
Fast Bit-Vector Satisfiability
Peisen Yao

The Hong Kong University of Science and Technology,
China

pyao@connect.ust.hk

Qingkai Shi
The Hong Kong University of Science and Technology,

China
qshiaa@cse.ust.hk

Heqing Huang
The Hong Kong University of Science and Technology,

China
hhuangaz@cse.ust.hk

Charles Zhang
The Hong Kong University of Science and Technology,

China
charlesz@cse.ust.hk

ABSTRACT

SMT solving is often a major source of cost in a broad range of
techniques such as the symbolic program analysis. Thus, speeding
up SMT solving is still an urgent requirement. A dominant approach,
which is known as the eager SMT solving, is to reduce a first-order
formula to a pure Boolean formula, which is handed to an expensive
SAT solver to determine the satisfiability. We observe that the SAT
solver can utilize the knowledge in the first-order formula to boost
its solving efficiency. Unfortunately, despite much progress, it is
still not clear how to make use of the knowledge in an eager SMT
solver. This paper addresses the problem by introducing a new
and fast method, which utilizes the interval and data-dependence
information learned from the first-order formulas.

We have implemented the approach as a tool called Trident
and evaluated it on three symbolic analyzers (Angr, Qsym, and
Pinpoint). The experimental results, based on seven million SMT
solving instances generated for thirty real-world software systems,
show that Trident significantly reduces the total solving time from
2.9× to 7.9× over three state-of-the-art SMT solvers (Z3, CVC4, and
Boolector), without sacrificing the number of solved instances.We
also demonstrate that Trident achieves the end-to-end speedups
for three program analysis clients by 1.9×, 1.6×, and 2.4×, respec-
tively.

CCS CONCEPTS

• Theory of computation→ Automated reasoning; Program
analysis.

KEYWORDS

Satisfiability modulo theory, SAT solving, program analysis

ACM Reference Format:

Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang. 2020. Fast Bit-
Vector Satisfiability. In Proceedings of the 29th ACM SIGSOFT International

Symposium on Software Testing and Analysis (ISSTA ’20), July 18–22, 2020,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA ’20, July 18–22, 2020, Virtual Event, USA

© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8008-9/20/07. . . $15.00
https://doi.org/10.1145/3395363.3397378

Virtual Event, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3395363.3397378

1 INTRODUCTION

Satisfiability Modulo Theories (SMT) solving has undergone steep
development during the last decade, enabling a wide range of prac-
tical applications, such as test case generation [20, 40], static bug
finding [77, 86], and program repair [62]. SMT solvers decide the
satisfiability of formulas over first-order theories. Among the many
theories within the SMT-LIB initiative [3], the theory of bit-vector
is of crucial importance for software analysis, due to its capability
of faithfully and precisely modeling the bit-level behavior of the
machine instructions [86].

Existing SMT solving algorithms can be classified as being lazy
or eager [15, 51]. The latter is the predominant approach to solve
bit-vector constraints [43]. As illustrated in Figure 1(a), an eager
bit-vector solver first simplifies the input formula with the word-
level simplification rules [1, 17], and then translates a bit-vector
formula into an equisatisfiable Boolean formula via bit-blasting,
which is finally solved by an SAT solver. In practice, the word-level
simplification and bit-blasting phases are efficient. However, the
SAT solving phase is often the performance bottleneck due to its
NP-completeness [43, 50].

While a significant effort has been investigated in the lazy SMT
solving [9, 22, 42, 75], to the best of our knowledge, there is little
progress on improving the SAT solving algorithms for an eager
bit-vector solver. Most existing effort either focuses on enhancing
the word-level preprocessing phase via different simplifications and
semi-decision procedures [34, 36, 44, 61], or aims to devise better
encoders for bit-blasting [45, 57]. These methods attempt to reduce
the overhead of SAT solving by translating the bit-vector formulas
into smaller Boolean formulas. However, the SAT solver itself still
uses the default strategy irrespective of the word-level problem
characteristics, thus losing many optimization opportunities.

In this paper, we present an approach that significantly improves
the bit-vector SMT solver by leveraging the word-level information,
just as shown in Figure 1(b). Our key insight is that the word-level
information inferred before bit-blasting can be preserved to boost
the SAT solving phase. Specifically, a conventional SAT solver often
works as follows: given a Boolean formula, the SAT solver checks
its satisfiability by choosing a variable in the formula, assigning a
truth value to it, simplifying the formula based on the assignment,
and then recursively checking if the simplified formula is satisfiable.

https://doi.org/10.1145/3395363.3397378
https://doi.org/10.1145/3395363.3397378
https://doi.org/10.1145/3395363.3397378

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

Word-Level

Preprocessing
Bit Blasting SAT Solver

sat/unsat/

unknown

Word-Level

Preprocessing
Bit Blasting SAT Solver

sat/unsat/

unknown

(a)

(b)

Variable Interval (§ 4.1) Assignment

Data Dependence (§ 4.2) Ordering

Figure 1: (a) Conventional workflow of eager SMT solving.

(b) Our workflow of eager SMT solving.

If the search fails, the same recursive check is performed assuming
the opposite truth value. Clearly, the performance of the SAT solver
crucially depends on the branching heuristic [12, 47, 54, 59, 85],
which concerns both the order in which Boolean variables are
chosen for assignment and the values assigned to them. Therefore,
we can utilize two categories of word-level information — data
dependence and variable interval — to guide the decision order and
the assignments, respectively.

We have implemented our approach as a tool called Trident
on top of the Z3 SMT solver [29]. We evaluate Trident on three
realistic symbolic analysis platforms (Angr [78], Qsym [88], and
Pinpoint [77]), which generate a large set of, nearly 7.4 million,
bit-vector constraints from thirty real-world software systems. The
experimental results show that, compared to Z3, Trident achieves
3.4× to 6.3× speedup (with 4.9× on average). Trident also outper-
forms two other state-of-the-art SMT solvers, CVC4 and Boolec-
tor, achieving 7.9× and 2.9× speedup, respectively. Armed with
our new bit-vector solver, the three symbolic analysis platforms,
Angr, Qsym, and Pinpoint, achieves 1.9×, 1.6×, and 2.4× speedups,
respectively. To sum up, we make the following main contributions
in the paper:

• We introduce an approach to scaling eager bit-vector solvers,
which leverages interval and data-dependence information
to guide the branching heuristic in the SAT solving phase.
• We implement the proposed approach and apply our solver
to three symbolic analysis applications, including control-
flow recovery, test case generation, and static bug hunting.
• We conduct a thorough evaluation, confirming the effective-
ness of our approach. We also provide a new set of publicly-
available benchmarks with nearly seven million SMT solving
instances, which can help better evaluate SMT solvers.

2 PRELIMINARIES

This section introduces the basic concepts and terminologies used
in the paper.

2.1 Satisfiability Modulo Theories

Satisfiability Modulo Theories (SMT) is the problem of deciding
the satisfiability of a first-order formula with respect to some first-
order theories. Examples include the theories of linear arithmetics,
bit-vectors, arrays, lists, and strings.

A bit-vector is a fixed sequence of bits. The theory of quantifier-
free bit-vectors (QF_BV) is a many-sorted first-order theory. The
length of a bit-vector is usually referred to as bit-width, and bit-
vectors with different widths correspond to different sorts. The
functions in the theory include +,−,×,÷,&, |, ⊕,≪,≫, concat, and
extract, interpreted as addition, minus, multiplication, division, bit-
wise and, bit-wise or, bit-wise exclusive or, left-shift, right-shift,
concatenation, and extraction, respectively. The predicates include
=, <, and ≤, which are interpreted as “equal to”, “less than”, and
“less than or equal to”, respectively. For the ease of presentation,
we assume that all bit-vector variables represent unsigned integers.
Deciding the satisfiability of a quantifier-free bit-vector formula is
NP-complete, or more exactly NEXPTIME-complete [50].

2.2 Eager Bit-Vector Solving

Existing SMT solving algorithms can be classified as being lazy or
being eager. Given a first-order formula, a lazy approach [5, 17, 75]
usually iteratively refines an over-abstraction of the formula by
combining a SAT solver and a theory solver. First, it abstracts the
first-order formula by replacing each atomic predicate1 with a dis-
tinct Boolean variable, producing a formula called the Boolean skele-
ton. Then, it uses the SAT solver to iteratively enumerate models of
the Boolean skeleton, and the theory solver to check these models
for satisfiability. In contrast, an eager approach [36, 48] translates
the first-order formula, in a single satisfiability-preserving step,
into an equisatisfiable Boolean formula, which is delegated to a
SAT solver for determining the satisfiability, as shown in Figure 1.

Example 2.1. Consider the bit-vector formula ϕ ≡ x ≥ 3 ∧ (x =
0 ∨ y = 4), where x and y are two bit vectors. A lazy SMT solver
will abstract ϕ as a Boolean skeleton b1 ∧ (b2 ∨ b3), where the
Boolean variables b1,b2, and b3 represent x ≥ 3,x = 0, and y = 4,
respectively. Suppose that its SAT solver first suggests a model
(b1 = 1,b2 = 1,b3 = 0). The Boolean model is mapped back as
conjunctions of atomic predicates x ≥ 3 ∧ x = 0 ∧ y , 4, which is
then checked by the theory solver. If the conjunctions are satisfiable,
so is the original bit-vector formula. Clearly, the conjunctions are
unsatisfiable, meaning that the Boolean model is spurious. Then,
its SAT solver attempts to suggest another model of the Boolean
skeleton. In the worst case, the SAT solver enumerates all models
of the Boolean skeleton, which is expensive. In contrast, the eager
approach translates ϕ into an equisatisfiable Boolean formula and
only calls a SAT solver once to determine the satisfiability.

In the eager approach to SMT solving, the typical method for
translating a bit-vector formula into an equisatisfiable Boolean for-
mula is bit-blasting. The procedure encodes a bit-vector variable
using a sequence of auxiliary Boolean variables, each of which
represents a bit of the bit-vector variable. Bit-vector functions such
as addition and multiplication are modeled using Boolean connec-
tives in a way that mimics the hardware circuits of these func-
tions [15, 51]. Note that in order to encode these functions more
compactly, the bit-blaster also introduces a sequence of auxiliary
Boolean variables to represent each bit-vector term, i.e., functions

1An atomic predicate is a Boolean-type expression without Boolean connectives such
as x + y = 3.

Fast Bit-Vector Satisfiability ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Algorithm 1: Eager bit-vector solving
Input: A bit-vector formula ϕ.
Output: satisfiable or unsatisfiable.

