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Abstract—Android kernel fuzzing is a research area of interest
specifically for detecting kernel vulnerabilities which may allow
attackers to obtain the root privilege. The number of Android
mobile phones is increasing rapidly with the explosive growth of
Android kernel drivers. Interface aware fuzzing is an effective
technique to test the security of kernel driver. Existing researches
rely on static analysis with kernel source code. However, in
fact, there exist millions of Android mobile phones without
public accessible source code. In this paper, we propose a hybrid
interface recovery method for fuzzing kernels which can recover
kernel driver interface no matter the source code is available
or not. In white box condition, we employ a dynamic interface
recover method that can automatically and completely identify
the interface knowledge. In black box condition, we use reverse
engineering to extract the key interface information and use
similarity computation to infer argument types. We evaluate
our hybrid algorithm on on 12 Android smartphones from 9
vendors. Empirical experimental results show that our method
can effectively recover interface argument lists and find Android
kernel bugs. In total, 31 vulnerabilities are reported in white
and black box conditions. The vulnerabilities were responsibly
disclosed to affected vendors and 9 of the reported vulnerabilities
have been already assigned CVEs.

Index Terms—IoT security, kernel fuzzing, interface recovery,
Android security

I. INTRODUCTION

Recently, “smart” products such as smart phones, watches

and TVs, perform a significant role in people’s lives. Android

powered products have been in a dominant position among

all smart phones. According to an IDC investigation, in 2019,

smartphone companies shipped a total of 1.382 billion phones

and Android phones capture roughly 86.6% of the worldwide

smartphone volume [1]. Android equipment provides rich

functionality to satisfy the needs of consumers. Users can

communicate with their friends using text, audio and video.

They can also query their friends’ locations, navigate to

destination, record their individual health data and even pay

bills using Android mobile phones. Android mobile phones

influence all aspects of people’s lives. Therefore, the security

features of Android mobile phones are of great importance.

If attackers invade an Android mobile phone, they are not

only able to steal user’s private information but they also

endanger the user’s identity and property safety. On a social

level, Android operating system vulnerabilities can threaten

the safety of public facilities and commercial trade.

Android security analysis has become a key area of interest

in both industry and academia. Android security can be

considered on two levels: userspace application and kernel.

Kernel vulnerabilities threaten operation systems and user

applications. The kernel of the Android operating system is

relatively vulnerable to attack, despite available protections

[2].

Fuzzing is a well-known technique that is used for security

testing by generating massive, specially designed inputs to

the target programs. However, with the Android operating

system becoming more and more complex, kernel interface

arguments are diverse. Without prior knowledge of argument

structures, it is difficult for fuzzing tools to find kernel

vulnerabilities. Some researches [3], [4] have been done in

order to reduce the random space and allow fuzzing tools

to make meaningful choices when mutating the data. Corina

et al. [5] proposed Difuze, a kernel interface-aware fuzzing

tool used for automatically generating valid inputs and trigger

the execution of the kernel drivers. Difuze implements an

automatic kernel interface recovery tool and identifies kernel

bugs in real phones. However, these approaches rely on the

static analysis of the Android kernel source code. Android

products must be open-sourced according to the GNU General

Public License [6]. However, in fact, researchers cannot always

find the custom kernel code for some Android mobile phones.

For example, when a) some manufacturers do not provide all

the device source codes for some reason, like OPPO, one of

the top five Android smartphone manufacturers in sales [1];

b) the Android kernel has many versions, it is not easy to

find the corresponding version, especially for small-volume

manufacturers; c) there may be a time delay between the

release date of the product and the date of the publication

of the source codes; and d) the language barrier makes source

code retrieval difficult. It is necessary to develop an Android

kernel interface reconstruction algorithm in the black box

condition. Fuzzing an Android kernel without source code

(black box) can be beneficial, as follows:

1. Improvement of fuzzing generalization: Without the

kernel source code, the fuzzing relies on fewer input which

enables fuzzing to work in very restricted conditions.

2. A broadening of the scope of safety testing: Millions of

users are using Android products that are not open source or

for which it is difficult to find the source code. Proposing a

black box fuzzing tool can help to improve the scope of the

fuzzing test.

3. Ease of operation for safety testers: Analyzing the kernel

requires testers with professional background knowledge. A
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black box condition fuzzing tool makes it easy for beginners

to test the Android mobile phones.

In this paper, we introduce a hybrid kernel interface-aware

fuzzing framework for Android drivers that can effectively

fuzz Android mobile phones with source codes (white box

conditions) and without source code (black box conditions).

We open sourced our work on Github1.

We have designed several experiments to evaluate the pro-

posed fuzzing method. We first analyze the kernel interface

recovery results in both white and black box conditions. In

the white box conditions, compared with other state-of-the-art

algorithms, our method can recover the interface information

more automatically and faster.

In summary, our work makes the following contributions to

the field:

Fast and automatic interface recovery in white box
conditions. Interface recovery is the key component of kernel

interface-aware fuzzing. We propose a dwarf-based interface

recovery method that can quickly and automatically rebuild the

interface parameters in white box conditions. The proposed

interface recovery technique is more automated and obtain

faster results [5].

The interface structure inference in black box condi-
tions. Without the Android kernel source code, we propose

a binary reverse engineering method to extract the interface

structure information and employ a similarity calculation

method to obtain interface inference. The proposed method

can effectively generate accurate testing samples for a deep

fuzzing test.

Fuzzing Android kernel drivers in both white and black
box conditions. We introduce a hybrid method to facilitate the

interface-aware fuzzing test of Android mobile phones in both

white and black box conditions. We found 13 vulnerabilities

in the mobile phones with source codes and 15 in the mobile

phones without source codes in a real Android mobile phone

security test. With the manufactures permission, we publish 9

of the bugs on the CVE site 2 3.

II. BACKGROUND

In this section, we will first introduce the common Android

fuzzing methods and explain the unique techniques employed

by our approach. Then, we will present the existing kernel

and driver fuzzing techniques that are the most closely related

to our work and compare our method with these previous

techniques.

A. POSIX Driver

The POSIX device standard uses ioctl as an interface for

data exchange between the userspace and the kernel driver.

