X/Open CAE Specification

X/Open DCE: Remote Procedure Call

X/Open Company Ltd.

O August 1994, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

Published by X/Open Company Limited under license from the Open Software Foundation (OSF).
Portions of this document include text excerpted and/or derived from the Open Software Foundation
Application Environment Specification for Distributed Computing (AES/DC) with the permission of
OSF. However, the text appearing herein does not represent the official OSF version of the AES/DC,
which is copyright O 1992, 1993 Open Software Foundation, Inc. This document and the software to
which it relates are derived in part from materials which are copyright 0 1990, 1991 Digital Equipment
Corporation and copyright [0 1990, 1991 Hewlett-Packard Company.

X/0pen CAE Specification
X/0pen DCE: Remote Procedure Call

ISBN: 1-85912-041-5
X/0pen Document Number: C309

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/0pen Company Limited
Apex Plaza

Forbury Road

Reading

Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

xopen.co.uk

X/0pen CAE Specification (1994)

Contents

Part 1 Remote Procedure Call Introduction.............cooeee. 1
Chapter 1 Introduction to the RPC Specification...........ccccccconrirennnnn. 3
1.1 00 Lo 11 110 TR 4
1.2 Services and ProtocCols ... 5
1.3 Conformance REQUITEMENTS.......ccccuvuciiiiernciresse e 7
Part 2 RPC Application Programmer’s Interface................ 9
Chapter 2 Introduction to the RPC APl ... 11
2.1 RPC Programming Model OVErVIeWccccoveeirrnviennrseenesnienens 12
211 Client/Server Model ... 12
2111 INTEITACES. ..ot 12
2112 REMOTENESS ...t 12
2113 27T T [T o T 13
2114 NAME SEIVICES ...ttt 13
2.1.15 RESOUICE MOEIS ... s 14
2116 SECUTNILY SEIVICES ...vcvieiiieicec sttt 14
2117 Server Implementation ... 14
2.1.2 Application/Stub/Run-time SYStemccccovevivrvnciinese e, 15
2121 RPC RUN TIME ..ot 15
2122 STUDS .. e 15
2123 AN o] o] [Toz=1 4101 | @10 o (- TR 15
2.2 AP OPErAtIONS.......coiiieieiceiese et seenes 17
221 Binding-related Operationscocccovveeinrnecneness e 17
2.2.2 Name Service OPErationsc.cccccevrerreiernseene e 17
2.2.3 ENdpoint OPerations........cccovceiierneiiesseeneses s es 17
224 SECUTItY OPEratiONSccovvviceiiririeree ettt 18
2.2.5 Stub Memory Management OpPerationsc.ccoevveienevesernresnseenens 18
2.2.6 Management OPEratioNS........ccoocceererreererreere s 18
2.2.7 UUID OPEratioNS......ccviveveiierieieiresisieeseses s sss s sessesenssessesenenes 18
2.3 27T 0T T o TR 19
2.3.1 27T g [T ol F= T o | 1= 21
2311 Clientand Server Binding Handles..........cccccocvvivnvneinnnssninniscenen, 21
2.3.1.2 Obtaining Binding Handles.............ccccovvrinvccivn e, 21
2.3.2 SEHING BINAINGS ...cvovicies et 21
2.3.3 2T T gL [T o 1] (=] o LS 22
2331 Server BiNdiNg StEPSccovivvvicierreee e 23
2.3.3.2 Client BINAING STEPS ...vvevceiieiccersece e 26
2.3.3.3 Call Routing AIQOrithms..........ccccovvveiinincce e 27
2.34 Binding Methods..........cccviiiccerre e 30

X/0pen DCE: Remote Procedure Call

Contents

24 Name Service INTerface. ... 31
24.1 Name Service MOEl ... 31
242 NaME SYNTAX TAGS ..vvveeerieeriiririe e seeseres e e ee e sens 32
243 Name Service ALHDULES ... e 32
2431 SEIVEN ENLIIES ...ttt 32
24.3.2 LT o 10] ol =g | TS 33
2433 PrOTIlES ..o s 33
244 Binding SEarches ... 33
2.4.5 Search AIGOTItNM ... 34
2.4.6 Name Service Caching........ccccovvcciiirnciiess e 36
25 SEIVEE IMOAEL ..o s 37
251 Server Concurrency and Request Buffering........ccccococeevevvcivnnneencnnn, 37
252 Management INTErface ... 37
2.6 Server Resource Models........ooonnnn s 38
2.6.1 The Server-Oriented MOdEl ... 38
2.6.2 The Service-Oriented MOdEL...........cccoiiiiininnnin, 38
2.6.3 The Object-Oriented MOdEl.........cooeiiiiiicciiseee e 38
2.7 LT UL YT 39
2.8 ST o] gl o F=T g T | 11 oV 40
29 Cancel NOtITICAtIONcceveiieerec e 40
2.10 STUDS . 41
2.10.1 IDL to Stub Data Type MappingsS......ccccoveererrinerenesesseneseseenssessesens 41
2.10.2 MaANAGEN EPVS.....ooiice e 41
2.10.3 INterface HandIes.........ooriiiiiiiicece et 41
2.10.4 Stub Memory Management.........cccoveeeerrncennnsere e 41
211 RPC API RoOULINE TAXONOMYocvirviieriiieeice st sesessesens 42
2111 Binding OpPerationscccouveeirrscinesseese e s es 42
2.11.2 INterface OPEratioNS.........cccvvvvieeierreire e 42
2.11.3 Protocol Sequence OPerationsccvvcvrvneiinnssieiensseseensseseenens 43
2114 Local ENApoint OPerations..........ccccvvvveieerennieennssieee s sesessesesenens 43
2115 (O] 0]1101 @] o] -1 o] 1= 44
2.11.6 Name Service Interface Operationsccccccceevveiciinsceensnerenennns 44
2.11.6.1 NSIBINdiNg OPErationscccocevrereiereinrneiennssese e sesessesesenens 44
2.11.6.2 NSIENTrY OPErations........ccovvveeiereriereeinssieesesesesesesiesesesessssesesenens 45
2.11.6.3 NSI Group OPerations.......cccovveeevririeieieinnneere e sesessesesesens 45
2.11.6.4 NSIProfile Operations.......cccocvcvoirecieienscene e 45
2.11.7 Authentication OPErationscccoveeierrseiererse s 45
2.11.8 The Server Listen OPeration.........c.cocovevvveereverssnenesseeseseeeesessesenens 46
2.11.9 The String Free OPeration.........ccocoveeeireeienesseene e 46
2.11.10 UUID OPEratioNS......ccoviveveiierisiciresisieese s erese s eress s sesassessesesssssesenenes 46
21111 Stub Memory Management.........cccoveeeerrneennnsere e 46
2.11.12 Endpoint Management OPerationsccocoveveerereeierenineeesesenenenns 47
2.11.13 Name Service Management Operations.........ccococeevevvneieneveseinnesnens 47
2.11.14 Local Management SEIVICEScvevrvriereiririeeeseseseese s e seseessnsens 48
2.11.15 Local/Remote Management SErVICESc.cvvrvreieneseseieneseseenssnens 48
2.11.16 EFrOr IMESSA0ESovvveieee ettt 48

X/0pen CAE Specification (1994)

Contents

Chapter

3

3.1
311
3.1.2
3.13
3.14
3.15
3.1.6
3.1.7
3.1.8
3.1.9
3.1.10
3.1.11
3.1.12
3.1.13
3.1.14
3.1.15
3.1.16
3.1.17
3.1.18
3.1.19

RPC APl Manual Pages ..., 49
RPC Data TYPIES. .. cviuierieriererieesteresteseeseseesessesessesessesssssssessssessssessessssensssenes 49
(01 EY Lo aTTo L) =T o = N Y o 1= 49

R [0 g TcTo L) t=To =] g Y o - 49
Unsigned Character STtring........ccocoveivneiiineie e 49
Binding HaNAIe ... 50
27T g [T o JAY/=T e (o] S 51
70 T0] =T T g T 1Y o 1= S 52
EndpointMap Inquiry Handle ... 52
INterface Handle..........cooiiiiiiiicccecc e 52
INterface IAeNIfIEr ..o 53
Interface Identifier VECLON ... 53
Manager Entry POINt VECLON ..o 53
Name Service Handle ... 54
Protocol SEqUENCE SIHiNG.....occiiirricciers et 54
Protocol SEqUENCE VECLON ..ot 55
SEALISTICS VECION .o s 55

K] 0T ol =TT o 1o T PSP 56

R3] T T 1L L 1 5 SRR 57
UUIDS..... ittt bbb bbb 57
UUID VECTOT ..ottt 57

g oTo o] g To [T aTo T oTe] o)V () ISR 59
g oTo o] [To [T o Yo T L1 (ISR 60
rpc_binding_from_string_binding ().....ccccoveviimvscieirrcce e 61
rpc_binding_ing_auth_ClIeNt ()cccoveeeeireccee e 62
rpc_binding_ing_auth_info () ..o 64
rpc_binding_iNg_0BJECT () .vovevrvirciie e 66
g oTo o] [To [T Yo T X1 f) IR ST 67
rpc_binding_server_from_clieNt() ...coccoeoviveeiissccre e 68
rpc_binding_set auth_iNfo () ...ccccovreiiiece e 70
rpc_binding_Set 0DJECT()...cevrvrireeiie e 72
rpc_binding_to_string_binding () ...ocoevevvveeie i 73
rpc_biNding_VeCtOr fre (). e 74
g o To =T T =151 (=1 (TR 75
rpc_ep_register N0 _Feplace ().voveeoerreiieierieeie s e 78
rpc_ep_resolve_bindiNg (). .ccccovvveirerneiiiere e 80
FPC_EP_UNFEGISIEI () cveveviiieiceierisietee et s e s 82
FPC_if 1d VECTOr frE8 () .iovreirersiciie e 84
L oo L LT o I (PR STT 85
rpc_mgmt_ep_elt_ing_begin(). 86
rpc_mgmt_ep_elt ing_donNe()....cccovrvrreiiireeer e 89
rpc._mgmt_ep_elt iNg_NEXE() covvevrerece e 90
rPC_ MMt _ep_UNFEQISTEN () ovvvveeerieririerce ettt 92
rpc_mgmt_ing_Com_timMeEOUL () ...ccovrvrrieiirerece et 94
rpc_mgmt_ing_dflt_protect 1eVel ()ccooovrreciiireccr e 95
rpe_mgmMt_iNG_if 1AS() vovvveiierceie e 96
rpc_mgmt_ing_server_prinC_Name(). o cererreeereinrieeeresisreesesesseesesessenes 98
(g oTo 101 | 0L A [0 TR LY () ST 100

X/0pen DCE: Remote Procedure Call \Y

Vi

Contents

rpc_mgmt_is_Server_lSteniNGg () coovovoveeeeierieeieierseere e 102
rpc_mgmt_set_authorization fN ()ccccevreiciiiscir e 104
rpc_mgmt_set_cancel _timeoUL() ..cooveereireeieirseere e 106
rpc_mgmt_set COmM_tiMEOUL()...oevreririeiiiereee et 107
rpc_mgmt_set Server_Stack SIZE() ...cvcverrreeinimrseiie e 109
rpc_mgmt_stats VeCtOr free()...cccorreiriirecieierseere et 110
rpc_mgmt_stop_server_liSteNiNg () ..oeoeevrvreeinrerneere et 111
rpc_Network _iNQ_ProtSeqs () ceemeirererereeressieseresessesesseseesesesessssesesenens 112
rpc_network_is_ protseq Valid () ...ccooveerererecieinrsecie e 113
(g oTo SR oTT Lo [T o =3 4 010 o (TR 115
rpc_ns_hinding_import_Begin() oo 118
rpc_ns_hinding_import_done ()....ccocoveereireeieierseere e 120
rpc_ns_hinding _import_NEXE() ..coovveiriireeieiers e 121
rpc_ns_hinding_ing_entry _Name ()cccovvveeiermrseiene e 124
rpc_ns_binding_100KUP_Begin ()..ccoveeieririereirecierseee e 126
rpc_ns_hinding _100KUP_dONE () ...ccvovvvvveiiiierecieiesseere et 128
rpc_ns_hinding _100KUP_ NEXL() .ovevvrvrrieiiiiereeesess et 129
rpc_NS_BINAING_SEIECT() cvvvveierieccie e 132
rpc_Nns_binding_UNEXPOIT () ..covvveererrieeeiereee e e 134
rpc_ns_entry expand_Name ()ccooevrreerrrmreeieiesiseenssesseresseseesesesesessesesenens 136
rpc_ns_entry _object _ing_Begin().cccocveervrreeieierseeie e 137
rpc_ns_entry 0bject iNQ_dONE() .covovrveereierieeieiers e 139
rpc_ns_entry 0bjeCt iNG_NEXE() wovvrvvvreiriiereeieiers e 140
g oL R oo 10] T =1] (- (PR 142
rpc_Ns_group_MBr_add () coceeeeeveererrecerre e 144
rpc_ns_group_mbr_ing_Begin()..cccovveerirecieirseere e 146
rpc_Nns_group_mbr_iNg_dONE() ..cccvvveeriierecieiers e 148
rpc_Ns_group_mMBr_iNG_NEXE() .oeovrvrveiriiereeie e 149
FPC_NS_group_MBr_FeMOVE() cuvveeereece e 151
rpc_ns_mgmt_binding_UNEXPOrt().....ccccovveeiermrneiernrnieers s seseseesesenens 153
rpc_NS_MgMt_eNtry Create() «uovevrerrieerirereeerers e 156
rpc_ns_mgmt_entry _delete()....coccvrvrveiiiireeieer e 158
rpc_ns_mgmt_entry ing_if idS() covvererireiriirseere e 160
rpc_ns_mgmt_handle_set eXp_age()..cccoerrrerrrmrreiernririerere e 162
rpc_Ns_Mgmt_iNGg_eXP_A0E () cvvvrervrrrrieriirereeieresseere s 164
rpc_Ns_MgMt_SEt_EXP_A0E () covrvrrererrrrieriererieee et 166
rpc_NS_profile_delete() ..o 168
rpc_ns_profile_elt_ add ()cccoevveirrrreie e 170
rpc_ns_profile_elt_ing_begin()....cccovveiirrreieieirseere e 172
rpc_ns_profile_elt_iNg_doNe()....cccrvrveiriirecieiers e 175
rpc_ns_profile_elt_iNG_NEXE() .ovevrvrveiiireee e 176
rpc_Nns_profile_elt remMoVe () e 178
g oTo o] o =Tot fl [1o Y/ 0L (TSR 180
rpc_object Set iNG (). 182
g oTo o] o =Tot A STc) f Y 0L () SRR 183
FPC_Protseq _VECLOr frEE()...ccvriveiriririeii e teie st 185
rpc_server_ing_BIiNdINGS() .o 186
FPC_SEIVEr INC_IT() coveeirirecirerseeie et 188

X/0pen CAE Specification (1994)

Contents

Part

Chapter

3

4
4.1
4.2
421
4211
4212
4213
4214
4215
422
423
424
4241
4242
4243
4244

FPC_SEIVEr _HSTEN () vvevieiiieiceier et 189
rpc_server_register_auth iNfo()....ccocoeirireieiinscc e 191
FPC_SErver_regiSter if() .. 193
rpc_server_UNregiSter if() .o 197
rpc_server_USe all ProtSeOS() .vvevoreirmierieeieiessieerssesieree s sesesseneseens 199
rpc_server_use_all_protSeqs_if()..ccccoerireieiinsccie e 201
FPC_SErVEr _USE PrOtSEO() cvvverererereererererierereiesinsesesesessesessessesesesessesesssessnsesennens 203
FPC_SErver_USE ProtSEQ_EP(). cererrererereriereereseeseesessssesesesssseseessssesenessssenes 205
rpc_server_Use ProtSeq if() ..o 207
FPC_SM_AHOCALE ().ruvveveriieieeceisetee e nens 209
FPC_SM_CHENT _fIEE () eveveieiceie et 210
rpc_sm_destroy_client_CONTEXE() .oovvvveerirerieeieinrseeie e 211
rpc_sm_disable_alloCate ()ccovveererrieiiire e 212
rpc_sm_enable_allocate ()ccovvveererriecriiere e 213
L o ToS T =11 () IR ST 214
rpc_sm_get_thread_handle ()cccovvveiiiirecicir e 215
rpc_sm_set_client_alloc_free () .oevvvrveiiirecce e 216
rpc_sm_set_thread _handle().......cccovrveiiiireeii e 217
rpc_sm_swap_client_alloc_free () .oovvveerireciirsccre e 218
rpc_string_binding_COMPOSE () ..vcvrvririereriiereeieress et 219
rpc_string_biNding Parse () .cccovcoeerreereireeieiesseere et 221
FPC_SEFNG _FrEE() cevrvriereirirecere e e 223
WU To B oTa] 0] 0T T £-1 (TP 225
WU To B0 =T - () TP 226
WO To B =T Y T 1L TP 227
WU To B0 LU T L (TP 228
(OO To B Lo TR AT o (SRR 229
WO To I I oL TP 230
LU TOTTo I (TS Vo TP 231
Interface Definition Language and Stubs.............. 233
Interface Definition Language............ccooveveeviieeiiescionesiiesnnnns 235
NOTALION ...t 235
IDL Language SPecCifiCation...........cccccvvvvvciininieiin s 236
IDL LEXEIMIES ...ttt e 236
Keywordsand Reserved WOrdsccovveennvneinnneeen e 236
IAENTIFIEIS ..o e 236

IDL PUNCEUBLION ...ttt 236
Alternate Representation of BraCes..........cocoovevvvvvciernncisnnsseiennnnns 237
WHITE SPACE........cuceierretce et 237
COMIMENTS ...t 237
Interface Definition StrUCLUIE.........cccvviiiiicccee e 237
INterface HEader ..o e 238
The uuid AttFDULE ... 238

The version ATrbULE.........ccooiiiiii e 238
Theendpoint AFIDULE ... 239
Thelocal AttrDULE ... 239

X/Open DCE: Remote Procedure Call Vil

Contents

4.2.4.5 The pointer_default Attribute..........coccceovveieicc e 239
4.25 INtErface BOAYovoveiiciie et 239
4.2.6 IMPOrt DEClarationccccccovvveeiiirecees e 240
4.2.7 Constant Declaration ... 240
4271 Y] = TS 240
4.2.7.2 Semantics and RESLIICLIONScccveiiieiee e 242
4.2.8 Type Declarations and Tagged Declarations............ccccccovvvevevnnnnnnnns 242
429 BASE TYPES ..eeieeeiieeies ettt e 243
429.1 Y] - SRR 243
429.2 L1 CTo o] I 01T 243
4.2.9.3 THE Char TYPES....ciiietce ettt 244
4.2.9.4 Theboolean TYPE......ccvrrcierec e 244
4,295 LI L= o)V (oI Y/ o LTSN 244
4.2.9.6 QLI LR YL0] Lo I 1Y/ o - TN 244
4.2.9.7 Thehandle T TYPE ...occicircie e 244
4.2.10 (00 015 {1 U 01 1= B Y o 1= 244
4211 STIUCTUTES ...ttt 244
4.2.12 UNHONS .. 245
42121 Y1 - TSR 245
42122 Semantics and RESLIICLIONScccveiiiiieeee e 246
4.2.13 ENUMEIrated TYPES ...coivieicierirece ettt 246
4.2.14 T 0 1= 246
42141 Y] = SRR 246
42142 Semantics and RESLIICLIONSccviiiiiii e 246
4.2.15 F N g -\ £ TS T 247
42151 Y] = SRR 247
4.2.15.2 Semantics and RESLIICLIONSccccviriiiiiice e 247
4.2.15.3 YA G |V 0 B AN - YT T 247
4.2.16 TYPE AIFDULES. ... 248
42.16.1 Y] = TSR 248
4.2.16.2 Semantics and RESLFICLIONScccviriiiiieeee e 248
4.2.16.3 Thetransmit_as AttribULe ... 248
4.2.16.4 Thehandle AHDULE ... 248
4.2.16.5 The string AtrDULE ... 249
4.2.16.6 The context_handle Attribute ... 249
4.2.17 Field AttrIDULES.......c.cvoviccc s 249
42171 Y1 - SRR 249
42172 Semantics and RESLFICLIONScccviiiiiieeee e 250
4.2.17.3 Theignore AttribULE.........ccei i 250
4.2.18 Field Attributes in Array Declarations.............ccccovveveivscecnnsseenns 250
4.2.18.1 CoNfOrMAaNt ATTAYS ...ovvceceeerecce e 250
4.2.18.2 Varying and Conformant Varying Arrays.......c.ccceceveeeenrnerenennns 251
4.2.18.3 Relationships Between Attributes.........ccccoveeivveve e, 252
4.2.18.4 Negative Size and Length Specifications............cccocovevveirsceinnns 253
4.2.19 Field Attributes in String Declarations............ccccooveieeivscecnenncenns 253
4.2.19.1 Thefirst_is, last_is and length_is Attributes.........cc.coccccevrvvcicinnne 253
4.2.19.2 Themax_is AtHDULEc.covivvireci e 253
4.2.19.3 Thesize IS AHDULE ... 253

viii X/Open CAE Specification (1994)

Contents

X/0pen DCE: Remote Procedure Call

4.2.20
42.20.1
4.2.20.2
4.2.20.3
4.2.20.4
4.2.205
4221
42211
42.21.2
42.22
42221
42.22.2
42.22.3
4.2.23
42231
4.2.23.2
4.2.23.3
42234
42.24
42.24.1
4.2.24.2
42.24.3
4.2.25
4.2.26
4.2.27
4.2.28
43
431
43.2
433
43.4
435
4351
4352
4353
43.6
43.7
438
43.9
4391
43.9.2
43.9.3
43.10
43.11
44
441
4472
4.5

POINTETS ... 253
Y] = TSRS 253
Semantics and RESLFICLIONSccviiiiieee e 254
Attributes Applicable to POINtErs........ccccovveeiveciirscceess e 254
Varying Arrays Of POINTErS........ccccovvveiiiisc e 256
ReStrictions 0N POINTEIS ... s 256

POINTEIS 8S AITAYS ...cuiiieiceiieriseeie ettt ssenens 257
Pointers with the string Attribute ..o, 257
Possible Ambiguity ReSOIVEdccooevivvvcci e 257

(@ 01T -1 0] o TR 258
The idempotent ArbULE ..o 258
Thebroadcast AttribUte.........cccovriiiiii e 258
Themaybe AHDULEcccvii e 258

Parameter Declarations ... 259
Y] = SRS 259
Semantics and RESLIICLIONScccviiiiiieeee e 259
Directional ALtHDULEScoeveiiiiiice e 259
Aliasingin Parameter LiStS......c.cccovveiiinniie s 259

FUNCLION POINTEIS ...t 260
Y] = TSRS 260
SEMANTICS.vieiieieieieie e 260
RESEFICLIONS.....cciii s 260

Predefined TYPES ..ot 260

The error_Status_t TYPE...coovvveere et 260

International Character TYPES.....ccocvcvrirvcineisecre s 261

PN 4 10] 0}V 0 0 [10 R Y 01 261

The Attribute Configuration SOUICeccceevevvvcci i 262

COMIMENTS ...ttt 262

AENTIFIEIS ..ttt e 262

Y] €= TSRS 262

INclude DeClaration ... e 263

Specifying Binding Handlesccocoevovveciiinsccc e 264
Theexplicit_handle Attribute ... 264
The implicit_handle Attribute...........ccccovveiiirccc e 264
Theauto_handle Attribute..........ccccoveeiirece i 265

The represent_as AttribuUte ... 265

The code and nocode ALErDULES..........ccceiiiiriine 265

Thein_line and out_of _line Attributesccccceevevvvcivenrcceeiesnns 266

RETUIN STALUSESooviiiitcieeee s 266
Thecomm_status Attribute.........ccoveeiircccc e 266
The fault_status AttribULE ... e 267
Interaction of the comm_status and fault_status Attributes....... 267

The heap AtIrDULE.........cccee e 268

The enable_allocate AttribULeccccovvvceiirsec e 268

IDL Grammar SYNOPSIS ...cccoviuvueeriririeeereresiereesesiessesessssesssessssesesessssessssnens 269
Grammar SYNOPSIScuvvirierieierieseesesiesee s seses e sesesesessesesesensens 269
Alphabetic Listing of Productions..........ccccceeeivncininsicinrncieinnns 273

IDL Constructed 1dentifiers..........cooeeeeneeeeee e 276

iX

Chapter

Part

Chapter

4.6

51
511
5111
5112
51.13
5114
512
513
514
5141
5142
5143
515
5151
5152
5153
5154
5155

5156

5.1.6
52

521
522

6.1
6.1.1
6.1.1.1
6.1.1.2
6.1.2
6.1.2.1
6.1.2.2
6.1.2.3
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.2
6.2.1

Contents

IDL and ACS ReServed WOrdS.........cccocirriinnneeeeeeeseeeens 277
STUDS ..o 279
The Application/Stub Interface.........ccccovvvcieirrccciisecee s 279
ParamMELEIS......coiiiiiece s 279
Parameter Memory Management...........coeovveeeverneneneseeseesienenns 280
Client-side AHOCALIONccoviuiiiiiieeeeee e 280
Server-side AIOCAtION........cccoiiiri e 281
F A LT 3 [o SRR 281
Default Manager EPVS.........ccociiscere s 281
INterface Handle..........cooiiiiiie e 281
P IS et 281
Processing Of iN PiPeS.....cocvcciiiecienrseee et 284
Processing of OUt PIPES.......ccccoiiicirnsecie et 285
Processing of in, QUL PIPES ... 287
IDL and ACS Type AttribUtes ... 287
The IDL transmit_as Attribute.........cccccovveceirccce e 287
The IDL handle AttribUte. ... 288
Interaction of IDL transmit_as and IDL handle Attributes.......... 289
The ACS represent_as Attribute..........cccoveeeeireiceinsceceesseciens 289
Interaction of the ACS represent_as Attribute and
the IDL handle AttribUte ... 290
Interaction of the ACS represent_as Attribute with
the IDL transmit_as Attribute ... 290
Context Handle RUNAOWN ... 290
Interoperability Requirements on Stubs..........cccovveinvncccnrsciien, 292
Operation NUMDEIS ..o 292
Error Handling During Floating-Point Unmarshalling.................... 292
RPC Services and Protocols.........eevvvvvcccciiisisssn. 293
Remote Procedure Call Model ..., 295
Client/Server Execution Model..........ccccoeeiiiieinnenieeeeeeeeeeis 296
RPC Interface and RPC ODJECT.........ccovvevierreie e 296
RPC INTEIFACES ... s 296
O @ o] =T} £ 296
Interface Version NUMDBEFING......ccocoevivrivecine s 297
Rules for Changing Version NUMDbErSccccovvevevvececnerneeenns 297
Definition of an Upwardly Compatible Change..........cccccccecvevnnen. 297
Non-upwardly Compatible Changes.........cccocoveviirveiciissecennnns 297
Remote Procedure Calls ... 298
NESTEA RPCS ...ttt e 298
EXECULION SEMANLICS ...c.cvcveviiiiiicieieieiee bbb 298
ConteXt HANAIES ..o s 299
TRFEAGS ...ttt e 300
CANCEIS ..o s 302
Binding, Addressing and Name Servicescc.cocevvveierrneienesneens 304
27T 0T 11 o TS 304