1 ϕ ′ ← apply word-level simplifications to ϕ;
2 BF (ϕ ′) ← apply bit-blasting to ϕ ′;
3 BV (·) ← the set of Boolean variables in BF (ϕ ′);
4 return CDCL_SAT(BF (ϕ ′));
5 Function CDCL_SAT(φ):
6 while true do

7 if there is an unassigned Boolean variable then

8 select and assign a variable from BV (·);
9 while BCP() == CONFLICT do

10 (C, level) = conflict_analysis();
11 if level < 0 then

12 return unsatisfiable;
13 else

14 backtrack(level);
15 add_clause(C);
16 else

17 return satisfiable;

applied to a set of bit-vector variables.2 In the remainder of the
paper, we denote by BF (ϕ) the Boolean formula encoding a bit-
vector formula ϕ. We denote a n-bits bit-vector variable or term
t as t = [bn−1,bn−2, . . . ,b0], where BV (t) = {bn−1,bn−2, . . . ,b0}
is the set of Boolean variables encoding t . Since we assume that
bit-vectors are unsigned, we have

t = bn−1 × 2n−1 + bn−2 × 2n−2 + · · · + b0 × 20 , (1)

which means that once the values of Boolean variables BV (t) are
fixed, we can obtain the value of t , and vice versa.

Example 2.2. Let x and y be two 8-bits bit-vectors such that
x = [a7, . . . ,a0] and y = [b7, . . . ,b0]. Consider a term x | y, which
is the “bit-wise or” of the variables x and y. To encode the term, the
bit-blaster first introduces eight Boolean variables, c0, c1, . . . , c7, to
represent the calculation result, i.e., x | y = [c7, . . . , c0], and then
translates the term into the following Boolean formula that encodes
the semantic of “bit-wise or”:

7∧
i=0
((ai ∨ bi) ↔ ci)

One purpose for introducing the auxiliary variables ci is that we
can reuse the translation of the term x | y when the term is used
many times in a constraint like x | y + z > 10 ∧ x | y − z < 5.

2.3 SAT Solving and Branching Heuristic

To determine the satisfiability of a Boolean formula generated by
bit blasting, a Conflict-Driven Clause-Learning (CDCL) SAT solver
will be employed [11, 80]. The function CDCL_SAT of Algorithm 1
presents the basic CDCL search loop. At each step, the branching
heuristic picks an unassigned variable and assigns it a truth value
2More exactly, a term is inductively defined as either a variable or a function applied
to any number of other terms. We differentiate between variable and term for the sake
of presentation.

of 1 or 0 (Line 8). The picked variable is called the decision variable.
Then, the solver uses a method called Boolean Constraint Propaga-
tion (BCP) (Line 9) to simplify the formula, by leveraging the current
assignment and its logical consequences. If the propagation leads
to a falsified clause, a conflict occurs, indicating that a previous de-
cision is not appropriate. The level3 of that decision is identified by
the conflict analysis (Line 10), following which the solver recovers
from the conflict by backtracking, undoing the offending decision,
and trying some other assignments. A clause learned from the con-
flict is also added to the original formula (Line 15), to prevent the
search from repeating the mistake. The loop repeats until all clauses
are satisfied, or some conflict cannot be resolved by backtracking
and, thus, the formula is unsatisfiable (Line 12).

Example 2.3. Consider the Boolean formula (a ∨b) ∧ (¬a ∨b). If
we pick the Boolean variable a as the decision variable and assign 1
to it, the BCP can infer than b should also be 1, because otherwise
the clause (¬a ∨ b) would be falsified.

Example 2.4. Consider the Boolean formula (a)∧(¬a∨¬b)∧(b∨c).
Suppose that we first choose a and assign 1 to it. The BCP can infer
that b should be 0 and further deduce that c should be 1. All clauses
are satisfied now. In total, only one decision is made. However, if
we first choose c and assign 0 to it, the BCP can infer that b should
be 1 and further infer that a should be 0. The current assignment
(c = 0,b = 1,a = 0) results in a falsified clause (a). The SAT
solver has to perform backtracking, undoing the first decision and
continuing a new round of search.

CDCL SAT solvers crucially depend on the branching heuris-
tic for their performance. A state-of-the-art branching heuristics
Variable State Independent Decaying Sum (VSIDS) [59] maintains
a score for each Boolean variable throughout the search. It initial-
izes the score based on the globally statistical information, such as
the number of clauses in which a variable appears. At each step,
VSIDS selects the variable with the highest score as the next deci-
sion variable. The scores are adjusted periodically by aggregating a
variable’s effects in the previous conflicts.

3 MOTIVATION

In this section, we use several examples to motivate our approach.
We show that the bit-vector level information can be leveraged to
partially determine the assignments (§ 3.1) and the order of decision
variables (§ 3.2).

3.1 Assignment Restriction

In program analysis, to achieve the bit-level precision, an integer
variable in a program is usually modeled as a bit-vector, of which
the length is the bit width of the variable’s type. The constraints
in a program analysis consist of the operations and the relations
among the bit-vector variables. In theory, a 32-bit unsigned bit-
vector variable represents a large range of values, i.e., from 0 to
232 − 1. Besides, the number of variables in a path constraint can
be huge. As the consequence, such a vast search space stresses the
capability of the constraint solver, causing significant performance
issues.
3The decision level of a variable is the number of decision variables occurring before
the variable.

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

Fortunately, in practice, we find that the feasible solution space of
the variables can be small. More specifically, we observe that, in real-
world programs, not all statements are complex, e.g., containing
non-linear computation and library function calls. Most variables
are only involved in simple statements, such as linear assignments
and linear branch conditions. By inspecting the constraints encoded
for these simple statements, we can soundly approximate the solu-
tion space of the bit-vector variables and, thus, reduce the search
space of SAT solving.

Example 3.1. Suppose that x = [a7, . . . ,a0] and y = [b7, . . . ,b0]
encode two 8-bits unsigned integer variables and the formula ϕ ≡
y = x + 1 ∧ y < 5 ∧ x ∗ x < 60 is a constraint generated by
a program analyzer. After bit-blasting the formula, we obtain a
Boolean formula BF (ϕ). If we are able to infer that x < 4 from
the linear constraint y = x + 1 ∧ y < 5 in ϕ, then we have that
a7,a6, . . . ,a2 must be 0, because otherwise x must be greater than
or equal to 4. Therefore, we reduce the search space of SAT solving
by fixing the values of six Boolean variables, i.e., a7,a6, . . . ,a2.

Remark 1. Although the SAT solver can leverage Boolean Con-
straint Propagation (BCP) and backtracking to establish and exploit
the correlations of Boolean variables automatically, it is unaware
of the restriction about the variables before the search. If having
an oracle that narrows down the search space of some bit-vector
variables, we can reduce the number of Boolean variables to de-
cide, thereby improving the SAT solving performance by reducing
unneeded constraint propagation and backtracking.

3.2 Variable Ordering

Consider a formula with a set N of bit-vector variables, each having
a value range of size k . In the worst case, the SAT solver needs to ex-
plore k |N | possible assignments. Like many other search problems,
the order in which we select Boolean variables for assignments has
an enormous effect on the performance of SAT solving. Specifically,
we observe that the data dependence relations in a constraint can be
leveraged. The insight here is that the presence of data dependence
means that the values of a subset of variables deterministically
derive the values of other variables.

Example 3.2. Let us consider the constraint ϕ in Example 3.1.
According to the discussion in Section 2.2, before SAT solving,
the constraint ϕ is translated to a Boolean formula consisting of
Boolean variables, BV (x), BV (y), BV (x + 1), and BV (x ∗ x). In the
SAT solving phase, the SAT solver will select and assign values to
these Boolean variables in some order. In the example, once BV (x)
are assigned, the values of BV (x + 1), BV (y), and BV (x ∗ x), can be
derived automatically due to the data dependence relations. Thus,
giving higher priority to the Boolean variables in BV (x) than those
in BV (y), BV (x + 1), and BV (x ∗ x) can accelerate the speed of
cutting the search space.

Remark 2. Modern SAT solvers have sophisticated scoring schemes
to decide the decision order. However, we find that state-of-the-art
schemes like VSIDS are not sufficiently accurate at the beginning
of the search. This is because they typically initialize the scores via
statistical and syntactical information, which may introduce bias.
Therefore, it would be beneficial to assist the solver in the initial

phase by scheduling the decision order according to the semantic
information such as the data dependence relations.

4 APPROACH

The branching heuristic in SAT solving concerns the order in which
the Boolean variables are chosen for assignment and the values
assigned to them. As shown in Figure 1(b), our techniques aim
to guide it by leveraging two abstract domains over bit-vector
variables: the non-relational interval domain and the relational
data-dependence domain.

First, we utilize the interval information to fix the values of
Boolean variables introduced during bit-blasting, thereby reduc-
ing the search space of SAT solving. After that, for variables that
cannot be fixed yet, the solver still needs to decide their assign-
ments. Second, to further accelerate SAT solving, we exploit the
data-dependence information for guiding the decision order of
Boolean variables.

The additional overhead of inferring the information is low: the
runtime of the word-level preprocessing phase increases by about
15%. Such a price is acceptable because we can pay a small up-front
cost to avoid a large amount of work in the later SAT solving phase.
In what follows, we detail the two strategies for improving the
performance of SAT solving.

4.1 Interval-Guided Variable Assignments

We first present the strategy of using the interval analysis to reduce
the search space. Our observation is that in real-world programs,
not all statements are complex. Thus, a constraint generated by a
program analyzer usually contains many simple sub-constraints,
which can be used to infer a sound interval of some bit-vector
variables or terms, t , thereby restricting the values of their corre-
sponding Boolean variables BV (t).

However, given a bit-vector formula, acquiring the precise in-
terval information of its variables is non-trivial. Specifically, com-
puting the most precise interval of a variable is NP-hard, which
can be reduced to Max-SMT problems [53]. For example, to obtain
the maximum value of a bit-vector variable x subject to a formula
ϕ(x , . . .), we can solve the Max-SMT problem:{

maximize x
subject to ϕ(x , . . .) .

(2)

This is impractical because solving the optimization problem can
be even harder than checking the satisfiability of the formula.

4.1.1 Interval Analysis. To balance the precision and performance,
we employ a lightweight interval analysis, which takes a bit-vector
formula as input, and determines a sound approximation, i.e., in-
terval, of the numeric values for the bit-vector variables in a for-
mula [37]. The details of the interval analysis are omitted, as it is
direct and not our key contribution. For instance, given the con-
straint z = x + y, where x ∈ [lx ,ux],y ∈ [ly ,uy]. According to the
rules in the previous work [37], we have z ∈ [lx + ly ,ux + uy]. In
addition, given a constraint z = x + y ∧ z = u − w , we need to
compute the intervals for z = x +y and z = u −w , respectively, and
then conjunct the two intervals to get an interval for the variable z.