Each device is registered by the corresponding driver and

provides different functions, such as open(), write(), seek(),

ioctl(), and so on. The ioctl interface implements the functions

of configuration changes, parameter acquisition, and device

1https://github.com/datadancer/HIAFuzz
2http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-

11019,11020,...,11025,18318
3http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-8413

state settings. For example, the operation of the microphone

modification sampling frequency cannot be done by using

regular read and write operations. In the user space program,

the ioctl system call is invoked by using the file descriptor,

the command identifier, and the required data structure as

the parameters. In the kernel, the corresponding driver ioctl

handler function is invoked according to the file descriptor.

The ioctl handler function executes corresponding operations

according to the command identifier and processes data from

the incoming user space. In the Linux system, the directory

path ′/dev′ stores the device files, and each device file

corresponds to the ioctl processing function. The complexity

and diversity make the ioctl system call more vulnerable and

challenge valid sample generating as well. In this paper, we

attempt to recover the values and types of ioctl arguments in

order to guide the deep fuzzing test.

B. Kernel Fuzzing

The kernels of modern operating systems are relatively

vulnerable to attacks, despite the available protection. The

Android kernel fuzzing test in particular has attracted a great

deal of research attention due to the urgent need for kernel

security. It is practical for fuzzing interface or system calls

to test the operating system kernel. Most drivers use ioctl

functions, forming a POSIX standard, to communicate with

the user space. Ioctl fuzzing requires specific command values

and data formats generated by users. It is necessary to identify

valid command values and their associated data structures

in ioctl fuzzing. Previous researches have been proposed for

Windows kernels: Iofuzz [7], ioattack [8], ioctlbf [9] and

ioctlfuzzer [10]. Some works [11], [12] introduce fuzzing

method for Mac OS kernels. For Linux kernels, the well-

known linux syscall fuzzing tools are Trinity [13] and syzkaller

[14]. These are reported to perform badly when fuzzing the

ioctl handlers of device drivers. There are some previous

researches that focus on specific drivers or solely syscall.

Some approaches [15], [16] concentrate on wireless drivers.

Several researches[17], [18], [19] have been done aiming at

USB drivers. Perf-fuzzer [20] introduces a targeted fuzzing of

the perf event open() system call. Stanislas, et al [21] first

attempted to extract valid ioctl commands, but the system was

unable to scale to real-world kernel modules. Difuze [5] is the

most recent state-of-the-art system proposed by Corina et al..

Difuze is the first completely automated system that can be

generalized to fuzz all Linux drivers on a device depending

on the kernel source code. Furthermore, Difuze can effectively

find vulnerabilities in real-world products.

However, Difuze does have the following problems when

used to fuzzing Android kernels:

Frequent Manual interaction: Many steps are needed to

handle manually, reducing the efficiency of the fuzzer. For

example, in the step of recovering device names, Difuze cannot

restore the dynamically generated device file names, and must

be handled manually; Difuze needs to manually specify the

driver directory that needs to be analyzed in the kernel code.

This is due to the large number of differences in the driver

directory of different Android mobile phones. Researchers will

336



XML Spec. 
with Correct Structure

Kernel 
Source 
Code

Interface Recovery
with Kernel Source Code

Interface Recovery
without Kernel Source Code

Source 
Available?

No

Yes Structure Generation

Crash Logs

Arguments 
Database

XML Spec. 
with Inferred Structure

Feature Extraction

Feature 
Extraction

Argument Type 
Matching

On-device running

Fig. 1. The Overview of the Hybrid Interface-aware Fuzzing Method

spend much effort to interact with the fuzzer to keep the fuzzer

running. Incomplete support of kernel compilation: In the

step of kernel compilation, Difuze ignores the incomplete

supporting for the kernel of LLVM, uses LLVM to recompile

the kernel, and causes various compilation errors. To get build

instructions for LLVM, system instrument building is needed,

and only one thread is permitted to obtain kernel compilation

instructions, which is time consuming. The use of LLVM

brings much Extra effort to handle the compilation options

and errors which are not supported by LLVM. No support
for black box devices: Difuze rely on the kernel source to

obtain the driver interface information, and can not recover

the interfaces when the kernel source code is not available.

In this paper, we provide a faster and more automatic

interface recovery algorithm which can work both with and

without source codes.

III. OVERVIEW

In this section, we will provide an overview of the interface-

aware fuzzing approach and its application to kernel ioctl

fuzzing. The framework of the interface-aware fuzzing ap-

proach is shown in Fig 1. The approach has three main

components: Interface recovery with the kernel source code,

interface inference without the kernel source code, and inter-

face guided fuzzing. Given a device for fuzzing, we recover

the driver interfaces by analyzing its kernel source code (white

box conditions) or disassembling its kernel image (black box

conditions). In terms of the interface recovery component, to

make the recovery complete and more efficient than existing

tools, we make use of the GNU binutils tool chain to perform

the recovery task. GNU binutils provide original, complete

support for kernel compilation, analysis, and disassembly,

making the recovery efficient.

In terms of testing a device, we firstly search the original

vendor for its kernel source code. If the source code is

available, the white box interface recovery is performed, re-

sulting in a list of device file names, commands, and structure

definitions. For a device without a kernel source code, we

extract the boot image and kernel symbol table, disassembling

the relevant ioctl functions. This results in many commands

and argument sizes. To achieve the argument type inference,

we build an argument type database called Argument Base. We

employ a similarity computation algorithm to infer argument

types in black box conditions.

After the interface recovery is complete, the testing samples

are generated using the recovered structure. In the interface

guided fuzzing component, we employ MongoFuzz [5] to find

Android kernel vulnerabilities. Because the fuzzing component

is not a crucial consideration of this paper, we do not use the

latest powerful fuzzing tools such as syzkaller [14] or AFL

[22]. Once the target device crashes, we log the input sample

and try to use it to reproduce the crash and to locate the bug. In

the rest of the paper, we will focus on discussing the interface

recovery algorithm in both white and black box conditions.

