
considered signed up or churned. Another example, for earthquake prediction we
might be able to predict big quakes by using a distribution over time to quakes of
different Richter scales and gradually weighting up the importance of the big quake.
This could have some hand-holding effect on learning.

We tried to keep the discussion on a general level when possible so as to show
the simplicity of switching out the Weibull to other distributions. The framework
discussed in this thesis can hopefully be applied using other types of CHFs and
gradient based learning frameworks other than ANNs and RNNs.

In order to keep it simple and explicit we used very naive implementations of
the loss function. It would be natural to use the general framework for location-
scale distributions used by most packages implementing Weibull-regression such as
GAMLSS [52]. This consists of working on the log of the waiting times i.e working
with the Gumbel distribution rather than the Weibull. As discussed previously
there’s both numerical- and computational reasons for why this makes more sense.
A first move towards this goal could be to switch out the output activation function
for α from softPlus to the exponential.

The RNN-architectures used were single layered vanilla LSTMs without dropout.
This was by design - looking for a specific RNN architecture was outside the scope
of this thesis, and with more complexity it would make it harder to generalize.
Surely the Weibull distribution will impose specific dynamics on the network. Its

82

5. Discussion

possible that we could speed up learning by designing the output layers and hidden
state updates to account for concepts like the minimum closure property. It’s also
reasonable to believe that the location- and scale- outputs should be given separate
output layers so as to not correlate them too much.

In many applications the Weibull distribution might be better specified for values
in the left tail than the right tail. In all experiments we saw that the error mostly
showed up in the right tail. This is due to the fact that infinite waiting times is
not really something we get to see very often in practice. There might be ways to
truncate the right tail to get better predictions.

Comparison to other models At the time of publishing this thesis there’s lots
of things happening in this field. Both w.r.t developments for recurrent neural
networks but particularly in the field of RUL-prediction.

We compared this framework to naive strategies and the log loss of the sliding
box. This could be done in a more systematic way. The comparison to the sliding
box was heavily dependent on the calibration of the models rather than the models
ability to rank. A similar experiment where AUC for both models is compared would
be interesting. In this context it would also be called for to compare the model
with learn-to-rank models trained by optimizing similar metrics. It might also be
interesting to see comparison to the various Kalman-Filter- and Tobit-regression
based frameworks that have recently been published.

More standard datasets One issue that we found was the lack of datasets to
compare performance on for these kinds of tasks. The CMAPSS is a step in the
right direction. Because of the problematic test-train split of the original challenge
dataset, without overfitting its impossible to make fair and competitive submissions.
This thesis have largely been occupied with defining a metric to optimize over. When
models are trained for different metrics its natural that the resulting models are hard
or even wrong to compare. We would be very happy to find a set of datasets that
consisted of sequences of events and features. The data could come from a range of
fields such as PHM/RUL/Failure-prediction, health monitoring, Neural spike train
data, Web event prediction, customer churn etc.

5.3 Conclusion

The purpose of this thesis was to describe and test a framework aimed at solving
many of the problems associated with predicting waiting times: censoring, discrete
or continuous data, time-varying covariates and sequences of varying length. We
conclude that the proposed model (the WTTE-RNN) seems to be applicable and
work well under all these circumstances.

The main contribution of this thesis has been to assemble some standard theo-
retical pieces to build something new. With respect to theory we’ve condensed the
theoretical underpinnings of the classical field of Survival analysis - in particular
using censored log-likelihood loss - and applied it in a new setting. In essence this

83

5. Discussion

thesis can be seen as adding and documenting an objective function that we think
should be part of the general deep-learning toolbox.

The proposed model seems like the obvious solution for a wide range of problems.
With this in mind we have been surprised and worried about finding so little similar
work. As far as we know, this is the first documented discussion about censored
log-likelihood loss in the context of RNNs in general and Weibull ANNs/RNNs in
particular. Academias apparent lack of interest for this simple solution has led
us to tread very cautiously and remain suspicious about the performance of the
model. Throughout the work on this thesis we expected to find the approach to
be inherently faulty. In the end we found no evidence that (given the assumption
of uninformative censoring) the model is flawed or leads to biased predictions. The
experiments showed that it worked well, in particular compared to the baselines
which we compared it to.

As a side-effect we also hope that our description of the Sliding Box model to be
useful. During the course of writing this thesis we’ve found many examples of the
sliding box-model being applied in industry and a few papers referencing it but little
discussion about the details of implementing it or its pros and cons. In particular
we’ve found no academic papers detailing or comparing its use in the context of
RNNs.