X/0pen CAE Specification (1994)

Contents

Chapter

Chapter

Chapter

6.2.2
6.2.2.1
6.2.2.2
6.2.3
6.2.3.1
6.2.3.2
6.2.3.3
6.2.3.4
6.2.3.5
6.2.3.6
6.2.3.7
6.3

7.1

7.2

7.2.1
722
7.2.3
724
7.2.5

8.1
8.2

8.3

8.4
8.4.1
8.4.2
8.4.3
8.5
851
8.5.2
8.5.3
8.5.4
8.6
8.6.1
8.6.2
8.6.3
8.6.4
8.6.4.1
8.6.4.2
8.6.4.3

9.1
9.2
9.21

Endpoints and the ENApoint Mapper.......cccoveveeiveeieneniseeenesenienens 305
(O 11101 @] o 1=] -1 1 o] o P 306
SErVEr OPEratioNcccovvveveierreere et 306

NSTINTEITACE ..ot e 306
CommOoN DECIArations..........coceeereeieneeee e 307
ProtoCOl TOWETS........cviiiiririrr s 308
The server_name Object AttribUteScccocvevvvveceeeivscicie e 308
The group Object AtribULES.........cccoveiiiirece e 310
The profile Object Attributes.........ccocovviiveccicc e 311
g ToTo o [T T 311
Name Service Class Values..........ccccoveerninieneeeeeseeeeeeeinas 311

Error Handling Model ... 312
RPC Service Definition.........cccoooieeiinecieceseseesessesnns 313
Call Representation Data StruCtUreccccovvveerervecie s 313
SErViCe PrIMITIVES ...ooovii s 313

INVOKE. ..ottt 314

RESUIL ... 315

CANCEL ..o s 316

EPTOT s 317

REJECT .. ettt 318

Statechart Specification Language Semantics................. 319
The Elements of Statecharts. ... 319
State HIErarcChies ... s 321
LO70] o oL U] ¢ =] 03 YOS 321
Graphical EXPreSSIONScccvvviciiiririeice s sessesenes 322

Default ENTrANCES. ...ttt e 322

ConditioNal CONNECLOTS ... s 322

Terminal CONNECIOIScoiiiiii e 322

Semantics that Require Special Consideration.........c.c.ccccevvvceeinrinen. 323

Implicit Exits and Entrances (Scope of Transitions)............cccceuvuu.e. 323

Conflicting TranSitioNs ..o 323

Execution Steps and TiME.......cccovvvciiirccin e 323

Synchronisation and Race Conditionscccocveveivvvcinnnnciennsnnns 324

Summary of Language EIements..........ccccovvveievvcciisscie s 325

EVENT EXPIESSIONS....cooiicvieiirisieeresisie ettt sessenenes 325

(0] a0 [0 T0] gl S0t o] =1S1S] (o] LT 326

ACHION EXPIESSIONSoovviiciiicece et 326

Data ltemM EXPreSSIONSccvcuvvririerceererisieeresesie e sesieses s sesesesessesesesens 327
AtomMic NUMEriC EXPreSSIONSc.covovvveveviirieieeiesiseesesisieesesessesenesens 327
Compound NUMEric EXPreSSiONS.........ocvevririerereinsieseesesesseseseseneens 327
SEHING EXPrESSIONSoovvivceeieriieee et 327

RPC Protocol DefinitioNsS. ..., 329
CONFOIMANCE ...t 329
RPC Stub to Run-time Protocol Machine Interactions..............c.c...... 330

Client Protocol Machines ... 330

X/0pen DCE: Remote Procedure Call Xi

xii

9.2.2
9.3
931
9.3.2
9.3.3
9.33.1
9.3.3.2
9.34
9.35
9.4
9.4.1
9.4.2
9.4.3
9.43.1
9.4.3.2
9.4.3.3
9.434
9.4.4
9.45
9.45.1
9.45.2
9.45.3
9.454
9.5
951
9.5.2
9.5.3
9.54
9.55
9.5.6
9.6
9.6.1
9.6.2
9.6.2.1
9.6.2.2
9.6.2.3
9.6.24
9.6.2.5
9.6.2.6
9.6.3
9.6.3.1
9.6.3.2
9.6.3.3
9.6.34
9.7

Contents

Server Protocol MacChingsS..........cccveevveieiiienicienee e 331
Connection-oriented Protocol ... 333
CHENTZSEIVEN ...ttt et be e ne 333
FANSTo T F-Td o] o [0T o J TR 333
ASSOCIALIONcviiciciiiee e bbb bbb ns 334
Association Management POICYccccovveinvnccinnsceiesseenens 334
Primary and Secondary Endpoint Addresses........ccccovveevrvririeennn 334
(- 1 T 335
Transport Service ReqUIrEMENTS.......ccccvvvveererseeie s 335
Connection-oriented Protocol Machingsccccecevvevieevieveicienrennn, 336
CO_CLIENT_ALLOC ...t s 336
CO_CLIENT_GROUP.......ccicccceeeee et 336
CO _CLIENT ottt s 337
YN L @ 10 A 1 (@] N R TRT 337
(1@ N 11 = 1 T 337

(7 N N [T 337

(O A I T 337
CO_SERVER_GROUP ...ttt s 338
CO_SERVER ..ottt s 338
ASSOCIATION ..ottt e 338
(1@]\ 11 =1 1 TR 338

(O N N 1 T 338
WORKING ...ttt ettt et 338
Connectionless ProtoCol ... 339
CHENTZSEIVEN ...ttt besnene 339
N €Y Y2 ST 339
(0= 1 OO 339
Maintaining Execution Context and Monitoring Liveness............. 339
SErial NUMDEIS ..o b 340
Transport Service ReqUIrEMENTS.......ccccvvveeererseieie e 340
Connectionless Protocol Machingscccceeevivieveiivneiee e, 341
RPC Stub to Run Time Protocol Machine Interactions.................... 341
CL_CLIENT oottt s 341
(1@]\ 11 =1 1 T 341
AUTHENTICATIONoviveieeeeetee ettt 341
(7 2 N O - 341

o 1\ 1T 342

(O N N 1 RO 342
DATA ..ottt ettt sttt sttt b e st eae et eas et ae e e 342
CL_SERVER ...ttt s 342
(1@]\ 11 =1 1 TR 342
AUTHENTICATIONooivctieeeectee ettt 342

(O N N [TR 342
WORKING ...ttt ettt ee st en s n e 342
Naming CONVENLIONS ..o 343

X/0pen CAE Specification (1994)

Contents

Chapter

Chapter

X/0pen DCE: Remote Procedure Call

10
10.1
10.11
10.1.2
10.1.3
10.1.4
10.1.5
10.1.6
10.2
10.2.1
10.2.2
10.2.3
10.2.4
10.2.5
10.2.6

11
111
1111
11.1.2
11.1.3
1114
1115
11.1.6
11.2
11.2.1
11.2.2
11.2.3
11.2.4
11.25
11.2.6
11.3
1131
11.3.2
11.33
114
1141
11.4.2
11.4.3
1144
1145
11.4.6
115
1151
11.5.2
1153
1154

Connectionless RPC Protocol Machines...........ccccoecvnn. 345
CL_CLIENT MaChINE......ccciiiririeeerisetce s 346
CL_CLIENT ACHIVITIES ..ot 346
CL_CLIENT StAteS....cceieoiriieririetirieesieesieesesestesessesaesesseseseesessesessesaenens 349
CL_CLIENT EVENTS ..covitiiviieee ettt snene 354
CL_CLIENT CoNditioNsS......cccoveiiiririniceinseee s 358
CL_CLIENT ACHIONS ..ooviietie ittt sensens 363
CL_CLIENT Data-l1temSccccoveireerieesieieserese et seenens 367
CL_SERVER MaCRhINEccovvrircct et 377
CL_SERVER ACLIVILIES ..ot 377
CL_SERVER STALESccueovriiiririete ettt saenens 382
CL_SERVER EVENTS.......coiiiiieiiiee ettt snene 388
CL_SERVER ACLIONS ..ottt 392
CL_SERVER CONAItiONS......cccouveiirireice i 399
CL_SERVER Data-1tems........ccceevreierceriiereresesee e snenens 404
Connection-oriented RPC Protocol Machines............... 417
CO_CLIENT MaChINE......coivririceiririetce e 418
CO_CLIENT ACHIVITIES ..o 418
CO_CLIENT SEALES...c.eieiriierierieeerieerieesieesesesre s saee s sessesesseseenens 421
CO_CLIENT EVENLS ..ottt sesnesaene s 428
(1@ I O I | =1\ X1 1 T LT 434
(©(@ I 01 I | =1\t I @10 oo 11 4T o - 439
CO_CLIENT Data-l1temScccoiveeerieerieesieeseresie e siee e saenens 444
CO_CLIENT_ALLOC MaChINEceeirieieieirieieieieieeieieeeie e 454
CO_CLIENT_ALLOC ACLIVILIES ..o 455
CO_CLIENT_ALLOC Statescovrerererirerirereriririsisesesesesesesesesesesenenens 456
CO_CLIENT_ALLOC EVENLS. ...t 458
CO_CLIENT_ALLOC ACLIONS ... 461
CO_CLIENT_ALLOC CoNnditioNns.......cccovvereermrneeierinieenesesseenesensens 462
CO_CLIENT_ALLOC Data-Items......c.ccovvreiereeriereneeseneseseseeseenens 463
CO_CLIENT_GROUP MaChine.......cccceeueierrieiiieinieieieieiseieeieieieieieeieienes 464
CO_CLIENT_GROUP States.......ccovvirirererirerrerrensesesesesesesesesesesenesenes 465
CO_CLIENT_GROUP EVENTSccovrieiriiereresesieie e snenens 466
CO_CLIENT_GROUP Data-1tems.........ccccocvrveireereieneeseneseseseseenens 468
CO_SERVER MaCKhINEcocvvreiciit et 469
CO_SERVER ACLIVILIES ...cvcviircce e 470
CO_SERVER STAtEScovvviiriirieieriee et snene s 472
CO_SERVER EVENLS.......cotiiiiieiireee ettt sesne s 478
CO_SERVER ACLIONS ..ottt 484
CO_SERVER CONAItiONSc.covivvieiiiiirieice i 489
CO_SERVER Data-1tems.......cccccovreiirieeriireresesiee e seenens 493
CO_SERVER_GROUP Machingccccouvreiviisccinrsece e 503
CO_SERVER_GROUP Statesccorrirririrerririrnsesesesesesesesesesesenenes 504
CO_SERVER_GROUP EVENLS......cooooiriririririririrrsssssssesenessesenees 505
CO_SERVER_GROUP ACLIONS ... 507
CO_SERVER_GROUP Data-Items........ccccocerviireerieieneeseneseseesienens 507

Xiii

Xiv

Chapter

12

12.1

12.2

12.3

12.4
12.4.1
12.4.2
12.4.3
12.4.4
12.5
12.5.1
12.5.2
12521
125.2.2
12.5.2.3
125.2.4
12525
12.5.2.6
12.5.2.7
125.2.8
12.5.2.9
12.5.2.10
12.5.2.11
12.5.2.12
12.5.2.13
12.5.2.14
12.5.2.15
12.5.2.16
12.5.2.17
1253
12531
12532
12533
12.53.4
12535
12.5.3.6
12.5.3.7
12.5.3.8
12.5.3.9
12.5.3.10
125311
12.6
12.6.1
12.6.2
12.6.3
12.6.3.1
12.6.3.2
12.6.3.3

Contents

RPC PDU ENCOAINGSccooovivieeerieeiesses s 509
GENErIC PDU SEIUCTUIE ..ottt e 509
[SaTololo [1aTo M @XoT g 1V/=T o] To] o 13T 510
AN T |] 0 1=1 oL SO ST T 510
ComMMON FIEIASveieieececee e 511

PDU TYPES ..ot 511
Protocol Version NUMDEIS ... 511
Data Representation Format Labels..........c.cccccovvciiinncennsceienns 511
REJECE STAtUS COAES ...t 511
Connectionless RPC PDUS ... 512
Connectionless PDU STrUCLUIE ..o 512
Header ENCOAING ..o 512
Protocol Version NUMDET ... 513
[B L Y/ o =3 513
FIagS FIEIAScvicee e s 513
Data Representation Format Labelccccoovveiivvciccinscecnnn, 514
SErial NUMDET ..ot 514
Object IAENLITIEr......cceieecee e 515
Interface Identifier ... 515
ACHIVItY IAeNtIfier........ccoov e 515
SErVErBOOt TIME. ..o et rere 515
INTErTACE VEISION ... 515
SeqUENCE NUMDETcviccciese et 516
Operation NUMDETcccviivcce e 516
INterface HiNt........coivciicee s 516
ACHVILY HINT ..o 516
PDUBOAY LENGth ...t 516
Fragment NUMDET ..o 516
Authentication Protocol Identifierccocoevviveieicecccecenn, 517
Connectionless PDU Definitionscccccevviiviceiciencesciesesee s 517
ThEACK PDU ...ttt 517
Thecancel_ack PDU........ccocccoiciiiiecic e 517
The CanCel PDU ...t 518
TheTfaCK PDU ..ottt e 518
ThefaUIt PDU ...t e 520
ThenoCall PDU.......c.ccooiiiieeeeeesee e 520
ThePING PDU ...t 520
LI L= =TT A 5 O TN 520
The reqUESt PDU ..ot 520
The reSPoNSe PDU ...t 521
TheWOrking PDU ... 521
Connection-oriented RPC PDUSccccoveiveiieieseese e 522
Connection-oriented PDU StruCturecccoevveevieienecenecesesee e 522
Fragmentation and Reassemblyccococovivvveiiinncciine e 522
Connection-oriented PDU Data TYPES.......cccovrvnerererenieienerinieeneseneens 523
DECIArAtIONS ..ottt e 523
Connection-Oriented Protocol Versionsccocceveevivneveeeinenns 526
Thefrag_length Field ... 526

X/0pen CAE Specification (1994)

Contents

12.6.3.4 ConteXt IAENTITIErSc.ciiii e 526
12.6.3.5 Thecall_id Field ... 527
12.6.3.6 Theassoc_group_id Field ... 527
12.6.3.7 Thealloc_hiNt Field ... 527
12.6.3.8 AULhenticatioN DAta..........c.cocoeviriririririiieeeeee e 527
12.6.3.9 Optional Connect Reject and Disconnect Dataccccocceevrvnnnee. 527
12.6.4 Connection-oriented PDU Definitions ..o 528
126.4.1 Thealter_conteXt PDU........cccovveiiiinncieissce e 528
12.6.4.2 Thealter_context_resp PDU........ccccovviiiveciennseenesseene e 530
12.6.4.3 ThebDINA PDU ...t e 531
12.6.4.4 Thebind_ack PDU........ccoviiiicii e 532
12.6.4.5 Thebind _NaK PDU ... 533
12.6.4.6 The CanCel PDU ...ttt e 534
12.6.4.7 ThefAUIE PDU ...t e 535
12.6.4.8 The orphaned PDU ... 537
12.6.4.9 The reqUESt PDU ..ot 538
12.6.4.10 The reSPoNSe PDU ...t 540
12.6.4.11 The shutdown PDU. ... 541
Chapter 13 SECUNITY ..o 543
13.1 The Generic RPC Security Model..........ccoooveiiivciininecce s 544
13.1.1 (1T 1= o @] o =T =1 1 o] o [T 544
13.1.2 (CTeT 1= o ol =y g (oo Yo [T 0o |- 545
13.1.21 Protection LEVEIS ... s 545
13.1.2.2 AULhENTICAtION SEIVICES. ...ttt 546
13.1.2.3 AULNOTISALION SEIVICES......ciiiiiiiieeeee e 546
13.1.3 Underlying Security Services Requiredccccovveivivirncecnnsnennnns 546
13.2 Security Services for Connection-oriented Protocol.............ccccceevnneee. 548
13.2.1 Client Association State Machineg...........cccocovvrvnnnnnnnnrrs 548
13.2.2 Server Association State Machine ... 548
13.2.3 SequUENCE NUMIBDETS ..o 548
13.24 The auth_context_id Fieldccccoveiiiiccinisec e 549
13.25 INtegrity ProteCtion.........ccccceovvviciie i 549
13.2.6 Connection-oriented ENCOAINGScevvvivrieiciiiscc s 550
13.2.6.1 Common Authentication Verifier Encodingsc.ccccovveevrnrennee. 550
13.2.6.2 Encoding for Per-PDU SEIVICEScccovevrirveiie s 551
13.2.6.3 CredentialsS ENCOAING.......ccovvvveiiirrccie e 552
13.3 Security Services for Connectionless Protocol..........c.cccccevvecevrnrinen. 555
13.3.1 Server RECEIVE PrOCESSING ..ot 555
13.3.2 Client ReCeiVe ProCesSinNgcoccoveervreeieinsieeesnsiseissesesseesesessesssesensens 555
13.3.3 Conversation Manager ENCOAINGS.......cccovevevrvneieinseesesseeresnnns 555
13.3.3.1 Challenge Request Data ENCOAiNg........cccovevruviereieninineicnnineciesennns 555
13.3.3.2 Response Data ENCOAING.......cccouvvveirirneinnrsccne e 556
13.34 Authentication Verifier ENCOdiNgS........cccovvviivncciineceecesseeienns 556
13.34.1 dce_c_authn_level NONE........ccccvvvciiircce e 557
13.3.4.2 dce_c_authn_level CONNECE.......cccoocvivvvciin e 557
13.3.4.3 dce_c_authn_level call.........ccccovviciiinci s 557
13.3.4.4 dce_c_authn_level PKt........ooiciiincc s 557
X/0pen DCE: Remote Procedure Call XV

XVi

Chapter

Contents

13.3.4.5 dce_c_authn_level iNtegrityccccocoivveiiiivecerre s 557
13.3.4.6 dce_c_authn_level Privacy ... 557
14 Transfer SyntaX NDR ... 559
14.1 Data Representation Format Label ..o, 560
14.2 NDR PrimitivVe TYPESccerirrcerirsetce sttt 561
14.2.1 Representation CONVENLIONSccvivrvieeiieriece e 561
14.2.2 Alignment of Primitive TYPES ..cccvvveiiiirecere s 562
14.2.3 BOOIEANS.......coiiiiiic b 562
14.2.4 CRAIACTETS. ... 562
14.25 Integers and Enumerated TYPEScvevrvvivicirersecre s 562
14.25.1 ENUMErated TYPES ..c.vvcvierieicciers ettt 563
14.2.6 Floating-point NUMDErS.........ccoviivrciie s 564
14.26.1 IEEEFOIMALoviiiiicte e 564
14.2.6.2 VAX FOIMAL......ccoiiiiiietieeee e 565
14.2.6.3 Cray FOIMALocoiceiee et saene s 567
14.2.6.4 IBMFOIMAL ...t 567
14.2.7 Uninterpreted OCLELS. ..o 568
14.3 NDR CONStrUCLEd TYPES ..vovveeeceiiririeeie sttt sesseseneens 569
14.3.1 Representation CONVENLIONSccvivvneeeininece s 569
14.3.2 F N g -\ ST 569
14321 Uni-dimensional FiXed ArTaysS.......c.ccccoivneinnrneennsesieeesesessesesenens 570
14.3.2.2 Uni-dimensional Conformant Arraysccccoveeinvecennnsseiennnnns 570
14.3.2.3 Uni-dimensional Varying Arraysccoceorneenneneenssesseenenens 570
14.3.24 Uni-dimensional Conformant-varying Arrays..........ccccoveeceeennnnns 571
14.3.2.5 Orderingof Elements in Multi-dimensional Arrays.........ccc......... 571
14.3.2.6 Multi-dimensional FiXed Arraysccvveervneinnneenssesseenenens 571
14.3.2.7 Multi-dimensional Conformant Arrays.......cccccceevveieiennseeennnnns 572
14.3.2.8 Multi-dimensional Varying Arrays......cccccccecovveinnneenennsssnenennns 572
14.3.2.9 Multi-dimensional Conformant and Varying Arrays.........cc...... 573
14.3.3 R3] 1 T T T 574
14.3.3.1 Varying StHNGS ...coov e 574
14.3.3.2 Conformantand Varying Stringscccoceeeveevveeninseiensseesesnnns 575
1434 ATTAYS OF SIFNGS oo 575
1435 STIUCTUIES ...ttt 576
14.3.6 Structures ContaiNing AITAYSccovevieirneeiessere s 577
14.36.1 Structures Containing a Conformant Arrayccccccevvvvevinrinnn, 577
14.3.6.2 Structures Containing a Conformant and Varying Array............ 577
14.3.7 UNHONS ..ot 578
14.3.8 T 0 1= 579
14.3.9 POINTETS ...ttt 579
14.3.10 TOP-1EVEI POINTEIS ..ottt 580
14.3.10.1 Top-level FUIl POINTEIS ..o 580
14.3.10.2 Top-level Reference POINLErS ... 581
14.3.11 EmMbedded POINTETSccceviiieiiceeeee e 582
14.3.11.1 Embedded FUll POINTETS ... s 582
14.3.11.2 Embedded Reference POINTEIS ... 582
14.3.11.3 Algorithm for Deferral of Referents...........ccoevvieiivnceivscicnnnns 583

X/0pen CAE Specification (1994)

Contents

Appendix

Appendix
Appendix
Appendix

Appendix

Appendix

Appendix
Appendix
Appendix
Appendix

144

A
Al
A2
A2l
A22
A23
A24
A25
A3
A4

B
C
D

D.1
D.2
D.3
D.4
D.5
D.6
D.7

E.l
E.2
E21
E.2.2

F.1
F.2

NDR Input and OUtpUt Streamsccvevrerrieiierreee e 584
Universal Unique Identifier..........coooeceinciisecciesiesnnn, 585
FOIMAL ..o 586
Algorithms for Creating a UUID ... 588
(04 [00] 1= 11 =T oo = 588
SYStEM REDOOTcoviceie e 588
ClOCK AJUSTMENTcoiiiicce e 589
ClOCK OVEITUN ...t s 589
UUID GENEIAtION.ocviiciieieiieiei et 589
String Representation of UUIDS..........ccccovvveieinnccnnnncce s 591
ComParing UUIDS.........cociiricierisetce s ssssesens 592
Protocol SeqUENCE STIINGS ..., 593
Name Syntax CONSTaNTS ... 595
Authentication, Authorisation and Protection-level
ATGUIMENTS ..ot 597
The authn_SVC Argumentccccoivveinenseee e 597
The authz_SVC ArguUmMENt.......ccceeeiiecce e 597
The protect_level ArguMENtcccovvviierreere e 598
THe PrivsS AFQUIMENT ..ot 599
The server_princ_nName ArgumeNnt........ccccocceeervrreeinnnieennnessseesesennens 599
The auth_identity Argument..........ccooeeeirreiennnecie e 599
KEY FUNCLIONScviiictce et 599
Reject Status Codes and Parameters...........cccooeevoverrinnrrnnne, 601
REJECE StAtUS COUEScvevvvievierereice e 601
POSSIDIE FAITUIES ... e 603
COMM_SEAtUS PAramMeter........cccocvvveerieeriiereresesee e seenens 603
fault_status Parameter.........cococeievrecieinscese s 603
IDL to C-language Mappings..........enssssnnnns 605
Data TYPe BINAINGSccovvvieiirircice e 605
SYNTAX MAPPINGS .ovvviceieiireece et 608
Portable Character Set.........cccooicvieceiseeesssns 611
Endpoint Mapper Well-known Ports...........cccoeceerinnirinnenn, 613
ProtoCol 1deNTIfiers........coeeieceeeeceess s 615
DCE CDS Attribute Names ..., 617

X/Open DCE: Remote Procedure Call Xvii

XViii

Appendix K
Appendix L

Appendix M

Appendix N
N.1
N.2
N.3

Appendix O

Appendix P
P.1
P.2

Appendix Q

List of Figures

2-1
2-2
2-3
2-4
6-1
6-2
10-1
10-2
11-1
11-2
11-3
11-4
11-5
14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8
14-9
14-10

Contents

Architected and Default VValues for Protocol Machines. 619

Protocol Tower ENCOAINGccoocoieveceieeieseseiessssssieenns 621

Protocol TOWEr CONLENTS ...t e 622
The dce_error_ing_text Manual Page...........ccooeevvnnirrennnnn. 623
o (ol g o] g g To L) 4 f () TR 624
IDL Data Type Declarations............crinneriessionssisnnnnns 625

Basic Type DecClarations.........ccococvreirieiininece e 625

STATUS COUES. ...t 627

RPC-SPeCific Data TYPES .vcvrvrirerce et 629
Endpoint Mapper Interface Definition............ccccocomeivnn, 631
Conversation Manager Interface Definition 635

SErVer INLEITACE.cvii s 635

ClIeNt INTEIrfACEc.oveeeeeieee e 637
Remote Management Interface............cccooeeeorrieeriiecrisnnnnnne, 639
INABX. ... 641
Information Required to Complete an RPC..........ccocoevvrvvevnnvseinnninenns 20
Server Binding Relationships ... 24
Decisions in Looking Up an ENApointcc.cccecceevncennnnecrninsennnnnns 28
Decisions for Selecting @ Managercccovevvveeiennseieness e 29
Execution Phases of an RPC Thread..........cccovviiieieeeeeeeeene 300
Concurrent Call Threads Executing in Shared Execution Context..... 301
CL_CLIENT StateChart........cccooveeiiiireeeresseee et 346
CL_SERVER StateChart.........cccovevieireeiisseee et 377
CO_CLIENT StateChartcccoveeieiireeinesseee et 418
CO_CLIENT_ALLOC Statechart..........ccccovveeierniciinnnecesnessee s 454
CO_CLIENT_GROUP Statechartccccovveieeeivcciennece e 464
CO_SERVER StateChart........cccoveeieirnciierseee et 469
CO_SERVER_GROUP Statechart..........ccocoveerrnciininecee e 503
NDR FOrmat Label........cceiiiiiiiicicceeeeeee e 560
The Bo0Iean Data TYPE.....ccvrvrirceieririetee ettt 562
Character DAta TYPE.....ccovvveirerereeiiess et ssesenes 562
NDR INteger FOMMALS.........covvvriirireiee e saene 563
IEEE Single-precision Floating-point Formatc.ccocovveenvscciinnnns 565
IEEE Double-precision Floating-point Format............ccccovvveivncecinnns 565
VAX Single-precision (F) Floating-point Formatcc.cccocceevncicnnnns 566
VAX Double-precision (G) Floating-point Formatc.ccccovveevnnns 566
Cray Floating-point FOrmMatscccooveviivnccie e 567
IBM Floating-point FOrMALSccccoveiieirnce e 568

X/0pen CAE Specification (1994)

Contents

14-11
14-12
14-13
14-14
14-15
14-16
14-17
14-18
14-19
14-20
14-21
14-22
14-23
14-24
14-25

14-26
14-27
14-28
14-29
14-30
14-31
14-32
14-33

List of Tables

31
3-2
41
4-2
4-3
4-4
5-1
5-2
5-3
6-1
6-2
6-3
6-4
6-5
6-6
6-7
7-1
7-2
7-3
7-4
7-5