IV. INTERFACE RECOVERY WITH THE KERNEL SOURCE

CODE

Fig 2. demonstrates the process of the interface recovery

algorithm in white box conditions. The algorithm has two

steps. First, it analyzes the running information of the Android

phones, identifying the device files and the corresponding

ioctl handler. This step uses the specially designed kernel

module to obtain all the dynamically generated device file

names and the corresponding addresses and names of the

ioctl handlers. A specially designed kernel module is compiled

with the kernel source of the target device, and this is loaded

during runtime, used to query the ioctl handler of the specified

device file (detailed information on this is provided in section

4.1). Second, the command value parameters and the structure

parameters of the ioctl handlers are obtained by analyzing the

kernel driver code. In this phase, the kernel code is compiled

with the -g3 option in order to generate kernel vmlinux with

macro dwarf information. Using gdb, objdump, pyelftools

[23] and other established tools to analyze the vmlinux, the

command values and structure type definitions of the ioctl

handlers are obtained. Thus, the exact types of the driver

interfaces are restored, and the description files are generated

in XML format. Most Android mobile phones comply with

the GNU General Public License, and the kernel driver codes

have been released. The Android mobile phones of Samsung,

SONY, HUAWEI, HTC, among others, can be analyzed using

this method. The algorithm obtains the interface of the driver

module and can generate accurate testing samples to carry out

the deep fuzzing test on the kernel module code.

A. Device Files and Ioctl Handler Module
In order to fuzz the driver ioctl handler, the associated

device files need to be identified. Existing methods statically
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analyze the kernel source code to restore the device name

strings, while the dynamically generated device file names

cannot be determined. Even worse, the static analysis used in

such approaches relies on a large number of manual analyses,

resulting in low efficiency. In order to handle this, a dynamic

method is proposed in order to obtain the device names and

the ioctl handler names of the corresponding drivers.

The ioctl system call is implemented in the fs/ioctl.c in the

Linux kernel. The ioctl system call first acquires a kernel struc-

ture struct file according to the file descriptor argument. By

accessing the fop field in struct file, the corresponding struct

file operations is obtained, and then the unlocked ioctl
function pointer is obtained, the location of the memory

address. Mutating the processing of ioctl, a kernel module

is developed. As shown in Fig 2, using the file descriptor

argument, the corresponding unlocked ioctl is obtained in the

kernel space and returned to the user space. In the userspace,

by reading and comparing the addresses in the kernel symbol

table (′/proc/kallsyms′), the function names are obtained.

All device file names and corresponding driver ioctl handler

names are obtained without analyzing the kernel source code,

which improves the degree of automation of the proposed

method.

B. Command Value Determination

After having obtained the driver ioctl handler function,

it is necessary to obtain the command values and structure

parameters. Given that there can be various macro definitions

used in an ioctl handler, we selected macros corresonding

to a command value by parsing the switch case statement.

The implementation framwork of the ioctl handler functions

follows the switch statement programming pattern. The values

of command cases are defined by macros. To obtain the values

of the command macros, it is necessary to compile the kernel

by using -g3 and by replacing the corresponding position -g2

in the Makefile with -g3. Thus, a vmlinux image containing the

macro definition debug information is generated. By parsing

the .debug macro section of the DWARF debugging infor-

mation, the values of the macro definitions can be obtained.

Gdb is used to load the vmlinux image, list the ioctl handler

function code context, and print the macro command values.

Occasionally, for ioctl handler functions without a switch case

statement, we just select all the macros used for commands to

prevent missing valid values.

C. Argument Type Determination

Depending on the command value, arguments may have

different types. The relation between commands and argument

types is determine by the control flow. When dealing with

commands, the driver uses copy from user to pass the

data from the user space and copy to user to transmit data

to the user space. The switch case statement in the source

maps the argument type to corresponding command values.

The argument types corresponding to the commands will be

determined by parsing the source code and the image debug

information. By analyzing the location and parameters of the

copy from user function in the driver code, the variable

name of the incoming data is obtained. The types of the

variables are obtained from the DWARF debug information

of vmlinux according to the variable names. Dependent types

are retrieved as well. While anonymous structures and unions

cannot be parsed by the ptype command of gdb, it is necessary

to parse the .debug info section of the vmlinux. By determin-

ing the compilation unit corresponding to the ioctl handler

function, we can locate the data information entry(DIE) and

find the ioctl handler function information. Fig.3 shows a

driver program with a simplified graphical representation of its

DWARF description. The top most DIE represents the compi-

lation unit. It has some “children”, including the DIE describ-

ing ashmem ioctl and the DIE describing the structure type

ashmem area which is the value needed by ashmem ioctl.
The subprogram DIE is a child of the compilation unit DIE,

while the structure type DIE is referenced by the type attribute

in the subprogram DIE.
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Given an ioctl handler function, variable names, and a

vmlinux image, the following steps must be taken in order

to identify the DIE of the specified variable type:

1. Use pyelftools to load vmlinux in order to access the

DWARF debug information and find the compilation unit (CU)

and DIE.

2. Find the DIE that belongs to type DW AT subprogram
and the attribute DW AT name value that is equal to

the ioctl handler function name. Let the current CU be

device CU and the current DIE be ioctl DIE, that is, the

device CU corresponds to the source code file of the driver

and ioctl DIE corresponds to the code area of the ioctl

handler function.

3. Parse the ioctl DIE and search the child DIE

that belongs to type DW AT variable and contains a

DW AT name value that is equal to the given variable

name. Name this DIE as variable DIE.

4. Read the DW AT type attribute of variable DIE,

to get the corresponding type which may be identified

as DW TAG structure type, DW TAG base type and

DW TAG enumeration type, etc.. Finally, the type of the

specified variable DIE is the type that we have tried to find.

D. Structure Definition Recovery

The structure DIE that needs to be recovered is determined

along with the ioctl handler function names and the variable

names. When the structure is a base type, like long, char, short,

and float, the structure recovery phrase is not necessary. When

the structure type is a custom structure of the program, it is

usually possible to use the ptype command of gdb to establish

a definition of the structure. However, ptype can only print

the type of the global structure definition, and the anonymous

union or struct defined in the function body cannot be obtained

using ptype. The DIE of the anonymous union or structure in

DWARF is needed to recover the structure or union. The DIE

of the structure has various attributes, such as name, definition

file, line number, and child member information DIEs.

Given the DIE of a structure, the method of recovery of the

DIE structure is as follows:

1. Identify the structure name according to the

DW AT name attribute and ascertain the size of the

structure according to the DW AT byte size attribute.