In general we found that all the research areas dealing with censored data have
problems with transparency and would benefit from being less domain specific. It’s
hard to find a serious discussion about censoring that does not contain undeci-
pherable medical jargon. We think that everybody would benefit if censored data
and time-to-event prediction was treated in a more general mathematical machine
learning framework. This would simplify collaboration and lead to new perspec-
tives. Many research areas have benefited from taking this path, consider speech
recognition, NLP and image processing.

As a concluding remark we are hopeful and curious about seeing more machine
learning models that can be trained with censored data. We hope that this thesis
might have made some small contribution in making standard concepts in survival
analysis available to the wider machine learning community.

84

Bibliography

[1] Mei-Ling Ting Lee, GA Whitmore, and Bernard A Rosner. “Threshold regres-
sion for survival data with time-varying covariates”. In: Statistics in medicine
29.7-8 (2010), pp. 896–905.

[2] Rupert G Miller Jr. Survival analysis. Vol. 66. John Wiley & Sons, 2011.
[3] Germán Rodríguez. “Lecture Notes on Generalized Linear Models.” PhD the-

sis. 2010. url: http://data.princeton.edu/wws509/notes/.
[4] John D. Kalbfleisch Ross L. Prentice. The Statistical Analysis of Failure Time

Data (Wiley Series in Probability and Statistics). 2nd ed. 2002. isbn: 047136357X,9780471363576.
[5] Klaus Greff et al. “LSTM: A search space odyssey”. In: arXiv preprint arXiv:1503.04069

(2015).
[6] Fima C Klebaner et al. Introduction to stochastic calculus with applications.

Vol. 57. World Scientific, 2005.
[7] George Casella and Roger L Berger. Statistical inference. Vol. 2. Duxbury

Pacific Grove, CA, 2002.
[8] Torsten Hothorn et al. “Survival ensembles”. In: Biostatistics 7.3 (2006), pp. 355–

373.
[9] Jonathan Burez and Dirk Van den Poel. “Handling class imbalance in customer

churn prediction”. In: Expert Systems with Applications 36.3 (2009), pp. 4626–
4636.

[10] Shin-Yuan Hung, David C Yen, and Hsiu-Yu Wang. “Applying data mining to
telecom churn management”. In: Expert Systems with Applications 31.3 (2006),
pp. 515–524.

[11] Guo-en Xia and Wei-dong Jin. “Model of customer churn prediction on sup-
port vector machine”. In: Systems Engineering-Theory & Practice 28.1 (2008),
pp. 71–77.

[12] Scott A Neslin et al. “Defection detection: Measuring and understanding the
predictive accuracy of customer churn models”. In: Journal of marketing re-
search 43.2 (2006), pp. 204–211.

85

http://data.princeton.edu/wws509/notes/

Bibliography

[13] Yu Zhao et al. “Customer Churn Prediction Using Improved One-Class Sup-
port Vector Machine”. In: Advanced Data Mining and Applications: First In-
ternational Conference, ADMA 2005, Wuhan, China, July 22-24, 2005. Pro-
ceedings. Ed. by Xue Li, Shuliang Wang, and Zhao Yang Dong. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2005, pp. 300–306. isbn: 978-3-540-31877-4.
doi: 10.1007/11527503_36. url: http://dx.doi.org/10.1007/11527503_
36.

[14] Bart Larivière and Dirk Van den Poel. “Investigating the role of product fea-
tures in preventing customer churn, by using survival analysis and choice mod-
eling: The case of financial services”. In: Expert Systems with Applications 27.2
(2004), pp. 277–285.

[15] CL Chi, WN Street, andWHWolberg. “Application of artificial neural network-
based survival analysis on two breast cancer datasets.” In: AMIA... Annual
Symposium proceedings/AMIA Symposium. AMIA Symposium. 2006, pp. 130–
134.

[16] Elia Biganzoli et al. “Feed forward neural networks for the analysis of censored
survival data: a partial logistic regression approach”. In: Statistics in medicine
17.10 (1998), pp. 1169–1186.

[17] Matt Peters. Deep Learning for Customer Churn Prediction. https://moz.
com/devblog/deep-learning-for-customer-churn-prediction/. Blog.
2015.

[18] Zolidah Kasiran et al. “Customer Churn Prediction using Recurrent Neural
Network with Reinforcement Learning Algorithm in Mobile Phone Users”. In:
International Journal of Intelligent Information Processing 5.1 (2014), p. 1.

[19] Harald Steck et al. “On ranking in survival analysis: Bounds on the concor-
dance index”. In: Advances in neural information processing systems. 2008,
pp. 1209–1216.

