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Background: Graph-Structured Data

 Graph-structured data are ubiquitous in various domains
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molecular social network knowledge graph code

 Graph representation learning: 
find a functional map that 
converts nodes in a graph into 
embeddings in latent space



Distribution Shifts on Graph Data
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Graph data from multiple domains Dynamic temporal networks

 Distribution shifts cause different data distributions
 Challenges:

• New data from unknown distribution are unseen by training
• Distribution shifts involve structural information of non-Euclidean space



The Impact of Distribution Shifts
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a user’s friends are young

a user’s friends like sports
the user likes 

playing basketball university

ego-graph feature node label environment

a user’s friends are young

a user’s friends like sports
the user likes 

playing basketball Linkedin

spurious correlation: only hold in a few environments 
causal relation: universally hold in all environments

positive correlation no correlation

what is processed by graph 
neural networks as inputs

Observation: spurious correlation that only holds in training data is harmful for generalization, but 
the causal relation that universally hold is beneficial for generalization



 Observation: environment is a latent confounder in data generation 

 Graph notation: a graph                    , adjacency matrix                              
node features                            , node labels

    where     denotes environment (that affects data generation)

Out-of-Distribution Generalization
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Distribution shifts cause varying environments from training to testing

 Social networks collected from different regions (environment)
 Citation networks formed at different times (environment)
 Protein interaction networks of different species (environment)



•                : by definition of data generation 
•                : by training process of Maximum Likelihood Estimation 

Causal Analysis of Graph Neural Networks 
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 Graph neural networks (GNN) for node-level prediction:

 Maximum Likelihood Estimation (MLE) 
yields trained model parameters:

•                : by predictive distribution of                 GNN model 



Key idea: replace                 with

Causal Intervention via Backdoor Adjustment
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 Potential solution: cutting off the dependence between E and G 

 Harmful effect: the confounding bias of latent environment 
• E establishes a shortcut (spurious correlation) between G and Y
• Model training tends to exploit spurious correlation in training data
(       “a user’s friends are young" to       "the user likes playing basketball")

• According to Backdoor Adjustment in causal inference [Pearl et al., 2016]:

a model-free prior for E



•             : a trivial prior distribution

•                      : GNN predictor conditioned on E

•                : pseudo environment estimator

Causal Intervention with Env. Inference
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original intervention 
objective

variational lower 
bound of the 

objective
Model instantiation:



  Pseudo Environment Estimator

Model Architecture Design
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  Mixture-of-expert GNN Predictor

model env. as a latent discrete 
variable at each layer

use Gumbel reparameterization trick for 
enabling differentiable sampling 

• CaNet-GCN: use graph convolution unit

• CaNet-GAT: use graph attention unit



  Split data into in-distribution 
and out-of-distribution portions; 
for IND data, randomly split into 
IND-Tr/IND-Val/IND-Te 

Experiment Protocols
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  For temporal graph dataset: 
use time information for data 
split of IND and OOD

  For multi-graph dataset: use 
domain information for data 
split of IND and OOD 

Qitian Wu, et al., Handling Distribution Shifts on 
Graphs: An Invariance Perspective, ICLR 2022  
Qitian Wu, et al., Energy-based Out-of-Distribution 
Detection for Graph Neural Networks, ICLR 2023 



Experiment Results
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Testing results (Accuracy for Arxiv, ROC-AUC for Twitch) on real-world datasets 

Testing F1 score for 
Elliptic with GCN 
and GAT as the 
encoder backbone



Ablation Study and Hyperparameters
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Regularization loss in the 
new objective is effective for 
improving generalization 

Model performance is 
stable for proper K 
(number of pseudo env.)

Small temperature (sharp 
results) can produce 
satisfactory performance



Conclusion
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  We identify that the confounding bias of latent environments in graph data 
leads to poor generalization on out-of-distribution data

Paper: https://arxiv.org/pdf/2402.11494
Code: https://github.com/fannie1208/CaNet

Qitian Wu, et al., Handling Distribution Shifts on Graphs: An Invariance Perspective, ICLR 2022  
Qitian Wu, et al., Energy-based Out-of-Distribution Detection for Graph Neural Networks, ICLR 2023 

Main contributions of our work:

  We propose a new learning approach resorting to causal intervention and 
variational inference for improving out-of-distribution generalization

  We demonstrate the spuriority of the new model on diverse real-world 
datasets and achieve improvements over state-of-the-arts