2. Traverse the children nodes to obtain the member variable

information and get the name, size and type of child DIEs.

3. If the child node is not a base type, analyze the type of

child node further.

4. Repeat the above steps until all the child nodes are

recovered.

Boot.img Extraction Vmlinux Extraction

Disassemble ioctl Functions

Get Command Values

Kallsyms Extraction

Device Files Extraction

XML Spec.

Valid? Yes

Discard

Fig. 4. Interface Reconstruction without the Kernel Source Code

V. INTERFACE RECONSTRUCTION WITHOUT THE KERNEL

SOURCE CODE

Without the kernel source code, the interface cannot be

detected by analyzing the kernel driver source code, and

the debugging information cannot be obtained. Therefore, the

kernel module cannot be loaded to the kernel, and the structure

cannot be recovered. A black-box interface recovery algorithm

is proposed. As shown in Fig 4, without the source code, only

the kernel binary image and kernel symbol table are available.

We use a reverse engineering technique to reconstruct the

interface. Then, we can obtain the command values and part of

the structure size information, as discussed in section 5.2. The

command values are candidates of input samples. Furthermore,

all the candidate commands are attempted with each device file

to determine if the command is valid for the device file.

A. Kernel Image and kallsyms Extraction

When the kernel source is compiled, the ELF format vm-

linux executable file is generated. The vmlinux is handled

by objcopy to generate the binary object file, and then gzip

or other compression algorithms are applied to compress the

binary image and generate a piggy.gzip file. To make self-

decompression occur at booting time, piggy.gzip is converted

into an object file linked with an initializer head.o and a self-

decompressing program misc.o, and this process generates a

compressed vmlinux. The final binarization is undertaken in

order to obtain a bootloader boot image named zImage.

By analyzing the generation process of zImage, we find

that the kernel executable code can be obtained by extracting

and decompressing the kernel image, located in the device.

Generally, the boot.img is extracted from the correspond-

ing directory of the device directory ′/dev/block/′ and the

boot.img is decompressed with the binary analysis and kernel

building tools such as binwalk or unpackbooting. The bzImage

is obtained, and the unzip tool is further used to obtain the

vmlinux containing the code.

The symbol information of the vmlinux is in the
′/proc/kallsyms′ kernel symbol table. If the addresses

in ′/proc/kallsyms′ are all zeros, use this command
′echo 0 > /proc/sys/kernel/kptr restrict′ to unlock the

restriction.
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B. Commands Recovery

According to the address and function name of the kernel

symbol table, the extracted code segment is disassembled, and

the control flow diagram is analyzed using IDA. The ioctl han-

dler function uses switch case statement to perform different

operations on different commands, and the gcc compiles the

switch statement to a series of compare and jump assembly

instructions. The constant values in the comparison instruction

of the disassembly code are the handler commands.

As the command values are macros in the kernel source,

they are loaded into the register as constants in the binary

code of the compiled kernel image. In the disassembly code,

the loaded and compared immediate digits are recorded as a

candidate set of command values for the ioctl handler.

For example, the disassembled qseecom ioctl codes con-

tains codes in this pattern:

mov w0, #0x9711
movk w0, #0xc024, lsl #16
cmp w20, w0
b.eq 0x5815f8

The operand of mov and movk are constants that are loaded

in register w0, and w0 is compared with an argument w20.

The value of w0 is a command which is 0xc0249711. All the

commands for the relevant ioctl handlers can be found in this

pattern.

C. Argument Size Recovery

If the ioctl handler function calls copy from user, the

parameter analysis is performed to obtain the size of third

parameter. According to the control flow graph of the program,

the command value corresponding to the data structure is

obtained. Finally, we get a list of triplets in form (ioctl

command structure size).

For example, in qseecom ioctl, a copy from user is

used,

add x0,x29, #0x70
mov x1, x21
mov x2,#0x20
bl _arch_copy_from_user

The third argument of copy from user is the size to be

copied and passed in register x2. The value of x2 is the size

of the target structure which is 0x20 in this case.

D. Device Files and Commands Matching

The obtained triplets list is filtered to match the specified

device file. To determine whether each command is valid for

the device, perform the following steps:

1. Open the device file, use command and struct size in the

triplets list and generate test cases as the arguments of ioctl

system call.

2. If an error message such as Invalid command is returned,

the currently invalid command value is discarded. Otherwise,

the command value will be added to the valid command set

of the current devices.

3. The above steps are repeated to finally obtain all the

command values that are valid for the device file.

Argument
Database

Interface Recovery 
with Kernel Image

Feature 
Extration

Similarity 
Calculating

Inferred TypesKernel Sources

Fig. 5. The process of type inference

After these steps, the corresponding relationship between

(device file, ioctl handler, command, struct size) is obtained

and the redundant command values are discarded.

E. Type Inference

It is challenging to obtain the argument types of the ioctl

functions from binary image by reverse engineering. However,

the argument type is key information for generating valid

samples. It indicates the base type of struct and the reference

relation. In fact, the drivers with similar functions tend to

use similar argument types. For example, the uart ioctl of

Huawei P10 and Samsung Galaxy S both use serial struct as

the argument. Note that, the drivers used by the close-sourced

Android phones are related to the open-sourced drivers. To

infer argument types of ioctl handlers in black-box conditions,

we build a database of argument types from open-sourced

Android kernels, called Argument Base. The process of type

inference is shown at Fig.5.

The Argument Base is built by extracting argument infor-

mation of ioctl handlers from open-sourced Android kernels.

We extract 310 Android phone models from most widely

used vendors, such as Samsung, Huawei, Sony and HTC.

8730 ioctl handlers and their argument types are extracted

and stored in the Argument Base. The argument information is

defined by features listed in Table 1. In black-box conditions,

argument types can be inferred by retrieval the Argument

Base by calculating the feature similarities. We define f as

a similarity function. Given a black-box ioctl function feature

vector x = x1, x2, ..., xn and a target function feature vector

y = y1, y2, ..., yn which is in the Argument Base, we can

calculate the similarity between x and y:

Similarity = f(x, y) (1)

,similarity function f is defined in Table 1.