Fast Bit-Vector Satisfiability ISSTA ’20, July 18–22, 2020, Virtual Event, USA

Conventionally, let R1 = [l1,u1] and R2 = [l2,u2] be two inter-
vals. The logical conjunction and disjunction operations are mod-
eled with the meet (denoted ⊓) and join (denoted ⊔) operations,
respectively:

R1 ⊓ R2 =

{
⊥ , if max(l1, l2) > min(u1,u2)
[max(l1, l2),min(u1,u2)], otherwise

R1 ⊔ R2 = [min(l1, l2),max(u1,u2)] .
(3)

For example, applying the join operator to the intervals, R1 = [1, 3]
and R2 = [8, 11], produces a new interval R′ = [1, 11]. Apparently,
such a join operation will lose precision as it introduces a set of false
values {4, 5, 6, 7} within R′. In the remainder of this subsection, we
focus on how to mitigate such precision loss so that the interval
analysis can non-trivially improve the performance of SAT solving.

Disjunctive Domain with Lazy Join. One solution to the problem
of precision loss is enriching the analysis with disjunction [68, 73].
For instance, instead of computing the new interval R′, we record
the interval as R1 ∪ R2 in the above example to avoid the precision
loss. Unfortunately, the number of intervals to maintain may grow
extremely large, which is exponential in the number of disjunctions
in the formula.

To restore the precision loss caused by joins but to avoid the
expensive disjunctive abstraction, we employ a selective merging
heuristic. The heuristic is responsible for determining whether two
intervals should be merged with join or kept separately. The basic
idea is that, if a join does not introduce much precision loss (i.e.,
yields a similar set of abstract states as taking their union), we can
perform a join. To measure the precision loss quantitatively, we
define a dissimilarity ratio σ ranging from 0 to 1. If the ratio is
smaller than a threshold, we perform a join. Next, we discuss the
method for computing the ratio.

First, we need to quantify the dissimilarity between the two inter-
vals. Conventionally, the Hausdorff distance is a common measure
of the discrepancy between two polyhedra A and B, defined as

H (X ,Y) = maxx ∈X {miny∈Y {d(x ,y)}}
Hausdorff(A,B) = max{H (A,B),H (B,A)} ,

(4)

where d(x ,y) is the Euclidean distance between two points x and y
in Euclidean space.

The Hausdorff distance between two general polyhedra is hard to
compute [6]. Fortunately, in our setting, A and B are both intervals.
Suppose that we have A = [l1,u1] and B = [l2,u2]. It can be proved
that:

Hausdorff(A,B) = max(|l1 − l2 |, |u1 − u2 |) . (5)
Then, we can measure the proposition of dissimilarities in the new
interval introduced after join. Specifically, we define the dissimilar-
ity ratio as

σ = Hausdorff(A,B) ÷ |A ⊔ B |
= max(|l1 − l2 |, |u1 − u2 |) ÷ (max(u1,u2) −min(l1, l2)) .

(6)

Example 4.1. Consider the example in Figure 2. Suppose that we
focus on merging intervals of the variable x . Comparing Figure 2(a)
and Figure 2(b) where R1x and R2x are disjoint, we tend to perform
a join for the intervals in Figure 2(a) because fewer false positives
would be introduced. Comparing Figure 2(c) and Figure 2(d) where

(a)
x

y

R1 R2

(b)
x

y

R1 R2

(c)
x

y

R1 R2

(d)
x

y

R2R1

Figure 2: An example of selective merge with join operator.

R1x and R2x overlap, we tend to perform a join for the intervals in
Figure 2(c) because the two intervals have a larger overlap.

Example 4.2. Consider the bit-vector formula ϕ ≡ (φ1 ∨ φ2) ∧
(φ3 ∨ φ4), where φ1,φ2,φ3, and φ4 are all conjunctions of atomic
predicates. Suppose that we can infer from φ1,φ2,φ3, and φ4 that
R1 = [3, 10],R2 = [3, 10],R3 = [3, 4], and R4 = [8, 11], respectively.
We will merge the two intervals R1 and R2 with join because the
dissimilarity ratio is 0. The merged interval R′ is R1 ⊔ R2 = [3, 10].
In contrast, we tend not to merge R3 and R4 because by Eq. (6), the
dissimilarity ratio is 7÷8, close to 1. Intuitively, the merged interval
[3, 11] would introduce three false positives, i.e., {5, 6, 7}. Later, we
need to propagate the interval R′ to R3 and R4, i.e., compute R′⊓R3
and R′ ⊓ R4, respectively.

4.1.2 Reducing Search Space. After obtaining the sound intervals
of bit-vector variables, we then guide the branching heuristic by
fixing the values for a subset of Boolean variables. For example, let
x be a bit-vector variable representing a n-bits unsigned integer
such that x = [bn−1, . . . ,b0]. Recalling Eq. (1), once the values of
bn−1,bn−2, . . . ,b0 are fixed, we can obtain the value of x , and vice
versa. Therefore, if the interval analysis infers that x ∈ [l ,u], where
l > 0 or u < 2n −1, then we fix some Boolean variables from BV (x),
prior to the main CDCL search loop. If the interval [l ,u] is precise
enough, we can produce a dramatic size reduction of the space of
the truth assignments searched in by the SAT solver.

An alternative use of the intervals might be adding them as
additional constraints to the original formula. However, specifying
the constrains can increase the formula size dramatically, when the
number of variables is large and each variable has many disjunctive
intervals. Consequently, the additional constraints may eventually
increase the burden of SAT solving.

4.2 Dependence-Guided Variable Ordering

The interval analysis does not provide a panacea: there exist Boolean
variables whose values cannot be fixed if the interval information is
not precise enough. When solving the Boolean formula generated
by bit-blasting, how to effectively handle those variables remains a
problem. In particular, as demonstrated in Algorithm 1, the order

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

to assign Boolean variables decides the search direction and, thus,
is crucial for the performance of SAT solving.

To address the challenge, we now describe the strategy that
leverages the word-level data-dependence information to guide
the decision order of Boolean variables after bit-blasting (§ 4.2.1).
We also discuss the combination of our strategy and the VSIDS
branching heuristic (§ 4.2.2).

4.2.1 Ordering with Data Dependence. As discussed in § 2.2, in ad-
dition to encoding a bit-vector variable with a sequence of Booleans
variables, the bit-blasting procedure also introduces auxiliary Boolean
variables to represent each bit-vector term, i.e., the outcome of calcu-
lations over the bit-vector variables. Thus, we need to schedule the
decision order for Boolean variables encoding both the bit-vector
variables and the terms.

Our key observation is that for a formula with a set N of vari-
ables and terms, the values of a subset S are often sufficient to
determine the values of all variables. Intuitively, this is because pro-
gram variables and statements usually have some data-dependence
relations. For instance, it is common in real-world programs that
fresh variables are created for naming expressions, i.e., the calcula-
tion results of other variables. Such assignments naturally introduce
data dependence.

In the SAT solving phase (Algorithm 1), once the Boolean vari-
ables in BV (S) are assigned, the BCP can infer the values of other
variables in BV (N \ S) automatically. Intuitively, at the beginning
of the search, the assignments to BV (S) can cause longer chains of
constraint propagation, because the values of other variables, as
well as the values of terms over the variables, are the deterministic
consequence of that choice.

Therefore, our basic idea is to give higher initial scores to the
variables in BV (S), which has two benefits. First, if the decisions
made within BV (S) do not lead to conflicts, the BCP can infer more
truth values for other variables, accelerating the finding of a sat-
isfying model. Second, if some “inappropriate” decisions lead to
conflicts, the SAT solver will use the conflicts information to refine
the assignments. The refinement can further influence the values
of other clauses that are dependent on BV (S).

We now discuss how to identify the subset S and how to prioritize
the elements within S . We start by constructing a data-dependence
graph for all bit-vector variables and terms. The graph is split into a
set of independent sub-graphs with a formula slicing algorithm [83],
such that nodes in each sub-graphmust have some data dependence.
For example, as shown in Figure 3, a node in the graph represents
a variable or a term, and an edge represents a data-dependence
relation. Then, we schedule the decision order as follows.

Rule 1. Given two nodesv1 andv2 such thatv2 is data-dependent
onv1, we have BV (v2) ≼ BV (v1), meaning that the Boolean variables

in BV (v1) has a higher priority than those in BV (v2).

Some clients of SMT solvers, such as symbolic execution, may
eliminate intermediate program variables that name bit-vector
terms, such that the formulas mention only input variables. In
such cases, our approach can still leverage the data dependence to
guide the decision order.

Example 4.3. Consider the constraint in Figure 3. Suppose that
the variables x andy are the intermediate variables while the others

x + 2y x

y

u

w u ∗w

Figure 3: Data-dependence graph for the constraint ϕ ≡ x =
u +w ∧ y = 2 ∗ u −w ∧ x + 2 ∗ y < 10 ∧ u ∗w < 60.

are input variables of a program. A symbolic executor may generate
a constraint where the variables x and y are replaced by u +w and
2 ∗u −w , respectively, so that the constraint only contains program
input variables:

ϕ ≡ u +w + 2 ∗ (2 ∗ u −w) < 10 ∧ u ∗w < 60.

We denote the terms,u+w , 2∗u−w ,u∗w , andu+w+2∗(2∗u−w), as,
t1, t2, t3, and t4, respectively. As illustrated in Example 2.2, the bit-
blaster needs to introduce Boolean variables to encode each element
in u,w , t1, t2, t3, and t4. Since all the terms are data-dependent on
u andw , we have

BV (t1),BV (t2),BV (t3),BV (t4) ≼ BV (u),BV (w).

Meanwhile, we have BV (t4) ≼ BV (t1) and BV (t4) ≼ BV (t2) because
t4 is data-dependent on t1 and t2.

In addition to data dependence, control dependence relations
encoded in a constraint also can be leveraged to order the nodes
that do not have data dependence relations. For instance, for a
simple program if (c) { v = a; } else { v = b; }, where the value of the
variable v is control-dependent on the condition c , if the value of c
is known, we then only need to compute the value of either a or b.
Thus, when solving a constraint encoding this control-dependence
relation, it is preferable to have BV (a),BV (b) ≼ BV (c). In practice,
such a control-dependence relation is usually encoded as an ite

(if-then-else) constraint: ϕ ≡ v = ite(c,a,b), or its equivalent forms.
Given such a constraint, we have the following rule.