Uninterpreted Octet Representationccovveeeivvveenenneerssesseennnnns 568
Uni-dimensional Fixed Array Representation...........ccccoovevevivnceninnnns 570
Uni-dimensional Conformant Array Representationccc.coceceevnnnn. 570
Uni-dimensional Varying Array Representationcccococvevvnieennnnns 571
Uni-dimensional Conformant and Varying Array Representation..... 571
Multi-dimensional Fixed Array Representationcccococeevevvvnceninnns 572
Multi-dimensional Conformant Array Representation.............c.cccee.... 572
Multi-dimensional Varying Array Representation.............cccecovveevrnnns 573
Multi-dimensional Conformant and Varying Array Representation. 574
Varying String Representationcccovvveeieinecieness e 574
Conformant and Varying String Representationccccocveceevvvnienenn, 575
Multi-dimensional Conformant and Varying Array of Strings............ 576
Structure Representation..........ccovvvcievneiinnseee s 576
Representation of a Structure Containing a Conformant Array.......... 577
Representation of a Structure Containing a Conformant and

LY Te AN - | TSR 578
UnNion Representationccovciieieiieiseeie e 578
Pipe REPreSENtAtioNccccvvrivieeiierseee et 579
Top-level Full Pointer Representation.........ccccoceveiveeienvsceenesseennnns 581
Top-level Reference Pointer Representation.........cccocceevveceivscccnnnns 581
Embedded Full Pointer Representationsccccovvevrnnecinienseeninnnns 582
Embedded Reference Pointer Representationccccoovevevinsceninnns 583
NDR INPUE SEFEAMccviiceeeecesees e saene s 584
NDR OUEPUL STFEAM ... 584
Client and Server Binding Handles.............ccccovvveiinvnciinnssceicne e 50
Rules for Returning an ObJect’s TYPEvvevivivvccieieinece e 180
INTEQET BASE TYPES ...eceeieeeieeete ettt 243
IDL Directional AttriDULES ... 259
Alphabetic Listing of Productions............ccccceoviveiinnscienvseeeeesseenens 273
Constructed ldentifier ClaSSES ... 276
Transmitted TYPe ROULINES.........ccceovrvieiieirccie e 288
Transferred TYPE ROULINES........cccvrvvvieiir i 289
Floating Point Error Handlingccccovveeiinncicie s 292
EXECULION SEMANTICScvoviviviiiiiiiciiccee e 299
ProtoCol TOWEK StFUCTUIEcvviiiiiiriiieiiceeeeeeee e 308
The server_name Object AttribULEScceevivvevirrscce e 309
RPC-specific Protocol TOWEr LAYErS........cccccvrvvveirirnieereieseeee e 309
Example ProtoCol TOWENcccvivivieiiieece et 310
Service Group Object AFDULEScccccvvcveerrcce e 310
Configuration Profile Object Attributes..........cccovveiiivvccciircccc 311
INVOKE PArametersccovvirrinrirrrs s 314
RESUIL PAramMetersccciuiiiiiriee e 315
CanCel PArameters ...ttt 316
Error PAramMETErSc.cviiceece e 317
REJEC PAramIELErS......cvivvevceeesietee et 318

X/0pen DCE: Remote Procedure Call XiX

XX

8-2
8-3

8-5

8-6

12-1
12-2
12-3
12-4
14-1
14-2
A-1
A-2

A-4
A-5
B-1
C-1
D-1

E-1
E-2

F-1
F-2
G-1
H-1
I-1
I-2
J-1
K-1
K-2
L-1
L-2
L-3

Contents

Events Related to Other EIEMENTS........ccceiivvvvcciiersccre e 325
COMPOUN EVENLS ...ttt 325
Conditions Related to Other Elements.........ccccovveiinvcceinscee i 326
Compound CoNAItiONS........cccovvveiieiirceere s 326
Actions Related to Other EIeEmMEeNtS.........ccocovevivvecienvscie e 326
(@0] 0] o To18] g BN 4 To] g 13T 327
RPC Protocol Data UNitS.........ccccvevirieiiiinsciniess e 509
The First Set 0f PDU FIAQS ...covovvveiieiiece e 514
Second Set Of PDU FIAQS ..ot 514
Authentication Protocol Identifiers.......ccoocooiveviivsciissceeesseenens 517
NDR Format Label ValUES ...t 560
NDR Floating POINt TYPES ...cvcvevieirece et 564
L0110 0 o] g o - RS S 586
UUID VErsion FIeld..........cciiiieiieisece st 586
UUID variant Field ... 587
The 2 msb of clock_seq_hi_and_reservedcccovvvinvnciennseicnnnnns 590
(ST=1 (o @I o [T gV oo I 1Y/ o 1 TR 592
RPC Protocol SEqUENCE STHNGS......ccvrviirieieiinrseeresesie e 593
RPC Name Syntax Defined Constants..........ccococccrvveennneciennneeinnnns 595
Casts for Authorisation Informationccccevveiiirccce e, 599
RPC Key Acquisition for Authentication Servicescccocccevvvieeernnns 600
REJECE StAtUS COUES ...voviiceierietee et 601
Failures Returned in a comm_status Parametercccococeevevrvneenrnnns 603
Failures Returned in a fault_status Parametercccococvevivrrncenrnnns 604
IDL/NDR/C TYPE MaPPINGScvevreierieririeieeiesisiesesesissesesessssesesesssssseenens 607
Recommended Boolean Constant Values............ccoovevrvrccininnceeinnnns 607
Portable Character Set NDR ENcOdiNgS......ccccoovverivinieerinneeenesneeinnnns 612
Endpoint Mapper Well-Known POIS..........cccovveinrncinnnnece e 613
NDR Transfer Syntax ldentifier ..o 615
Registered Single Octet Protocol Identifiersc.ccoccoevvvciceinsceninns 616
DCE CDS Aribute NaMEScccovvveiiiereceiers et 617
Default Protocol Maching ValUEs............ccccccvrvvvciinvnccie e 619
Definition of MUStRECVFIagSIZe.......cccovvvvveeiiiirsciie et 619
FIOOIrs 110 3 INCIUSIVE ..ottt 622
Floors 4 and 5 for TCP/IP ProtoColSccceevvvcieniinccin e 622
Floors 4,5 and 6 for DECNet Protocol.........ccovveiivvccneinece e 622

X/0pen CAE Specification (1994)

Preface

X/Open

X/0pen is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/0pen’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/0pen defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/0pen publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:
« CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

X/0pen DCE: Remote Procedure Call XXi

Preface

« Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/0pen can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:
+ Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

- Technical Studies

X/0pen Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

« Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

- a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

XXil X/Open CAE Specification (1994)

Preface

- a new lIssue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/0pen maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done either by email to the X/Open info-server or by checking the
Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information by email, send a message to info-server@xopen.co.uk with
the following in the Subject line:

request corrigenda; topic index
This will return the index of publications for which Corrigenda exist.

This Document

This document is a CAE Specification (see above). It specifies Remote Procedure Call (RPC)
services, interface, protocols, encoding rules and the Interface Definition Language (IDL).

The purpose of this document is to provide a portability guide for RPC application programs
and a conformance specification for RPC implementations.

Structure

This document is organised into four parts.

Part 1, Remote Procedure Call Introduction describes this volume in detail, covering application
portability, services and protocols, and conformance requirements. It contains material relevant
to both application programmers and implementors.

Part 2, RPC Application Programmer’s Interface specifies a portable RPC Application
Programmer’s Interface (API). It contains material relevant both to application programmers
and implementors.

Part 3, Interface Definition Language and Stubs specifies the IDL and stubs. It contains material
relevant both to application programmers and implementors.

Part 4, RPC Services and Protocols specifies RPC services and protocols. It contains material
mainly relevant to implementors.

This volume also includes a series of appendixes containing material that supplements the main
text. These contain material relevant both to application programmers and implementors.
Intended Audience

This document is written for RPC application programmers and developers of RPC
implementations.

X/Open DCE: Remote Procedure Call XXiii

XXIV

Preface

Typographical Conventions

The following typographical conventions are used throughout this document:

In

Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— variable names, for example, substitutable argument prototypes
— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name().

Normal font is used for the names of constants and literals.

The notation <file.h> indicates a header file.

The notation [EABCD] is used to identify an error value EABCD.

Syntax, code examples and user input in interactive examples are shown in fixed width
font.

Variables within syntax statements are shown in italic fixed width font.

addition to these generic conventions, several chapters of this volume use conventions

specific to the topic covered, including language conventions (Chapter 4 and Chapter 5),
encoding conventions (Chapter 14), and protocol machine conventions (Chapter 8 to Chapter 11
inclusive). These conventions are specified in the relevant chapters.

X/0pen CAE Specification (1994)

Trade Marks

X/0pen™ and the “X’* device are trade marks of X/Open Company Limited.

X/0pen DCE: Remote Procedure Call XXV

XXVi

Referenced Documents

The following documents are referenced in this specification:

DCE Directory
X/0pen Preliminary Specification, December 1993, X/Open DCE: Directory Services
(ISBN: 1-85912-012-1 P314).

DCE Security
X/0pen Preliminary Specification, to be published in 1994, X/Open DCE: Authentication
and Security Services (ISBN: 1-85912-013-X P315).

ANSI/IEEE Std 754-1985
Standard for Binary Floating-Point Arithmetic.

I1SO 8823
ISO 8823:1988, Information Processing Systems — Open Systems Interconnection —
Connection-oriented Presentation Protocol Specification.

ISOC

ISO/IEC 9899: 1990, Programming Languages — C (which is technically identical to ANS
X3.159-1989, Programming Language C).

ISO/TR 8509
ISO/TR 8509: 1987, Information Processing Systems — Open Systems Interconnection —
Service Conventions.

System/370
IBM System/370 Principles of Operation, 1974, International Business Machines
Corporation.

VAX11 Architecture
VAX11 Architecture Handbook, 1979, Digital Equipment Corporation.
The following documents were used in the development of this specification, but are not directly
referenced:
Harel, D. On Visual Formalisms. Communications of the ACM 31, 5 (May 1988), pp. 514-530.

Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8 (1987), pp. 231-274.

Harel, Pnueli, Schmidt, Sherman On the Formal Semantics of Statecharts Proceedings of the 2nd
IEEE Symposium on Logic in Computer Science (Ithaca, NY, June 22-24). IEEE Press New
York, 1987, pp. 54-64.

i-Logix Inc., The Languages of Statemate Documentation for the Statemate System, January
1991, Burlington, MA.

i-Logix Inc., The Semantics of Statecharts Documentation for the Statemate System, January
1991, Burlington, MA.

X/0pen CAE Specification (1994)

X/Open CAE Specification

Part 1

Remote Procedure Call Introduction

X/Open Company Ltd.

Part 1 Remote Procedure Call Introduction

X/0pen CAE Specification (1994)

Chapter 1

Introduction to the RPC Specification

This document specifies both portability and interoperability for the Remote Procedure Call
(RPC) mechanism. The specification contains material directed at two audiences:

- It provides a portability guide for application programmers.

- It provides both portability and interoperability specifications for those who are
implementing or porting RPC or who are testing an RPC implementation.

This document may be thought of as an implementation specification, covering both portability
and interoperability, that contains within it an application portability guide. The application
portability guide consists of Part 2, RPC Application Programmer’s Interface and Part 3, Interface
Definition Language and Stubs.

Although the portability specification is part of the broader implementation specification, it has
been designed to stand alone so that it may be used by application programmers without
reference to the other parts of the implementation specification.

Note: In order to make the portability specification independent, some material is repeated,
especially between Chapter 2 and Chapter 6.

Part 1 Remote Procedure Call Introduction 3

Portability Introduction to the RPC Specification

1.1 Portability

The portability specification describes the concrete syntax and semantics of the Application
Programmer’s Interface (API) to RPC. It consists of:

- an introduction to the RPC API that describes the RPC programming model and gives
general guidelines for portable usage (see Chapter 2)

. areference section for the data types used in the RPC API (see Chapter 3)!

- aset of reference pages for the RPC run-time library routines; these specify the calling syntax
and semantics for the interfaces (see Chapter 3)

- areference to the Interface Description Language (IDL) (see Chapter 4)
- amapping of IDL data types to ISO C data types (see Appendix F)

- an RPC stub specification that defines stub characteristics required for portability (see
Section 5.1 on page 279).

The portability specification is narrowly focussed on providing a guide to portable usage of the
RPC API. It describes behaviour that is common to all implementations. Whenever
implementation-specific behaviour is referenced, it is clearly marked as such. Similarly, the
specification generally avoids examples or tutorial descriptions. Whenever usage guidelines are
provided, they are clearly marked as such.

All behaviour that is not specifically marked as implementation-specific or a usage note, is
considered to be required. All implementations must conform to the specified behaviour.
Programmers can rely on the specified behaviour to be portable among conforming
implementations.

1. This document specifies ISO C-language bindings for data types and interfaces.

4 X/Open CAE Specification (1994)

Introduction to the RPC Specification Services and Protocols

1.2

Services and Protocols

The implementation specification includes a set of service and protocol specifications. The
protocol specifications describe how implementations of the RPC client and server run-time
systems communicate. The service specifications describe a set of abstract services that the RPC
run-time system must implement.

The service and protocol specifications include:
- an abstract specification of the RPC model (see Chapter 6)
- an abstract specification of a set of RPC service primitives (see Chapter 7)

. abstract specifications of the RPC connectionless and connection-oriented communications
protocols. These are given as sets of statecharts and associated descriptive materials. This
includes an abstract specification of the underlying transport services required by the RPC
protocols. (The protocol specifications are contained in Chapter 8, Chapter 9, Chapter 10 and
Chapter 11.)

- byte stream specifications of the formats of RPC Protocol Data Units (PDUs) used by the
connectionless and connection-oriented protocols (see Chapter 12) and common
authentication verifier encodings (see Chapter 13)

- a specification of the Network Data Representation (NDR); this specifies a set of NDR data
types and the byte stream formats in which they are communicated between client and
server run-time environments (see Chapter 14)

- amapping of IDL data types to NDR data types (see Appendix F)

- an RPC stub specification that defines the stub characteristics required for interoperation (see
Section 5.2 on page 292)

- a specification of information stored in and retrieved from name services (see Section 6.2 on
page 304, Appendix | and AppendixJ)

- a UUID specification (see Appendix A)

- IDL data type declarations (see Appendix N)

- the endpoint mapper protocol (see Appendix O)

- the conversation manager protocol (see Appendix P)
- the remote management interface (see Appendix Q).

The aim of the service and protocol specifications is to provide a complete mapping from RPC
call semantics to the byte streams that RPC run-time clients and servers interchange using
underlying services. The RPC service primitives provide an abstract implementation of the
specified RPC call semantics and serve to map the specified semantics to the specified protocol
machines. The PDU formats give the byte streams that the protocol machines exchange using
the underlying transport services. The NDR specification, along with the mapping of IDL to
NDR data types, defines how the call data exchanged in the RPC PDUs is encoded.

Except for the byte stream specification and the stub specification, the service and protocol
specifications are abstract. They describe the behaviour that conforming implementations must
follow, but they do not prescribe any specific means for implementing this behaviour.

Implementations that conform to this specification interoperate according to the following rule;
client and server applications, conforming to the same IDL source (but not necessarily the same
ACS), correctly implement the specified RPC interface semantics for each remote procedure call
operation specified in the IDL source.

Part 1 Remote Procedure Call Introduction 5

Services and Protocols Introduction to the RPC Specification

Except when specified otherwise, IDL compiler behaviour and the stub, including the stub to
run-time interface, are implementation-dependent. Therefore, the above rule applies when stubs
are generated using the local implementation’s IDL compiler. There is no requirement that stubs
for a given language are portable among implementations.

6 X/Open CAE Specification (1994)

Introduction to the RPC Specification Conformance Requirements

1.3 Conformance Requirements

To conform to this document, implementations must meet the following requirements;

Implementations must support the endpoint selection rules in Endpoint Selection on page
27.

Implementations must support the manager selection rules in Interface and Manager
Selection on page 28.

Implementations must support the search algorithm in Section 2.4.5.

Implementations must support the APl naming, syntax and semantics, as defined in Chapter
3. Implementations may extend the set of status codes documented in Chapter 3.

Implementations must support the naming, syntax and semantics for IDL, as given in
Chapter 4.

Implementations must support the naming, syntax, and semantics for stubs, as given in
Chapter 5.

Implementations must support the semantics defined in Chapter 6.

Implementations must support the NSI syntax and naming, as defined in Section 6.2 on page
304.

Implementations must support the service semantics defined in Chapter 7.
Implementations must follow the conformance rules specified in Chapter 9.
Implementations must support the syntax of the PDU encodings in Chapter 12.

Implementations must support the Authentication Verifier encodings, as defined in Chapter
13.

Implementations must support the rules and encodings for NDR, as given in Chapter 14.

Implementations must support the syntax, semantics and encoding for UUIDs, as defined in
Appendix A.

Implementations must support the naming and semantics for protocol sequence strings, as
defined in Appendix B.

Implementations must support the naming and semantics for the name_syntax arguments, as
defined in Appendix C.

Implementations must support the naming and semantics for security parameters, as defined
in Appendix D.

Implementations must support the naming and encodings for comm_status and fault_status,
as defined Appendix E.

Implementations must support the mapping from IDL types to NDR types, and from NDR
types to defined I1SO C types, as defined in Appendix F.

Implementations must support the portable character set, as defined in Appendix G.

Implementations must use the endpoint mapper ports, as defined in Appendix H for the
corresponding protocols.

Implementations must adhere to the rules for protocol identifier assignment, as defined in
Appendix I.

Part 1 Remote Procedure Call Introduction 7

Conformance Requirements Introduction to the RPC Specification

- Implementations must adhere to the mappings for Directory Service attributes, as defined in
Appendix J.

- Implementations must provide defaults for the protocol machine values specified in
Appendix K.

- Implementations must obey the special protocol tower encoding rules specified in Appendix
L.

- Implementations must support the syntax and semantics of the dce_error_ing_text routine
specified in Appendix M.

- Implementations must adhere to the mappings for transfer syntax UUIDs, as defined in
Appendix N.

- Implementations must support the endpoint mapper semantics, as defined in Appendix O.

- Implementations must support the conversation manager semantics, as defined in Appendix
P.

- Implementations must support the remote management semantics as defined in Appendix

Q.

8 X/Open CAE Specification (1994)

- X/Open CAE Specification

Part 2

RPC Application Programmer’s Interface

X/Open Company Ltd.

Part 2 RPC Application Programmer’s Interface

10

X/0pen CAE Specification (1994)

Chapter 2

Introduction to the RPC API

This chapter provides a general description of the programming model implemented by the RPC
Application Programming Interface (API). This description includes definitions of many of the
concepts used throughout the RPC APl manual pages. As such, it is a necessary prerequisite to
the understanding of the manual pages, and the manual pages assume knowledge of this
chapter, even when they do not make explicit reference to it.

The description serves three purposes:

- It provides general information that is relevant to many of the routines in the RPC API, but is
not specified in the individual manual pages.

- It provides a rationale for the set of RPC APIs included in this document.
- It provides general guidelines for the intended use of the RPC APIs.

The general information covers topics, such as binding and name service usage, that are relevant
to many of the manual pages. Typically, several routines perform tasks related to a given topic.
This introduction provides a general model within which the tasks performed by individual
routines and suites of routines can be understood. This general model also provides a rationale
for the set of routines included in this document. It describes the underlying operations required
for RPC programming and shows how the set of RPC APIs included in this document gives
access to these operations.

In showing how the RPC API routines are meant to be used, this chapter provides certain
guidelines for consistent RPC client/server interface usage. These guidelines cover such areas as
using the naming services and organising server resources. By following them, programmers
can simplify the task of maintaining and enhancing server interfaces and writing client
programs.

Part 2 RPC Application Programmer’s Interface 11

RPC Programming Model Overview Introduction to the RPC API

2.1

2.1.1

2111

2112

12

RPC Programming Model Overview

The RPC programming model can be viewed along two axes:
« client/server
« program/stub/run-time system.

Each view describes important aspects of the use of the RPC API.

Client/Server Model

The client/server view of RPC programming describes the distributed resource model
implemented by the RPC mechanism. In this view, programming tasks are divided between
servers, which provide services or make resources available to remote clients, and clients, which
seek and make use of these services or resources.

Interfaces

The central component of the client/server model is the interface. An interface is a set of
remotely callable operations offered by a server and invokable by clients. Interfaces are
implemented by managers, which are sets of server routines that implement the interface
operations. RPC offers an extensive set of facilities for defining, implementing and binding to
interfaces.

The RPC mechanism itself imposes few restrictions on the organisation of operations into
interfaces. RPC does provide a means to specify interface versions and a protocol to select a
compatible interface version at bind time (see Chapter 4 and Chapter 6). When an interface is
specified as a new version of an existing interface, the server manager code must provide the
required version compatibility. Beyond this restriction, the programmer is free to place any set
of remotely callable operations in a given interface.

Remoteness

The RPC paradigm makes remote calls an extension of the familiar local procedure call
mechanism. Specifically, the call itself is made as a local procedure call, and the underlying RPC
mechanism handles the remoteness transparently. Server interface programming is thus similar
to local procedure call programming, except that the handler of the call runs in a separate
address space and security domain.

From this point of view, a local procedure call is a special simple case of the more general call
mechanism provided by RPC. RPC semantics extend local procedure call semantics in a variety
of ways:

Reliability Network transports may offer varying degrees of reliability. The RPC
run-time system handles these transport semantics transparently, but
RPC call specifications include a specification of execution semantics that
indicates to the RPC protocols the required guarantees of success and the
permissibility of multiple executions on a possibly unreliable transport.
Server application code must be appropriate for the specified execution
semantics.

Binding RPC binding occurs at run time and is under program control. Client and
server use of the RPC binding mechanism is discussed extensively in this
chapter.

No Shared Memory Because calling and called procedures do not share the same address
space, remote procedure calls with input/output parameters use copy-in,

X/0pen CAE Specification (1994)

Introduction to the RPC API RPC Programming Model Overview

2113

2114

copy-out semantics. For the same reason, RPC has no notion of “‘global
data structures” shared between the caller and callee; data must be
passed via call parameters.

Failure Modes A number of failure possibilities arise when the caller and callee are on
physically separate machines. These include remote system or server
crashes, communications failures, security problems and protocol
incompatibilities. RPC includes a mechanism to return such remote
errors to the caller.

Cancels RPC extends the local cancel mechanism by forwarding cancels that occur
during an RPC to the server handling the call, allowing the server
application code to handle the cancel. RPC adds a cancel time-out
mechanism to ensure that a caller can regain control within a specified
amount of time if a cancelled call should fail to return.

Security Executing procedures across physical machine boundaries and over a
network creates additional requirements for security. The RPC API
includes an interface to the underlying security services.

The RPC API provides programmers with the means to apply these extended semantics, but it
shields applications from the rigours of transport level send-and-receive programming. The
RPC programming paradigm gives the programmer control of the remote semantics at two
points: in the interface specification and through the RPC API.

- The interface specification, while it is principally used to specify the local calling syntax of an
interface, also allows programmers to specify the desired execution semantics, the degree to
which binding is under program control and error semantics. Interface specification is
described in Chapter 4.

- The RPC API gives applications access to a variety of run-time services and control of many
client/server interactions at run time. Its most important function is to control the process of
binding between clients and servers. Other functions include authentication, server
concurrency and server management.

Binding

A remote procedure call requires a remote binding. The calling client must bind to a server that
offers the interface it wants, and the client’s local procedure call must invoke the correct
manager operation on the bound-to server. Because the various parts of this process occur at
run time, it becomes possible to exercise nearly total programmatic control of binding. The RPC
API provides access to all aspects of the binding process.

Each binding consists a set of components that can be separately manipulated by applications,
including protocol and addressing information, interface information and object information.
This allows servers to establish many binding paths to their resources and allows clients to make
binding choices based on all of the components. These capabilities are the basis for defining a
variety of server resource models.

Name Services

Servers need to make their resources widely available, and clients need some way to find them
without knowing the details of network configuration and server installation. Hence, the RPC
mechanism supports the use of name services, where servers can advertise their bindings and
clients can find them, based on appropriate search criteria. The RPC API provides clients and
servers with a variety of routines that can be used to export and import bindings to and from
name services.

Part 2 RPC Application Programmer’s Interface 13

RPC Programming Model Overview Introduction to the RPC API

2.1.15

2.1.1.6

2.1.1.7

14

Resource Models

The client/server model views servers as exporters of services — via RPC interfaces — and
clients as importers of those services. Exported services typically take the form of access to
resources, such as computational procedures, data, communications facilities, hardware
facilities, or any other capabilities available to an application on a networked host. The RPC
mechanism does not distinguish among such resource types in any way. On the contrary, it
provides a uniform means of access — the remote procedure call — and allows the programmer
to define the underlying resource model freely.

RPC does, however, provide specific mechanisms that implicitly support different approaches to
resource modeling. These mechanisms take advantage of the flexibility of the binding process
and the name services. The RPC mechanism supports three basic resource models:

By Server In this model, clients seek to bind to a specific server instance that
provides an interface of interest.

By Service In this model, clients seek a service — as represented by an interface —
without concern for the specific server instance that provides that service
or any objects that the server manages.

By Object In this model, clients seek a binding to any server that manages a specific
object. An object may be any computational resource available to a
server.

The RPC programming mechanism does not explicitly enforce these models. Instead, they are
supported implicitly by making available a set of run-time binding and name service facilities
through the RPC API. Programmers may use these facilities according to their application
requirements. However, this document recommends that programs follow the models specified
here in order to ensure consistent use of the client/server interface.

Security Services

The RPC API provides access to a variety of security services: client-to-server and server-to-
client authentication, authorisation of access to server resources, and varying degrees of
cryptographic protection of client/server communications.

Server Implementation

The client/server view of RPC is necessarily asymmetric. The model is based on providing
services remotely via the export of RPC interfaces. Since servers are the means for
implementing remote interfaces, the model is server-centred. The RPC architecture provides
certain server facilities that make the implementation of servers more efficient. These include

Server Concurrency Implementations may buffer RPC requests at the server and
automatically provide multiple threads to handle concurrent requests,
relieving the application programmer of these tasks.

Remote Management The RPC run-time system automatically offers a set of remote server
management interfaces that can be used for such purposes as querying
and stopping servers.

X/0pen CAE Specification (1994)

Introduction to the RPC API RPC Programming Model Overview

2.1.2

2121

2.1.2.2

2.1.2.3

Application/Stub/Run-time System

The application/stub/run-time system view of RPC describes the division of labour between
application code and other RPC components in implementing a remote procedure call.

RPC Run Time

At the core of this model is the RPC run-time system, which is a library of routines and a set of
services that handle the network communications that underlie the RPC mechanism. In the
course of an RPC call, client-side and server-side run-time systems’ code handle binding,
establish communications over an appropriate protocol, pass call data between the client and
server, and handle communications errors.

The RPC API is the programmer’s interface to the run-time system. The run-time system makes
use of a number of services, such as the endpoint mapper, hame services and security services.
The RPC API also provides an interface to these services for carrying out RPC-specific
operations. Portable usage of the RPC API is fully specified in this section of this document.

Stubs

The stub is application-specific code, but it is not directly generated by the application writer
and therefore appears as a separate layer from the programmer’s point of view. The function of
the stub is to provide transparency to the programmer-written application code. On the client
side, the stub handles the interface between the client’s local procedure call and the run-time
system, marshaling and unmarshaling data, invoking the RPC run-time protocol, and if
requested, carrying out some of the binding steps. On the server side, the stub provides a
similar interface between the run-time system and the local manager procedures that are
executed by the server.