VI. INTERFACE GUIDED FUZZING

In this section, we introduce the interface structure genera-

tion and the Fuzz tool employed in our method. The interface

recovery component outputs a XML file with commands and

correct argument structures.

In white-box condition, we generate test samples according

to the type of each structure element. Type-specific values

are assigned to each part of a structure according to some

specific values like all zeros, all ones, some powers of two and
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TABLE I
FEATURES OF IOCTL HANDLERS AND CORRESPONDING SIMILARITY

FUNCTIONS

Feature Notation Feature Type Similarity
Function Name Sn String Cosine
Commands Sc Int Set Jaccard
Arg Type Name St String Cosine
Arg Size Na Int Ratio
Function Size Nf Int Ratio
Strings Ss String Cosine
Opcode Graph G Graph Opcode Sim
Device Name Sd String Cosine
Sub-function Ss String Cosine

corner values. Some pointers like void ∗, char ∗ are generated

randomly.

In black-box condition, the difference is that we can’t obtain

the argument type immediately. The black-box argument types

can be inferred by matching the most similar argument types

in Argument Base. The rest is same as the white condition

fuzzing method.

The test samples are input to the fuzz tool. One part of

fuzz tool is an executor on target device, receiving commands,

device filenames and instantiated structures from host part.

The executor open device files and trigger the ioctl with the

arguments. Some pointers may exist in structure, the pointer is

assigned to an address that contains meaning values to trigger

deep path in driver. Once the kernel crashes, the host part will

stop fuzzing and record the sample for reproducing the bug.

In this paper, we select MongoFuzz as our fuzz tool. Since

the fuzzing component is not the key of our contribution in

this paper, we do not use latest powerful fuzz tools.

VII. EVALUATION

In this section, we evaluate several experiments that we

undertook to determine the effectiveness of the proposed

method. The evaluation aims to answer the following three

questions:

Q1. Compared to other state-of-the-art algorithms, will our

method perform better in interface recovery?

Q2. Can the proposed method find real vulnerabilities in the

Android mobile phones with kernel source codes and those

without?

Q3. What are the advantages and disadvantages of the black

box and white box methods?

To answer these questions, we undertook three experiments.

All the components of our method run on the same platform,

a desktop machine: Ubuntu 16.04.2 LTS OS. The hardware

configuration is: Intel core i7 4Ghz CPU with 32G memory.

The target Android mobile phones include six open-sourced

Android products [24], [25], [26], [27], [28] from five different

vendors and five Android products from four different vendors

without source code. Note that, Xiaomi MIX 2 is an open

source device[29], however, we use black-box method to fuzz

MIX 2. The device information is shown at Table 2.

4Xiaomi MIX 2 is an open source deivce, however, in this experiment we
use black-box method to evaluate the Xiaomi MIX 2.

TABLE II
THE ANDROID DEVICES USED IN OUR EXPERIMENTS

Device Android Version White&Black-box
Huawei Mate 9 7.0 White
Samsung Note 3 5.0 White
Huawei Honor 8 7.0 White
Sony Xperia 7.0 White
Amazon Fire HD 3 Fire OS 4.5.5.3 White
Yotaphone 2 5.0 White

Xiaomi MIX 24 8.0 Black
Xiaomi 5c 7.1.2 Black
Oppo R11 7.1.1 Black
Oppo A37m 5.1 Black
360 N6 Pro 7.1.1 Black
Jianguo Pro2 7.1.1 Black

TABLE III
IOCTL RECOVERY RESULTS FOR DEVICES WITH KERNEL SOURCE CODES

Ioctl Device Valid
Handler Names Commands

Huawei Mate 9 56 962 308
Samsung Note 3 63 1165 241
Huawei Honor 8 58 977 249
Sony Xperia 49 804 512
Amazon Fire HD 3 24 211 277
Yota Yotaphone 2 51 1020 305

A. Interface Recovery Experiment

In this experiment, we evaluate the performance of our

interface approaches known as white box interface recovery

and black box interface reconstruction.

In white box conditions, our approach uses a dynamic

device name identification method. The device name identifi-

cation results are shown in Table 3. Every device corresponds

to a sole ioctl handler and every ioctl handler corresponds to

one or more device names. Different kernels from different

vendors have a large gap between them in terms of the

number of valid commands. It is important to note that our

interface recovery, in white box conditions, can significantly

decrease this cost. Our approach can automatically identify

100% of the device names and 98% of the valid commands.

Theoretically, the proposed algorithm can recover 100% of the

valid commands; however, in practice, a small proportion of

the valid commands cannot be printed by gdb. It could be

that some gcc compilation options affected the results in this

regard.

Compared with the latest state-of-the-art method, Difuze,

our algorithm achieves better performance in device name

identification at 100% (Difuze: 59.44%). The reason for this

improvement is that our method can capture the dynamically

generated device names, while Difuze relies on manual anal-

ysis of kernel driver codes.

We note that the kernel driver codes provided by the vendors

contain some invalid driver modules that do not exist in the

target device. Thus, static analysis is used to identify the

invalid ioctl handler and device names, which increases the

time involved. Our method can recover the interface faster. The

time cost comparison is shown at Table 4. Our running time

for interface recovery is 3 minutes and 51 seconds on average,

and the Difuze running time is 28 minutes and 18 seconds for

the same process. Our method can obviously decrease the time
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TABLE IV
TIME COST COMPARISON OF INTERFACE RECOVERY

Our method time cost Difuze time cost
Huawei Mate 9 3min 5s 42min 19s
Samsung Note 3 4min 36s 32min 3s
Huawei Honor 8 4min 29s 28min 59s
Sony Xperia 5min 16s 22min38s
Amazon Fire HD 3 1min 51s 15min 34s
Average time cost 3min 51s 28min 18s

TABLE V
INTERFACE RECONSTRUCTION RESULTS FOR DEVICES WITHOUT SOURCE

CODES

Device Names Candidate Commands
Xiaomi MIX 2 1052 1326
Xiaomi 5c 658 875
OPPO R11 953 1728
OPPO A37m 867 1212
360 N6 Pro 954 1350
Jianguo Pro2 973 1176

cost for interface recovery.

