Graph Out-of-Distribution Generalization via Causal Intervention

The Web Conference (WWW), 2024

Qitian Wu, Fan Nie, Chenxiao Yang, Tianyi Bao, Junchi Yan Shanghai Jiao Tong University

> Paper: https://arxiv.org/pdf/2402.11494 Code: https://github.com/fannie1208/CaNet

Background: Graph-Structured Data

□ Graph-structured data are ubiquitous in various domains

molecular

social network

knowledge graph

code

Graph representation learning: find a functional map that converts nodes in a graph into embeddings in latent space

Distribution Shifts on Graph Data

Graph data from multiple domains

Dynamic temporal networks

□ Distribution shifts cause different data distributions $P_{train}(\mathcal{D}) \neq P_{test}(\mathcal{D})$ □ Challenges:

- New data from unknown distribution are unseen by training
- Distribution shifts involve structural information of non-Euclidean space

The Impact of Distribution Shifts

Observation: spurious correlation that only holds in training data is harmful for generalization, but the causal relation that universally hold is beneficial for generalization

Out-of-Distribution Generalization

 \Box Graph notation: a graph G = (A, X), adjacency matrix $A = \{a_{uv} | v, u \in V\}$ node features $X = \{x_v | v \in V\}$, node labels $Y = \{y_v | v \in V\}$

p(G, Y|E) = p(G|E)p(Y|G, E)

where E denotes environment (that affects data generation)

Observation: environment is a latent confounder in data generation

Distribution shifts cause varying environments from training to testing

$$p(G, Y|E = e_{tr}) \neq p(G, Y|E = e_{te})$$

Social networks collected from different regions (environment)
Citation networks formed at different times (environment)
Protein interaction networks of different species (environment)

Causal Analysis of Graph Neural Networks

Graph neural networks (GNN) for node-level prediction:

$$\mathbf{z}_{v}^{(1)} = \phi_{in}(\mathbf{x}_{v}) \qquad \mathbf{z}_{v}^{(l+1)} = \sigma \left(\operatorname{Conv}^{(l)} \left(\{ \mathbf{z}_{u}^{(l)} | u \in \mathcal{N}_{v} \cup \{ v \} \} \right) \right) \qquad \hat{\mathbf{y}}_{v} = \phi_{out}(\mathbf{z}_{v}^{(L+1)})$$

Maximum Likelihood Estimation (MLE) yields trained model parameters:

$$\theta^* = \arg\min_{\theta} -\frac{1}{|\mathcal{V}_{tr}|} \sum_{v \in \mathcal{V}_{tr}} \mathbf{y}_v^{\top} \log f_{\theta}(\mathcal{G}_v)$$

• $G \rightarrow \hat{Y}$: by predictive distribution of $p_{\theta}(\hat{Y}|G)$ GNN model $\hat{\mathbf{y}}_v = f_{\theta}(\mathcal{G}_v)$ • $E \rightarrow G$: by definition of data generation p(G|E)• $E \rightarrow \hat{Y}$: by training process of Maximum Likelihood Estimation

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{e \sim p_{tr}(E), (\mathcal{G}_v, \mathbf{y}_v) \sim p(G, Y|E=e)} \left[-\mathbf{y}_v^\top \log f_\theta(\mathcal{G}_v) \right]$$

Causal Intervention via Backdoor Adjustment

□ Harmful effect: the confounding bias of latent environment

- E establishes a shortcut (spurious correlation) between G and Y
- Model training tends to exploit spurious correlation in training data
- (\mathcal{G}_v "a user's friends are young" to $\, y_v$ "the user likes playing basketball")

Description: Cutting off the dependence between E and G

 \hat{Y}

- Key idea: replace $p_{\theta}(\hat{Y}|G)$ with $p_{\theta}(\hat{Y}|do(G))$
- According to Backdoor Adjustment in causal inference [Pearl et al., 2016]:

$$p_{\theta}(\hat{Y}|do(G)) = \mathbb{E}_{p_0(E)}[p_{\theta}(\hat{Y}|G,E)]$$

a model-free prior for E

Causal Intervention with Env. Inference

original intervention
objective
$$\log \sum_{e} p_{\theta}(\hat{Y}|G, E = e)P(E = e)$$
 $\log \sum_{e} p_{\theta}(\hat{Y}|G, E = e)P(E = e)$ $= \log \sum_{e} p_{\theta}(\hat{Y}|G, E = e)p_{0}(E = e)\frac{q_{\phi}(E = e|G)}{q_{\phi}(E = e|G)}$ $\geq \sum q_{\phi}(E = e|G) \log p_{\theta}(\hat{Y}|G, E = e) p_{0}(E = e)\frac{1}{q_{\phi}(E = e|G)}$ $\downarrow p_{\theta}(E|G)$ $\downarrow p_{\theta}(\hat{Y}|G, E)$ $\downarrow p_{\theta}(\hat{Y}|G, E$

Model Architecture Design

 \Box Pseudo Environment Estimator $q_{\phi}(E|G)$

$$\boldsymbol{\pi}_v^{(l)} = ext{Softmax}(\mathbf{W}_S^{(l)} \mathbf{z}_v^{(l)})$$

$$\frac{\exp\left(\left(\pi_{vk}^{(l)} + g_k\right)/\tau\right)}{\sum_k \exp((\pi_{vk}^{(l)} + g_k)/\tau)}, \quad g_k \sim \text{Gumbel}(0, 1)$$

model env. as a latent discrete variable at each layer

use Gumbel reparameterization trick for enabling differentiable sampling

(1)