RPC transparency to the application programmer is provided by the interface specification
mechanism. The programmer specifies interfaces using an Interface Definition Language (IDL),
and the IDL compiler generates stubs automatically from the specification. Thus, the actual
operations performed by the stub are largely invisible to the programmer, although they form
part of the application-specific program code.

This chapter does not cover the interface specification mechanism itself; this is documented in
Chapter 4. What is covered here are the assumptions that the RPC programming model makes
about stubs, such as well-known stub names and stub memory management.

Application Code
RPC application code falls into two categories:
« remote procedure calls and manager code

- optional calls to the RPC API, mainly to set up the run-time system state required by remote
procedure calls.

In the first category are the procedures written by the programmer to implement the client and
server operations of the remote procedure call. On the client side, these are simply local calls to
the stub interfaces for the remote procedures. On the server side, these are a set of manager
routines that implement the operations of the interface. In most applications, manager routines
are presumably a major part of the server code. Recall that, aside from requiring managers to
conform to the specified execution semantics and version behaviour, the RPC mechanism
imposes no specific constraints on manager implementations.

Part 2 RPC Application Programmer’s Interface 15

RPC Programming Model Overview Introduction to the RPC API

16

The programmer-written application code interacts with the RPC run-time system principally
through the stub. This makes run-time operations largely transparent to the application code.
Nevertheless, in order to control binding, security and other aspects of the RPC mechanism, the
application often needs direct access to run-time operations. The RPC API provides applications
with such access to the RPC run-time system and related services.

X/0pen CAE Specification (1994)

Introduction to the RPC API API Operations

2.2

221

2.2.2

2.2.3

API Operations

The RPC API provides access to an extensive set of run-time operations. Section 2.11 on page 42
provides a detailed taxonomy of APIs according to the operations performed. This section offers
an overview, based on a somewhat broader set of categories.

- binding-related operations

« Name service operations

- endpoint operations

- security operations

- stub memory management operations
« management operations

« UUID operations.

Subsequent sections of this chapter cover many of these groups of operations in detail.

Binding-related Operations

Binding-related operations establish a relationship between a client and server that makes
possible a remote procedure call. These operations may be roughly divided into two categories:

- operations to establish client/server communications using an appropriate protocol
- operations that establish internal call routing information for the server.

Operations in the first category include the creation of communications endpoints by the server
for the set of protocols over which it wishes to receive remote procedure calls. Servers typically
export information about the bindings thus created to a name service and an endpoint map.
Clients typically import such binding information from a name service and an endpoint map
(see Section 2.2.2 and Section 2.2.3).

Operations in the second category establish a set of mappings that the server can use to route
calls internally to the appropriate manager routine. This routing is based on the interface and
version, operation and any object requested by the call.

Name Service Operations

The RPC name service API includes an extensive set of operations for exporting and importing
binding information to and from name services. These operations make use of a set of RPC-
specific name service entry attributes to structure the exported binding information so that it can
easily be found and interpreted by clients.

Endpoint Operations

Servers listen for remote procedure call requests over one or more protocol-specific endpoints.
Typically, such endpoints are allocated dynamically when a server begins to listen, and their
lifetime is only a single server instantiation. RPC provides an endpoint mapper mechanism that
allows such volatile endpoint information to be maintained separately from the more stable
components of a binding. Typically, servers export stable binding information to a name service
and register their volatile endpoints with the local endpoint mapper. The endpoint mapper then
resolves endpoints for calls made on bindings that do not contain them.

Endpoint operations are used by servers to register their endpoints with the endpoint mapper.

Part 2 RPC Application Programmer’s Interface 17

API Operations Introduction to the RPC API

2.2.4

2.2.5

2.2.6

2.2.7

18

Security Operations

These operations establish the authentication, authorisation services and protection levels used
by remote procedure calls.

Stub Memory Management Operations

These operations are used by applications to manage stub memory. They are typically used by
RPC applications that pass pointer data.

Management Operations

Management operations include a variety of operations with the potential to affect applications
other than the one making the management call. Servers automatically export a set of remote
management functions.

UUID Operations

UUIDs (Universal Unique Identifiers) are used frequently by the RPC mechanism for a variety of
purposes. The UUID operations enable applications to manipulate UUIDs.

X/0pen CAE Specification (1994)

Introduction to the RPC API Binding

2.3 Binding

Binding refers to the establishment of a relationship between a client and a server that permits
the client to make a remote procedure call to the server. In this document, the term “‘binding”
usually refers specifically to a protocol relationship between a client and either the server host or
a specific endpoint on the server host, and “‘binding information’” means the set of protocol and
addressing information required to establish such a binding. But, for a remote procedure call,
such a binding occurs in a context that involves other important elements, paralleling the notion
of a binding in a local procedure call. In order for an RPC to occur, a relationship must be
established that ties a specific procedure call on the client side with the manager code that it
invokes on the server side. This requires both the binding information itself and a number of
additional elements (see Figure 2-1 on page 20). The complete list is as follows:

1. aprotocol sequence that identifies the RPC and underlying transport protocols
an RPC protocol version identifier
a transfer syntax identifier

2

3

4. aserver host network address

5. anendpoint of a server instance on the host
6

an object UUID that can optionally be used for selection among servers and/or manager
routines

~

an interface UUID that identifies the interface to which the called routine belongs
8. an interface version number that defines compatibility between interface versions

9. an operation number that identifies a specific operation within the interface.

Part 2 RPC Application Programmer’s Interface 19

Binding

20

Note:

Introduction to the RPC API

Binding Information

Protocol Sequence

Protocol Version

Partial
>

Binding
Transfer Syntax Fgll i
Binding May Be Referred to

by Binding Handle
Host Address

Endpoint

Object UUID

Other Information

Operation Number

Interface UUID
Interface Identifier

Interface Version

Figure 2-1 Information Required to Complete an RPC

The discussion in this chapter is intentionally vague about how any of this information
is communicated between client and server. The underlying RPC protocol packages
the required information for transmission. However, APl usage is protocol-
independent, and this chapter provides a protocol-independent description of RPC.
Hence, this chapter typically refers to the binding information ‘‘contained” in a call
without specifying how such information is actually transmitted or received. This is
left to the RPC protocol specifications in Part 4, RPC Services and Protocols.

The binding information itself covers the first five elements of the list — the protocol and
address information required for RPC communications to occur between a client and server.

Figure 2-1 also shows the object UUID as part of the binding information. This is explained in
Section 2.3.1 on page 21.

In RPC terminology, such a binding can be partial or full. A partial binding is one that contains
the first four elements of the list, but lacks an endpoint. A full binding contains an endpoint as
well. The distinction is that a partial binding is sufficient to establish communications between a
client and a server host, whereas a full binding allows communications to a specific endpoint on
the server host.

X/0pen CAE Specification (1994)

Introduction to the RPC API Binding

231

2311

23.1.2

2.3.2

Binding Handles

The binding information required to make remote procedure calls is maintained by the client
and server run-time systems on behalf of applications. The run-time system provides
applications with opaque binding handles to refer to locally maintained binding information.
Applications use binding handles to manipulate bindings via calls to the RPC API.

It is important to understand that binding handles are only valid in the context of the local client
or server instance that created them. They are not used directly to communicate binding
information between servers and clients. Typically, servers advertise binding information by
exporting it to name service entries. When a client imports binding information from a name
service, it receives a binding handle from the client run-time system that refers to the local copy
of the imported binding information.

Note: On the server side, such a binding handle refers to the first five elements shown in
Figure 2-1 on page 20. On the client side, such a binding handle also refers to an object
UUID associated with the binding information. For this reason, the figure includes the
object UUID with the binding information even though it is not part of the protocol and
address information required to establish communications between the client and
server. The role of the object UUID is described in Interface and Manager Selection on
page 28.

Client and Server Binding Handles

Binding information may refer either to a server or a client. Most of the time, binding
information refers to servers, since it is servers to which clients need to bind in order to make
remote procedure calls. When a binding refers to a server, a binding handle for it is called a
server binding handle. Server binding handles are used both by clients and servers in the course of
the binding process.

In some cases, servers need binding information for clients that call them. A binding handle that
refers to such binding information is called a client binding handle. A small number of RPC APIs
take client binding handles as arguments.

Obtaining Binding Handles

Applications obtain server binding handles by calling any of several RPC API routines. (See
Section 3.1 on page 49 for a list of routines that return server binding handles.)

A server obtains a client binding handle as the first argument passed by the run-time system to a
server manager routine.

String Bindings

A string binding is a string representation of binding information, including an optional object
UUID. String bindings provide binding information in human-readable form. Applications can
use RPC API calls to request a string binding from the run-time system or convert a string
binding into a binding that the runtime system can use to make a remote procedure call. String
binding format is specified in Section 3.1 on page 49.

Part 2 RPC Application Programmer’s Interface 21

Binding

2.3.3

22

Introduction to the RPC API

Binding Steps

In order to complete an RPC call, all of the elements listed in Figure 2-1 on page 20 must be
present. RPC divides the process of assembling these elements into several steps and organises
the assembled information in a way that provides maximum flexibility to the binding process.
To understand this, consider the opposite possibility: a binding mechanism that seeks to imitate
a local procedure call’s static binding to a local library routine. In this case, all the elements
would be preassembled into a well-known binding to which the calling program would bind in
an all-or-nothing fashion.

RPC is close to the other dynamic extreme. It purposely avoids creating static links among all
the elements so that a final routing — from the client procedure call to the server manager
routine invoked — can be dynamically determined at the time of the RPC. From the
programmer’s point of view, one of the principal differences between a local procedure call and
a remote procedure call is that the binding process — the way all these components are linked
together — occurs at run time and can be carried out, optionally, under application program
control.

This serves several purposes:

. Itincreases the location transparency of applications. Because clients do not need to know all
the binding information before a call is actually made, applications can run successfully on
systems with widely different configurations.

« It increases the maintainability of server installations because there are few a priori
restrictions on the locations of server resources.

. It increases the probability of success in the face of partial failures because applications can
look for bindings to servers in different locations and choose among a variety of RPC and
network protocols.

- It makes possible a variety of server resource models by allowing servers to organise and
advertise binding information in a variety of ways.

The binding process consists of a series of steps taken by the client and server to create, make
available and assemble all the necessary information, followed by the actual RPC, which creates
the final binding and routing using the elements established by the previous steps. To break the
process down in more detail:

« The server takes a series of steps that establish binding-related state for the server side of the
call.

- The server optionally exports binding information to a name service.

- The client takes a series of steps that establish binding-related state for the client side of the
call. Binding information used in this process may be imported from a name service.

- The client makes a call, which is able to invoke the correct operation in the server by making
use of the binding-related state established on the client and server sides.

Each of the components listed in Figure 2-1 on page 20 is involved at some stage of this process.
Some components are involved at more than one stage and may be used in more than one way.
The following sections consider each stage and component in some detail.

X/0pen CAE Specification (1994)

Introduction to the RPC API Binding

2.3.3.1 Server Binding Steps

The server takes a number of steps to establish binding state in the server side run-time system,
the name service and the endpoint mapper. The server’s basic task is to acquire a set of
endpoints from the run time and set up a series of relationships among binding elements that
will then be used to construct the final routing at call time.

Figure 2-2 on page 24 shows the set of relationships that a server must establish to receive
remote procedure calls. As the figure indicates, these are maintained in several places:

- by the server run-time system

in the stub and application code
« by the endpoint mapper

- by a name service.

Stub and Application Code Maintained by Server Runtime

1. Define the EPV for each manager. 2. Register the Object UUID/Type UUID

associations.
Code for Interface foo

Object UUID Type UUID
foo Manager A uuib1 UUID A
EPV A Oneration 0 UUID 2 UUID A
> ration
> 11 P UuUID 3 UUID B
. UuID 4 UUID B
| ———> Operation 1
UuUID 5 UUID B
[T Operation 2 ,
3. Register the IF ID/Type UUID/EPV
[~ associations.
[~ Operation 3
\\ foo's IF ID UuID A EPV A
> Operation 4 foo's IF ID UUID B EPV B 1
4. Get the bindings.
foo Manager B Endpoints
EPV B | Operation 0 L Binding] Binding
| Information Handle
| L+ Operation 1
Operation 2 L Binding] Binding
Information Handle
[T T operation 3
~_|
™ Operation 4 1] Binding] Binding
Information Handle

Go to Step 5 —>»

Part 2 RPC Application Programmer’s Interface 23

Binding

Endpoint Map

Introduction to the RPC API

5. Export the endpoint information.

Full Binding Full Binding Full Binding
Information Information Information
foo's IF ID foo's IF ID foo's IF ID

Object UUID 1 Object UUID 2 Object UUID 3
Full Binding Full Binding
Information Information
foo's IF ID foo's IF ID

Object UUID 4 Object UUID 5

Name Service

6. Export the binding information to a name
service.

Partial Binding
Information

Object UUID 1

Object UUID 2
foo's IF ID

Object UUID 3

Partial Binding
Information

Object UUID 4

foo's IF ID Object UUID 5

Partial Binding
Information

foo's IF ID

Figure 2-2 Server Binding Relationships

The server takes several steps (some of them optional) to establish the necessary relationships,
as indicated in Figure 2-2. The steps are as follows:

1.

24

The server application or stub code defines a manager Entry Point Vector (EPV) for each
manager that the server implements. Recall that a manager is a set of routines that
implements the operations of an interface. Recall also that servers may implement more
than one manager for an interface; for example, to provide for different versions or object
types. Each EPV is a vector of pointers to the operations of the manager. When an RPC
request arrives, the operation number is used to select an element from one of the manager

X/0pen CAE Specification (1994)

Introduction to the RPC API Binding

EPVs.

2. The server registers a set of object UUID/type UUID associations with the RPC run-time
system.

3. The server registers interface identifier/type UUID/EPV associations with the RPC run-
time system. Together with the previous step, this establishes the mappings that permit
the run-time system to select the appropriate manager, based on the interface ID and any
object UUID contained in a call.

4. The server application tells the run-time system what protocol sequences to use, and the
run-time system establishes a set of endpoints for the protocol sequences requested. The
server may ask the run-time system for its bindings, and the run time will return a set of
binding handles that refer to the binding information for these endpoints.

5. The server may register binding information, consisting of a set of interface
identifier/binding information/object UUID tuples, with the endpoint mapper. For each
interface, the registered data consists of a cross product of the bindings and object UUIDs
that the server wants to associate with that interface. When a call is received with a partial
binding (that is, one lacking an endpoint) the endpoint mapper is able to use this
information to select an endpoint that is capable of handling the call.

6. The server may export binding information to one or more name service entries. The
information exported here looks quite similar to the information registered in the endpoint
map in the previous step, with one important difference. The binding information
exported to the name service generally lacks an endpoint, consisting of protocol and host
address information only. Therefore the name service contains only the most persistent
part of the binding information while the endpoint map contains the volatile endpoint
portion.

(The format is also different. See Section 2.4 on page 31 for information about the format of
server entries.)

Note that not all of these steps are required. Servers may construct their own bindings, by using
string bindings, rather than request them from the run-time system as described in step 4.
Servers may also avoid exporting binding information to a name service and endpoint map as
described in steps 5 and 6. In such a case, clients must then construct bindings from string
bindings obtained by some other means.

Having completed the required steps, the server has established a set of relationships that allows
the server run-time system to construct a complete binding, with routing to a specific server
operation, for a call that contains the following information:

« full or partial binding information
- an interface identifier
« an object UUID, which may be nil
+ an operation number.

The algorithms used are described in some detail in Section 2.4.5 on page 34. That discussion
will show how the relationships established make possible a large number of paths to the
interface and manager that are ultimately selected.

Note that the server run-time enironment itself maintains only a very limited set of
relationships: interface identifier/type UUID/manager EPV and object UUIDs/type UUIDs. It is
especially worth noting that the run-time system maintains no relationships between the
protocol-address bindings it has created and any of the other information. The server merely

Part 2 RPC Application Programmer’s Interface 25

Binding

2.3.3.2

26

Introduction to the RPC API

advertises the relationships it wants to export in a name service and registers them in the
endpoint map.

When the exported information is used by clients to find the server, client calls arriving at the
server endpoints should contain interface identifier/object UUID pairs that the server can, in
fact, service, although the RPC mechanism itself can provide no guarantee of this. This means
that name service operations, while they are not, strictly speaking, a required part of an RPC call,
usually play an important role in constructing bindings. Section 2.6 on page 38 shows how this
makes the name service a key element in the organisation of server resources.

The indirect mapping from object UUID to type UUID to EPV (and hence to the manager called)
also gives the server great flexibility in organising its resources based on objects UUIDs. This is
explained in Section 2.6 on page 38.

Client Binding Steps

The client binding steps are considerably simpler than those taken by the server. The basic task
of the client is to find a suitable binding and use it to make a call, as described in the following
steps.

Note: The following steps outline the explicit binding method. Client application code can
avoid explicitly having to carry out step 1 by using the automatic binding method. In this
case, the stub code takes care of importing suitable bindings. In step 2, clients can
avoid having to supply an explicit binding handle for each call by choosing either the
automatic or the implicit binding method. Binding methods are described in Section
2.3.3 on page 22 and Chapter 4.

1. Clients get suitable bindings by importing them from a name service. (Clients may also
construct suitable bindings from binding information otherwise known to them, but here
we describe the more general mechanism.)

To make a call, the client needs a compatible binding: that is, one that offers the interface
and version desired, uses a mutually supported protocol sequence, and if requested, is
associated with a specific object UUID.

Clients find compatible bindings by making calls to RPC API routines that search the name
service. Recall that a name service entry binding attribute stores a set of associations
between interface IDs and binding information. The client needs to find an element that
specifies the desired interface and an acceptable protocol sequence and import the binding
information from that element.

Typically, the client specifies the interface desired, and the run-time system takes
responsibility for finding bindings with protocol sequences that it can use. The client may
also further select a specific protocol sequence.

The client’s selection of a binding may also depend on an object UUID. Recall that each
name service entry may also store a set of object UUIDs. If the client requires a specific
object UUID, it imports bindings only from name service entries that store that object
UuID.

For each binding that the client imports, the run-time system provides a server binding
handle that refers to the binding information maintained by the client run-time system.
This differs somewhat from the binding information referred to by a server binding handle
on the server side. Recall that on the server, a server binding handle refers to a
combination of protocol sequence and server address information. On the client side, a
server binding handle may additionally refer to an object UUID, if the client has selected its
bindings by object UUID.

X/0pen CAE Specification (1994)

Introduction to the RPC API Binding

2. Once the client has found a compatible binding, it makes a call using the binding handle
for that binding. Depending on the binding method chosen, the client application code
may supply the binding handle explicitly or it may leave this to the stub code (see Section
2.3.3 on page 22 and Chapter 4). When the call is made, the client run-time system has
available to it the binding information and any object UUID referred to by the binding
handle. Also available in the stub code are the interface identifier of the interface on which
the call was made, and the operation number of the routine being called. Recall that the
last three items of this tuple of information — the object UUID/interface
identifier/operation number — are precisely what the server needs to route the call to a
specific manager operation.

2.3.3.3 Call Routing Algorithms

Once the server and client have taken all the necessary steps to set up server and client side
relationships, the call mechanism can use them to construct a complete binding and call routing
when the call is made. This section specifies the algorithms used. In following these algorithms,
it may be useful to refer to Figure 2-2 on page 24 to see how each of the relationships described
there is used.

Endpoint Selection

When the client makes a call with a binding that lacks an endpoint, the endpoint is acquired
from the endpoint mapper on the target host. The endpoint mapper finds a suitable endpoint by
searching the local endpoint map for a binding that provides the requested interface UUID, and
if requested, object UUID. The flowchart in Figure 2-3 on page 28 shows the algorithm.

Part 2 RPC Application Programmer’s Interface 27

Binding

28

Introduction to the RPC API

Call
asking for

non-nil
Object UUID
?
No

(

Yes

Non-nil
object UUID
and interface UUID

registered

together
?

No

A

Yes

Interface
uuID
registered
(with nil object
UuID)
?

Yes

Y

Y
No
Other
_ No mapping
- information
compatible
?
Y 1
Endpoint Insertistrmpomt
lookup o
i server binding
fails : _
information

Figure 2-3 Decisions in Looking Up an Endpoint

What is important to note in this algorithm is that the interface and protocol information must
match to find an endpoint, but an object UUID match may not be required. A server can provide
a default UUID match by registering the nil UUID. Calls with a nil or unmatched object UUID
follow the default path.

The endpoint map permits multiple endpoints to be registered with identical interface, protocol
and object UUID information. Such endpoints are assumed to be interchangeable, and the
endpoint mapper selects among them using an implementation-dependent algorithm.

Interface and Manager Selection

Having selected an endpoint, a call can be routed to one of the endpoints being used by a
compatible server instance. The server can unambiguously select the correct interface and
operation by using the interface identifier and operation number contained in the call. A call’s
interface identifier matches an interface identifier registered by the server when the interface
UUIDs and major version numbers are equal and the call’s minor version number is less than or
equal to the minor version number registered by the server.

X/0pen CAE Specification (1994)

Introduction to the RPC API Binding

Recall, however, that the RPC mechanism makes it possible for a server to implement multiple
managers for an interface. Hence it may be necessary to select the correct manager. Manager
selection is based on the object UUID contained in the call. The selection mechanism depends on
two of the relationships established by the server: the object UUID/type UUID mapping and the
interface ID/type UUID/manager UUID mapping. The flowchart in Figure 2-4 shows the
selection algorithm.

Call
asking for
non-nil
Object UUID
2

Non-nil
type UUID
set for

object
?

Manager Manager
registered for registered with
nil same non-nil

type UUID type UUID
? ?

Yes) Yes
Reject Call
Dispatch call Dlspatté:h call
to .
i appropriate
nil type non-nil type
et manager
Legend:

D = The default decision path.

Figure 2-4 Decisions for Selecting a Manager

Here the server provides a default path by registering a default manager for the nil type UUID.
Calls containing the nil object UUID, or any UUID for which the server has not set another type
UUID, will be directed to the default manager.

Part 2 RPC Application Programmer’s Interface 29

Binding

234

30

Introduction to the RPC API

Dispatching via the Manager EPV

Once the manager is selected, the call is dispatched via the selected manager EPV. Recall that a
manager EPV is a vector of pointers to manager routines, one for each operation of the interface.
The operation number is used to select the appropriate routine.

The actual call — via the manager EPV — to the server manager code is made by the server stub.
Up to this point, the binding discussion has deliberately avoided questions of implementation.
The run-time system maintains a set of relationships logically required by the binding
algorithms, but the way in which these are implemented is entirely outside the purview of this
document. The case of the manager EPV is different, however. The manager EPV is an
interface-specific data structure that must be declared by server code. The stub normally
declares a default manager EPV, but when there is more than one manager for an interface, the
application code must declare further manager EPVs. Section 3.1 on page 49 shows how to
construct the appropriate declaration.

Binding Methods

Client applications can exercise varying degrees of control over the binding process outlined in
Section 2.3.3.2 on page 26.

« Using the explicit binding method, the client specifies a binding handle as an explicit
parameter of each RPC. With this method, the client may choose a specific binding as often
as once per call. The client carries out step 1, as described in Section 2.3.3.2 on page 26, as
often as necessary to create the bindings it requires.

« Using implicit binding, the client specifies a binding handle globally for an interface, and the
client stub automatically supplies the global binding for each call made on the interface.
Using this method, the client needs to carry out step 1 only once per interface.

- Using automatic binding, the client allows the stub to import suitable bindings for it
automatically. Using this method, the client does not carry out step 1, and does not supply a
binding handle when making a call.

The automatic and implicit binding methods are interface wide and thus mutually exclusive.
The explicit binding method may be specified per call and takes precedence over implicit or
automatic binding specified for an interface.

Clients applications choose a binding method for an interface by specifying an ACS binding
attribute, as documented in Chapter 4.

X/0pen CAE Specification (1994)

Introduction to the RPC API Name Service Interface

2.4

24.1

Name Service Interface

The RPC API provides an extensive name service interface that applications use to export and
import binding information. In general, name services can support much broader usage, but the
RPC API is designed to support the RPC binding mechanism, rather than as a generalised name
service interface. The following sections describe those aspects of name services that are
relevant to the name service interface and binding.

The name service interface is designed to be independent of the underlying name service.
Hence, it is referred to as the Name Service-independent (NSI) interface. As far as possible, these
sections describe the name service interface without reference to any specific underlying name
service. However, applications using the name service interface need to pass name service-
specific names to the interface and therefore must be aware of the details of naming for the
underlying services. These issues are discussed in Section 2.4.2 on page 32.

Name Service Model

The name service interface is designed to allow servers to export binding information, and
clients to find it, in an efficient manner. The interface permits servers to organise their binding
information in a variety of ways. These support the server resource models described in Section
2.6 on page 38.

The name service interface makes two general assumptions about the underlying name service:

- The name service maintains a namespace database, the entries of which are accessible via
names with some name service-specific syntax.

- The name service leaf entries can support a set of RPC-specific attributes that the name
service interface uses when it exports, searches for and imports binding information.

The name service interface is used to store associations between bindings, interfaces and objects
in name service entries. For each interface offered by a server, the server exports a set of
protocol towers to the name service. A protocol tower combines binding information (not
including an object UUID) for a single binding with an interface identifier. The set of protocol
towers exported for an interface thus represents available bindings to the server for that
interface. Servers can also export sets of object UUIDs associated with arbitrary resources they
offer. The binding information exported by servers may be organised in a number of name
service entries. The APl makes use of several entry attributes, as described in Section 2.4.3 on
page 32, to store binding-related information.

Clients make name service API calls to search for suitable bindings, specifying the interface and,
possibly, any object UUID they are interested in, as well as a starting point for the search. The
name service search operations search name service entries and return bindings that are
compatible with the requirements of the client.

A client search of the namespace beginning at a given entry follows a path through name service
entries determined by the algorithm given in Section 2.4.5 on page 34. The name service
interface permits applications to define prioritised paths through the namespace, including
default paths. Default paths make it possible to minimise the amount of knowledge about the
namespace required by a client to begin searching for bindings.

Part 2 RPC Application Programmer’s Interface 31

Name Service Interface Introduction to the RPC API

2.4.2

2.4.3

2431

32

Name Syntax Tags

The name service interface maintains its name service independence by using name syntax tags.
Each interface that takes an entry name argument also takes an entry name syntax tag argument
that indicates which name service syntax is to be used to interpret the name. Supported values
for this argument are specified in Appendix C.

RPC ISO C implementations provide an RPC_DEFAULT ENTRY_SYNTAX environment
variable that specifies a default entry name syntax tag.

Name Service Attributes

The name service interface defines four RPC-specific name service attributes. These are as
follows:

Binding Attribute The binding attribute stores a set of protocol towers. An entry with the
binding attribute is known as a server entry.

Group Attribute The group attribute stores a set of entry names of the members of a single
group. An entry with the group attribute is known as a group entry.

Profile Attribute The profile attribute stores a set of profile elements. An entry with the
profile attribute is known as a profile entry.

Object Attribute The object attribute stores a set of object UUIDs.