In practice, we use some additional steps for the Samsung

Note 3 and the Sony Xperia. This is because both of these

devices do not support kernel module loading in run time. We

compiled their kernel source codes to generate a kernel image,

which enabled us to load the kernel module in run time. We

repacked the boot image with the compiled kernel image and

flashed the boot image to the Android device.

In black box conditions, for there is no kernel source

code, we cannot recover all the interface knowledge. Our

black box reconstruction approach can totally recover all the

device names and the candidate commands, containing the

real, valid commands. The black box interface reconstruction

results are shown in Table 5. Similar to white box conditions,

different Android phones have different numbers of device

names. There are 264 possible command values, in theory.

Our method can reduce the 264 possible command values to

around 2,000 candidate values. However, this is still too many

to fuzz. We further match the candidate command values with

the device files by checking the return value of the ioctl. If it is

not a valid command, the error message “Invalid Command”

will be returned. Using this method, we can narrow the range

of candidate commands for each device file. The minimum

number of candidate commands is 10 and the maximum

candidate commands around 300.

B. White Box Interface Recovery Fuzzing

In this experiment, we test our interface recovery fuzzing

in white box. We apply the recovered white-box interface

structure (in sec 6.1) as the test sample prototype to the fuzzing

tool. We employ the MongoFuzz as fuzzing engine. Fuzzing

time is set to 12 hours. We test 6 Android mobile phones

with source code and recheck all the crashes and filtered out

duplicates for each device. The fuzzing engine of Difuze is

also configured as Mango, ie, the opensourced version of

Difuze. This configuration utilizes the power of interface-

aware fuzzing, without advanced optimizations techniques. We

root the device to make the executor on device able to fuzz

TABLE VI
WHITE BOX FUZZING BUGS

Our method Difuze
Huawei Mate 9 1 1
Samsung Note 3 0 0
Huawei Honor 8 0 0
Sony Xperia 3 2
Amazon Fire HD 3 7 6
Yotaphone 2 1 1
Total 12 10

all drivers. Results are shown at Table 6. For HUAWEI honor

8 is already tested in Difuze and repaired all the bugs, our

method and Difuze can not find bugs on it. 7 bugs are found

on kindle fire HD 3rd tablet, making the most one.

Both Difuze and our method found vulnerabilities in these

Android mobile phones. Our method found 12 bugs in total.

It is important to note that our method found two more

vulnerabilities than Difuze for the Sony Xperia and Kindle Fire

HD 3rd. We analyzed the vulnerabilities and found that they

exist in the driver modules, whose device names are generated

dynamically at run time. Difuze uses a static interface recovery

method that cannot capture these dynamically generated device

names. Therefore, Difuze cannot identify these vulnerabilities.

We present a case study of white-box fuzzing at Appendix A.

C. Black Box Interface Reconstruction Fuzzing

In this experiment, we analyzed the performance of our

black box interface reconstruction fuzzing method. We applied

the recovered black box interface knowledge (in section 6.1) as

the test sample prototype for the fuzzing tool. The engine used

was also MongoFuzz. MongoFuzz needs structure as an input

to generate test samples which cannot be obtained in black

box conditions. We employed a random generation strategy to

construct the test samples.

We chose 11 different Android mobile phones from nine

vendors. The devices came from the US (Amazon), Russia

(Yota Devices), China (Huawei, Xiaomi, Oppo, 360, and

Smartisan), Japan (SONY), and Korea (Samsung). Most of

them are the “flagship” products of these vendors. We rooted

these 11 Android mobile phones, allowing us to fuzz the kernel

drivers. Each Android device was run on MongoFuzz for 12

hours. If one driver crashed multiple times, we commented

on the driver and went on to fuzz other drivers. If a device

crashed, we recorded the input sample and verified the bug.

We tested the Android mobile phones without source codes.

To compare the effect of the black box method and the white

box method, we applied the black box fuzzing method to

Android mobile phones with source codes. The results are

shown in Table 7.

We found 12 vulnerabilities among 6 Android mobile

phones using the white box method and 27 bugs among 11

Android mobile phones using the black box method. Android

mobile phones without source codes, in total, had 15 vulner-

abilities. The total unique number of vulnerabilities is 31. We

did not find any vulnerabilities in the Samsung Note 3 and the

Huawei Honor 8. The Kindle Fire HD 3rd had 8 vulnerabilities

in total. It is important to note that the black box method can
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TABLE VII
BLACK BOX FUZZING BUGS

Device White Box Black Box Total
Fuzzing Fuzzing Unique

Huawei Mate 9 1 1 1
Samsung Note 3 0 0 0
Huawei Honor 8 0 0 0
Sony Xperia 3 2 3
Amazon Fire HD 3 7 5 8
Yotaphone2 1 1 1
Xiaomi MIX 2 - 3 3
Xiaomi 5c - 3 3
Oppo R11 - 2 2
Oppo A37m - 3 3
360 N6 Pro - 4 4
Jianguo Pro2 - 3 3
Total 12 27 31

identify 75% of the vulnerabilities that the white box method

found. Furthermore, one vulnerability found by the black box

method was ignored by the white box method. This could

be because the white box interface recovery method and the

Difuze interface recovery algorithm both tried to recover the

structure needed by the ioctl interface. However, the structure

contains several pointers to other structures which are very

complex and contain yet more pointers to more structures.

Since the number of dependent structures is too large and the

relationship between structures is too complex, our method and

Difuze can only recover incomplete structures. This leads to

runtime errors using MongoFuzz when generating the testing

samples. However, the black box method simply generates a

random input and ignores the complex structures and relation-

ship. Thus, MongoFuzz can fuzz the corresponding device and

find the vulnerability.

We have disclosed the vulnerabilities to the vendors. While

doing so, we found 10 of them were patched in latest updates.

21 of them are 0-days. In the next subsections, we will present

the case studies of 3 bugs found, showing the effectiveness of

our black box method. A case study of black-box fuzzing is

shown at Appendix B.

D. Results of Code-Coverage

Coverage-guided fuzzing is an effective way to improve

code coverage. Can coverage-guidance be benefit from in-

terface information? To answer this question, we provide

interface information to syzkaller for fuzzing ioctls of

an x86-64 based Android kernel. The target command is

FBIOPUTCMAP and FBIOPAN DISPLAY with and

without interface information for 3 hours (see Table 8). The

results are shown in table 9, the basic blocks covered were

increased by 14.45% and 35.08% when interface information

available.