Rule 2. Given a formula in the form of v = ite(c,a,b) or its
other equivalent forms, we have BV ∗(a),BV ∗(b) ≼ BV ∗(c), where we
use BV ∗(t) to represent the Boolean variables in BV (t) and all other
variables the term t data-depends on.

4.2.2 In Combination with VSIDS. In principle, our strategy can
replace the default VSIDS heuristic, which maintains a score for
each variable and updates the scores periodically (§ 2.3). However,
in practice, relying exclusively on the dependence-based scheme is
not practical because it cannot dynamically refine the scores. The
previous study [12] shows that branching strategies with dynamic
re-ordering are usually more effective than static ones.

Therefore, we combine our scoring scheme with VSIDS for the
decision-making. Recall that VSIDS initializes the variable scores
based on only statistical information, such as the number of clauses
in which a variable appears. The previous work [56, 85] has shown
that guiding VSIDS in initializing the scores can notably increase
the efficiency of the solving process. Hence, we initialize the scores
by combining the dependence and the statistical information, and
then update the scores by following VSIDS.

Fast Bit-Vector Satisfiability ISSTA ’20, July 18–22, 2020, Virtual Event, USA

In general, the impact of the data-dependence information de-
creases over time because VSIDS favors the most recently detected
conflict clauses, which will eventually dominate when the search
progresses. Fortunately, in practice, VSIDS canmakemore informed
decisions when the search progresses, because it can gather more
information about the search history to make a sophisticated choice.

To summarize, our design aims to guide the SAT solver at the
beginning of the search, when VSIDS is not yet well-formed enough,
and allows VSIDS to override the initial decisions when it has a
deeper understanding of the formula.

5 EVALUATION

We implement Trident on top of the Z3 SMT solver. Specifically,
Trident uses Z3 for parsing formulas in the SMT-LIB v2.6 for-
mat, performing word-level simplifications, and conducting the
bit-blasting. Finally, the translated Boolean formulas are handed
to our customized SAT solver, which leverage our interval and
data-dependence analyses to guide its branching heuristics. Our
evaluation is designed to answer the following research questions:
• RQ1: How effective are the two guidance strategies of Tri-
dent (§ 5.2)?
• RQ2: Is Trident faster to solve constraints compared to
other state-of-the-art SMT solvers (§ 5.3)?
• RQ3: Can Trident improve the scalability of existing sym-
bolic analysis tools (§ 5.4)?

5.1 Experimental Setup

Subjects. We use three realistic symbolic analysis tools to gener-
ate bit-vector constraints for evaluating our approach. Specifically,
Angr [78]4 is a binary analysis platform, Qsym [88]5 is a symbolic
execution engine for hybrid fuzzing, and Pinpoint [77] is a path-
sensitive static bug finder. We target subjects that cover different
scales of programs, whose sizes range from a few thousand lines
to multi-million lines, cover a wide range of applications, such as
networking libraries and database engines, and cover both standard
benchmarks and open-source projects. In total, as listed in Table 2,
we collect thirty programs in three groups:
• Angr is configured to analyze ten programs from Coreutils,6
a commonly-used dataset in symbolic execution.
• The ten programs run by Qsym are taken from the tool’s
original paper [88], including three programs in the LAVA-M
dataset [30] and seven open-source projects.
• We apply Pinpoint to analyze ten industrial-sized C/C++
programs, which are themonthly trending projects onGitHub
that we can set up.

To answer RQ1 and RQ2, we run the tools with their default
solvers to dump SMT queries as the SMT-LIB v2.6 format, and
then conduct the experiments on these queries. The number of
total queries generated by Angr, Qsym, and Pinpoint is 2,123,211,
1,502,958, and 3,806,989, respectively. Among the queries, 5,236,735
instances are satisfiable, and 2,196,423 ones are unsatisfiable. We
believe such a large number of instances are sufficient to evaluate
the performance of SMT solving.
4https://github.com/angr/angr
5https://github.com/sslab-gatech/qsym
6https://www.gnu.org/software/coreutils

Trident-Int Trident-Dep Trident

2

4

6

2.3

2.9

4.7

1.7

4.2

6.3

1.9

2.5

3.4

Sp
eed

up
ov
er

Z3

Angr Qsym Pinpoint

Figure 4: Relative performance impact of the strategies.

Table 1: Number of unsolved queries.

Group Z3

Trident-

Int

Trident-

Dep

Trident

Angr 61 29 27 23
Qsym 133 121 32 11
Pinpoint 57 45 21 21

To answer RQ3, we substitute Trident for Z3, which is the SMT
solver used by Angr, Qsym, and Pinpoint. Since Trident retains
the Z3 API, the program analyzers using Z3 can directly benefit
from our work. In the experiment, we examine whether the superior
performance of Trident translates into end-to-end benefits for the
symbolic analysis tools.

Environment. We conduct all the experiments on a workstation
with eighty-core Intel (R) Xeon (TM) CPU@2.42 GHz, 128 GB RAM,
and running 64-bit Ubuntu 16.04 LTS. All solvers are compiled with
gcc 7.4.0 using the flags -O3 -m64 -march=native. We configure
each solver to use a per-query timeout of 30 seconds, following
the prior works [66, 71] on accelerating SMT solving in symbolic
analysis.

5.2 RQ1: Effectiveness of the Guidance

Strategies

First, we investigate the effectiveness of the strategies in our solver
by comparing its four configurations. Specifically, we compare
Trident to the original Z3 solver,7 Trident-Int, and Trident-Dep,
two configurations with each of the interval-guided assignment or
dependence-guided ordering strategies turned on.

Figure 4 shows the results in terms of solving time. The data
for each benchmark group is normalized to the runtime of Z3. A
number larger than 1.0 is a speedup. Table 1 compares the number
of unsolved queries within the given time limit.

We can observe that both of the two strategies in Trident con-
tribute to its performance. The data dependence-based strategy has
better effects than that of interval-based strategy. It would be hard
to infer precise interval information for some queries, rendering
the results less effective in reducing the search space. In the Qsym
group, data-dependence analysis is the most effective. We find that
7We set the SAT solver of Z3 to use the VSIDS branching heuristic and the Luby restart
strategy [55].

https://github.com/angr/angr
https://github.com/sslab-gatech/qsym
https://www.gnu.org/software/coreutils

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

queries from Qsym tend to have many variables that have strong
data-dependence relations. Overall, the speedups range from 3.4×
to 6.3×.

Additionally, using the two optimizing strategies, Trident is
able to solve 38, 122, and 36 more queries than Z3 in the Angr,
Qsym, and Pinpoint groups, respectively.

Trident leverages the interval and data-dependence infor-
mation to reduce the solving time of Z3 by 3.4× to 6.3×, as
well as increase the number of solved queries.

5.3 RQ2: Comparison to Other SMT Solvers

In addition to comparingwithZ3, onwhichTrident is built, we also
examine the practicality of Trident by comparing it against two
state-of-the-art SMT solvers, namely, CVC4 v1.7 and Boolector
v2.4.1, In particular, Boolector won the first place in the QF_BV
track of SMT-COMP 2019,8 and CVC4 also won many champions
in other tracks.9

Figure 5 plots the cumulative runtime of the solvers. Table 2
shows the detailed comparison results. For each program, we report
the total SMT queries, the number of unsolved queries, and the
time cost of the solvers. The last column of Table 2 denotes the
speedup achieved by Trident over the fastest baseline in CVC4
and Boolector.

We can notice that, for most of the programs, Trident obtains
2.0× to 3.1× increases in performance against the baseline. For the
Angr, Qsym, and Pinpoint groups, Trident is, on average 3.0×,
2.3×, and 3.1× faster than the baseline, respectively. The largest
improvements are seen for ffmpeg and v8 in the Pinpoint group,
with speedups of 4.2×.

There are four programs for which the speedups are smaller
than 2.0×, including nm, tcpdump and jhead in the Qsym group,
and mysql in the Pinpoint group. However, we have seen other
solvers much slower when handling queries from several programs.
When solving queries from who, size, tcpdump, and jhead, CVC4
is more than 11× slower than Trident. In the cases of gluster,
ffmpeg, and v8, Boolector is 4× slower than Trident. To sum
up, Trident is, on average 7.9× and 2.9× faster than CVC4 and
Boolector, respectively.

There are a total of eleven programs for which the three SMT
solvers finish all queries: six of them are in the Angr group, and
five of them are in the Qsym group. In total, Trident solves 6, 2,
and 40 more queries than the baseline for the Angr, Qsym, and
Pinpoint groups, respectively. Overall, we conclude that Trident
can solve as many queries as the other two solvers.

Compared with the fastest solver between CVC4 and Boolec-
tor, Trident improves the SMT solving speed by 1.6× to
4.2×, without lessening the number of solved queries within
the time limit.

8https://smt-comp.github.io/
9https://cvc4.github.io/awards.html

5.4 RQ3: Improving the Scalability of Symbolic

Analysis Tools

Finally, we evaluate the usefulness of Trident for three program
analysis clients. Specifically, we configureAngr for running control-
flow recovery analysis [78], Qsym for generating test cases, and
Pinpoint for detecting null pointer dereference bugs. For each
client, we measure the speedups achieved by the three configura-
tions of our solver, following the settings of § 5.2.

Results of Angr. Figure 6 shows the reduction of analysis time
for control-flow recovery, which is a fundamental step for binary
analysis [24, 74, 78]. On average, Trident-Int, Trident-Dep, and
Trident demonstrate 1.5×, 1.6×, and 1.9× speedups, respectively.
The overall analysis speedups are smaller than the pure SMT solving
speedups, because, in addition to the symbolic execution engine,
Angr consists of other components that can be time-consuming,
such as the backward slicing [78].

Results of Qsym. Figure 7 summarizes the speedup of input gen-
eration in 24 hours of testing. To sum up, on average, Trident-Int,
Trident-Dep, and Trident increase the speed by 1.2×, 1.5×, and
1.6× speedups, respectively. As a case study, Figure 8 shows the cu-
mulative branch coverage for objdump and readelf. The speedups
are smaller than the pure SMT solving speedups because Qsym is
used for hybrid fuzzing [82, 88], where a significant proposition of
the time is spent on program execution and symbolic emulation.
Overall, the results show that Trident significantly improves the
scalability of Qsym, a state-of-the-art symbolic execution engine
for test case generation.