[20] Jonas Kalderstam. “Neural Network Approaches To Survival Analysis”. PhD
thesis. Lund University, 2015.

[21] Yifei Chen et al. “A gradient boosting algorithm for survival analysis via di-
rect optimization of concordance index”. In: Computational and mathematical
methods in medicine 2013 (2013).

[22] Andreas Mayr, Benjamin Hofner, and Matthias Schmid. “Boosting the dis-
criminatory power of sparse survival models via optimization of the concor-
dance index and stability selection”. In: BMC bioinformatics 17.1 (2016),
p. 288.

[23] Rashmi Joshi and Colin Reeves. “Beyond the Cox model: artificial neural
networks for survival analysis part II”. In: Proceedings of the eighteenth inter-
national conference on systems engineering. 2006, pp. 179–184.

[24] David Faraggi and Richard Simon. “A neural network model for survival data”.
In: Statistics in medicine 14.1 (1995), pp. 73–82.

86

http://dx.doi.org/10.1007/11527503_36
http://dx.doi.org/10.1007/11527503_36
http://dx.doi.org/10.1007/11527503_36
https://moz.com/devblog/deep-learning-for-customer-churn-prediction/
https://moz.com/devblog/deep-learning-for-customer-churn-prediction/

Bibliography

[25] David Faraggi, Michael LeBlanc, and John Crowley. “Understanding neural
networks using regression trees: an application to multiple myeloma survival
data”. In: Statistics in medicine 20.19 (2001), pp. 2965–2976.

[26] Vanya Van Belle et al. “Improved performance on high-dimensional survival
data by application of Survival-SVM”. In: Bioinformatics 27.1 (2011), pp. 87–
94.

[27] Matthias Schmid and Torsten Hothorn. “Flexible boosting of accelerated fail-
ure time models”. In: BMC bioinformatics 9.1 (2008), p. 269.

[28] Sanne JW Willems and M Fiocco. “Inverse Probability Censoring Weights for
Routine Outcome Monitoring Data”. In: (2014).

[29] Odd O Aalen, Håkon K Gjessing, et al. “Understanding the shape of the
hazard rate: A process point of view (with comments and a rejoinder by the
authors)”. In: Statistical Science 16.1 (2001), pp. 1–22.

[30] Mei-Ling Ting Lee and GA Whitmore. “Threshold regression for survival anal-
ysis: modeling event times by a stochastic process reaching a boundary”. In:
Statistical Science (2006), pp. 501–513.

[31] Xin He et al. “A model for time to fracture with a shock stream superimposed
on progressive degradation: the Study of Osteoporotic Fractures”. In: Statistics
in medicine 34.4 (2015), pp. 652–663.

[32] Mei-Ling Ting Lee and GA Whitmore. “Proportional hazards and threshold
regression: their theoretical and practical connections”. In: Lifetime data anal-
ysis 16.2 (2010), pp. 196–214.

[33] Abhinav Saxena et al. “Damage propagation modeling for aircraft engine run-
to-failure simulation”. In: Prognostics and Health Management, 2008. PHM
2008. International Conference on. IEEE. 2008, pp. 1–9.

[34] Emmanuel Ramasso and Abhinav Saxena. “Performance Benchmarking and
Analysis of Prognostic Methods for CMAPSS Datasets.” In: International
Journal of Prognostics and Health Management 5.2 (2014), pp. 1–15.

[35] Felix O Heimes. “Recurrent neural networks for remaining useful life estima-
tion”. In: Prognostics and Health Management, 2008. PHM 2008. Interna-
tional Conference on. IEEE. 2008, pp. 1–6.

[36] Borja Ibarz-Gabardos and Pedro J Zufiria. “A Kalman filter with censored
data”. In: Intelligent Signal Processing, 2005 IEEE International Workshop
on. 2005, pp. 74–79.

[37] Piero Baraldi, Francesca Mangili, and Enrico Zio. “A kalman filter-based en-
semble approach with application to turbine creep prognostics”. In: IEEE
Transactions on Reliability 61.4 (2012), pp. 966–977.

[38] Cory Miller et al. “Estimation of mobile vehicle range & position using the to-
bit Kalman filter”. In: 53rd IEEE Conference on Decision and Control. IEEE.
2014, pp. 5001–5007.

87

Bibliography

[39] Bethany Allik, Michael J Piovoso, and Ryan Zurakowski. “Recursive estima-
tion with quantized and censored measurements”. In: American Control Con-
ference (ACC), 2016. American Automatic Control Council (AACC). 2016,
pp. 5130–5135.