For most Android mobile phones do not support

CONFIG KCOV option for their kernels and re-flashing

the kernel requires much engineering effort, we leave this

component to the future work.

E. Evaluation Discussion

In summary, we answer the questions enumerated in section

7 affirmatively as follows:

Q1: Compared to other state-of-the-art algorithms, will our

method perform better in interface recovery?

A1: Our method can recover the ioctl interface in phones

with kernel source codes and those without, while the latest

state-of-the-art algorithm Difuze can only reconstruct the

interface in white box conditions. Furthermore, in white box

conditions, our algorithm performs much better than Difuze in

device name identification. Our interface recovery algorithm

can dynamically capture the dynamically generated device

names well, while Difuze relies on manual kernel driver code

analysis. The difference between the two methods is also

reflected in the time involved. Our method, in white box

conditions, can reduce the running time from 28 minutes 18

seconds to 3 minutes 51 seconds on average. This is because

the static analysis used by Difuze will identify the invalid ioctl

handler and device names, which is time consuming.

Q2: Can the proposed method find real vulnerabilities in

mobile phones with kernel source codes and those without?

A2: The experimental results show that the proposed method

can find real vulnerabilities in both white and black box

conditions. In the white box fuzzing experiment, we tested

six Android mobile phones, “flagship” products from five

well-known vendors. We found 12 vulnerabilities in total in

this experiment. In the black box fuzzing experiment, we

analyzed 11 Android products, six Android mobile phones

with kernel source codes and five Android mobile phones

without kernel source codes. We found 24 bugs that made

the mobile phone crash in the black box fuzzing experiment.

The total number of vulnerabilities found is 28. We have

communicated with the security departments of the above

vendors. Most vulnerabilities were confirmed by the vendors.

Q3: What are the advantages and disadvantages of the black

box and white box methods?

A3: In the black box fuzzing experiment, we applied our

black box algorithm to Android mobile phones with kernel

source codes. Black box fuzzing can find 75% of the vulnera-

bilities that white box fuzzing can find. This is because black

box interface recovery cannot exactly recover the interface

knowledge exactly. The black box interface recovery method

provides candidate commands which contain the valid com-

mand. This affects the precision of the fuzzing test samples.

However, we were surprised to find that black box fuzzing

can find one bug that the white box fuzzing method could not

find. This illustrates that the black box method can find some

vulnerabilities that the white box fuzzing method or Difuze

will ignore.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a hybrid Android kernel driver

interface-aware fuzzing method. The method has two compo-

nents. One is the white box interface recovery model which

can automatically and completely recover interface knowledge.

The other is the black box interface reconstruction model

which uses reverse engineering to reconstruct the key infor-

mation of the kernel driver interfaces without kernel source

codes. After having obtained the structure of the kernel driver

interface, we used MongoFuzz to test the Android mobile

343



TABLE VIII
PERFORMANCE OF CODE COVERAGE WITH AND WITHOUT INTERFACE INFORMATION

Ioctl cmd Interface Type Basic Blocks Covered Basic Blocks Covered Performance Increase
Without Interface With Interface

FBIOPUTCMAP Simple 2318 2653 14.45%
FBIOPAN DISPLAY Complex 2491 3365 35.08%

phones. Compared with state-of-the-art methods, our algo-

rithm can recover the interface better in white box conditions.

Furthermore, in the same conditions, our algorithm can find

more vulnerabilities. Our hybrid interface-aware fuzzing found

28 vulnerabilities in total from 11 Android mobile phones.

The experimental results illustrate that our method works

effectively in Android kernel fuzzing.

In the future, we will improve our black box interface

reconstruction ability that can narrow the candidate commands

and propose a new method to recover the structure of kernel

interface without kernel source codes. Furthermore, we will

try to extend our method to other operating systems.
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APPENDIX A: CASE STUDY OF WHITE-BOX FUZZING

We select 7 bugs found by our white-box fuzzing method

and publish them in CVE site. The bugs are listed in table 9.

A detailed analysis of the bug CVE-2018-11020 found in

OMX offloading remote processor driver in Kindle Fire HD

3rd tablet was provided in this section. Difuze failed to recover

the driver name for the name is assigned in runtime and also

failed to recover the complete struct definitions of related sub

structs for the sub structs each has lots of sub sub structs.

Difuze tried to recover arguments for the driver relating to

hundreds of structs, most of which are not necessary. Our

method dynamically recovered the driver name and used the

main structs to generate fuzzing arguments and the bug was

triggered.

static
long rpmsg_omx_ioctl(struct file *filp,
unsigned int cmd, unsigned long arg)
{
...
case OMX_IOCIONUNREGISTER:
{
struct ion_fd_data data;
struct rpmsg_buffer *buffer;

if (copy_from_user(&data,
(char __user *) arg, sizeof(data))) {
dev_err(omxserv->dev,

"\%s: \%d: copy_from_user fail:
\%d\n", __func__,
_IOC_NR(cmd), ret);

return -EFAULT;
}
buffer=(struct rpmsg_buffer *)data.handle;
if (_rpmsg_buffer_validate(omx, buffer))
_rpmsg_buffer_free(omx, buffer);

else
ion_free(omx->ion_client,data.handle);

if (copy_to_user((char __user *) arg,
&data, sizeof(data)))
{
dev_err(omxserv->dev,

"\%s: \%d: copy_to_user fail:
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TABLE IX
DETAILS OF BUGS FOUND BY WHITE-BOX FUZZING METHOD

CVE ID Device Name Command Driver Module Bug Type
CVE-2018-11019 /dev/gcioctl 3221773726 misc/gcx/gcioctl/gcif.c NULL pointer dereference
CVE-2018-11020 /dev/rpmsg-omx1 3221772291 rpmsg/rpmsg omx.c Bad paging request
CVE-2018-11021 /dev/dsscomp 1118064517 video/omap2/dsscomp/device.c NULL pointer dereference
CVE-2018-11022 /dev/gcioctl 3224132973 misc/gcx/gcioctl/gcif.c Bad paging request
CVE-2018-11023 /dev/gcioctl 3222560159 misc/gcx/gcioctl/gcif.c Deadlock
CVE-2018-11024 /dev/gcioctl 1077435789 misc/gcx/gcioctl/gcif.c Bad paging request
CVE-2018-11025 /dev/twl6030-gpadc 24832 mfd/twl6030-gpadc.c Bad paging request
CVE-2019-8413 /dev/elliptic0 1074316661 elliptic/elliptic.c NULL pointer dereference

\%d\n", __func__,
_IOC_NR(cmd), ret);

return -EFAULT;
}
break;

}
...
void ion_free(struct ion_client *client,
struct ion_handle *handle)
{
bool valid_handle;
BUG_ON(client != handle->client);
...