While the name service interface does not impose any explicit restrictions on the use of these
entries (there are no enforced schema), the name service model is designed to support
applications that structure their name service entries according to the following recommended
rules:

- Applications should create distinct binding, group and profile entries. While any name
service entry can contain any combination of the four name service entry attributes,
applications should not place binding, group and profile attributes in the same entry. The
object attribute should appear only in server and group entries.

- Each server entry must contain information about only one server instance.

- Each group entry should contain information about only one interface and its versions, or
one object, or one set of interchangeable server instances.

The following sections describe the contents of the entry types in detail.

Server Entries

Server entries contain bindings for a single server. Server entries may also contain an object
attribute that specifies a set of object UUIDs associated with the server.

The binding attribute in a server entry stores a set of protocol towers. Recall that a protocol
tower consists of an interface identifier along with binding information. Typically, the binding
information lacks an endpoint so that the information represents a partial binding.

The information stored by the binding attribute does not include object UUIDs. Instead, when a
server wishes to associate object UUIDs with the bindings stored in a server entry, it exports
them to an object attribute in that entry. As described in Interface and Manager Selection on
page 28, object UUIDs may be used to map calls to object-specific type managers, but servers
may also use object UUIDs to identify any arbitrary server resource. When clients import
bindings, they can specify object UUIDs so as to import bindings only for servers that provide a
required resource. This usage of object UUIDs plays an important role in the server resource
models described in Section 2.6 on page 38.

X/0pen CAE Specification (1994)

Introduction to the RPC API Name Service Interface

2.4.3.2

2.4.3.3

2.4.4

Group Entries

A group entry contains names of one or more server entries, other groups or both. A group
provides a way to organise the server entries of different servers that offer a common RPC
interface or object. Since a group can contain group names, groups can be nested. Each server
entry or group named in a group is a member of the group. A group’s members should offer one
or more RPC interfaces, objects or both in common.

Profiles

A profile is an entry that contains a prioritised set of profile elements. A profile element is a
database record that corresponds to a single RPC interface and that refers to a server entry,
group or profile. Each profile element contains the following information:

- Interface ldentifier

This field is the search key for the profile. The interface identifier consists of the interface
UUID and the interface version numbers.

+ Member Name
The entry name of one of the following kinds of name service entries:
— aserver entry for a server offering the requested RPC interface
— agroup corresponding to the requested RPC interface
— aprofile.
« Priority Value

The priority value is used by NSI operations to determine the order in which elements are
searched. The search algorithm described in Section 2.4.5 on page 34 specifies how these
values are used. Priority values range from 0, which is the highest priority, to 7, which is the
lowest.

« Annotation String

The annotation string is textual information used to identify the profile. It is not used by NSI
search operations but can provide valuable information to namespace and server
administrators.

Additionally, a profile can contain at most one default profile element. A default profile element is
the element that a name service search operation uses when a search using the other elements of
a profile finds no compatible binding information. A default profile is a profile referenced by a
default profile element. Default profiles are typically used as an administrative device to
optimise clients’ searches for compatible bindings.

Binding Searches

Routines to extract information from a name service are present in the API in suites of three.
Each suite includes:

- abegin routine
- anext routine
- adone routine.

In general, applications use these suites as follows:

Part 2 RPC Application Programmer’s Interface 33

Name Service Interface Introduction to the RPC API

2.4.5

34

1. The application obtains a name service handle by calling the begin routine. RPC Name
Service routines use name service handles to refer to search state information maintained
by the run-time system. The data type declaration for these handles is described in Section
3.1 on page 49.

2. The application calls the next routine one or more times using the handle obtained in step
1. Each call returns another element, or set of elements, along the path being searched.

3. The application calls the done routine using the handle obtained in step 1 to terminate the
search.

The begin routine returns a handle used by a subsequent series of search operations. The handle
refers to information maintained by the run-time system about the search, including search
context information — such as matching criteria — and information about the current state of
the search. Each call to the begin routine returns a handle that maintains the context for a distinct
series of subsequent search operations.

The next routine returns elements, or sets of elements, one by one along the path being searched.
The application calls this routine one or more times with a handle obtained from the begin
routine. Each call returns another element or a status code that indicates that no more elements
remain. Calls to the next routine using the same handle form part of one series of search
operations along a search path. Calls to the next routine using different handles pertain to
distinct and independent searches.

The done routine frees the search context referred to by the handle and invalidates the handle.

Search Algorithm

The name service search operations traverse a path through one or more entries in the name
service database when searching for compatible binding information. The path taken by any
name service search, beginning at a given entry, depends on the organisation of binding
information using the various name service entry attributes. This section describes the
algorithm used by name service searches to determine what steps to take at each traversed
entry.

In each name service entry, searches ignore non-RPC attributes and process the name service
entry attributes in the following order:

1. the binding attribute (and object attribute, if present)
2. the group attribute
3. the profile attribute.

If a search path includes a group attribute, the search path can encompass every entry named as
a group member. If a search path includes a profile attribute, the search path can encompass
every entry named as the member of a profile element that contains the target interface
identifier.

The following pseudocode presents the algorithm for retrieving bindings from a namespace.
This describes the order in which bindings are returned by the routines
rpc_ns_hinding_import_done() and rpc_ns_binding_lookup_next ().

In the pseudocode, each entryName, group member and profile element represent names that
may be found in the namespace. Associated with each of these entries in the namespace may be
any of the eight possible combinations of the binding, group and/or profile attributes.

The order in which bindings are returned is significant and is indicated in the algorithm. This
algorithm only indicates the order of search. Local buffering constraints may cause the search to

X/0pen CAE Specification (1994)

Introduction to the RPC API Name Service Interface

be interrupted and resumed.

Procedure GetBindings (someName) {
/* "someName" represents the name of an entry in the namespace. */

/* The following procedure recursively searches for bindings */
Procedure Search (entryName)
{
Check entryName for binding attribute;
If (binding attribute found)
{
Retrieve bindings from binding attribute;
Randomise the bindings obtained from this attribute;
Add these bindings to the bottom of the global list of bindings;

}

Check entryName for group attribute;

If (group attribute found)
Retrieve members from group attribute and save in a list;
Randomise the members in this list;
Do

{

Select the first member and remove from the list;

/* x/
/* Cycle checking requires knowledge of other x/
/* names referenced within the scope of a call */
/* to GetBindings. */
/* x/

Check for a cycle;
If (not a cycle)

{

If (member selected exists)

{
Search (member selected) ;
1
1
!

Until (list of members is empty) ;

}

Check entryName for profile attribute;
If (profile attribute found)
{
Retrieve elements from profile attribute and save in a list;
Sort profile elements in list by priority, highest first;
Randomise the profile elements within each priority;
Do

{

Select the first profile element and remove from the list;

/* x/
/* Cycle checking requires knowledge of other x/
/* names referenced within the scope of a call */
/* to GetBindings. */
/* x/

Check for a cycle;
If (not a cycle)

{

If (element selected exists)

Part 2 RPC Application Programmer’s Interface 35

Name Service Interface Introduction to the RPC API

2.4.6

36

Search (element selected) ;

}
}
Until (list of profile elements is empty) ;

}
}

/* This is the body of the main routine starting the search */

Initialize a global ordered list of bindings to empty;
Search (someName) ;
return ordered list of bindings;

}

Name Service Caching

Name service interface operations may cache name service data to avoid unnecessary lookups in
the name service database. Whether caching occurs is implementation-dependent, but it is
expected that most implementations will use caching. For implementations that cache, this
document specifies the semantics of caching to be governed by an expiration age as follows.
Cached name service data is given an expiration age when it is cached. Name service interface
operations use the cached copy when it has not outlived its expiration age. When a name
service interface operation refers to cached data that has outlived its expiration age, the data is
looked up in the name service database and the cache is updated.

The RPC run-time system sets the expiration age to a default value. Applications can specify
another value either globally for the application or for a specific name service handle. The global
value applies, by default, to all name service operations performed by the application. A
handle-specific value applies only to operations performed using a specific name service handle.

When an application changes its global expiration age, or even the expiration age for a single
handle, the effects may not be entirely confined to the application itself. Frequent updates of
name service cache data may affect the performance of other clients of the name service and
applications sharing the same cache. For this reason, operations that affect expiration age are
considered to be management operations.

A non-caching implementation may be considered as a degenerate case of a caching
implementation that behaves as if every cache item had outlived its expiration age.

X/0pen CAE Specification (1994)

Introduction to the RPC API Server Model

2.5 Server Model

The RPC model is server-centred in the sense that RPC provides many facilities to support
varied and powerful server implementations, often with relatively little programming effort.
These include:

- support for multiple interfaces, versions, objects and managers, as described in Section 2.3 on
page 19

- automatic server concurrency and request buffering

- support for remote management.

2.5.1 Server Concurrency and Request Buffering

The RPC design assumes that servers export resources that may be widely available and
possibly in high demand. The RPC model therefore provides for automatic concurrent service
and buffering of RPC requests.

RPC provides server concurrency without requiring application code to spawn additional
threads or processes explicitly. When beginning to listen for a call, the server application
requests a humber of call threads, and the RPC run-time system automatically provides the
requested threads, up to an implementation-defined limit. Applications that request more than
one call thread must, however, implement manager routines in a thread-safe manner.

Implementations may also allow additional requests that cannot be executed concurrently to be
queued for subsequent execution. Otherwise they are rejected. Applications may make buffer
size requests when registering a protocol sequence, although the actual buffer size provided is
implementation-dependent.

2.5.2 Management Interface

Servers automatically implement, in addition to the interfaces specified by the programmer, a set
of remote management interfaces that can be used for such operations as making remote
inquiries to and stopping servers. These are accessible, both locally and remotely, via
management RPC routines.

Part 2 RPC Application Programmer’s Interface 37

Server Resource Models Introduction to the RPC API

2.6

2.6.1

2.6.2

2.6.3

38

Server Resource Models

The RPC API gives programs a high degree of control of the process by which bindings are
constructed, component by component. This allows programs to specify the precise service
required by any given instance of a remote procedure call. At the same time, the name service
interface permits applications to structure binding information stored by a hame service in a
variety of ways. Together, these capabilities are the basis for a variety of strategies for organising
server resources, based on the way the components of a binding are made available by a server.

The RPC API does not require server resources to be organised in any specific way; it simply
provides facilities that permit a variety of forms of organisation. The resource models outlined
here are only conventions. However, this document recommends following these conventions.
Servers provide resources that may be widely available, and they make use of a common
resource — the name services — to advertise their bindings. Organising server resources
according to well-defined conventions makes it easier to construct clients that can find the
resources they need.

This document recommends three basic server resource models:
« the server-oriented model
« the service-oriented model
- the object-oriented model.

These models are not mutually exclusive.

The Server-Oriented Model

In the server-oriented model, it is the server that is of interest to clients looking for bindings. In
the simplest case, each server exports its bindings to one server entry and clients can go directly
to a server entry to find bindings. Server instances may be interchangeable if they are running on
the same host and offer the same interfaces and objects. Entries for interchangeable server
instances may be organised as a group, and clients may begin their binding searches at the group
entry.

The Service-Oriented Model

In the service-oriented model, clients are interested in some service, as defined by an interface
(and its versions). The interface may be exported by more than one server, and server entries for
servers that export a given interface may be organised in the same group. However, client
applications seeking services normally do not have knowledge of the local nhamespace that will
lead them directly to the required group entry. Typically, such clients use profiles to find the
local instantiations of services they want.

The Object-Oriented Model

In the object-oriented model, a server associates some resource that it offers with an object
UUID. Several servers may offer the same interface but different objects. Each server then
exports the object UUIDs it offers to one or more separate server entries.

In order to make object UUIDs available to clients seeking a specific object, servers offering an
object typically export object UUIDs to a group entry for that object. The group entry name is
thus effectively associated with the object. Clients seeking a specific object can begin by
importing an object UUID from the group entry for the object. The client then imports bindings
for the object and interface it wants, beginning its search with the object entry.

X/0pen CAE Specification (1994)

Introduction to the RPC API Server Resource Models

2.7

Servers that export object UUIDs may or may nhot explicitly map these to type managers. In the
simplest case, the server only registers an interface with a nil type UUID, causing all calls on the
interface to be handled by the default manager. In this case, the association between object UUID
and resource exists only in the namespace, and the server must assume that a client interested in
a given object has, in fact, imported its binding correctly. On the other hand, servers may use
object/type mappings to dispatch calls precisely according to object UUID. (See Section 2.3.3 on
page 22 for the details of the mappings and selection algorithm.)

Security

The RPC API provides a small number of interfaces that applications can use to set the
authentication and authorisation services and the protection levels used by remote procedure
calls. Servers that want to use authenticated RPC register a set of server principal
name/authentication service pairs with the run-time system. To make an authenticated call, a client
associates security information with a binding on which it is going to call, including a server
principal name and authentication, authorisation and protection-level information.

Once the required authentication state is set, authentication and protection are carried out
transparently by the RPC run-time system, using the specified services. If the server principal
name and authentication service specified by the client do not match a pair registered by the
server, the call fails. A server can specify a non-default authentication key retrieval function, but
is not otherwise required (or allowed) to implement any of the authentication mechanism.

If the authentication requested is successful, the server manager routine can retrieve the caller’s
authentication, authorisation and protection-level information from the run-time system. Since
the server may have registered more than one principal name/authentication service pair, the
application code may still want to make an authentication decision at this point.

The server manager code also makes authorisation decisions based on the authorisation
information it retrieves from the run-time system. The server is free to use this authorisation
information to make whatever authorisation decisions are appropriate for the application.

The RPC security-related API is designed to be independent of any specific authentication and
authorisation services. Servers and clients specify the required services via parameters to the
authentication-related calls. The run-time system carries out authentication using the requested
authentication service, passes authorisation service-specific authorisation information with the
call, and provides protection that corresponds (in a service specific way) to the requested
protection level. Supported values for the authorisation, authentication and protection-level
parameters are specified in Appendix D.

Part 2 RPC Application Programmer’s Interface 39

Error Handling Introduction to the RPC API

2.8

2.9

40

Error Handling

The RPC API provides a consistent error handling mechanism for all routines. Each routine
includes a status output argument, which is used to return error status codes. These codes may
be passed to the dce error_ing_text() routine to extract error message text from a message
catalogue. (See dce_error_ing_text() on page 624.)

RPC calls return protocol and run-time error status codes through fault status and
comm_status parameters, as described in Chapter 4. These status codes are consistent with the
status codes returned from the RPC API and may be passed to dce_error_ing_text() to obtain
error message text.

The status codes documented in this document must be supported by all implementations.
Implementations may support additional status codes, but these are not required.

Cancel Notification

RPC provides a remote cancel notification mechanism that can forward asynchronous cancel
notifications to servers. When a client thread receives a cancel notification during an RPC, the
run-time environment forwards the notification to the server. When the server run-time system
receives the forwarded notification, it attempts to notify the server application thread that is
handling the call. This can result in one of three outcomes for the RPC call on the client side:

1. If the notification is delivered to and handled by the server application thread, the RPC
returns normally to the client.

2. If the server run-time system is unable to deliver the notification to the server application
thread (for example, because the server application is blocking notifications), the
notification is returned to the client run-time system. The RPC returns normally to the
client, and the client run-time system attempts to deliver the notification to the client
application thread. The client application code may then handle the notification.

3. If the notification is delivered to the server application thread, but the server application
code fails to handle it, the RPC returns to the client with a fault status.

Client applications may want to avoid waiting an indeterminate amount of time before a
cancelled call returns. The RPC mechanism therefore allows client applications to specify a
cancel time-out period. If a cancel occurs during an RPC, and the cancel time-out period expires
before the call returns, the call returns to the client with a fault status. Such a call is said to be
orphaned at the server. An orphaned call may continue to execute in the server, but it cannot
return to the client.

X/0pen CAE Specification (1994)

Introduction to the RPC API Stubs

2.10

2.10.1

2.10.2

2.10.3

2.10.4

Stubs

While stubs are generally transparent to the application code, applications may need to be aware
of certain stub characteristics:

- IDL to stub data type mappings
+ manager EPVs

- interface handles

« stub memory management.

This version of this document specifies C-language stub bindings only.

IDL to Stub Data Type Mappings

Stubs generated from the IDL specification of an interface contain language-specific bindings for
the interface operations. Client calls to remote procedures, and the server operations that
implement these procedures, must conform to the bindings defined by the stubs. Therefore,
applications must be aware of the mappings from the IDL data types that appear in an interface
specification to the data types that appear in the stub declarations.

The C-language mappings are specified in Appendix F. As specified there, stubs use defined
types rather than primitive C-language types in declarations. Applications should use these
defined types to ensure that their type declarations are consistent with those of the stubs, even
when the application is ported to a different platform.

Manager EPVs

Stubs may contain a default manager EPV as described in Section 3.1 on page 49 Applications
that declare additional nondefault manager EPVs must avoid the default name.

Interface Handles

Each stub declares an interface handle, which is a reference to interface specific information that
is required by certain RPC APIs. (See Section 3.1 on page 49 for an explanation of how
applications can access the declared interface handle.)

Stub Memory Management

RPC attempts to extend local procedure call parameter memory management semantics to a
situation in which the calling and called procedure no longer share the same memory space. In
effect, parameter memory has to be allocated twice, once on the client side, once on the server
side. Stubs do as much of the extra allocation work as possible so that the complexities of
parameter allocation are transparent to applications. In some cases, however, applications may
have to manage parameter memory in a way that differs from the usual local procedure call
semantics. This typically occurs in applications that pass pointer parameters that change value
during the course of the call. Detailed rules for stub memory management by applications are
given in Chapter 5 and Section 5.1.1.1 on page 280.

Part 2 RPC Application Programmer’s Interface 41

RPC API Routine Taxonomy Introduction to the RPC API

2.11

2.11.1

2.11.2

42

RPC API Routine Taxonomy

The following sections summarise the RPC API routines, classifying them according to the kinds
of functions they perform.

Note: Implementations of the RPC API must be synchronous cancel-safe (in the context of
POSIX threads). Implementations of the RPC API need not be asynchronous cancel-
safe. Multi-threaded implementations must be thread-safe.

Binding Operations

The routines in this group manipulate binding information. Most of these routines use binding
handle parameters to refer to the underlying binding information. The string binding routines
provide a way to manipulate binding information directly in string format.

A number of routines from the Object Operations and the Authentication and Authorisation
groups also manipulate the information referenced by binding handles.

rpc_binding_copy () Returns a binding handle that references a new copy of
binding information.

rpc_binding_free() Releases a binding handle and referenced binding
information resources.

rpc_binding_from_string_binding() Returns a binding handle from a string representation of a
binding handle.

rpc_binding_reset() Resets a server binding so the host remains specified, but
the server instance on that host is unspecified.

rpc_binding_server_from_client() Converts a client binding handle to a server binding handle.

rpc_binding_to_string_binding () Returns a string representation of a binding handle.

rpc_binding_vector_free() Frees the memory used to store a vector of binding handles
and the referenced binding information.

rpc_server_ing_bindings() Returns binding handles for RPC communications.

rpc_string_binding_compose() Combines the components of a string binding into a string
binding.

rpc_string_binding_parse() Returns, as separate strings, the components of a string
binding.

Interface Operations

The routines in this group manipulate interface information. Many of these routines take
interface handle arguments. These handles are declared by stubs to reference the stubs’ interface
specifications. The routine rpc_server_register_if() is used to establish a server’s mapping of
interface identifiers, type UUIDs and manager EPVs. The routine rpc_if ing_id() can be used to
return the interface identifier (interface UUID and version numbers) from an interface
specification.

rpc_if id_vector free() Frees the memory used to store a vector and the interface
identifier structures it contains.

rpc_if_ing_id() Returns the interface identifier for an interface specification.

rpc_server_ing_if() Returns the manager entry point vector registered for an
interface.

X/0pen CAE Specification (1994)

Introduction to the RPC API RPC API Routine Taxonomy

2.11.3

2.11.4

rpc_server_register_if() Registers an interface with the RPC run-time system.

rpc_server_unregister_if() Unregisters an interface from the RPC run-time system.

Protocol Sequence Operations

The routines in this group deal with protocol sequences. The various server_use* routines are
used by servers to tell the run-time system which protocol sequences to use to receive remote
procedure calls. After calling one of these routines, the server calls rpc_server_ing_bindings() to
get binding handles for all the protocol sequences on which it is listening for calls.

rpc_network_ing_protseqs() Returns all protocol sequences supported by both the RPC
run-time system and the operating system.

rpc_network_is_protseq_valid () Tells whether the specified protocol sequence is valid and
supported by both the RPC run-time system and the
operating system.

rpc_protseq_vector_free() Frees the memory used by a vector and its protocol
sequences.
rpc_server_use_all_protseqs() Tells the RPC run-time system to use all supported protocol

sequences for receiving remote procedure calls.

rpc_server_use_all_protseqs() Tells the RPC run-time system to use all the protocol
sequences and endpoints specified in the interface
specification for receiving remote procedure calls.

rpc_server_use_protseq() Tells the RPC run-time system to use the specified protocol
sequence for receiving remote procedure calls.

rpc_server_use protseq_ep() Tells the RPC run-time system to use the specified protocol
sequence combined with the specified endpoint for
receiving remote procedure calls.

rpc_server_use protseq_if() Tells the RPC run-time system to use the specified protocol
sequence combined with the endpoints in the specified
interface specification for receiving remote procedure calls.

Local Endpoint Operations

The routines in this group manipulate information in an application host’s local endpoint map.
These include the routines that servers typically use to register and unregister their binding
information in the local endpoint map. A set of endpoint management routines is also available
for more general manipulation of local and remote endpoint maps.

rpc_ep_register() Adds to, or replaces, server address information in the local
endpoint map.

rpc_ep_register_no_replace() Adds to server address information in the local endpoint
map.

rpc_ep_resolve_binding () Resolves a partially bound server binding handle into a

fully bound server binding handle.

rpc_ep_unregister() Removes server address information from the local
endpoint map.

Part 2 RPC Application Programmer’s Interface 43

RPC API Routine Taxonomy Introduction to the RPC API

2.11.5

2.11.6

2.116.1

44

Object Operations

The routines in this group manipulate object related information. Servers use
rpc_object_set type() to establish their object UUID/type UUID mappings. Clients typically
specify the object UUID they wish to associate with a binding when they import bindings from a
name service. However, clients can use rpc_binding_set_object() to associate a different object
UUID with a binding. Servers can use rpc_object set inq_fn() to establish private object
UUID/type UUID mappings.

rpc_object_ing_type() Returns the type of an object.

rpc_object_set_ing_fn() Registers an object inquiry function.
rpc_object_set_type() Assigns the type of an object.

rpc_binding_ing_object() Returns the object UUID from a binding handle.
rpc_binding_set object() Sets the object UUID value into a server binding handle.

Name Service Interface Operations

The routines of this group constitute most of the RPC name service independent interface (NSI).
A group of name service management routines is also available. The NSI routines are divided
into several subcategories according to groups of functions.

NSI Binding Operations

Applications use the routines in this subgroup to the export and import bindings to and from
name service server entries. These include two suites of begin/next/done routines that
applications can use to import bindings.

rpc_ns_hinding_export() Exports server binding information to a name service entry.

rpc_ns_binding_import_begin() Creates an import context for importing bindings from a
name service.

rpc_ns_hinding_import_done() Deletes a name service import context.

rpc_ns_hinding_import_done() Returns a binding handle for a compatible server from a

name service.

rpc_ns_bhinding_ing_entry_name() Returns the name of an entry in the name service database
from which the binding information referenced by a server
binding handle came.

rpc_ns_hinding_lookup_begin () Creates a lookup context for importing bindings from a
name service.

rpc_ns_hinding_lookup_done () Deletes a name service lookup context.

rpc_ns_hinding_lookup_next () Returns a vector of binding handles for compatible bindings

from a name service.

rpc_ns_hinding_select() Returns a binding handle from a vector of compatible server
binding handles.

rpc_ns_binding_unexport() Removes binding information from an entry in a name
service database.

X/0pen CAE Specification (1994)

Introduction to the RPC API

2.11.6.2 NSI Entry Operations

RPC API Routine Taxonomy

Applications use the routines in this group to return information about name service entries of

various types.
rpc_ns_entry expand_name()

rpc_ns_entry_object_ing_begin()

rpc_ns_entry object_ing_done()

rpc_ns_entry_object_ing_next()

2.11.6.3 NSI Group Operations

Expands the name of a name service entry.

Creates an inquiry context for viewing the objects stored in
an entry in a name service database.

Deletes a name service object inquiry context.

Returns an object stored in an entry in a name service
database.

Applications use the routines in this group to manipulate name service group entries.

rpc_ns_group_delete()

rpc_ns_group_mbr_add()

rpc_ns_group_mbr_ing_begin()
rpc_ns_group_mbr_ing_done()
rpc_ns_group_mbr_ing_next()

rpc_ns_group_mbr_remove()

2.11.6.4 NSI Profile Operations

Deletes a group attribute.

Adds an entry name to a group; if necessary, creates the
entry.

Creates an inquiry context for viewing group members.
Deletes the inquiry context for a group.
Returns a member name from a group.

Removes an entry name from a group.

Applications use the routines in this group to manipulate name service profile entries.

rpc_ns_profile_delete()
rpc_ns_profile_elt_add ()

rpc_ns_profile_elt_ing_begin()

rpc_ns_profile_elt_ing_done()
rpc_ns_profile_elt_ing_next()

rpc_ns_profile_elt_remove()

2.11.7 Authentication Operations

Deletes a profile attribute.
Adds an element to a profile; if necessary, creates the entry.

Creates an inquiry context for viewing the elements in a
profile.

Deletes the inquiry context for a profile.
Returns an element from a profile.

Removes an element from a profile.

Applications use the routines in this group to manipulate the authentication, authorisation and
protection-level information used by authenticated remote procedure calls.

rpc_binding_ing_auth_client()

rpc_binding_ing_auth_info()

rpc_binding_set_auth_info()

Part 2 RPC Application Programmer’s Interface

Returns authentication information referenced by a client
binding handle.

Returns authentication information referenced by a server
binding handle.

Sets authentication information referenced by a server
binding handle.

45

RPC API Routine Taxonomy Introduction to the RPC API

2.11.8

2.11.9

2.11.10

2.11.11

46

rpc_server_register_auth_info() Registers authentication information with the RPC run-time
system.

The Server Listen Operation

This routine performs the final step in server initialisation, causing the server to begin to listen
for remote procedure calls.

rpc_server_listen() Tells the RPC run-time system to listen for remote
procedure calls.

The String Free Operation

Applications use this routine to free the string memory allocated by RPC API routines that
return strings.

rpc_string_free() Frees a character string allocated by the run-time system.

UUID Operations

The routines in this group manipulate UUIDs.

uuid_compare Compares two UUIDs and determines their order.
uuid_create Creates a new UUID.

uuid_create_nil Creates a nil UUID.

uuid_equal Determines if two UUIDs are equal.

uuid_from_string Converts a string UUID to binary representation.

uuid_hash Creates a hash value for a UUID.

uuid_is_nil Determines if a UUID is nil.

uuid_to_string Converts a UUID from binary representation to a string

representation.