Results of Pinpoint. In Table 3, we report speedups on the four
largest programs, which are representative of speedups on the re-
maining programs. On average, Trident-Int, Trident-Dep, and
Trident demonstrate about 1.5×, 1.7×, and 2.4× speedups, respec-
tively. We remark that the time reduction is non-trivial for a static
bug finder, which is enough to make an originally impractical anal-
ysis usable in practice. For example, originally, Pinpoint cannot
finish analyzing v8 within 11.4 hours. In contrast, with the opti-
mizations offered by Trident, Pinpoint completes the analysis
within 5 hours, meaning that it can run in nightly mode, i.e., per-
form the full analysis of a large codebase from scratch, run by the
continuous integration system over night [13].

On average, Trident increases the end-to-end analysis speed
of three clients in Angr, Qsym, and Pinpoint by 1.9×, 1.6×,
and 2.4×, respectively.

5.5 Threats to Validity

The internal validity mainly depends on the correctness of our
implementation. To reduce this threat, at least four developers re-
view the source code of Trident. Furthermore, we have performed
extensive testing of Trident on thousands of applications, during
which it has solved billions of SMT queries. For these queries, we
compare the solving results given by Trident and several existing
SMT solvers for validating the correctness of our implementation.

The threats to external validity lie in our test suits. To reduce
the threat resulting from benchmarks, we validate our approach

https://smt-comp.github.io/
https://cvc4.github.io/awards.html

Fast Bit-Vector Satisfiability ISSTA ’20, July 18–22, 2020, Virtual Event, USA

(a) Queries from Angr (b) Queries from Qsym (c) Queries from Pinpoint

Figure 5: Results of CVC4, Boolector, and Trident on all solved instances.

Table 2: Results of the SMT solvers over the test suites. For each solver, we record the number of unsolved queries and the total

time (in minutes) taken. For Trident, the column “Speedup” denotes the speedup over the fastest solver between CVC4 and

Boolector.

Group Program Queries

CVC4 Boolector Trident

TO Time TO Time TO Time Speedup

fmt 363,552 8 2598 3 862 3 279 3.1×
logname 189,243 0 1167 0 366 0 119 3.1×
mkfifo 146,998 0 1120 0 342 0 110 3.3×
nice 307,243 62 2214 8 736 9 238 3.1×

Angr nohup 140,296 0 859 0 267 0 87 3.1×
env 253,595 21 1708 5 585 0 189 3.1×
head 97,438 0 642 0 212 0 68 2.7×
mv 173,122 20 1060 13 335 11 109 3.1×
nl 145,582 0 779 0 191 0 70 2.7×
nproc 306,142 0 1850 0 586 0 191 3.1×
uniq 133,587 0 1211 0 243 0 121 2.0×
md5sum 92,692 0 188 0 188 0 59 3.2×
who 121,647 0 1001 9 259 0 90 2.9×
readelf 113,812 11 726 0 172 6 77 2.2×

Qsym nm 80,496 0 327 0 71 0 40 1.8×
objdump 178,555 0 1053 0 209 0 88 2.4×
size 129,580 19 919 1 160 5 71 2.3×
tcpdump 236,256 0 3536 2 521 0 292 1.8×
djpeg 235,357 0 970 1 525 0 226 2.3×
jhead 180,976 0 1383 0 118 0 76 1.6×
gluster 465,054 1 211 28 411 0 65 3.2×
libicu 226,418 2 226 0 134 0 50 2.7×
imgmagick 111,122 4 89 2 54 1 22 2.5×
openssl 356,173 28 219 6 155 1 44 3.5×

Pinpoint python 124,685 3 72 0 53 0 19 2.8×
gcc 132,550 13 108 0 47 0 23 2.0×
ffmpeg 419,306 91 416 2 402 1 95 4.2×
v8 645,970 100 674 7 616 4 146 4.2×
mysql 468,879 28 198 6 133 6 70 1.9×
wine 856,832 150 677 10 719 8 187 3.6×

Total TO 561 103 55

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang
En

d-
to

-e
nd

 S
pe

ed
up

0

0.5

1

1.5

2

2.5

fmt logname mkfifo nice nohup env head mv nl nproc

Trident-Int Trident-Dep Trident

Figure 6: Speedup of control-flow recovery analysis inAngr.

Sp
ee

du
p

of
 In

pu
ts

 G
en

er
at

io
n

0

0.5

1

1.5

2

2.5

uniq md5sum who readelf nm-new objdump libtiff tcpdump djpeg strip

Trident-Int Trident-Dep Trident

Figure 7: Speedup of test case generation using Qsym.

(a) objdump (b) readelf

Figure 8: Number of covered branches in 24 hours.

Table 3: Reducing the end-to-end bug finding time (in min-

utes) of Pinpoint.

Program KLoC Z3

Trident-

Int

Trident-

Dep

Trident

ffmpeg 1001 315 207 (1.5×) 188 (1.7×) 118 (2.7×)
v8 1201 687 424 (1.6×) 359 (1.9×) 278 (2.5×)
mysql 2030 164 122 (1.3×) 112 (1.5×) 97 (1.7×)
wine 4108 526 302 (1.7×) 329 (1.6×) 210 (2.5×)

over three different symbolic analysis platforms and on thirty real-
world subjects varying in scale and functionality. However, the
queries from these platforms are not necessarily representative of
other tools. Another threat to validity is whether our strategies
can be generalized to other eager SMT solvers. In the future, we
will further apply our approach to other solvers and more symbolic
analysis frameworks.

6 RELATEDWORK

We discuss related work in three groups: symbolic execution (§ 6.1),
bit-vector constraint solving (§ 6.2) and branching heuristics (§ 6.3).

6.1 Accelerating SMT Solving in Symbolic

Execution

There is a large body of work on accelerating constraint solving for
symbolic execution. Different forms of caches such as satisfying
model [20] and unsatisfiable core [60] help avoid calling the solver
when possible. Klee employs a method called “constraint indepen-
dence” to eliminate sub-formulas that are irrelevant to the current
branch expression. Our approach can guide the SAT solver to better
handle variables that are not independent, by levering their data-
dependence relations. Symbolic executors can perform different
algebraic simplifications of expressions to make the constraints
more solver-friendly [21, 67, 76]. Semantics-preserving program
transformations [19, 31, 84] also help to generate simpler and fewer
SMT queries. These simplifications and transformations operate at
the level of the symbolic execution engines, and, thus, are orthogo-
nal to our work that operates at the level of SMT solvers. The idea
of employing a portfolio of SMT solvers for parallel solving has
been explored [66], whereby each solver runs independently, and
the result of the fastest solver is taken. Our solver can be combined
with existing solvers in a portfolio.

6.2 Decision Procedures for Bit-Vectors

The majority of the state-of-the-art SMT solvers [2, 25, 29, 33, 63]
solve bit-vector constraints via reduction to SAT, some employing
specialized procedures for equality reasoning [17] and linear mod-
ulo arithmetic [36]. A number of methods alternative to bit-blasting
have been developed, such as the Canonizer-based approaches [4,
28], reduction to Effectively Propositional Logic (EPR) [49], the
model-constructing satisfiability calculus (mcSAT) [89], the stochas-
tic local search (SLS) algorithms [35, 64, 65], and the abstraction-
based methods [18]. Most of these approaches operate over re-
stricted subsets of bit-vector theory. We tried the SLS-based solvers
in Boolector and Z3, but found that they are not competitive with
the solvers examined in our evaluation.

Most existing work on enhancing the eager approach focuses on
improving the word-level preprocessing and bit-blasting phases [34,
45, 48, 57, 70, 81]. Unconstrained term propagation [16, 17] identi-
fies variables and terms that are irrelevant for determining satis-
fiability, thereby reducing the problem size. Nadel [61] proposes
an algorithm that generates word-level rewriting rules at runtime
for a given problem. Singh and Solar-Lezama [81] generates word-
level simplifiers using program synthesis. Inala et al. [45] generate
domain-specific encoding schema for bit-blasting with synthesis
and machine learning techniques. These optimizations for word-
level preprocessing and bit-blasting are orthogonal to our approach.

Interval Constraint Propagation (ICP) is a sound but incomplete
numerical method for constraint solving [7, 8, 14, 23, 32, 38]. Most
existing ICP techniques work only for real or integer formulas. Jan-
ota and Wintersteiger [46] propose a method for inferring interval
information of bit-vectors from a system of simple inequalities. In
each of the inequality, only one variable is permitted and there are
no multiplications. Dustmann et al. [32] present a semi-decision
procedure for bit-vectors, which tracks the possible values for each
symbolic variable, so as to quickly solve certain types of queries
before bit-blasting. Compared with the previous work, our analysis
is not restricted to certain classes of queries. Besides, it attempts to

Fast Bit-Vector Satisfiability ISSTA ’20, July 18–22, 2020, Virtual Event, USA

reduce the search space of SAT solving after bit-blasting, instead of
directly deciding the satisfiability.

6.3 Branching Heuristics

There is a huge literature on SAT branching heuristics, such as
MOM [69], Jeroslow-Wang [47], VSIDS [59], Conflict History-Based
(CHB) [54], and so on. Different variants of VSIDS have also been
proposed, such as BerkMin’s strategy [41], exponential VSIDS
(EVSIDS) [10], variable move-to-front (VMTF) [72], clause-move-
to-front (CMTF) [39], and average conflict index decision score
(ACIDS) [12]. However, these branching heuristics are designed for
general SAT problems.

The dependence information has been used to restrict the set of
decision variables for SAT solving [26, 27, 52, 58]. Given a Boolean
formula with a set N of variables, they restrict the branching heuris-
tic to focus on a subset S that is sufficient to determine the truth
values of all variables. In contrast, we leverage the data-dependence
relations to initialize the scores, without restricting the branching
only to the subset. Besides, we combine the data- and control-
dependence information to further schedule the order of variables
within the subset S .

Previous work shows that structure information can be utilized
to improve the branching heuristic for solving SAT queries from
bounded model checking (BMC). Shtrichman [79] predetermines
the variable ordering by traversing the variable dependency graph.
Wang et al. [85] identify important variables from previous unsatis-
fiable BMC instances and apply them to solve the current instance.
Yin et al. [87] give a higher priority to the transition variables from
the transition system. These approaches target pure Boolean formu-
las and leverage the domain-specific knowledge of circuits, instead
of word-level structure and information.