This bug was found by our system on Amazons kindle fire

pad. The ioctl function for the driver is rpmsg omx ioctl,

following the common design of ioctl. The application in user

space specifies command value and argument content.

Given the command OMX IOCIONUNREGISTER,

the code enters the corresponding case statement of

rpmsg omx ioctl. Following the control flow of this ioctl

function, the ion free statement is reached, where the

data.handle variable is used as the second argument of

function ion free. The data is used as a pointer type without

validating the value in function ion free. If a userspace

application provides an invalid value here, the kernel will be

failed to handle kernel paging request at the invalid virtual

address.

APPENDIX B: CASE STUDY OF BLACK-BOX FUZZING

With the manufacturers’ permission, we publish 1 of the

bugs on the CVE site5. The driver of device file /dev/block-

/mmcblk0rpmb in the kernel of Qiku 360 Phone N6 Pro 1801-

A01 device allows attackers to cause a denial of service attack

(NULL pointer dereference and mobile phone crash) via a

crafted 0xc0d8b300 ioctl call. However, the detailed reason of

this bug is hard to figure out for the lack of kernel source.

To show the ability of triggering bugs powered by our black

box method, we demonstrate an example of bugs that were

found by our black box method. There 3 bugs exist in OPPO

A37m with kernel version 3.10.72, one of them was reported

earlier (CVE-2016-6492) and another two remain secret. Both

of them are repaired in the latest updates. The procedure of

finding the bugs of our black box method is as follows: We first

extract the boot image and kallsyms from OPPO A37m. Then

we disassemble interesting ioctl related functions including

FDV T ioctl as shown in Fig 6. The assembly instructions

of FDV T ioctl contain commands values as their constants.

5http://cve.mitre.org/cgibin/cvename.cgi?name=CVE-2018-18318

Fig. 6. A Part of Disassembly Code of Function FDV T ioctl

static int MT6573FDVT_SetRegHW
(MT6573FDVTRegIO*a_pstCfg)
{

MT6573FDVTRegIO *pREGIO = NULL;
u32 i=0;
static UINT8 illegalWRLogTimes = 0;

if (NULL == a_pstCfg) {
LOG_DBG("Null input argrment \n");
return -EINVAL;

}

pREGIO = (MT6573FDVTRegIO*)a_pstCfg;

if(copy_from_user(
(void*)pMT6573FDVTWRBuff.u4Addr,
(void *) pREGIO->pAddr,
pREGIO->u4Count * sizeof(u32))) {
LOG_DBG("ioctl copy from user failed\n");

return -EFAULT;
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}

if(copy_from_user(
(void*)pMT6573FDVTWRBuff.u4Data,
(void *) pREGIO->pData,
pREGIO->u4Count * sizeof(u32))) {

LOG_DBG("ioctl copy from user failed\n");
return -EFAULT;

}
return 0;

}

For example, instructions at position 13 and 14 give

low 16 bits and high 16 bits of command 0x40184e03.

Seven commands (19968, 19969, 2147765762, 1075334659,

3222818308, 1075334661, 20096) were recovered at this step

and added to candidate command set. After the matching step,

we find the 7 commands are valid after applying ioctl on

device /dev/camera-fdvt. Then we use Mango to fuzz the ioctl

interface on /dev/camera-fdvt. Finally, we get 3 crashes when

using command 3222818308, 1075334661 and 1075334659.

We then analyze the crash log and found the bug

caused by command 1075334659 is reported in CVE-

2016-6492. The command 1075334659 is the value of

MT6573FDV TIOC T SET FDCONF CMD which is

used to set registers of MT6573FDVT device. The source code

related to CVE-2016-6492 is in a camera driver of Mediatek

named camera fdvt.c.

static int MT6573FDVT_ReadRegHW
(MT6573FDVTRegIO*a_pstCfg)
{

int ret = 0;
int size = a_pstCfg->u4Count * 4;
int i;

if (size > buf_size)
LOG_DBG("size too big\n");

if (copy_from_user(
pMT6573FDVTRDBuff.u4Addr,
a_pstCfg->pAddr, size) != 0) {

LOG_DBG("copy_from_user failed\n");
ret = -EFAULT;
goto mt_FDVT_read_reg_exit;

}
...
if (copy_to_user(a_pstCfg->pData,
pMT6573FDVTRDBuff.u4Data, size) != 0)
{

LOG_DBG("copy_to_user failed\n");
ret = -EFAULT;
goto mt_FDVT_read_reg_exit;

}
mt_FDVT_read_reg_exit:
return ret;

}

Function MT6573FDV T SetRegHW uses

copy from user without checking the length of copied

data. The length is determined by pREGIO − > u4Count and

can be used by user to gain privileges via a crafted payload.

The command 1075334661 is corresponding to command

MT6573FDV TIOC T SET SDCONF CMD which is

used to set another register of MT6573FDVT device and

function

MT6573FDV T SetRegHW is called as the same as com-

mand 1075334659 does.

While there is no information on why command

3222818308 causes kernel crash in CVE List. We then analyze

the other functions in source code file camera fdvt.c and

found that command 3222818308 is the value of command

MT6573FDV TIOC G READ FDREG CMD and

calls another function

MT6573FDV T ReadRegHW . What interesting is that,

the length of copied data is checked in line 7, but just a

warning message is given. The copy from user function

will try to copy data no matter whether the size is bigger

than upper limit buf size. In case a userspace application

provides a large size value, copy from user will try to

fetch unexpected data which may cause kernel crash.
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