[40] Bethany Allik et al. “The Tobit Kalman Filter: An Estimator for Censored
Measurements”. In: IEEE Transactions on Control Systems Technology 24.1
(2016), pp. 365–371.

[41] Robert C Wilson, Matthew R Nassar, and Joshua I Gold. “Bayesian online
learning of the hazard rate in change-point problems”. In: Neural computation
22.9 (2010), pp. 2452–2476.

[42] Anestis Antoniadis, Gérard Grégoire, and Guy Nason. “Density and hazard
rate estimation for right-censored data by using wavelet methods”. In: Journal
of the Royal Statistical Society: Series B (Statistical Methodology) 61.1 (1999),
pp. 63–84.

[43] Mei-Cheng Wang, Jing Qin, and Chin-Tsang Chiang. “Analyzing recurrent
event data with informative censoring”. In: Journal of the American Statistical
Association 96.455 (2001), pp. 1057–1065.

[44] Ratan Dasgupta. “Characterization Theorems for Weibull Distribution with
Applications”. In: Journal of Environmentl Statistics 6.4 (Sept. 23, 2014),
pp. 1–25. issn: 1945-1296. url: http://jes.stat.ucla.edu/v06/i04.

[45] Fritz Scholz. “Inference for the Weibull distribution”. In: (2008).
[46] Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. “Limiting forms of

the frequency distribution of the largest or smallest member of a sample”. In:
Mathematical Proceedings of the Cambridge Philosophical Society. Vol. 24. 02.
Cambridge Univ Press. 1928, pp. 180–190.

[47] Dionissios T Hristopulos, Manolis P Petrakis, and Giorgio Kaniadakis. “Weakest-
Link Scaling and Extreme Events in Finite-Sized Systems”. In: Entropy 17.3
(2015), pp. 1103–1122.

[48] Toshio Nakagawa and Shunji Osaki. “The discrete Weibull distribution”. In:
IEEE Transactions on Reliability 24.5 (1975), pp. 300–301.

[49] Junyoung Chung et al. “A recurrent latent variable model for sequential data”.
In: Advances in neural information processing systems. 2015, pp. 2962–2970.

[50] Piotr Bojanowski, Armand Joulin, and Tomas Mikolov. “Alternative struc-
tures for character-level RNNs”. In: arXiv preprint arXiv:1511.06303 (2015).

[51] FW Scholz and Boeing Phantom Works. “Maximum likelihood estimation for
type I censored Weibull data including covariates”. In: 1996.

[52] D Mikis Stasinopoulos, Robert A Rigby, et al. “Generalized additive models for
location scale and shape (GAMLSS) in R”. In: Journal of Statistical Software
23.7 (2007), pp. 1–46.

88

http://jes.stat.ucla.edu/v06/i04

	List of Definitions
	List of Figures
	Introduction
	Method
	Scope
	Thesis outline

	Preliminaries
	Probability theory for waiting times
	Waiting times for recurrent events
	Discretized case

	Generating recurrent events using hazards
	Example: Generating random events from a random process

	Censoring
	Log-Likelihood for right censored observations

	Previous work: Models for censored data
	Sliding box model : Binary prediction workaround
	Making it a `learning to rank'-problem
	Survival-approaches
	Threshold regression
	Tobit Kalman Filter

	Other

	The Weibull distribution
	Properties
	Log-Likelihood

	Recurrent Neural Networks
	Simple RNN example

	Proposed model
	The optimization problem
	Objective functions
	The functional optimization problem
	Weibull functional optimization problem
	Recurrent Neural Network Parametrization

	Properties of the Weibull-loss
	Gradients
	Discrete case

	Extensions
	Multivariate
	Other distributions
	Opportunities to regularize

	Usage & Applications
	Example : A model for churn-prediction
	A note on using sequences of varying length

	Experiments
	Basic gradient-based estimation with the Weibull distribution
	Setup : Generate Weibull data
	Results : Smooth learning with proper initialization
	Notes on initialization

	C-MAPSS : high-dimensional uncensored data
	Setup : Predict failure time of aircraft engines
	Result : Promising performance

	Naive strategies with censored data
	Setup : Predict evenly spaced events
	Result : Censored & regularized strategy wins

	Comparison to the sliding-box-model
	Setup : Generate random sequences of random length
	Training
	Evaluation

	Results : Sliding box wins a rigged game

	Discussion
	Lessons from training and implementation
	Future work
	Conclusion

	Bibliography