Stub Memory Management

The routines in this group enable applications to participate in stub memory management.

rpc_sm_allocate () Allocates memory within the RPC stub memory
management scheme.

rpc_sm_client_free() Frees memory allocated by the current memory allocation
and freeing mechanism used by the client stubs.

rpc_sm_destroy_client_context() Reclaims the client memory resources for a context handle,
and sets the context handle to NULL.

rpc_sm_disable_allocate () Releases resources and allocated memory within the RPC
stub memory management scheme.

rpc_sm_enable_allocate () Enables the stub memory management environment.

rpc_sm_free() Frees memory allocated by the rpc_sm_allocate () routine.

rpc_sm_get_thread_handle() Gets a thread handle for the stub memory management

environment.

X/0pen CAE Specification (1994)

Introduction to the RPC API RPC API Routine Taxonomy

2.11.12

2.11.13

rpc_sm_set_client_alloc_free() Sets the memory allocation and freeing mechanism used by
the client stubs.

rpc_sm_set thread_handle() Sets a thread handle for the stub memory management
environment.

rpc_sm_swap_client_alloc_free () Exchanges the current memory allocation and freeing
mechanism used by the client stubs with one supplied by
the client.

Endpoint Management Operations

The routines in this group provide a more general interface for manipulating endpoint maps
than the one provided by the Local Endpoint Operations group. Routines in this group allow the
examination of endpoint map elements one at a time and permit operations both on the
application host’s local endpoint map and on remote endpoint maps. These are considered
management operations because of their potential to affect applications other than the one
making the management call.

rpc_mgmt_ep_elt_ing_begin() Creates an inquiry context for viewing the elements in a
local or remote endpoint map.

rpc_mgmt_ep_elt_ing_done() Deletes the inquiry context for viewing the elements in a
local or remote endpoint map.

rpc_mgmt_ep_elt_ing_next() Returns one element at a time from a local or remote
endpoint map.

rpc_mgmt_ep_unregister() Removes server address information from a local or remote
endpoint map.

Name Service Management Operations

The routines in this group carry out operations typically done by name service management
applications or only infrequently done by most applications. These are considered management
operations because of their potential to affect applications other than the one making the
management call.

rpc_ns_mgmt_binding_unexport() Removes multiple binding handles, or object UUIDs, from
an entry in a name service database.

rpc_ns_mgmt_entry create() Creates an entry in a name service database.
rpc_ns_mgmt_entry delete() Deletes an entry from a name service database.
rpc_ns_mgmt_entry _ing_if ids() Returns the list of interfaces exported to an entry in a name

service database.

rpc_ns_mgmt_handle_set exp_age() Sets a handle’s expiration age for cached copies of name
service data.

rpc_ns_mgmt_ing_exp_age() Returns an application’s global expiration age for cached
copies of name service data.

rpc_ns_mgmt_set_exp_age() Modifies the application’s global expiration age for cached
copies of name service data.

Part 2 RPC Application Programmer’s Interface 47

RPC API Routine Taxonomy

2.11.14

2.11.15

2.11.16

48

Local Management Services

Introduction to the RPC API

The routines in this group provide a set of miscellaneous local operations that servers and clients
can use to manage their RPC interactions.

rpc_mgmt_ing_com_timeout()

rpc_mgmt_set authorization fn ()

rpc_mgmt_set _cancel_timeout()

rpc_mgmt_set_com_timeout()

rpc_mgmt_set server_stack size()
rpc_mgmt_stats_vector free()

rpc_mgmt_ing_dflt_protect_level ()

Returns the communications time-out value referenced by a
binding handle.

Establishes an authorisation function for processing remote
calls to a server’s management routines.

Sets the lower bound on the time to wait before timing out
after forwarding a cancel.

Sets the communications time-out value referenced by a
binding handle.

Specifies the stack size for each server thread.
Frees a statistics vector.

Returns the default protection level for an authentication
service.

Local/Remote Management Services

Applications can use the routines in this group to query and stop servers remotely. Servers can
also use these operations to query and stop themselves.

rpc_mgmt_ing_if _ids()

rpc_mgmt_ing_server_princ_name()
rpc_mgmt_ing_stats()

rpc_mgmt_is_server_listening()

rpc_mgmt_stop_server_listening()

Error Messages

Returns a vector of interface identifiers of the interfaces a
server offers.

Returns a server’s principal name.
Returns RPC run-time statistics.

Tells whether a server is listening for remote procedure
calls.

Tells a server to stop listening for remote procedure calls.

The dce_error_ing_text() routine provides a locale-independent way to get error message text for
a status code returned by an RPC API routine. Because this routine is not RPC-specific, it is
documented in Appendix M rather than being included with the RPC API manual pages.

X/0pen CAE Specification (1994)

Chapter 3

RPC API Manual Pages

3.1 RPC Data Types

The descriptions of the data types used by RPC API routines include C-language bindings,
where appropriate.

The data type declarations given here fall into three categories:

- The declarations make use of a set of primitive unsigned integer data types. The C-language
bindings for these types are implementation-dependent. Only the ranges of these types are
given here.

- Certain data types are intended to be opaque to applications. The C-language bindings of
opaque types are not given here.

- The remaining data types are defined explicitly here with C-language bindings that make use
of the unsigned integer types, opaque types and other defined types.

Applications that refer to the data types described here must include the C header file
<dce/rpc.h>.

3.1.1 Unsigned Integer Types

Some of RPC API function declarations and the remaining definitions given here make use of a
set of unsigned integer data types. Each type holds an unsigned integer within a specified range,
as shown in the following table.

Type Declaration Range

unsigneds 0to 28-1
unsigned16 0 to 216-1
unsigned32 0to 23%2-1

The C-language bindings for these types are implementation-dependent.

3.1.2 Signed Integer Type
The rpc_mgmt_set_cancel_timeout() routine uses the signed32 data type. This is an integer in the
range —231 to 2811,

3.1.3 Unsigned Character String

RPC treats all characters in strings as unsigned characters. The C-language binding of the
unsigned character string type is implementation-dependent. The unsigned character data type
must be able to encode the characters of the portable character set, as specified in Appendix G.
Routines that require character string arguments specify the data type unsigned_char _t.

Part 2 RPC Application Programmer’s Interface 49

RPC Data Types RPC API Manual Pages

3.14 Binding Handle

A binding handle is an opaque data type that applications use to reference binding information
maintained by the RPC run-time system. Depending on the binding information that it
references, a binding handle is considered a server binding handle or a client binding handle.

A server binding handle references binding information for a server. Server binding handles
appear as arguments to many RPC API routines, and they are used both by clients and servers to
manipulate the bindings required for remote procedure calls.

A client binding handle references binding information for a client that has made an RPC to a
server. A client binding handle may be provided to the server application as the first argument
to the call. (See Chapter 4 for further information.) Servers can use the routine
rpc_binding_server_from_client() to convert a client binding handle to a server binding handle
that can be used to make a remote procedure call to the calling client.

As described in Chapter 2, a binding handle refers to several components of binding
information. When this binding information lacks an endpoint, the binding handle is said to be
partially bound. When the binding information includes an endpoint, the binding handle is said to
be fully bound. Both fully and partially bound binding handles can be used to make remote
procedure calls.

RPC API routines requiring a binding handle as an argument specify the data type
rpc_binding_handle_t. Binding handle arguments are passed by value.

The following table lists RPC API routines that operate on binding handles, specifying the type
of binding handle required by each routine.

Routine Input Argument | Output Argument
rpc_binding_copy () Server Server
rpc_binding_free() Server None
rpc_binding_from_string_binding () | None Server
rpc_binding_ing_auth_client () Client None
rpc_binding_ing_auth_info () Server None
rpc_binding_ing_object () Server or client None
rpc_binding_reset() Server None
rpc_binding_server_from_client() Client Server
rpc_binding_set_auth_info () Server None
rpc_binding_set_object() Server None
rpc_binding_to_string_hinding () Server or client None
rpc_binding_vector_free() Server None
rpc_ns_binding_export () Server None
rpc_ns_binding_import_done () None Server
rpc_ns_binding_ing_entry_name() Server None
rpc_ns_binding_lookup_next () None Server
rpc_ns_binding_select() Server Server
rpc_server_ing_bindings() None Server

Table 3-1 Client and Server Binding Handles

50 X/Open CAE Specification (1994)

RPC API Manual Pages RPC Data Types

3.15

An application can share a single binding handle across multiple threads of execution. The
application must provide concurrency control for operations that read or modify a shared
binding handle. The related routines are:

rpc_binding_free()
rpc_binding_reset()
rpc_binding_set_auth_info()
rpc_binding_set object()
rpc_ep_resolve_binding ()
rpc_mgmt_set_com_timeout()

Binding Vector

The binding vector data structure contains a list of binding handles over which a server
application can receive remote procedure calls.

The C-language declaration is:

typedef struct {
unsigned3?2 count ;
rpc_binding handle t binding h[1];
} rpc_binding vector t;

(The [1] subscript is a placeholder in the binding vector declaration. Applications use the count
member to find the actual size of a returned binding vector.)

The RPC run-time system creates binding handles when a server application registers protocol
sequences. To obtain a binding vector, a server application calls the rpc_server_ing_bindings()
routine. A client application obtains a binding vector of compatible servers from the name
service database by calling the rpc_ns_binding_lookup_next () routine. In both cases, the RPC run-
time system allocates memory for the binding vector. An application calls the
rpc_binding_vector_free() routine to free the binding vector.

To remove an individual binding handle from the vector, the application sets its value in the
vector to NULL. When setting a vector element to NULL the application must:

- free the individual binding
- not change the value of count.

Calling the rpc_binding_free() routine allows an application both to free the unwanted binding
handle and to set the vector entry to NULL.

The following routines require a binding vector argument:

rpc_binding_vector_free()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_unregister()
rpc_ns_hinding_export()
rpc_ns_hinding_lookup_next ()
rpc_ns_hinding_select()
rpc_server_ing_bindings()

Part 2 RPC Application Programmer’s Interface 51

RPC Data Types RPC API Manual Pages

3.1.6

3.1.7

3.1.8

52

Boolean Type

Routines that require a Boolean-valued argument or return a Boolean value specify the data type
boolean32. RPC implementations define the Boolean constants TRUE and FALSE.

Endpoint Map Inquiry Handle

An endpoint map inquiry handle is an opaque data type that references inquiry state
information used by a series of endpoint inquiry operations. The endpoint inquiry handle data
type is rpc_ep_inq_handle_t. Applications obtain an endpoint map inquiry handle by calling
rpc_mgmt ep_elt ing_begin() and wuse the handle for one or more calls to
rpc_mgmt_ep_elt_ing_next(). Applications call rpc_mgmt_ep_elt ing_done() to free an endpoint
map handle.

Interface Handle

Each stub declares an interface handle that can be used by application code to reference
interface-related data maintained by the stub. The interface handle data type is rpc_if_handle_t.
Applications refer to a stub-declared interface handle using a well-known name constructed as
follows:

For the client:
if-name v major-version minor-version c_ifspec
For the server:
if-name v major-version minor-version s ifspec
where:
- if-name is the interface identifier specified in the IDL file.
« major-version is the interface’s major-version number specified in the IDL file.
« minor-version is the interface’s minor-version number specified in the IDL file.
Implementations must support a maximum if-name length of at least 17 characters.
The following routines specify an interface handle argument:
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_resolve_binding ()
rpc_ep_unregister()
rpc_if_ing_id()
rpc_ns_hinding_export()
rpc_ns_binding_import_begin()
rpc_ns_hinding_lookup_begin ()
rpc_ns_hinding_unexport()
rpc_server_ing_if()
rpc_server_register_if()
rpc_server_unregister_if()
rpc_server_use_all_protseqs()
rpc_server_use_protseq_if()

X/0pen CAE Specification (1994)

RPC API Manual Pages RPC Data Types

3.1.9

3.1.10

3.1.11

Interface Identifier

An interface identifier (interface ID) data structure contains the interface UUID and major-
version and minor-version numbers of an interface. The C-language declaration is:

typedef struct {
uuid t uuid;
unsignedlé vers major;
unsignedlé vers_minor;
} rpc_if id t;

Applications can obtain an interface identifier by calling rpc_if ing_id() with an interface handle.
The following routines also require interface identifier arguments:

rpc_mgmt_ep_elt_ing_begin()
rpc_mgmt_ep_elt_ing_next()
rpc_mgmt_ep_unregister()
rpc_ns_mgmt_binding_unexport()
rpc_ns_profile_elt_add ()
rpc_ns_profile_elt_ing_begin()
rpc_ns_profile_elt_ing_next()
rpc_ns_profile_elt_remove()

Interface Identifier Vector
The interface identifier (ID) vector data structure holds a list of interface identifiers.

The C-language declaration is:

typedef struct {
unsigned3?2 count;
rpc_if id t *if id[1];
} rpc_if id vector t;

(The [1] subscript is a placeholder in the interface ID vector declaration. Applications use the
count member to find the actual size of a returned vector.)

To obtain a vector of the interface IDs registered by a server with the RPC run-time system, an
application calls the rpc_mgmt ing_if ids() routine. To obtain a vector of the interface IDs
exported by a server to a name service database, an application calls the
rpc_ns_mgmt_entry _ing_if ids() routine.

The RPC run-time system allocates memory for the interface ID vector. The application calls the
rpc_if _id_vector_free () routine to free the interface ID vector.

Manager Entry Point Vector

The server stub declares a default manager entry point vector (EPV), which it uses to call the
operations that implement an interface. A manager EPV consists of a vector of pointers to the
operations of the interface. To declare the default manager EPV, the stub defines an interface-
specific manager EPV data type with the following type name:

<if-name> v<major-version> <minor-version> epv_t

The data type is defined as a C struct whose elements are pointers to the manager routines for
the interface, with the same names and in the same order in which they appear in the IDL
interface specification.

The stub declares the default manager EPV with the name NIDL_manager_epv.

Part 2 RPC Application Programmer’s Interface 53

RPC Data Types RPC API Manual Pages

3.1.12

3.1.13

54

Applications can use the stub-declared manager EPV data type to declare non-default manager
EPVs. Applications initialise non-default manager EPVs with a vector of addresses of alternate
manager routines. Applications that declare non-default manager EPVs must avoid the default
name.

See rpc_server_register_if() on page 193 for further information on non-default manager EPVs.

Name Service Handle

RPC API routines that obtain information from a name service use opaque name service handles
to refer to search state information maintained by the run-time system. Applications obtain a
name service handle by calling one of the name service begin routines and use the handle for one
or more calls to the corresponding next routine. Applications free a name service handle by
calling one of the name service done routines. For more information on name service handles and
operations, refer to Chapter 2.

The name service handle data type is rpc_ns_handle _t.
The following routines require a name service handle argument:

rpc_ns_hinding_import_begin()
rpc_ns_hinding_import_done()
rpc_ns_hinding_import_done()
rpc_ns_bhinding_lookup_begin ()
rpc_ns_hinding_lookup_next ()
rpc_ns_bhinding_lookup_done ()
rpc_ns_entry_object_ing_begin()
rpc_ns_entry_object_ing_next()
rpc_ns_entry object_ing_done()
rpc_ns_group_mbr_ing_begin()
rpc_ns_group_mbr_ing_next()
rpc_ns_group_mbr_ing_done()
rpc_ns_profile_elt_ing_begin()
rpc_ns_profile_elt_ing_next()
rpc_ns_profile_elt_ing_done()
rpc_ns_mgmt_handle_set_exp_age()

Protocol Sequence String

A protocol sequence string is a character string that identifies a protocol sequence. Protocol
sequences are used to establish a relationship between a client and server. Valid protocol
sequence strings are listed in Appendix B. RPC applications should use only these strings.

Routines that require a protocol sequence string argument specify the data type
unsigned_char _t.

Not all valid protocol sequences are supported by all implementations. An application can use a
specific protocol sequence only if the implementation supports that protocol.

A server chooses to accept remote procedure calls over some or all of the supported protocol
sequences. The following routines allow server applications to register protocol sequences with
the run-time system:

X/0pen CAE Specification (1994)

RPC API Manual Pages RPC Data Types

3.1.14

3.1.15

rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()
rpc_server_use_protseq_if()

Applications can use protocol sequence strings to construct string bindings using the
rpc_string_binding_compose () routine.

Protocol Sequence Vector

The protocol sequence vector data structure contains a list of protocol sequence strings. The
protocol sequence vector contains a count member followed by an array of pointers to protocol
sequence strings.

The C-language declaration is:

typedef struct {
unsigned3?2 count ;
unsigned char t *protseql[l];
} rpc_protseq_vector t;

(The [1] subscript is a placeholder in the protocol sequence vector declaration. Applications use
the count member to find the actual size of a returned binding vector.)

To obtain a protocol sequence vector, an application calls the rpc_network_ing_protseqgs() routine.
The RPC run-time system allocates memory for the protocol sequence vector. The application
calls the rpc_protseq_vector_free() routine to free the protocol sequence vector.

Statistics Vector

A statistics vector is used to store statistics from the RPC run-time system for a server instance.
The statistics vector contains a count member followed by an array of statistics.

The C-language declaration is:

typedef struct {
unsigned3?2 count ;
unsigned3?2 stats[1];
} rpc_stats vector t, *rpc_stats vector p t;

(The [1] subscript is a placeholder in the statistics vector declaration. Applications use the count
member to find the actual size of a returned binding vector.)

The X/Open DCE specifies four statistics that are returned in a statistics vector. The following
constants are used to index the statistics array to extract specific statistics:

rpc_c_stats_calls_in The number of remote procedure calls received by the server.
rpc_c_stats_calls_out The number of remote procedure calls initiated by the server.
rpc_c_stats_pkts_in The number of RPC PDUs received by the server.
rpc_c_stats_pkts out The number of RPC PDUs sent by the server.

To obtain run-time statistics, an application calls the rpc_mgmt_ing_stats() routine. The RPC
run-time system allocates memory for the statistics vector. The application calls the
rpc_mgmt_stats_vector_free() routine to free the statistics vector.

Part 2 RPC Application Programmer’s Interface 55

RPC Data Types RPC API Manual Pages

3.1.16

56

String Binding
A string binding contains the character representation of a binding handle.

The two formats of a string binding are shown below. The four italicised fields represent the
object UUID, RPC protocol sequence, network address and endpoint and network options of the
binding. A delimiter character such as an @ (at sign) or a : (colon) separates each field. A string
binding does not contain any white space.

object-uuid @ rpc-protocol-sequence

network-address [endpoint , option ...
or
object-uuid @ rpc-protocol-sequence
network-address [endpoint = endpoint , option ...
object-uuid This field specifies an object UUID.

This field is optional. If it is not provided the RPC run-time system
assumes a nil type UUID.

@ This symbol is the delimiter character for the object UUID field. If an
object UUID is specified, it must be followed by this symbol.

rpc-protocol-sequence This field specifies a protocol sequence. Valid protocol sequence strings
are listed in Appendix B.

This field is required.

This symbol is the delimiter character for the RPC protocol sequence
field.

network-address This field specifies the address (address) of a host on a network (network)
that receives remote procedure calls made with this string binding. The
format and content of the network address depends on the value of rpc-
protocol-sequence. For the internet protocols, the format for the network
address is an optional # (number sign) character followed by four integers
separated by periods.

The network address field is optional. If an application does not supply
this field, the string binding refers to the local host.

[This symbol is the delimiter character specifying that one endpoint and
zero or more options follow. If the string binding contains at least an
endpoint, this symbol is required.

endpoint This field specifies an endpoint of a specific server instance. Optionally
the keyword endpoint= can precede the endpoint specifier.

The format and content of the endpoint depends on the specified protocol
sequence. For the internet protocols, the format of the endpoint field is a
single integer.

The endpoint field is optional.

, This symbol is the delimiter character specifying that option data follows.
If an option follows, this delimiter is required.

X/0pen CAE Specification (1994)

RPC API Manual Pages RPC Data Types

3.1.17

3.1.18

3.1.19

option This field specifies any options. Each option is specified as option
name=option value.

The format and content of the option depends on the specified protocol
sequence.

The option field is optional.

] This symbol is the delimiter character specifying that one endpoint and
zero or more options precede. If the string binding contains at least an
endpoint, this symbol is required.

The \ (backslash) character is treated as an escape character for all string binding fields. It can be
used to include one of the string delimiters in the value of a field.

String UUID

A string UUID contains the character representation of a UUID. A string UUID consists of
multiple fields of hexadecimal characters. Dashes separate the fields and each field has a fixed
length, as follows:

XXXXXXXX - XXXX - XXXX - XXXX - XXXXKXXKXXXXXX
For a detailed specification of string UUIDs, see Appendix A.
The following routines require a string UUID argument:

rpc_string_binding_compose ()
rpc_string_binding_parse()
uuid_from_string()
uuid_to_string()

UUIDs

Universal Unique Identifiers (UUIDs) are opaque data structures that are widely used by the
RPC mechanism. The RPC API provides a series of routines to manipulate UUIDs. Routines that
take a UUID argument declare the data type as uuid_t. (See Appendix A for a detailed
specification of UUIDs.)

UUID Vector

The UUID vector data structure contains a list of UUIDs. The UUID vector contains a count
member, followed by an array of pointers to UUIDs.

The C-language declaration is:

typedef struct

{

unsigned3?2 count ;
uuid t *uyuid[1] ;
} uuid vector t;

The [1] subscript is a placeholder in the UUID vector declaration. Applications use the count
member to find the actual size of a returned binding vector.

Part 2 RPC Application Programmer’s Interface 57

RPC Data Types RPC API Manual Pages

An application constructs a UUID vector to contain object UUIDs to be exported or unexported
from the name service database. The following routines require a UUID vector argument:

rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_unregister()
rpc_ns_hinding_export()
rpc_ns_binding_unexport()
rpc_ns_mgmt_binding_unexport()

58 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_copy()

NAME
rpc_binding_copy — returns a copy of a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding copy (
rpc_binding handle t source binding,
rpc_binding handle t *destination binding,
unsigned32 *status) ;

ARGUMENTS

Input

source_hinding Specifies the server binding handle whose referenced binding information
will be copied.

Output

destination_binding Returns the server binding handle that refers to the copied binding
information.

status Returns the status code from this routine. The status code indicates

whether the routine completed successfully or, if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.

DESCRIPTION
The rpc_binding_copy () routine copies the server binding information referenced by the binding
handle specified in the source_binding argument. This routine returns a new server binding
handle for the copied binding information. The new server binding handle is returned in the
destination_binding argument.

After calling this routine, operations performed on the source_binding binding handle do not
affect the binding information referenced by the destination_binding binding handle. Similarly,
operations performed on the destination_binding binding handle do not affect the binding
information referenced by the source_binding binding handle.

Note: To release the memory used by the destination_binding binding handle and its
referenced binding information, the application calls the rpc_binding_free() routine.

RETURN VALUE
None.

SEE ALSO
rpc_binding_free().

Part 2 RPC Application Programmer’s Interface 59

rpc_binding_free() RPC API Manual Pages

NAME
rpc_binding_free — releases binding handle resources

SYNOPSIS
#include <dce/rpc.h>

void rpc binding free(
rpc_binding handle t *binding,
unsigned32 *status) ;

ARGUMENTS
Input/Output
binding Specifies the server binding handle to free.
Output
status Returns the status code from this routine. This status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_binding_free() routine frees the memory used by a server binding handle and its
referenced binding information when the binding handle was created by one of the following
routines:

rpc_binding_copy ()
rpc_binding_from_string_binding ()
rpc_ns_hinding_import_done()
rpc_ns_hinding_select()
rpc_server_ing_bindings()
rpc_ns_hinding_lookup_next ()

When the operation succeeds, binding returns the value NULL.

RETURN VALUE
None.

SEE ALSO
rpc_binding_copy ()
rpc_binding_from_string_binding ()
rpc_ns_hinding_import_done()
rpc_binding_vector_free()
rpc_ns_hinding_lookup_next ()
rpc_ns_hinding_select()
rpc_server_ing_bindings().

60 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_from_string_binding()

NAME
rpc_binding_from_string_binding — returns a binding handle from a string representation of a
binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc binding from string binding(
unsigned char t *string binding,
rpc_binding handle t *binding,
unsigned32 *status) ;

ARGUMENTS
Input
string_binding Specifies a string representation of a binding handle.
Output
binding Returns the server binding handle.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_protseq_not_supported
Protocol sequence not supported on this host.
DESCRIPTION

The rpc_binding_from_string_binding () routine creates a server binding handle from a string
representation of a binding handle.

When the string_binding argument contains an object UUID, the returned binding contains the
UUID that is specified. Otherwise, the returned binding contains a nil UUID.

When the string_binding argument contains an endpoint field, the returned binding is a fully
bound server binding handle with a well-known endpoint. Otherwise, the returned binding is a
partially bound binding handle.

When the string_binding argument contains a host address field, the returned binding contains
the host address that is specified. Otherwise, the returned binding refers to the local host.

RETURN VALUE
None.

SEE ALSO
rpc_binding_copy ()
rpc_binding_free()
rpc_binding_to_string_binding ()
rpc_string_binding_compose ().

Part 2 RPC Application Programmer’s Interface 61

rpc_binding_ing_auth_client() RPC API Manual Pages

NAME
rpc_binding_ing_auth_client — returns authentication, authorisation and protection information
from a client binding handle
SYNOPSIS
#include <dce/rpc.h>
#include <dce/id base.h>
void rpc binding ing auth client(
rpc_binding handle t binding,
rpc_authz handle t *privs,
unsigned char t **server princ name,
unsigned32 *protect level,
unsigned32 *authn svc,
unsigned32 *authz svc,
unsigned32 *status) ;
ARGUMENTS
Input
binding Specifies the client binding handle from which to return information.
Input/Output
server_princ_name Returns the server principal name referenced by binding. The content of
the returned name and its syntax depend on the value of authn_svc. (See
Appendix D for authentication service-specific syntax.)
Specifying NULL prevents the routine from returning this argument.
Unless NULL is specified, the application should call the rpc_string_free()
routine to free the storage used by this argument.
protect_level Returns the protection level referenced by binding. (See Appendix D for
possible values of this argument.)
Specifying NULL prevents the routine from returning this argument.
authn_svc Returns the authentication service referenced by binding. (See Appendix
D for possible values of this argument.)
Specifying NULL prevents the routine from returning this argument.
authz_svc Returns the authorisation service referenced by binding. (See Appendix D
for possible values of this argument.)
Specifying NULL prevents the routine from returning this argument.
Output
privs Returns a handle to the authorisation or privilege information referenced
by binding.
The server must cast this handle to a data type that depends on authz_svc.
(See Appendix D for information about the data types appropriate to each
authorisation service.)
The lifetime of the data referenced by this argument is one invocation of a
server manager routine. If an application wants to preserve any of the
62 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_ing_auth_client()

returned data beyond this lifetime, it must copy the data into
application-allocated memory.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_binding_has _no_auth
Binding has no authentication information.

DESCRIPTION
The rpc_binding_ing_auth_client() routine returns authentication, authorisation and privilege
information referenced by the client binding handle, binding. Servers obtain client binding
handles as the first argument of a remote procedure call. (See Section 3.1 on page 49 and Chapter
2 for more detailed information on how client binding handles are created and obtained.) The
client binding handle references authentication, authorisation and privilege information for the
client that made the remote procedure call.

A client establishes this information by calling rpc_binding_set_auth_info (), which associates a set
of authentication, authorisation and privilege information with a server binding handle. When
the client makes an RPC call on this server binding handle, the client binding handle received by
the server references the same authentication, authorisation and privilege information.