 $e_{vk}^{(l)} =$

D Mixture-of-expert GNN Predictor $p_{\theta}(\hat{Y}|G, E)$

CaNet-GCN: use graph convolution unit

$$\mathbf{z}_{u}^{(l+1)} = \sigma \left(\sum_{k=1}^{K} e_{u,k}^{(l)} \sum_{v,a_{uv}=1} \frac{1}{\sqrt{d_{u}d_{v}}} \mathbf{W}_{D}^{(l,k)} \mathbf{z}_{v}^{(l)} + \mathbf{W}_{S}^{(l,k)} \mathbf{z}_{u}^{(l)} \right)$$

• CaNet-GAT: use graph attention unit

$$\mathbf{z}_{u}^{(l+1)} = \sigma \left(\sum_{k=1}^{K} e_{u,k}^{(l)} \sum_{v,a_{uv}=1} w_{uv}^{(l,k)} \mathbf{W}_{D}^{(l,k)} \mathbf{z}_{v}^{(l)} + \mathbf{W}_{S}^{(l,k)} \mathbf{z}_{u}^{(l)} \right)$$
$$w_{uv}^{(l,k)} = \frac{\text{LeakyReLU}((\mathbf{b}^{(l,k)})^{\top} [\mathbf{W}_{A}^{(l,k)} \mathbf{z}_{u}^{(l)} \| \mathbf{W}_{A}^{(l,k)} \mathbf{z}_{v}^{(l)}])}{\sum_{w=1}^{N} \text{LeakyReLU}(\mathbf{b}^{(l,k)})^{\top} [\mathbf{W}_{A}^{(l,k)} \mathbf{z}_{u}^{(l)} \| \mathbf{W}_{A}^{(l,k)} \mathbf{z}_{w}^{(l)}])}$$

Experiment Protocols

- Split data into in-distribution and out-of-distribution portions; for IND data, randomly split into IND-Tr/IND-Val/IND-Te
- For temporal graph dataset: use time information for data split of IND and OOD
- For multi-graph dataset: use domain information for data split of IND and OOD

Qitian Wu, et al., Handling Distribution Shifts on Graphs: An Invariance Perspective, ICLR 2022

Qitian Wu, et al., Energy-based Out-of-Distribution Detection for Graph Neural Networks, ICLR 2023

Testing results (Accuracy for Arxiv, ROC-AUC for Twitch) on real-world datasets

Method	Arxiv				Twitch			
	OOD 1	OOD 2	OOD 3	ID	OOD 1	OOD 2	OOD 3	ID
ERM	56.33 ± 0.17	53.53 ± 0.44	45.83 ± 0.47	59.94 ± 0.45	66.07 ± 0.14	52.62 ± 0.01	63.15 ± 0.08	75.40 ± 0.01
IRM	55.92 ± 0.24	53.25 ± 0.49	45.66 ± 0.83	60.28 ± 0.23	66.95 ± 0.27	52.53 ± 0.02	62.91 ± 0.08	74.88 ± 0.02
Coral	56.42 ± 0.26	53.53 ± 0.54	45.92 ± 0.52	60.16 ± 0.12	66.15 ± 0.14	52.67 ± 0.02	$\textbf{63.18} \pm 0.03$	75.40 ± 0.01
DANN	56.35 ± 0.11	53.81 ± 0.33	45.89 ± 0.37	60.22 ± 0.29	66.15 ± 0.13	52.66 ± 0.02	$\textbf{63.20} \pm 0.06$	75.40 ± 0.02
GroupDRO	56.52 ± 0.27	53.40 ± 0.29	45.76 ± 0.59	60.35 ± 0.27	66.82 ± 0.26	$\textbf{52.69} \pm 0.02$	62.95 ± 0.11	75.03 ± 0.01
Mixup	56.67 ± 0.46	54.02 ± 0.51	46.09 ± 0.58	60.09 ± 0.15	65.76 ± 0.30	$\textbf{52.78} \pm 0.04$	63.15 ± 0.08	75.47 ± 0.06
SRGNN	56.79 ± 1.35	54.33 ± 1.78	46.24 ± 1.90	60.02 ± 0.52	65.83 ± 0.45	52.47 ± 0.06	62.74 ± 0.23	75.75 ± 0.09
EERM	OOM	QOM	QOM	OOM	67.50 ± 0.74	51.88 ± 0.07	-62.56- ± 0.02	74.85 + 0.05
CANET	59.01 ± 0.30	$\textbf{56.88} \pm 0.70$	$\textbf{56.27} \pm 1.21$	61.42 ± 0.10	67.47 ± 0.32	$\textbf{53.59} \pm 0.19$	64.24 ± 0.18	75.10 ± 0.08

Testing F1 score for *Elliptic* with GCN and GAT as the encoder backbone

Qitian Wu et al.

Graph OOD via Causal Intervention

Ablation Study and Hyperparameters

Regularization loss in the new objective is effective for improving generalization Model performance is stable for proper K (number of pseudo env.) Small temperature (sharp results) can produce satisfactory performance

Conclusion

Main contributions of our work:

- □ We identify that the confounding bias of latent environments in graph data leads to poor generalization on out-of-distribution data
- □ We propose a new learning approach resorting to causal intervention and variational inference for improving out-of-distribution generalization
- We demonstrate the spuriority of the new model on diverse real-world datasets and achieve improvements over state-of-the-arts

Paper: https://arxiv.org/pdf/2402.11494 Code: https://github.com/fannie1208/CaNet

Qitian Wu, et al., Handling Distribution Shifts on Graphs: An Invariance Perspective, ICLR 2022 Qitian Wu, et al., Energy-based Out-of-Distribution Detection for Graph Neural Networks, ICLR 2023