The theory-aware approaches [9, 22, 42, 75] for DPLL(T) lazy
SMT solving attempt to make the SAT branching heuristic aware
of the T -semantic of the literals. Z3Str3 [9] biases the search to-
wards branches that contain easier string constraints. Goldwasser
et al. [42] guide the branching by leveraging the T -implications be-
tween linear arithmetic constraints. Being aware of the implication
relations, they can choose unassigned atomic predicates that are
consistent with the current partial assignment. A recent work [22]
takes advantage of the control-flow information to reduce the re-
dundant search space. These methods differ from our method across
two key technical dimensions. First, they work under the context of
lazy SMT solving, while our approach attempts to accelerate eager
SMT solving. Given a first-order formula, our reasoning centers
around the bit-blasted and equisatisfiable Boolean formula, but not
around the approximated Boolean skeleton. Second, they exploit
correlations between atomic predicates locally, while we analyze
globally word-level information such as the variable interval.

7 CONCLUSION

This paper presents an approach to accelerating eager bit-vector
solvers, which infers the interval and data-dependence information
of the bit-vector formula to guide the SAT solver after bit-blasting.
We have evaluated the proposed techniques over queries from three
realistic symbolic analysis platforms, demonstrating the advantages
of our approach.

ACKNOWLEDGMENTS

We thank Yushan Zhang, Yikun Hu, as well as the anonymous re-
viewers for their insightful comments. This work is partially funded
by an MSRA grant, the Hong Kong GRF16230716, GRF16206517,
ITS/215/16FP, ITS/440/18FP grants, and theNSFC Project No. 61902329.
Qingkai Shi is the corresponding author.

REFERENCES

[1] Athanasios Avgerinos. 2014. Exploiting Trade-offs in Symbolic Execution for

Identifying Security Bugs. Ph.D. Dissertation.
[2] Clark Barrett, Christopher Conway, Morgan Deters, Liana Hadarean, Dejan

Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. 2011. CVC4. In
Proceedings of the 23rd International Conference on Computer Aided Verification

(Snowbird, UT) (CAV’11). Springer-Verlag, Berlin, Heidelberg, 171–177.
[3] Clark Barrett, Aaron Stump, and Cesare Tinelli. 2010. The satisfiability modulo

theories library (SMT-LIB). www. SMT-LIB. org 15 (2010), 18–52.
[4] Clark W Barrett, David L Dill, and Jeremy R Levitt. 1998. A decision procedure

for bit-vector arithmetic. In Proceedings of the 35th Annual Design Automation

Conference (San Francisco, California, USA) (DAC ’98). ACM, New York, NY, USA,
522–527. https://doi.org/10.1145/277044.277186

[5] Clark W. Barrett, David L. Dill, and Aaron Stump. 2002. Checking Satisfiability
of First-Order Formulas by Incremental Translation to SAT. In Proceedings of the

14th International Conference on Computer Aided Verification (CAV ’02). Springer-
Verlag, Berlin, Heidelberg, 236–249. https://doi.org/10.5555/647771.734410

[6] Michael Bartovn, Iddo Hanniel, Gershon Elber, andMyung-Soo Kim. 2010. Precise
Hausdorff Distance Computation between Polygonal Meshes. Comput. Aided

Geom. Des. 27, 8 (Nov. 2010), 580–591. https://doi.org/10.1016/j.cagd.2010.04.004
[7] Jason Belt, Robby, and Xianghua Deng. 2009. Sireum/Topi LDP: A Lightweight

Semi-Decision Procedure for Optimizing Symbolic Execution-Based Analyses. In
Proceedings of the 7th Joint Meeting of the European Software Engineering Confer-

ence and the ACM SIGSOFT Symposium on The Foundations of Software Engineering

(Amsterdam, The Netherlands) (ESEC/FSE ’09). Association for Computing Ma-
chinery, New York, NY, USA, 355–364. https://doi.org/10.1145/1595696.1595762

[8] Frédéric Benhamou and Laurent Granvilliers. 2006. Continuous and interval
constraints. In Foundations of Artificial Intelligence. Vol. 2. Elsevier, 571–603.

[9] Murphy Berzish, Vijay Ganesh, and Yunhui Zheng. 2017. Z3str3: A String Solver
with Theory-Aware Heuristics. In Proceedings of the 17th Conference on Formal

Methods in Computer-Aided Design (Vienna, Austria) (FMCAD ’17). FMCAD Inc,
Austin, Texas, 55–59. https://doi.org/10.5555/3168451.3168468

[10] Armin Biere. 2008. Adaptive Restart Strategies for Conflict Driven SAT Solvers.
In Proceedings of the 11th International Conference on Theory and Applications

of Satisfiability Testing (Guangzhou, China) (SAT’08). Springer-Verlag, Berlin,
Heidelberg, 28–33.

[11] A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS
Press, NLD. https://doi.org/10.5555/1550723

[12] Armin Biere and Andreas Fröhlich. 2015. Evaluating CDCL Variable Scoring
Schemes. In Theory and Applications of Satisfiability Testing – SAT 2015, Marijn
Heule and Sean Weaver (Eds.). Springer International Publishing, Cham, 405–422.
https://doi.org/10.1007/978-3-319-24318-4_29

[13] Sam Blackshear, Nikos Gorogiannis, Peter W. OHearn, and Ilya Sergey. 2018.
RacerD: Compositional Static Race Detection. Proc. ACM Program. Lang. 2,
OOPSLA, Article 144 (Oct. 2018), 28 pages. https://doi.org/10.1145/3276514

[14] Mateus Borges, Marcelo d’Amorim, Saswat Anand, David Bushnell, and Corina S.
Pasareanu. 2012. Symbolic Execution with Interval Solving and Meta-Heuristic
Search. In Proceedings of the 2012 IEEE Fifth International Conference on Soft-

ware Testing, Verification and Validation (ICST ’12). IEEE Computer Society, USA,
111–120. https://doi.org/10.1109/ICST.2012.91

[15] Aaron R Bradley and Zohar Manna. 2007. The calculus of computation: decision

procedures with applications to verification. Springer Science & Business Media.
[16] Robert Brummayer. 2009. Efficient SMT Solving for Bit-Vectors and the Extensional

Theory of Arrays. Ph.D. Dissertation. Informatik, Johannes Kepler University.
[17] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio,

Ziyad Hanna, Alexander Nadel, Amit Palti, and Roberto Sebastiani. 2007. A
lazy and layered SMT (BV) solver for hard industrial verification problems. In
Proceedings of the 19th International Conference on Computer Aided Verification

(Berlin, Germany) (CAV’07). Springer-Verlag, Berlin, Heidelberg, 547–560.
[18] Randal E. Bryant, Daniel Kroening, Joël Ouaknine, Sanjit A. Seshia, Ofer Strich-

man, and Bryan Brady. 2007. Deciding Bit-Vector Arithmetic with Abstraction.
In Proceedings of the 13th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems (Braga, Portugal) (TACAS’07). Springer-
Verlag, Berlin, Heidelberg, 358–372.

[19] Cristian Cadar. 2015. Targeted Program Transformations for Symbolic Execution.
In Proceedings of the 2015 10th JointMeeting on Foundations of Software Engineering

https://doi.org/10.1145/277044.277186
https://doi.org/10.5555/647771.734410
https://doi.org/10.1016/j.cagd.2010.04.004
https://doi.org/10.1145/1595696.1595762
https://doi.org/10.5555/3168451.3168468
https://doi.org/10.5555/1550723
https://doi.org/10.1007/978-3-319-24318-4_29
https://doi.org/10.1145/3276514
https://doi.org/10.1109/ICST.2012.91

ISSTA ’20, July 18–22, 2020, Virtual Event, USA Peisen Yao, Qingkai Shi, Heqing Huang, and Charles Zhang

(Bergamo, Italy) (ESEC/FSE 2015). Association for Computing Machinery, New
York, NY, USA, 906–909. https://doi.org/10.1145/2786805.2803205

[20] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In Proceedings of the 8th USENIX Conference on Operating Systems Design and

Implementation (San Diego, California) (OSDI’08). USENIX Association, Berkeley,
CA, USA, 209–224.

[21] Cristian Cadar, Vijay Ganesh, Peter M Pawlowski, David L Dill, and Dawson R
Engler. 2006. EXE: automatically generating inputs of death. (2006), 322–335.
https://doi.org/10.1145/1180405.1180445

[22] Jianhui Chen and Fei He. 2018. Control Flow-guided SMT Solving for Program
Verification. In Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering (Montpellier, France) (ASE 2018). ACM, New
York, NY, USA, 351–361. https://doi.org/10.1145/3238147.3238218

[23] Zakaria Chihani, BrunoMarre, François Bobot, and Sébastien Bardin. 2017. Sharp-
ening constraint programming approaches for bit-vector theory. In International

Conference on AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems. Springer, 3–20.
[24] Cristina Cifuentes and Mike Van Emmerik. 1999. Recovery of Jump Table Case

Statements from Binary Code. In Proceedings of the 7th International Workshop

on Program Comprehension (IWPC ’99). IEEE Computer Society, USA, 192. https:
//doi.org/10.5555/520033.858247

[25] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto
Sebastiani. 2013. The MathSAT5 SMT Solver.. In Proceedings of the 19th Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of

Systems (Rome, Italy) (TACAS’13). Springer-Verlag, Berlin, Heidelberg, 93–107.
https://doi.org/10.1007/978-3-642-36742-7_7

[26] Fady Copty, Limor Fix, Ranan Fraer, Enrico Giunchiglia, Gila Kamhi, Armando
Tacchella, and Moshe Y. Vardi. 2001. Benefits of Bounded Model Checking at an
Industrial Setting. In Proceedings of the 13th International Conference on Computer

Aided Verification (CAV ’01). Springer-Verlag, London, UK, UK, 436–453.
[27] James M. Crawford and Andrew B. Baker. 1994. Experimental Results on the

Application of Satisfiability Algorithms to Scheduling Problems. In Proceedings

of the Twelfth National Conference on Artificial Intelligence (Vol. 2) (Seattle, Wash-
ington, USA) (AAAI’94). American Association for Artificial Intelligence, Menlo
Park, CA, USA, 1092–1097. http://dl.acm.org/citation.cfm?id=199480.199540

[28] David Cyrluk, Oliver Möller, and Harald Rueß. 1997. An efficient decision proce-
dure for the theory of fixed-sized bit-vectors. In Proceedings of the 9th International
Conference on Computer Aided Verification (CAV ’97). Springer-Verlag, London,
UK, UK, 60–71. http://dl.acm.org/citation.cfm?id=647766.733602

[29] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th International Conference

on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340.