No server memory is allocated for the data referenced by privs. The lifetime of this data is the
current invocation of the manager routine that was called with the binding argument. An
application that wishes to preserve any privileges information beyond this invocation must copy
the information into server memory.

RETURN VALUE
None.

SEE ALSO
rpc_binding_ing_auth_info()
rpc_binding_set_auth_info()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 63

rpc_binding_ing_auth_info() RPC API Manual Pages

rpc_binding_ing_auth_info — returns authentication, authorisation and protection information

rpc_binding handle t binding,
unsigned char t **server princ name,
unsigned32 *protect level,

rpc_auth identity handle t *auth identity,

Specifies the server binding handle from which to return information.

Returns the server principal name referenced by hinding. The content of
the returned name and its syntax depend on the value of authn_svc. (See
Appendix D for authentication service-specific syntax.)

Specifying NULL prevents the routine from returning this argument.

Unless NULL is specified, the application should call the rpc_string_free()
routine to free the storage used by this argument.

Returns the protection level referenced by binding. (See Appendix D for
possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

Returns the authentication service referenced by binding. (See Appendix
D for possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

Returns a handle to a data structure that contains the client’s
authentication and authorisation credentials. This argument must be cast
as appropriate for the authentication and authorisation services specified
by authn_svc and authz_svc. (See Appendix D for information about the
appropriate data types appropriate to each service.)

Specifying NULL prevents the routine from returning this argument.

Returns the authorisation service referenced by hinding. (See Appendix D
for possible values of this argument.)

Specifying NULL prevents the routine from returning this argument.

NAME
from a server binding handle
SYNOPSIS
#include <dce/rpc.h>
#include <dce/sec_login.h>
void rpc binding ing auth info(
unsigned32 *authn svc,
unsigned32 *authz svc,
unsigned32 *status) ;
ARGUMENTS
Input
binding
Input/Output
server_princ_name
protect_level
authn_svc
auth_identity
authz_svc
64

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_binding_ing_auth_info()

Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_binding_has _no_auth
Binding has no authentication information.
DESCRIPTION

The rpc_binding_ing_auth_info() routine returns authentication, authorisation and protection-
level information referenced by the server binding handle, binding. Client applications use this
routine to discover whether the protection level they have requested is supported by the RPC
run-time implementation.

A client application associates authentication, authorisation and protection-level information
with a server binding handle by calling rpc_binding_set_auth_info(). The value of protect_level
returned by rpc_binding_ing_auth_info () may be higher than the level requested in the previous
call to rpc_binding_set_auth_info(). When an application requests a protection level that is not
supported, the RPC run-time system attempts to upgrade the protection level to the next highest
supported level. When it succeeds, the binding will be given a higher protection level than the
one requested. Client applications may compare the requested protection level with the value
returned by rpc_binding_ing_auth_info() to discover whether the requested protection level is
actually supported by the run-time system.

The auth_identity argument points to the authentication and authorisation identity information
associated with binding. rpc_binding_ing_auth_info() allocates no memory for this information,
and references to auth_identity may not be valid after any subsequent call to
rpc_binding_set auth_info() with the same binding argument. In any case, the lifetime of
auth_identity is no longer than the lifetime of binding.

Any of the data returned by rpc_binding_ing_auth_info () may be stale after a subsequent call to
rpc_binding_set_auth_info () with the same binding argument.

The rpc_binding_ing_auth_info() routine allocates memory for the returned server_princ_name
argument. The caller is responsible for calling the rpc_string_free() routine for the returned
argument string.

RETURN VALUE
None.

SEE ALSO
rpc_binding_set_auth_info()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 65

rpc_binding_ing_object() RPC API Manual Pages

NAME
rpc_binding_ing_object — returns the object UUID from a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding ing object (
rpc_binding handle t binding,
uuid t *object uuid,
unsigned32 *status) ;

ARGUMENTS
Input
binding Specifies a client or server binding handle.
Output
object_uuid Returns the object UUID found in the binding argument.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_binding_ing_object() routine obtains the object UUID associated with a binding handle.
If no object UUID is associated with the binding handle, this routine returns a nil UUID.

RETURN VALUE
None.

SEE ALSO
rpc_binding_set object().

66 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_reset()

NAME
rpc_binding_reset — resets a binding handle to a partially bound binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc binding reset(
rpc_binding handle t binding,
unsigned32 *status) ;

ARGUMENTS
Input
binding Specifies the server binding handle to reset.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
DESCRIPTION

The rpc_binding_reset() routine removes the endpoint portion of the server address referenced by
the binding handle, binding. The result is a partially bound server binding handle.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace().

Part 2 RPC Application Programmer’s Interface 67

rpc_binding_server_from_client() RPC API Manual Pages

NAME

rpc_binding_server_from_client — converts a client binding handle to a server binding handle

SYNOPSIS

#include <dce/rpc.h>

void rpc_binding server from client (
rpc_binding handle t client binding,
rpc_binding handle t *server binding,
unsigned32 *status) ;

ARGUMENTS

Input

client_binding Specifies the client binding handle to convert to a server binding handle.

Output
server_binding Returns a server binding handle.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;

rpc_s ok Success.

DESCRIPTION

The rpc_binding_server_from_client() routine converts a client binding handle into a partially
bound server binding handle.

An application obtains a client binding handle as an argument passed to a server manager
routine from the RPC run-time system during a remote procedure call. When an RPC arrives at a
server, the RPC run-time system creates a client binding handle that contains binding
information about the calling client host. The run-time system passes the client binding handle
to the server manager routine as the first argument. The argument type is
rpc_binding_handle _t.

The server binding handle returned from rpc_binding_server_from client() references binding
information that is constructed as follows:

- It contains a network address for the calling client’s host but lacks an endpoint. The returned
binding handle is thus partially bound.

« It contains the same object UUID used by the calling client. This may be the nil UUID. (See
rpc_binding_set object() on page 72, rpc_ns_binding_import begin() on page 118,
rpc_ns_hinding_lookup_begin () on page 126 and rpc_binding_from_string_binding () on page 61
to see how a client specifies an object UUID for a call.)

- It contains no authentication information.

RETURN VALUE

68

None.

X/0pen CAE Specification (1994)

RPC API Manual Pages

SEE ALSO
rpc_binding_free()
rpc_binding_set object
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_import_begin()
rpc_ns_hinding_lookup_begin ()

rpc_binding_from_string_binding ().

Part 2 RPC Application Programmer’s Interface

rpc_binding_server_from_client()

69

rpc_binding_set auth_info() RPC API Manual Pages

NAME

rpc_binding_set_auth_info — sets authentication, authorisation and protection-level
information for a binding handle

SYNOPSIS

#include <dce/rpc.h>
#include <dce/sec_login.h>

void rpc binding set auth info(
rpc_binding handle t binding,
unsigned char t *server princ name,
unsigned32 protect level,
unsigned32 authn svc,
rpc_auth identity handle t auth identity,
unsigned32 authz svc,
unsigned32 *status) ;

ARGUMENTS

Input
binding

server_princ_name

protect_level

authn_svc

auth_identity

authz_svc

70

Specifies the server binding handle for which to set the authentication,
authorisation and protection-level information.

Specifies a principal name for the server referenced by binding. The
content and syntax of this name depend on the value of authn_svc. (See
Appendix D for authentication service-specific syntax.)

Note: An application can call the rpc_mgmt_ing_server_princ_name()
routine to obtain the principal name of a server that is registered
for the required authentication service. (See
rpc_mgmt_ing_server_princ_name() on page 98 for details.)

Specifies the protection level for remote procedure calls made using
binding. The protection level determines the degree to which
authenticated communications between the client and the server are
protected. (See Appendix D for possible values of this argument.)

Specifies the authentication service to use for calls made on binding. (See
Appendix D for possible values of this argument.)

Specifies a handle for a data structure that contains the client’s
authentication and authorisation credentials. The data type of this
structure depends on the values of authn_svc and authz_svc. (See
Appendix D for information on the service-specific data types.)

Specify NULL to use the default security login context for the current
address space. The default is the context in effect at the time of the call to
rpc_binding_set auth_info (). For information on how the default security
login context is established, you can refer to the DCE: Security Services
specification when it becomes available.

Specifies the authorisation service to be used for calls made on binding.
(See Appendix D for possible values of this argument.)

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_binding_set auth_info()

Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_unknown_authn_service
Unknown authentication service.
rpc_s_authn_authz_mismatch
The requested authorisation service is not supported
by the requested authentication service.
rpc_s_unsupported_protect_level
The requested protection level is not supported and
could not be upgraded to a higher supported level.
rpc_s_proto_unsupp_by auth
RPC protocol is not supported by the requested
authentication protocol
rpc_s_no_princ_name
No principal name is registered.
rpc_s_not_authorized
Not authorised for operation.
DESCRIPTION

The rpc_binding_set auth_info() routine sets authentication, authorisation and protection-level
information for the server binding handle, binding. A client application that wants to make
authenticated remote procedure calls first calls this routine. Any RPC calls subsequently made
on binding will be authenticated according to the information set by this call. If a client
application has not called rpc_binding_set_auth_info () for a binding, remote procedure calls made
on that binding are unauthenticated.

Note that the value of protect level actually set for binding depends on the protection levels
supported by the implementation. The value set may be higher than the level requested. When
an application requests a protection level that is not supported, the RPC run-time system
attempts to upgrade the protection level to the next highest supported level. When it succeeds,
the binding will be given a higher protection level than the one requested. Appendix D gives the
canonical ordering of protect_level values from lowest to highest. Applications can call the
routine rpc_binding_ing_auth_info () to discover the protection level actually set.

To find the authentication, authorisation and protection-level information set for a binding
handle, applications call rpc_binding_ing_auth_info ().

RETURN VALUE
None.

SEE ALSO
rpc_binding_ing_auth_info()
rpc_mgmt_ing_server_princ_name().

Part 2 RPC Application Programmer’s Interface 71

rpc_binding_set object() RPC API Manual Pages

NAME
rpc_binding_set_object — sets the object UUID value in a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc _binding set object (
rpc_binding handle t binding,
uuid t *object uuid,
unsigned32 *status) ;

ARGUMENTS
Input
binding Specifies the server binding into which argument object_uuid is set.
object_uuid Specifies the UUID of the object serviced by the server specified in the
binding argument.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_binding_set_object() routine associates an object UUID with a server binding handle. This
operation replaces the previously associated object UUID with the UUID in the object uuid
argument.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_binding_ing_object().

72 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_binding_to_string_binding()

NAME
rpc_binding_to_string_binding — returns a string representation of a binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc binding to string binding(
rpc_binding handle t binding,
unsigned char t **string binding,
unsigned32 *status) ;

ARGUMENTS
Input
binding Specifies a client or server binding handle to convert to a string
representation of a binding handle.
Output
string_binding Returns a pointer to the string representation of the binding handle
specified in the binding argument.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_binding_to_string_binding () routine converts a client or server binding handle to its
string representation.

The RPC run-time system allocates memory for the string returned in the string_binding
argument. The application calls the rpc_string_free() routine to deallocate that memory.

When the binding handle in the binding argument contains a nil object UUID, the object UUID
field is not included in the returned string.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_string_binding_parse()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 73

rpc_binding_vector free() RPC API Manual Pages

NAME
rpc_binding_vector_free — frees the memory used to store a vector of binding handles

SYNOPSIS
#include <dce/rpc.h>

void rpc_binding vector free(
rpc_binding vector t **binding vector,
unsigned32 *status) ;

ARGUMENTS
Input/Output
binding_vector Specifies the address of a pointer to a vector of server binding handles.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_binding_vector_free() routine frees the memory used to store a vector of server binding
handles when the vector was created using either the rpc_server_ing_bindings() routine or
rpc_ns_hinding_lookup_next () routine. The freed memory includes both the binding handles and
the vector itself.

The rpc_binding_free() routine may be used to free individual elements of the vector. When an
element has been freed with this routine, the NULL element entry replaces it; the
rpc_binding_vector_free() routine ignores such an entry.

When the rpc_binding_vector_free () routine succeeds, the binding_vector pointer is set to NULL.

RETURN VALUE
None.

SEE ALSO
rpc_binding_free()
rpc_server_ing_bindings()
rpc_ns_bhinding_lookup_next ().

74 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_register()

NAME
rpc_ep_register — adds to, or replaces, server address information in the local endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc_ep register(
rpc_if handle t if handle,
rpc_binding vector t *binding vec,
uuid vector t *object uuid vec,
unsigned char t *annotation,
unsigned32 *status) ;

ARGUMENTS

Input

if_handle Specifies an interface specification to register with the local endpoint
map.

binding_vec Specifies a vector of server binding handles over which the server can
receive remote procedure calls.

object_uuid_vec Specifies a vector of object UUIDs that the server offers. The server
application constructs this vector.

The application supplies the value NULL to indicate that there are no
object UUIDs to register. In this case, each cross-product element added
to the local endpoint map contains the nil UUID. (See DESCRIPTION for
further discussion of cross-product elements.)

annotation Defines a character string comment applied to each cross-product
element added to the local endpoint map. The string can be up to 64
characters long, including the null terminating character. Strings longer
than 64 characters are truncated. The application supplies the value
NULL or the string ™ to indicate an empty annotation string.

When replacing elements, the annotation string supplied, including an
empty annotation string, replaces any existing annotation string.
Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

ept_s_cant_perform_op
Cannot perform the requested operation.

DESCRIPTION
The rpc_ep_register() routine adds elements to, or replaces elements in, the local host’s endpoint
map.

Each element added to the local endpoint map logically contains the following:

- interface ID, consisting of an interface UUID and versions (major and minor)

Part 2 RPC Application Programmer’s Interface 75

rpc_ep_register() RPC API Manual Pages

76

« binding information
« object UUID, which may be the nil UUID
- annotation, which may be an empty string.

When an existing map element matches a supplied element, this routine replaces the map
element’s endpoint with the endpoint from the supplied element’s binding information. When
there is no such match, a new map element is added.

For a match between an existing and supplied element to occur, the interface UUIDs, object
UUIDs and binding information (except for the endpoint) from both elements must be equal.
Matching rules for interface version numbers are specified in the following table.

Existing Element Relationship | Supplied Element Routine’s Action

Major version number | Not equal to | Major version number | Ignores minor version number
relationship and adds a new endpoint
map element. The existing element
remains unchanged.

Major version number | Equal to Major version number | Acts according to the minor version
number relationship.

Minor version number | Equal to Minor version number | Replaces the endpoint of the existing
element based on the supplied
information.

Minor version number | Less than Minor version number | Replaces the existing element based

on the supplied information.

Minor version number | Greater than | Minor version number | Ignores the supplied information. The
existing element remains unchanged.

A server uses this routine when only a single instance of the server will run on the server’s host;
that is, when no more than one server instance will offer the same interface UUID, object UUID
and protocol sequence. Servers use rpc_ep_register_no_replace() when multiple instances of the
server may run on the server’s host.

Note: Servers should call rpc_ep unregister() to unregister endpoints before they stop
running. If a server stops running without calling rpc_ep_unregister(), applications may
waste time trying to communicate with the non-existent server. Since rpc_ep_register()
replaces existing compatible local endpoint map elements, it will remove obsolete
compatible elements left by servers that have crashed without unregistering their
endpoints. However, server applications that stop normally should unregister their
endpoints. They should not rely on new instantiations to clean up obsolete endpoints

A server application calls this routine to register endpoints that have been specified by calling
any of the following routines:

rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()

Note: When the server also exports binding information to the name service database, the
server calls this routine with the same if handle, binding_vec, and object uuid vec
arguments that the server uses when calling the rpc_ns_binding_export() routine.

The rpc_ep_register() routine creates elements to add to the local endpoint map as a cross-
product of the if_handle, binding_vec and object_uuid_vec arguments.

When the object_uuid_vec argument is NULL, the cross-product of if_handle, binding_vec and the
nil UUID is created.

X/0pen CAE Specification (1994)

RPC API Manual Pages

rpc_ep_register()

The annotation string is also included in each cross-product element. The string is used by
applications for informational purposes only. The RPC run-time system does not use it to
determine which server instance a client communicates with, or for enumerating endpoint map

elements.

The following example shows the cross-product created when if _handle has the value ifhand,
binding_vec has the values b1, b2, b3, and object_uuid_vec has the values ul, u2, u3, u4. The cross-

product contains 12 elements, as follows:

(ifhand,bl,ul) (ifhand, bl,u2)
(ifhand,b2,ul) (ifhand, b2,u2)
(ifhand,b3,ul) (ifhand, b3,u2)

Each cross-product element also contains the annotation string.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register_no_replace()
rpc_ep_resolve_binding ()
rpc_ep_unregister()
rpc_mgmt_ep_unregister()
rpc_ns_hinding_export()
rpc_server_ing_bindings()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()
rpc_server_use protseq_if().

Part 2 RPC Application Programmer’s Interface

(ifhand, bl,u3)
(ifhand, b2,u3)
(ifhand, b3, u3)

(ifhand,bl,u4)
(ifhand,b2,u4)
(ifhand,b3,u4)

77

rpc_ep_register_no_replace() RPC API Manual Pages

NAME
rpc_ep_register_no_replace — adds to server address information in the local endpoint map
SYNOPSIS

#include <dce/rpc.h>

void rpc_ep register no replace(
rpc_if handle t if handle,
rpc_binding vector t *binding vec,
uuid vector t *object uuid vec,
unsigned char t *annotation,
unsigned32 *status) ;

ARGUMENTS

Input

if_handle Specifies an interface specification to register with the local endpoint

map.

binding_vec Specifies a vector of binding handles over which the server can receive

remote procedure calls.

object_uuid_vec Specifies a vector of object UUIDs that the server offers.

The application supplies the value NULL to indicate there are no object
UUIDs to register. In this case, each cross-product element contains the
nil UUID.

annotation Defines a character string comment applied to each cross-product

element added to the local endpoint map. The string can be up to 64
characters long, including the null-terminating character. If the
application specifies an empty string ("), each cross-product element will
contain an empty string.

Output

status Returns the status code from this routine. The status code indicates

whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include:
rpc_s_ok Success.
ept_s_cant_perform_op
Cannot perform requested operation.
DESCRIPTION

The rpc_ep_register_no_replace() routine adds elements to the local host’s endpoint map. The
routine does not replace existing elements. Otherwise, this routine is identical to routine
rpc_ep_register(). A server application uses this routine, instead of routine rpc_ep_register(),
when multiple instances of the server run on the same host. Servers should use this routine if, at
any time, more than one server instance offers the same interface UUID, object UUID, and
protocol sequence.

Note: Servers should call rpc_ep _unregister() before they stop running to remove their
endpoints from the local endpoint map. When obsolete elements are left in the
endpoint map, clients may waste time trying to communicate with non-existent
servers. Obsolete elements, left by servers that have stopped without calling

78 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_register_no_replace()

rpc_ep_unregister(), are periodically removed from the local endpoint map. However,
during the time between these removals, the obsolete elements increase the chance that
a client will attempt to communicate with a non-existent server.

A server program calls this routine to register endpoints that were specified by calling any of the
following routines:

rpc_server_use_all_protseqs ()
rpc_server_use_protseq ()
rpc_server_use_protseq_ep ()

Note: If the server also exports to the name service database, the server calls this routine with
the same if_handle, binding_vec and object_uuid_vec arguments as the server uses when
calling the rpc_ns_binding_export() routine.

The rpc_ep_register routine creates elements to add to the local endpoint map as a cross-product
of the if_handle, binding_vec and object_uuid_vec arguments.

When the object_uuid_vec argument is NULL, the cross-product of if_handle, binding_vec and the
nil type UUID is created.

The annotation string is also included in each cross-product element. The string is used by
applications for informational purposes only. The RPC run-time system does not use it to
determine which server instance a client communicates with, or for enumerating endpoint map
elements.

rpc_ep_register() on page 75 contains an example of a cross-product.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_resolve_binding ()
rpc_ep_unregister()
rpc_mgmt_ep_unregister()
rpc_ns_hinding_export()
rpc_server_ing_bindings()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()
rpc_server_use protseq_if().

Part 2 RPC Application Programmer’s Interface 79

rpc_ep_resolve _binding() RPC API Manual Pages

NAME
rpc_ep_resolve_binding — resolves a partially bound server binding handle into a fully bound
server binding handle

SYNOPSIS
#include <dce/rpc.h>

void rpc_ep resolve binding(
rpc_binding handle t binding,
rpc_if handle t if handle,
unsigned32 *status) ;

ARGUMENTS
Input/Output
binding Specifies a partially bound server binding handle to resolve into a fully
bound server binding handle.
if_handle Contains a stub-generated data structure that specifies the interface of
interest.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
ept_s_not_registered
No entries found.
DESCRIPTION

An application calls the rpc_ep_resolve_binding() routine to resolve a partially bound server
binding handle into a fully bound server binding handle.

To resolve a binding, rpc_ep_resolve_binding() obtains an endpoint for a compatible server
instance from the endpoint map of the host specified by binding. In selecting an endpoint,
rpc_ep_resolve_binding () uses the interface UUID associated with if_handle and the object UUID
associated with binding. The object UUID may be the nil UUID. The endpoint matching
algorithm is described in rpc_ep_register() on page 75.

The resolved binding returned by rpc_ep_resolve_binding() depends on whether the specified
binding handle is partially bound or fully bound. When the application specifies a partially
bound handle, the routine produces the following results:

- If no compatible server instances are registered in the endpoint map, the routine returns the
ept_s_not_registered status code.

- If one compatible server instance is registered in the local endpoint map, the routine returns
a fully bound binding handle in binding and the rpc_s_ok status code.

- If more than one compatible server instance is registered in the local endpoint map, the
routine arbitrarily selects one. It then returns the corresponding fully bound binding handle
in binding and the rpc_s_ok status code.

When the application specifies a fully bound binding handle, the routine returns the specified
binding handle in binding and the rpc_s_ok status code.

80 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_resolve binding()

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_mgmt_ep_elt_ing_begin()
rpc_mgmt_ep_elt_ing_done()
rpc_mgmt_ep_elt_ing_next()
rpc_binding_from_string_binding ()
rpc_binding_reset().

Part 2 RPC Application Programmer’s Interface 81

rpc_ep_unregister() RPC API Manual Pages

NAME
rpc_ep_unregister — removes server address information from the endpoint map
SYNOPSIS

#include <dce/rpc.h>

void rpc_ep unregister(
rpc_if handle t if handle,
rpc_binding vector t *binding vec,
uuid vector t *object uuid vec,
unsigned32 *status) ;

ARGUMENTS

Input

if_handle Specifies an interface specification to remove (that is, unregister) from the

endpoint map.

binding_vec Specifies a vector of binding handles to remove.

object_uuid_vec Specifies a vector of object UUIDs to remove. The server application

constructs this vector. When the value NULL is supplied, the routine
constructs the cross-product of if handle and binding_vec with the nil
object UUID.

Output

status Returns the status code from this routine. The status code indicates

whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
ept_s_cant_perform_op
Cannot perform requested operation.
DESCRIPTION

An application calls rpc_ep_unregister() to remove endpoint map elements that it has previously

registered.

Note: The application calls the rpc_server_ing_bindings() routine to obtain the required
binding_vec argument. To remove selected endpoints, the application can remove
individual elements from argument binding_vec before calling this routine.

This routine creates a cross-product from the if handle, binding_vec and object uuid vec

arguments, and removes each element that matches the cross-product from the local endpoint

map. rpc_ep_register() on page 75 discusses the construction of the cross-product.

Matches to elements in the endpoint map are exact. In particular, cross-product elements

containing the nil object UUID only match elements in the endpoint map that contain the nil

object UUID. Therefore, specifying NULL for the uuid_vec argument results in removing only
elements with the nil object UUID from the endpoint map.

Note: Servers should call rpc_ep_unregister() to unregister their endpoints before they stop
running. If they fail to do so, clients may find the obsolete endpoints and waste time
trying to communicate with the non-existent servers.

82 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ep_unregister()

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_mgmt_ep_unregister()
rpc_ns_binding_unexport()
rpc_server_ing_bindings().

Part 2 RPC Application Programmer’s Interface 83

rpc_if _id_vector_free() RPC API Manual Pages

NAME
rpc_if_id_vector_free — frees a vector and the interface identifier structures it contains

SYNOPSIS
#include <dce/rpc.h>
void rpc if id vector free(
rpc_if id vector t **if id vector,
unsigned32 *status) ;

ARGUMENTS
Input/Output
if id_vector Specifies the address of a pointer to a vector of interface information. On
success this argument is set to NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_if_id_vector_free () routine frees the memory used to store a vector of interface identifiers
when they have been obtained by calling either rpc_ns mgmt entry ing_if ids() or
rpc_mgmt_ing_if_ids(). This freed memory includes memory used by the interface identifiers and
the vector itself.

RETURN VALUE
None.

SEE ALSO
rpc_if_ing_id()
rpc_mgmt_ing_if _ids()
rpc_ns_mgmt_entry_ing_if ids().

84 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_if_ing_id()

NAME
rpc_if_ing_id — returns the interface identifier for an interface specification

SYNOPSIS
#include <dce/rpc.h>

void rpc if ing id(
rpc_if handle t if handle,
rpc_if id t *if id,
unsigned32 *status) ;

ARGUMENTS
Input
if_handle Specifies the interface specification to inquire about.
Output
if_id Pointer to the returned interface identifier. The application provides
memory for the returned data.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
DESCRIPTION

Applications call the rpc_if _ing_id() routine to obtain the interface identifier from the provided
interface specification. Section 3.1 on page 49 specifies how applications can construct the name
of a stub-declared interface handle.

RETURN VALUE
None.

SEE ALSO
rpc_if _id_vector free()
rpc_mgmt_ing_if _ids()
rpc_ns_mgmt_entry_ing_if ids().

Part 2 RPC Application Programmer’s Interface 85

roc_mgmt_ep_elt_inq_begin() RPC API Manual Pages

NAME

rpc_mgmt_ep_elt _ing_begin — creates an inquiry context for viewing the elements in an

endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc mgmt ep elt ing begin(
rpc_binding handle t ep binding,
unsigned32 inquiry type,
rpc_if id t *if id,
unsigned32 vers option,
uuid t *object uuid,
rpc_ep ing handle t *ingquiry context,
unsigned32 *status) ;

ARGUMENTS

86

Input
ep_binding

inquiry_type

Specifies the host whose endpoint map elements will be viewed.
To view elements from the local host, the application specifies NULL.

To view endpoint map elements from another host, the application
specifies a server binding handle for that host. The object UUID
associated with this argument must be a nil UUID. When a non-nil UUID
is specified, the routine fails with the status code ept_s_cant_perform_op.

An integer value that indicates the type of inquiry to perform on the
endpoint map. The following list presents the valid inquiry types:

Value Description

rpc_c_ep_all_elts
Returns every element from the endpoint map.

The if_id, vers_option and object uuid arguments are
ignored.

rpc_c_ep_match_by if
Searches the endpoint map for those elements that
contain the interface identifier specified by the if _id and
vers_option values.

The object_uuid argument is ignored.

rpc_c_ep_match_by obj
Searches the endpoint map for those elements that
contain the object UUID specified by the object uuid
argument.

The if_id and vers_option arguments are ignored.

rpc_c_ep_match_by both
Searches the endpoint map for those elements that
contain the interface identifier and object UUID
specified by the if id, vers option and object uuid
arguments.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_elt_inq_begin()

if_id Specifies the interface identifier of the endpoint map elements to be
returned by the rpc_mgmt_ep_elt_ing_next routine.