[30] B. Dolan-Gavitt, P. Hulin, E. Kirda, T. Leek, A. Mambretti, W. Robertson, F. Ulrich,
and R. Whelan. 2016. LAVA: Large-Scale Automated Vulnerability Addition. In
2016 IEEE Symposium on Security and Privacy (SP). 110–121. https://doi.org/10.
1109/SP.2016.15

[31] Shiyu Dong, Oswaldo Olivo, Lingming Zhang, and Sarfraz Khurshid. 2015. Study-
ing the Influence of Standard Compiler Optimizations on Symbolic Execution.
In Proceedings of the 2015 IEEE 26th International Symposium on Software Reli-

ability Engineering (ISSRE) (ISSRE ’15). IEEE Computer Society, USA, 205–215.
https://doi.org/10.1109/ISSRE.2015.7381814

[32] Oscar Soria Dustmann, Klaus Wehrle, and Cristian Cadar. 2018. PARTI: A
Multi-interval Theory Solver for Symbolic Execution. In Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering

(Montpellier, France) (ASE 2018). ACM, New York, NY, USA, 430–440. https:
//doi.org/10.1145/3238147.3238179

[33] Bruno Dutertre. 2014. Yices2.2. In Proceedings of the 16th International Conference

on Computer Aided Verification - Volume 8559. Springer-Verlag, Berlin, Heidelberg,
737–744. https://doi.org/10.1007/978-3-319-08867-9_49

[34] Anders Franzén. 2010. Efficient solving of the satisfiability modulo bit-vectors

problem and some extensions to SMT. Ph.D. Dissertation. University of Trento.
[35] Andreas Fröhlich, Armin Biere, Christoph M Wintersteiger, and Youssef Hamadi.

2015. Stochastic Local Search for Satisfiability Modulo Theories.. In Proceedings

of the Twenty-Ninth AAAI Conference on Artificial Intelligence (Austin, Texas)
(AAAI’15). AAAI Press, 1136–1143. http://dl.acm.org/citation.cfm?id=2887007.
2887165

[36] Vijay Ganesh and David L Dill. 2007. A decision procedure for bit-vectors and
arrays. In Proceedings of the 19th International Conference on Computer Aided

Verification (Berlin, Germany) (CAV’07). Springer-Verlag, Berlin, Heidelberg, 519–
531.

[37] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J.
Stuckey. 2015. Interval Analysis and Machine Arithmetic: Why Signedness
Ignorance Is Bliss. ACM Trans. Program. Lang. Syst. 37, 1, Article 1 (Jan. 2015),
35 pages. https://doi.org/10.1145/2651360

[38] Sicun Gao, Malay Ganai, Franjo Ivančić, Aarti Gupta, Sriram Sankaranarayanan,
and Edmund M. Clarke. 2010. Integrating ICP and LRA Solvers for Deciding

Nonlinear Real Arithmetic Problems. In Proceedings of the 2010 Conference on

Formal Methods in Computer-Aided Design (Lugano, Switzerland) (FMCAD ’10).
FMCAD Inc, Austin, Texas, 81–90.

[39] Roman Gershman and Ofer Strichman. 2005. HAIFASAT: A New Robust SAT
Solver. In Proceedings of the First Haifa International Conference on Hardware and

Software Verification and Testing (Haifa, Israel) (HVC’05). Springer-Verlag, Berlin,
Heidelberg, 76–89. https://doi.org/10.1007/11678779_6

[40] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed auto-
mated random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on

Programming Language Design and Implementation (Chicago, IL, USA) (PLDI ’05).
ACM, New York, NY, USA, 213–223. https://doi.org/10.1145/1065010.1065036

[41] E. Goldberg and Y. Novikov. 2002. BerkMin: A Fast and Robust Sat-Solver. In
Proceedings of the Conference on Design, Automation and Test in Europe (DATE

’02). IEEE Computer Society, USA, 142. https://doi.org/10.5555/882452.874512
[42] Dan Goldwasser, Ofer Strichman, and Shai Fine. 2008. A Theory-Based Decision

Heuristic for DPLL(T). In Proceedings of the 2008 International Conference on

Formal Methods in Computer-Aided Design (Portland, Oregon) (FMCAD ’08). IEEE
Press, Article 13, 8 pages.

[43] Liana Hadarean, Kshitij Bansal, Dejan Jovanović, Clark Barrett, and Cesare Tinelli.
2014. A tale of two solvers: Eager and lazy approaches to bit-vectors. In Proceed-

ings of the 16th International Conference on Computer Aided Verification - Volume

8559. Springer-Verlag, Berlin, Heidelberg, 680–695. https://doi.org/10.1007/978-
3-319-08867-9_45

[44] Trevor Alexander Hansen. 2012. A constraint solver and its application to machine

code test generation. Ph.D. Dissertation.
[45] Jeevana Priya Inala, Rohit Singh, and Armando Solar-Lezama. 2016. Synthesis of

Domain Specific CNF Encoders for Bit-Vector Solvers. In Theory and Applications

of Satisfiability Testing – SAT 2016, Nadia Creignou and Daniel Le Berre (Eds.).
Springer International Publishing, Cham, 302–320. https://doi.org/10.1007/978-
3-319-40970-2_19

[46] Mikolás Janota and Christoph M Wintersteiger. 2016. On Intervals and Bounds
in Bit-vector Arithmetic.. In SMT@ IJCAR. 81–84.

[47] Robert G Jeroslow and Jinchang Wang. 1990. Solving propositional satisfiability
problems. Annals of mathematics and Artificial Intelligence 1, 1-4 (1990), 167–187.

[48] Susmit Jha, Rhishikesh Limaye, and Sanjit A. Seshia. 2009. Beaver: Engineering
an Efficient SMT Solver for Bit-Vector Arithmetic. In Proceedings of the 21st

International Conference on Computer Aided Verification (Grenoble, France) (CAV
’09). Springer-Verlag, Berlin, Heidelberg, 668–674. https://doi.org/10.1007/978-3-
642-02658-4_53

[49] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. 2013. bv2Epr: A tool
for polynomially translating quantifier-free bit-vector formulas into EPR. In
Proceedings of the 24th International Conference on Automated Deduction (Lake
Placid, NY) (CADE’13). Springer-Verlag, Berlin, Heidelberg, 443–449. https:
//doi.org/10.1007/978-3-642-38574-2_32

[50] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. 2016. Complexity of
Fixed-Size Bit-Vector Logics. Theor. Comp. Sys. 59, 2 (Aug. 2016), 323–376. https:
//doi.org/10.1007/s00224-015-9653-1

[51] Daniel Kroening and Ofer Strichman. 2008. Decision Procedures: An Algorithmic

Point of View (1 ed.). Springer Publishing Company, Incorporated.
[52] Chu Min Li. 2000. Integrating Equivalency Reasoning into Davis-Putnam Proce-

dure. In Proceedings of the Seventeenth National Conference on Artificial Intelligence
and Twelfth Conference on Innovative Applications of Artificial Intelligence. AAAI
Press, 291–296. https://doi.org/10.5555/647288.760210

[53] Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik.
2014. Symbolic optimization with SMT solvers. In Proceedings of the 41st ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego,
California, USA) (POPL ’14). ACM, New York, NY, USA, 607–618. https://doi.
org/10.1145/2535838.2535857

[54] Jia Hui Liang, Vijay Ganesh, Pascal Poupart, and Krzysztof Czarnecki. 2016.
Exponential Recency Weighted Average Branching Heuristic for SAT Solvers. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (Phoenix,
Arizona) (AAAI’16). AAAI Press, 3434–3440. http://dl.acm.org/citation.cfm?id=
3016100.3016385

[55] Michael Luby, Alistair Sinclair, and David Zuckerman. 1993. Optimal Speedup
of Las Vegas Algorithms. Inf. Process. Lett. 47, 4 (Sept. 1993), 173–180. https:
//doi.org/10.1016/0020-0190(93)90029-9

[56] Zoltán Ádám Mann and Pál András Papp. 2017. Guiding SAT solving by formula
partitioning. International Journal on Artificial Intelligence Tools 26, 04 (2017),
1750011.

[57] Norbert Manthey, Marijn J. H. Heule, and Armin Biere. 2012. Automated Reen-
coding of Boolean Formulas. In Proceedings of the 8th International Conference on

Hardware and Software: Verification and Testing (Haifa, Israel) (HVC’12). Springer-
Verlag, Berlin, Heidelberg, 102–117. https://doi.org/10.1007/978-3-642-39611-
3_14

[58] Fabio Massacci and Laura Marraro. 2000. Logical cryptanalysis as a SAT problem.
Journal of Automated Reasoning 24, 1-2 (2000), 165–203.

[59] MatthewW. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. 2001. Chaff: Engineering an Efficient SAT Solver. In Proceedings of the

https://doi.org/10.1145/2786805.2803205
https://doi.org/10.1145/1180405.1180445
https://doi.org/10.1145/3238147.3238218
https://doi.org/10.5555/520033.858247
https://doi.org/10.5555/520033.858247
https://doi.org/10.1007/978-3-642-36742-7_7
http://dl.acm.org/citation.cfm?id=199480.199540
http://dl.acm.org/citation.cfm?id=647766.733602
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/SP.2016.15
https://doi.org/10.1109/ISSRE.2015.7381814
https://doi.org/10.1145/3238147.3238179
https://doi.org/10.1145/3238147.3238179
https://doi.org/10.1007/978-3-319-08867-9_49
http://dl.acm.org/citation.cfm?id=2887007.2887165
http://dl.acm.org/citation.cfm?id=2887007.2887165
https://doi.org/10.1145/2651360
https://doi.org/10.1007/11678779_6
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.5555/882452.874512
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-319-08867-9_45
https://doi.org/10.1007/978-3-319-40970-2_19
https://doi.org/10.1007/978-3-319-40970-2_19
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.org/10.1007/978-3-642-02658-4_53
https://doi.org/10.1007/978-3-642-38574-2_32
https://doi.org/10.1007/978-3-642-38574-2_32
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.1007/s00224-015-9653-1
https://doi.org/10.5555/647288.760210
https://doi.org/10.1145/2535838.2535857
https://doi.org/10.1145/2535838.2535857
http://dl.acm.org/citation.cfm?id=3016100.3016385
http://dl.acm.org/citation.cfm?id=3016100.3016385
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1016/0020-0190(93)90029-9
https://doi.org/10.1007/978-3-642-39611-3_14
https://doi.org/10.1007/978-3-642-39611-3_14

Fast Bit-Vector Satisfiability ISSTA ’20, July 18–22, 2020, Virtual Event, USA

38th Annual Design Automation Conference (Las Vegas, Nevada, USA) (DAC ’01).
ACM, New York, NY, USA, 530–535. https://doi.org/10.1145/378239.379017

[60] Jan Mrázek, Martin Jonáš, Vladimír Štill, Henrich Lauko, and Jiří Barnat. 2017.
Optimizing and Caching SMT Queries in SymDIVINE. In Proceedings, Part II, of

the 23rd International Conference on Tools and Algorithms for the Construction and

Analysis of Systems - Volume 10206. Springer-Verlag, Berlin, Heidelberg, 390–393.
https://doi.org/10.1007/978-3-662-54580-5_29

[61] Alexander Nadel. 2014. Bit-Vector Rewriting with Automatic Rule Generation.
In Proceedings of the 16th International Conference on Computer Aided Verification

- Volume 8559. Springer-Verlag, Berlin, Heidelberg, 663–679. https://doi.org/10.
1007/978-3-319-08867-9_44

[62] Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish
Chandra. 2013. Semfix: Program repair via semantic analysis. In Proceed-

ings of the 2013 International Conference on Software Engineering (San Fran-
cisco, CA, USA) (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 772–781. http:
//dl.acm.org/citation.cfm?id=2486788.2486890

[63] Aina Niemetz, Mathias Preiner, and Armin Biere. 2014 (published 2015). Boolector
2.0 system description. Journal on Satisfiability, Boolean Modeling and Computa-

tion 9 (2014 (published 2015)), 53–58.
[64] Aina Niemetz, Mathias Preiner, and Armin Biere. 2017. Propagation based local

search for bit-precise reasoning. Formal Methods in System Design 51, 3 (2017),
608–636. https://doi.org/10.1007/s10703-017-0295-6

[65] Aina Niemetz, Mathias Preiner, Armin Biere, and Andreas Fröhlich. 2015. Improv-
ing local search for bit-vector logics in SMT with path propagation. Proceedings
of DIFTS (2015), 1–10.

[66] Hristina Palikareva and Cristian Cadar. 2013. Multi-Solver Support in Symbolic
Execution. In Proceedings of the 25th International Conference on Computer Aided

Verification - Volume 8044 (Saint Petersburg, Russia) (CAV 2013). Springer-Verlag,
Berlin, Heidelberg, 53–68.

[67] David M. Perry, Andrea Mattavelli, Xiangyu Zhang, and Cristian Cadar. 2017.
Accelerating Array Constraints in Symbolic Execution. In Proceedings of the

26th ACM SIGSOFT International Symposium on Software Testing and Analysis

(Santa Barbara, CA, USA) (ISSTA 2017). ACM, New York, NY, USA, 68–78. https:
//doi.org/10.1145/3092703.3092728

[68] Corneliu Popeea and Wei-Ngan Chin. 2006. Inferring Disjunctive Postconditions.
In Proceedings of the 11th Asian Computing Science Conference on Advances in

Computer Science: Secure Software and Related Issues (Tokyo, Japan) (ASIAN’06).
Springer-Verlag, Berlin, Heidelberg, 331–345. https://doi.org/10.5555/1782734.
1782760

[69] Daniele Pretolani. 1996. Efficiency and stability of hypergraph SAT algorithms.
DIMACS Series in Discrete Mathematics and Theoretical Computer Science 26 (1996),
479–498.

[70] Andrew Reynolds, Haniel Barbosa, Aina Niemetz, Andres Nötzli, Mathias Preiner,
Clark Barrett, and Cesare Tinelli. 2018. Rewrites for SMT solvers using syntax-
guided enumeration. In SMT Workshop.

[71] Andrew Reynolds, Maverick Woo, Clark Barrett, David Brumley, Tianyi Liang,
and Cesare Tinelli. 2017. Scaling up DPLL (T) string solvers using context-
dependent simplification. In International Conference on Computer Aided Verifica-

tion. Springer, 453–474.
[72] Lawrence Ryan. 2004. Efficient algorithms for clause-learning SAT solvers. Ph.D.

Dissertation. Theses (School of Computing Science)/Simon Fraser University.
[73] Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, and Aarti Gupta. 2006.

Static Analysis in Disjunctive Numerical Domains. In Proceedings of the 13th

International Conference on Static Analysis (Seoul, Korea) (SAS’06). Springer-
Verlag, Berlin, Heidelberg, 3–17. https://doi.org/10.1007/11823230_2

[74] B. Schwarz, S. Debray, and G. Andrews. 2002. Disassembly of Executable Code
Revisited. In Proceedings of the Ninth Working Conference on Reverse Engineering

(WCRE 02) (WCRE ’02). IEEE Computer Society, USA, 45. https://doi.org/10.5555/
882506.885138

[75] Roberto Sebastiani. 2007. Lazy satisfiability modulo theories. Journal on Satisfia-

bility, Boolean Modeling and Computation 3 (2007), 141–224.
[76] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing

engine for C. In Proceedings of the 10th European Software Engineering Conference

Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations

of Software Engineering (Lisbon, Portugal) (ESEC/FSE-13). ACM, New York, NY,
USA, 263–272. https://doi.org/10.1145/1081706.1081750

[77] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and Charles Zhang.
2018. Pinpoint: fast and precise sparse value flow analysis for million lines of code.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language

Design and Implementation (Philadelphia, PA, USA) (PLDI 2018). ACM, New York,
NY, USA, 693–706. https://doi.org/10.1145/3192366.3192418

[78] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,
Audrey Dutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,
and Giovanni Vigna. 2016. SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis. In IEEE Symposium on Security and Privacy.

[79] Ofer Shtrichman. 2000. Tuning SAT checkers for bounded model checking.
In International Conference on Computer Aided Verification (CAV ’02). Springer,
480–494.

[80] João P. Marques Silva and Karem A. Sakallah. 1996. GRASP&Mdash;a New Search
Algorithm for Satisfiability. In Proceedings of the 1996 IEEE/ACM International

Conference on Computer-aided Design (San Jose, California, USA) (ICCAD ’96).
IEEE Computer Society, Washington, DC, USA, 220–227. http://dl.acm.org/
citation.cfm?id=244522.244560

[81] Rohit Singh and Armando Solar-Lezama. 2016. Swapper: A Framework for
Automatic Generation of Formula Simplifiers Based on Conditional Rewrite
Rules. In Proceedings of the 16th Conference on Formal Methods in Computer-

Aided Design (Mountain View, California) (FMCAD ’16). FMCAD Inc, Austin, TX,
185–192. http://dl.acm.org/citation.cfm?id=3077629.3077661

[82] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,
Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.
2016. Driller: Augmenting Fuzzing Through Selective Symbolic Execution.. In
NDSS, Vol. 16. 1–16.

[83] Willem Visser, Jaco Geldenhuys, and Matthew B Dwyer. 2012. Green: reducing,
reusing and recycling constraints in program analysis. In Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering

(Cary, North Carolina) (FSE ’12). ACM, New York, NY, USA, Article 58, 11 pages.
https://doi.org/10.1145/2393596.2393665

[84] Jonas Wagner, Volodymyr Kuznetsov, and George Candea. 2013. Overify: Opti-
mizing Programs for Fast Verification. In 14thWorkshop on Hot Topics in Operating

Systems (HotOS XIV).
[85] Chao Wang, HoonSang Jin, Gary D. Hachtel, and Fabio Somenzi. 2004. Refining

the SAT Decision Ordering for Bounded Model Checking. In Proceedings of the

41st Annual Design Automation Conference (San Diego, CA, USA) (DAC ’04). ACM,
New York, NY, USA, 535–538. https://doi.org/10.1145/996566.996713

[86] Yichen Xie and Alex Aiken. 2005. Scalable error detection using boolean satisfia-
bility. In Proceedings of the 32Nd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Long Beach, California, USA) (POPL ’05). ACM, New
York, NY, USA, 351–363. https://doi.org/10.1145/1040305.1040334

[87] Liangze Yin, Fei He, and Ming Gu. 2013. Optimizing the SAT Decision Ordering
of Bounded Model Checking by Structural Information. In Proceedings of the 2013

International Symposium on Theoretical Aspects of Software Engineering (TASE

’13). IEEE Computer Society, USA, 23–26. https://doi.org/10.1109/TASE.2013.11
[88] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim. 2018. QSYM : A

Practical Concolic Execution Engine Tailored for Hybrid Fuzzing. In Proceedings

of the 27th USENIX Conference on Security Symposium (Baltimore, MD, USA)
(SEC’18). USENIX Association, Berkeley, CA, USA, 745–761. http://dl.acm.org/
citation.cfm?id=3277203.3277260

[89] Aleksandar Zeljić, Christoph MWintersteiger, and Philipp Rümmer. 2016. Decid-
ing bit-vector formulas with mcSAT. In International Conference on Theory and

Applications of Satisfiability Testing. Springer, 249–266.

https://doi.org/10.1145/378239.379017
https://doi.org/10.1007/978-3-662-54580-5_29
https://doi.org/10.1007/978-3-319-08867-9_44
https://doi.org/10.1007/978-3-319-08867-9_44
http://dl.acm.org/citation.cfm?id=2486788.2486890
http://dl.acm.org/citation.cfm?id=2486788.2486890
https://doi.org/10.1007/s10703-017-0295-6
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.1145/3092703.3092728
https://doi.org/10.5555/1782734.1782760
https://doi.org/10.5555/1782734.1782760
https://doi.org/10.1007/11823230_2
https://doi.org/10.5555/882506.885138
https://doi.org/10.5555/882506.885138
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/3192366.3192418
http://dl.acm.org/citation.cfm?id=244522.244560
http://dl.acm.org/citation.cfm?id=244522.244560
http://dl.acm.org/citation.cfm?id=3077629.3077661
https://doi.org/10.1145/2393596.2393665
https://doi.org/10.1145/996566.996713
https://doi.org/10.1145/1040305.1040334
https://doi.org/10.1109/TASE.2013.11
http://dl.acm.org/citation.cfm?id=3277203.3277260
http://dl.acm.org/citation.cfm?id=3277203.3277260

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Satisfiability Modulo Theories
	2.2 Eager Bit-Vector Solving
	2.3 SAT Solving and Branching Heuristic

	3 Motivation
	3.1 Assignment Restriction
	3.2 Variable Ordering

	4 Approach
	4.1 Interval-Guided Variable Assignments
	4.2 Dependence-Guided Variable Ordering

	5 Evaluation
	5.1 Experimental Setup
	5.2 RQ1: Effectiveness of the Guidance Strategies
	5.3 RQ2: Comparison to Other SMT Solvers
	5.4 RQ3: Improving the Scalability of Symbolic Analysis Tools
	5.5 Threats to Validity

	6 Related Work
	6.1 Accelerating SMT Solving in Symbolic Execution
	6.2 Decision Procedures for Bit-Vectors
	6.3 Branching Heuristics

	7 Conclusion
	References