This argument is meaningful only when inquiry type is one of
rpc_c_ep_match_by if or rpc_c ep _match_by both. Otherwise, the
argument is ignored.

vers_option Specifies how the rpc_mgmt_ep elt ing_next() routine uses the if id
argument.

This argument is meaningful only when inquiry type is one of
rpc_c_ep_match_by if or rpc_c ep_match_by both. Otherwise, this
argument is ignored.

The following list presents the valid values for this argument.
Value Description

rpc_c_vers_all
Returns endpoint map elements that offer the specified
interface UUID, regardless of the version numbers.

rpc_c_vers_compatible
Returns endpoint map elements that offer the same
major version of the specified interface UUID and a
minor version greater than or equal to the minor
version of the specified interface UUID.

rpc_c_vers_exact
Returns endpoint map elements that offer the specified
version of the specified interface UUID.

rpc_c_vers_major_only
Returns endpoint map elements that offer the same
major version of the specified interface UUID (ignores
the minor version).

rpc_c_vers_upto
Returns endpoint map elements that offer a version of
the specified interface UUID less than or equal to the
specified major and minor version.

object_uuid Specifies the object UUID that the rpc_mgmt_ep_elt_ing_next() routine
looks for in endpoint map elements.

This argument is meaningful only when inquiry type is one of
rpc_c_ep_match_by obj or rpc_c _ep_match_by both. Otherwise, this
argument is ignored.

Output

inquiry_context Returns an inquiry context for use with the rpc_mgmt_ep_elt_ing_next()
and rpc_mgmt_ep_elt_ing_done() routines.

status Returns the status code from this routine. The status code indicates

whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;

Part 2 RPC Application Programmer’s Interface 87

roc_mgmt_ep_elt_inq_begin() RPC API Manual Pages

rpc_s ok Success.

DESCRIPTION

The rpc_mgmt_ep_elt_ing_begin() routine creates an inquiry context for viewing server address
information stored in the endpoint map.

Using the inquiry_type and vers_option arguments, an application specifies which of the following
endpoint map elements are to be returned from calls to the rpc_mgmt_ep_elt_ing_next() routine:

- all elements

- those elements with the specified interface identifier

- those elements with the specified object UUID

- those elements with both the specified interface identifier and object UUID.

Before calling the rpc_mgmt_ep_elt_ing_next() routine, the application must first call this routine
to create an inquiry context.

After viewing the endpoint map elements, the application calls the rpc_mgmt_ep_elt_ing_done()
routine to delete the inquiry context.

RETURN VALUE

None.

SEE ALSO

88

rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ep_unregister()
rpc_mgmt_ep_elt_ing_done()
rpc_mgmt_ep_elt_ing_next()
rpc_mgmt_ep_unregister().

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_elt_ing_done()

NAME
rpc_mgmt_ep_elt ing_done — deletes the inquiry context for viewing the elements in an
endpoint map

SYNOPSIS
#include <dce/rpc.h>
void rpc _mgmt ep elt ing done(
rpc_ep ing handle t *inquiry context,
unsigned32 *status) ;

ARGUMENTS
Input/Output
inquiry_context Specifies the inquiry context to delete.
Returns the value NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_mgmt_ep elt ing _done() routine deletes an inquiry context created by the
rpc_mgmt_ep_elt_ing_begin() routine.

An application calls this routine after viewing local endpoint map elements using the
rpc_mgmt_ep_elt_ing_next() routine.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ep_elt_ing_begin()
rpc_mgmt_ep_elt_ing_next().

Part 2 RPC Application Programmer’s Interface 89

rpc_mgmt_ep_elt_ing_next() RPC API Manual Pages

NAME
rpc_mgmt_ep_elt_ing_next — returns one element from an endpoint map
SYNOPSIS
#include <dce/rpc.h>
void rpc mgmt ep elt ing next (
rpc_ep ing handle t inquiry context,
rpc_if id t *if id,
rpc_binding handle t *binding,
uuid t *object uuid,
unsigned char t **annotation,
unsigned32 *status) ;
ARGUMENTS
Input
inquiry_context Specifies an inquiry context. This inquiry context is returned from the
rpc_mgmt_ep_elt_ing_begin routine.
Output
if id Returns the interface identifier of the endpoint map element.
binding Returns the binding handle from the endpoint map element.
Specify NULL to prevent the routine from returning this argument.
object_uuid Returns the object UUID from the endpoint map element.
Specify NULL to prevent the routine from returning this argument.
annotation Returns the annotation string for the endpoint map element. When there
is no annotation string in the endpoint map element, the empty string (")
is returned.
Specify NULL to prevent the routine from returning this argument.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
ept_s_cant_perform_op
Cannot perform the requested operation.
rpc_s_no_more_elements
No more elements.
rpc_s_com_failure
Communications failure.
DESCRIPTION
The rpc_mgmt_ep_elt_ing_next() routine returns one element from the endpoint map. Elements
selected depend on the inquiry context. The selection criteria are determined by the inquiry_type
argument of the rpc_mgmt ep elt ing_begin() call that returned inquiry_context.
rpc_mgmt_ep_elt_ing_begin() on page 86 describes inquiry types.
90 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_elt_ing_next()

An application can view all the selected endpoint map elements by repeatedly calling the
rpc_mgmt_ep_elt_ing_next() routine. When all the elements have been viewed, this routine
returns an rpc_s_no_more_elements status. The returned elements are unordered.

When the respective arguments are non-NULL, the RPC run-time system allocates memory for
the returned binding and the annotation string on each call to this routine. The application is
responsible for calling the rpc_binding free() routine for each returned binding and the
rpc_string_free() routine for each returned annotation string.

After viewing the endpoint map’s elements, the application must call the
rpc_mgmt_ep_elt_ing_done() routine to delete the inquiry context.

RETURN VALUE
None.

SEE ALSO
rpc_binding_free()
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_mgmt_ep_elt_ing_begin()
rpc_mgmt_ep_elt_ing_done()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 91

rpc_mgmt_ep_unregister() RPC API Manual Pages

NAME

rpc_mgmt_ep_unregister — removes server address information from an endpoint map

SYNOPSIS
#include <dce/rpc.h>

void rpc _mgmt ep unregister(
rpc_binding handle t ep binding,
rpc_if id t *if id,
rpc_binding handle t binding,
uuid t *object uuid,
unsigned32 *status) ;

ARGUMENTS

Input
ep_binding

if_id
binding

object_uuid

Output

status

DESCRIPTION
The rpc_mgmt_ep_unregister() routine unregisters an element from an endpoint map. A
management program calls this routine to remove addresses of servers that are no longer
available, or to remove addresses of servers that support objects that are no longer offered.

92

Specifies the host whose endpoint map elements are to be unregistered.
To remove elements from the same host as the calling application, the
application specifies NULL.

To remove endpoint map elements from another host, the application
specifies a server binding handle for any server residing on that host.

Note: The application can specify the same binding handle it is using
to make other remote procedure calls.

Specifies the interface identifier to remove from the endpoint map.
Specifies the binding handle to remove.
Specifies an optional object UUID to remove.

The value NULL indicates there is no object UUID to remove.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s_ok Success.

ept_s_cant_perform_op
Cannot perform the requested operation.

rpc_s_comm_failure
Communications failure.

ept_s_not_registered
No entries found.

The ep_binding argument must be a full binding. The object UUID associated with the ep_binding
argument must be a nil UUID. Specifying a non-nil UUID causes the routine to fail with the
status code ept_s_cant_perform_op. Other than the host information and object UUID, all

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ep_unregister()

information in this argument is ignored.

Note: Use this routine cautiously. Removing elements from the local endpoint map may
make servers unavailable to client applications that do not already have a fully bound
binding handle to the server.

An application calls the rpc_mgmt_ep elt ing_next() routine to view local endpoint map
elements. The application can then remove the elements using the rpc_mgmt_ep_unregister()
routine.

RETURN VALUE
None.

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_unexport()
rpc_mgmt_ep_elt_ing_begin()
rpc_mgmt_ep_elt_ing_done()
rpc_mgmt_ep_elt_ing_next().

Part 2 RPC Application Programmer’s Interface 93

rpc_mgmt_ing_com_timeout() RPC API Manual Pages

NAME
rpc_mgmt_ing_com_timeout — returns the communications timeout value for a server binding
handle
SYNOPSIS
#include <dce/rpc.h>
void rpc _mgmt ing com_ timeout (
rpc_binding handle t binding,
unsigned32 *timeout,
unsigned32 *status) ;
ARGUMENTS
Input
binding Specifies a server binding handle.
Output
timeout Returns the communications timeout value from the binding argument.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION
The rpc_mgmt_ing_com_timeout() routine returns the communications timeout value in a server
binding handle.
rpc_mgmt_set_com_timeout() on page 107 explains the timeout values in the returned timeout.
To change the timeout value, a client calls the rpc_mgmt_set_com_timeout() routine.
RETURN VALUE
None.
SEE ALSO

rpc_mgmt_set_com_timeout().

94 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ing_dflt_protect_level()

NAME
rpc_mgmt_ing_dflt_protect level — returns the default protection level for an authentication
service
SYNOPSIS
#include <dce/rpc.h>
void rpc mgmt ing dflt protect level (
unsigned32 authn svc,
unsigned32 *protect level,
unsigned32 *status) ;
ARGUMENTS
Input
authn_svc Specifies the authentication service for which to return the default
protection level. (See Appendix D for values of this argument.)
Output
protect_level Returns the default protection level for the specified authentication
service. The protection level determines the degree to which
authenticated communications between the client and the server are
protected. (See Appendix D for values of this argument.)
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
rpc_s_unknown_auth_service
Unknown authentication service.
DESCRIPTION
The rpc_mgmt_ing_dflt protect level() routine returns the default protection level for the
specified authentication service. The protect_level value returned is the same as the value implied
when the application calls the rpc_binding_set auth_info() or rpc_server_register_auth_info()
routines with the same authn_svc value and the protect level value of
rpc_c_protect_level default.
RETURN VALUE
None.
SEE ALSO

rpc_binding_ing_auth_client()
rpc_binding_set_auth_info()
rpc_server_register_auth_info().

Part 2 RPC Application Programmer’s Interface 95

rpc_mgmt_ing_if_ids() RPC API Manual Pages

NAME

rpc_mgmt_ing_if_ids — returns a vector of interface identifiers of interfaces a server offers

SYNOPSIS

#include <dce/rpc.h>

void rpc mgmt ing if ids(
rpc_binding handle t binding,
rpc_if id vector t **if id vector,
unsigned32 *status) ;

ARGUMENTS

Input
binding

Output
if id_vector

status

DESCRIPTION

Specifies a binding handle. To receive interface identifiers from a remote
application, the calling application specifies a server binding handle for
that application. To receive interface information about itself, the
application specifies NULL.

If the binding handle supplied refers to partially bound binding
information and the binding information contains a nil object UUID, then
this routine returns the rpc_s_binding_incomplete status code. To avoid
this situation, the application can obtain a fully bound server binding
handle by calling the rpc_ep_resolve_hinding() routine.

Returns the address of an interface identifier vector.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_no_interfaces
No interfaces registered.

rpc_s_mgmt_op_disallowed
Not authorised for operation.

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set authorization_fn () on page 104.

An application calls the rpc_mgmt_ing_if ids() routine to obtain a vector of interface identifiers
listing the interfaces registered by a server with the RPC run-time system.

If a server has not registered any interfaces with the run-time system, this routine returns a
rpc_s_no_interfaces status code and an if_id_vector argument value of NULL.

96

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ing_if _ids()

The binding handle supplied in the binding argument must refer to binding information that is
fully bound or contains a non-nil object UUID. If the binding handle supplied refers to partially
bound binding information that contains a nil object UUID, the routine returns the
rpc_s_binding_incomplete status code.

The RPC run-time system allocates memory for the interface identifier vector. The application
calls the rpc_if_id_vector_free() routine to release the memory used by this vector.

By default, the RPC run-time system allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorisation function using the
rpc_mgmt_set authorization_fn () routine.

RETURN VALUE
None.

SEE ALSO
rpc_ep_resolve_binding ()
rpc_if _id_vector free()
rpc_mgmt_set_authorization_fn ()
rpc_server_register_if().

Part 2 RPC Application Programmer’s Interface 97

rpc_mgmt_ing_server_princ_name() RPC API Manual Pages

NAME

rpc_mgmt_ing_server_princ_name — returns a server’s principal name

SYNOPSIS

#include <dce/rpc.h>

void rpc _mgmt ing server princ name (
rpc_binding handle t binding,
unsigned32 authn svc,
unsigned char t **server princ name,
unsigned32 *status) ;

ARGUMENTS

Input
binding

authn_svc
Output

server_princ_name

status

98

Specifies a server binding handle for the server from which
server_princ_name is returned. A server application can supply the value
NULL to return its own principal name.

If the binding handle supplied refers to partially bound binding
information and the binding information contains a nil object UUID, this
routine fails with the rpc_s_binding_incomplete status code. Applications
can avoid this situation by calling the rpc_ep_resolve_binding() routine to
obtain a fully bound server binding handle.

Specifies the authentication service for which a principal name is
returned. (See Appendix D for possible values of this argument.)

Returns a principal name. This name is registered for the authentication
service in the authn_svc argument by the server referenced in binding. If
the server registered multiple principal names, only one of them is
returned.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_no_princ_name
No principal name registered.

rpc_s_not_authorized
Not authorised for operation.

rpc_s_unknown_authn_service
Unknown authentication service.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ing_server_princ_name()

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set authorization_fn () on page 104.

DESCRIPTION
An application calls routine rpc_mgmt_ing_server_princ_name() to obtain the principal name of a
server that is registered for a specified authentication service.

The RPC run-time system allocates memory for the string returned in the server_princ_name
argument. The application should call the rpc_string_free() routine to deallocate that memory.

By default, the RPC run-time system allows all clients to call this routine remotely. To establish
non-default authorisation for this or other management calls, a server application supplies an
authorisation function by calling the rpc_mgmt_set_authorization_fn () routine.

RETURN VALUE
None.

SEE ALSO
rpc_binding_ing_object()
rpc_binding_set_auth_info()
rpc_ep_resolve_binding ()
rpc_mgmt_set authorization fn ()
rpc_server_register_auth_info()
rpc_string_free()
uuid_is_nil ().

Part 2 RPC Application Programmer’s Interface 99

rpc_mgmt_ing_stats() RPC API Manual Pages

NAME

rpc_mgmt_ing_stats — returns RPC run-time statistics

SYNOPSIS

#include <dce/rpc.h>

void rpc _mgmt ing stats(

ARGUMENTS

Input
binding

Output

statistics

status

DESCRIPTION

rpc_binding handle t binding,
rpc_stats vector t **statistics,
unsigned32 *status) ;

Specifies a server binding handle. To receive statistics about a remote
application, the calling application specifies a server binding handle for
that application. To receive statistics itself, the application specifies
NULL. To avoid this situation, applications can obtain a fully bound
server binding handle by calling routine rpc_ep_resolve_binding ().

Returns the statistics vector for the server specified by the binding
argument.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_binding_incomplete
Binding incomplete (no object ID and no endpoint).

rpc_s_comm_failure
Communications failure.

rpc_s_mgmt_op_disallowed
Not authorised for operation.

In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set authorization_fn () on page 104.

The rpc_mgmt_ing_stats() routine returns statistics from the RPC run-time system about a
specified server. The statistics returned refer to all calls on the server by all clients.

The elements of a statistics vector are described in Section 3.1 on page 49.

The binding handle supplied in the binding argument must refer to binding information that is
fully bound or contains a non-nil object UUID. If the binding handle supplied refers to partially
bound binding information that contains a nil object UUID, the routine returns the
rpc_s_binding_incomplete status code.

The RPC run-time system allocates memory for the statistics vector. The application calls the
rpc_mgmt_stats_vector_free() routine to release the memory that the statistics vector used.

100

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_ing_stats()

By default, the RPC run-time system allows all clients to remotely call this routine. To restrict
remote calls of this routine, a server application supplies an authorisation function using the
rpc_mgmt_set authorization_fn () routine.

RETURN VALUE
None.

SEE ALSO
rpc_ep_resolve_binding ()
rpc_mgmt_set_authorization_fn ()
rpc_mgmt_stats_vector free().

Part 2 RPC Application Programmer’s Interface 101

rpc_mgmt_is_server_listening() RPC API Manual Pages

NAME
rpc_mgmt_is_server_listening — tells whether a server is listening for remote procedure calls

SYNOPSIS
#include <dce/rpc.h>

boolean32 rpc mgmt is server listening(
rpc_binding handle t binding,
unsigned32 *status) ;

ARGUMENTS
Input
binding Specifies a server binding handle. To determine if a remote server is
listening for remote procedure calls, the application specifies a server
binding handle for that server. To determine if the application itself is
listening for remote procedure calls, the application specifies NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
rpc_s_comm_failure
Communications failure.
rpc_s_mgmt_op_disallowed
Not authorised for operation.
rpc_s_binding_incomplete
Binding lacks both an object UUID and an endpoint.
In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set authorization_fn () on page 104.
DESCRIPTION

The rpc_mgmt_is_server_listening() routine determines whether the server specified in the binding
argument is listening for remote procedure calls.

This routine returns a value of TRUE if the server has called the rpc_server_listen() routine.

RETURN VALUE
Returns one of the Boolean values TRUE or FALSE.

The following table gives the interpretation of each possible combination of return value and
status value.

102 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_is_server_listening()

Value Returned Status Code Explanation

TRUE rpc_s_ok The specified server is listening for remote
procedure calls.

FALSE rpc_s_ok or The specified server is not listening for remote

rpc_s_comm_failure procedure calls, or the server could not be

reached.

FALSE rpc_s_mgmt_op_disallowed Not authorised for operation.

SEE ALSO

rpc_server_listen()
rpc_mgmt_set authorization_fn ()
rpc_ep_resolve_binding ().

Part 2 RPC Application Programmer’s Interface 103

rpc_mgmt_set_authorization_fn() RPC API Manual Pages

NAME
rpc_mgmt_set_authorization_fn — establishes an authorisation function for processing remote
calls to a server’s management routines

SYNOPSIS
#include <dce/rpc.h>

void rpc mgmt set authorization fn(
rpc_mgmt authorization fn t authorization fn,
unsigned32 *status) ;

ARGUMENTS
Input
authorization_fn Specifies an authorisation function. The RPC server run-time system
automatically calls this function whenever the server run-time system
receives a client request to execute one of the remote management
routines. The server must implement this function.
Applications specify NULL to unregister a previously registered
authorisation function. After such a call, default authorisations are used.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

Server applications call rpc_mgmt_set authorization_fn () to establish an authorisation function
that controls access to the server’s remote management routines. (See Chapter 2 for an
explanation of how remote management routines are implemented in servers.)

When a server has not called rpc_mgmt_set authorization_fn (), or calls with a NULL value for
authorization_fn, the server run-time system uses the default authorisations shown in the
following table.

Remote Routine Default Authorisation
rpc_mgmt_ing_if_ids() Enabled
rpc_mgmt_ing_server_princ_name() | Enabled
rpc_mgmt_ing_stats() Enabled
rpc_mgmt_is_server_listening() Enabled
rpc_mgmt_stop_server_listening() Disabled

In the table, ““Enabled” indicates that all clients are allowed to execute the remote routine, and
“Disabled’ indicates that all clients are prevented from executing the remote routine.

A server calls rpc_mgmt_set_authorization_fn () to establish non-default authorisations.

The following C definition for rpc_mgmt_authorization_fn_t() shows the prototype for the
authorisation function that the server must implement;

104 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_set_authorization_fn()

typedef boolean32 (*rpc mgmt authorization fn t)

(

rpc_binding handle t client binding, /* in *x/
unsigned3?2 requested mgmt operation, /* in */
unsigned3?2 *status /* out */

)i

When a client requests one of the server’s remote management functions, the server run-time
system calls the authorisation function with two arguments: client_binding and
requested_mgmt_operation. The authorisation function uses these arguments to determine
whether the calling client is allowed to execute the requested management routine.

The requested_mgmt_operation value depends on the remote management routine requested, as
shown in the following table.

Called Remote Routine requested_mgmt_operation Value
rpc_mgmt_ing_if_ids() rpc_c_mgmt_ing_if_ids
rpc_mgmt_ing_server_princ_name() | rpc_c_mgmt_ing_princ_name
rpc_mgmt_ing_stats() rpc_c_mgmt_ing_stats
rpc_mgmt_is_server_listening() rpc_c_mgmt_is_server_listen
rpc_mgmt_stop_server_listening() rpc_c_mgmt_stop_server_listen

The authorisation function must handle all of these values.

The authorisation function returns a Boolean value to indicate whether the calling client is
allowed access to the requested management function. If the authorisation function returns
TRUE, the management routine is allowed to execute. If the authorisation function returns
FALSE, the management routine does not execute. In the latter case, the management routine
returns a status value to the client that depends on the status value returned by the authorisation
function:

. If the status value returned by the authorisation function is either 0 (zero) or rpc_s_ok, then
the status value rpc_s mgmt op_disallowed is returned to the client by the remote
management routine.

- If the authorisation function returns any other status value, that status value is returned to the
client by the remote management routine.

The server must implement the authorisation function in a thread-safe manner.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ep_unregister()
rpc_mgmt_ing_if _ids()
rpc_mgmt_ing_server_princ_name()
rpc_mgmt_ing_stats()
rpc_mgmt_is_server_listening()
rpc_mgmt_stop_server_listening ().

Part 2 RPC Application Programmer’s Interface 105

rpc_mgmt_set _cancel _timeout() RPC API Manual Pages

NAME
rpc_mgmt_set _cancel_timeout — sets the lower bound on the time to wait before timing out
after forwarding a cancel

SYNOPSIS
#include <dce/rpc.h>

void rpc _mgmt set cancel timeout (
signed32 seconds,
unsigned32 *status) ;

ARGUMENTS
Input
seconds An integer specifying the number of seconds to wait for a server to
acknowledge a cancel. To specify that a client waits an infinite amount of
time, supply the value rpc_c_cancel_infinite_timeout.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_mgmt_set_cancel_timeout() routine resets the amount of time the RPC run-time system
waits for a server to acknowledge a cancel before orphaning the call.

The application specifies either to wait forever or to wait a length of time specified in seconds. If
the value of seconds is 0 (zero), the remote procedure call is immediately orphaned when the RPC
run time detects and forwards a pending cancel; control returns immediately to the client
application. The default value is rpc_c_cancel_infinite_timeout, which specifies waiting forever
for the call to complete.

The value for the cancel timeout applies to all remote procedure calls made in the current thread.
A multi-threaded client that wishes to change the timeout value must call this routine in each
thread of execution.

RETURN VALUE
None.

106 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_set_com_timeout()

NAME
rpc_mgmt_set_com_timeout — sets the communication timeout value in a binding handle
SYNOPSIS
#include <dce/rpc.h>
void rpc _mgmt set com_ timeout (
rpc_binding handle t binding,
unsigned32 timeout,
unsigned32 *status) ;
ARGUMENTS
Input
binding Specifies the server binding handle whose timeout value is set.
timeout Specifies a communications timeout value.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
DESCRIPTION

The rpc_mgmt_set_com_timeout() routine resets the communications timeout value in a server
binding handle. The timeout argument specifies the relative amount of time to spend trying to
communicate with the server. Depending on the protocol sequence for the specified binding
handle, the timeout argument acts only as advice to the RPC run-time system.

After the initial relationship is established, subsequent communications for the binding handle
can revert to not less than the default timeouts for the protocol service. This means that after
setting a short initial timeout for establishing a connection, calls in progress are not timed out
any sooner than the default.

The timeout value can be any of the following:

rpc_c_binding_min_timeout
Attempts to communicate for the minimum amount of time for the
network protocol being used. This value favours response time over
correctness in determining whether the server is running.

rpc_c_binding_default_timeout
Attempts to communicate for an average amount of time for the network
protocol being used. This value gives equal consideration to response
time and correctness in determining whether a server is running. This is
the default value.

rpc_c_binding_max_timeout
Attempts to communicate for the longest finite amount of time for the
network protocol being used. This value favours correctness in
determining whether a server is running over response time.

rpc_c_binding_infinite_timeout
Attempts to communicate forever.

Part 2 RPC Application Programmer’s Interface 107

rpc_mgmt_set_com_timeout() RPC API Manual Pages

Note that these values represent relative, rather than absolute, values.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ing_com_timeout().

108 X/Open CAE Specification (1994)

RPC APl Manual Pages rpc_mgmt_set_server_stack size()

NAME
rpc_mgmt_set_server_stack size — specifies the stack size for server call threads

SYNOPSIS
#include <dce/rpc.h>

void rpc _mgmt set server stack size(
unsigned32 thread stack size,
unsigned32 *status) ;

ARGUMENTS
Input
thread_stack_size Specifies the stack size, in bytes, for call threads created when the server
calls rpc_server_listen(). Select this value based on the stack requirements
of the remote procedures offered by the server.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
rpc_s_not_supported
Not supported.
DESCRIPTION

The rpc_mgmt_set_server_stack_size() routine specifies the thread stack size to use when the RPC
run-time system creates call threads for executing remote procedure calls. Call threads are
created when the server applications calls rpc_server_listen(). The max_calls_exec argument to the
rpc_server_listen() routine specifies the number of call threads created.

The server must call this routine before calling the rpc_server_listen() routine. If a server does not
call this routine, the default per-thread stack size from the underlying threads package is used.

The thread stack size set by rpc_mgmt_set server_stack _size() applies only to call threads created
when the server subsequently calls rpc_server_listen().

Some thread packages do not support the specification or modification of thread stack sizes.

RETURN VALUE
None.

SEE ALSO
rpc_server_listen().

Part 2 RPC Application Programmer’s Interface 109

rpc_mgmt_stats_vector free() RPC API Manual Pages

NAME
rpc_mgmt_stats vector free — frees a statistics vector

SYNOPSIS
#include <dce/rpc.h>

void rpc _mgmt stats vector free(
rpc_stats vector t **gtats vector,
unsigned32 *status) ;

ARGUMENTS
Input/Output
stats_vector Specifies a statistics vector. On successful return, stats_vector contains the
value NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

An application calls the rpc_mgmt_stats_vector_free() routine to release the memory used to store
a vector of statistics obtained with a call to rpc_mgmt_ing_stats().

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ing_stats().

110 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_mgmt_stop_server_listening()

NAME
rpc_mgmt_stop_server_listening — tells a server to stop listening for remote procedure calls

SYNOPSIS
#include <dce/rpc.h>

void rpc _mgmt stop server listening(
rpc_binding handle t binding,
unsigned32 *status) ;

ARGUMENTS
Input
binding Specifies a server binding handle for the server that is to stop listening for
remote procedure calls. Specifying NULL causes the application itself to
stop listening.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
rpc_s_comm_failure
Communications failure.
rpc_s_not_authorized
Not authorised for operation.
rpc_s_unknown_if
Server does not support this interface.
rpc_s_binding_incomplete
Binding lacks both an object UUID and an endpoint.
In addition to the above values, status can return the value of status from
an application-defined authorisation function. The prototype for such a
function is defined in the authorization_fn argument description in
rpc_mgmt_set authorization_fn () on page 104.
DESCRIPTION

The rpc_mgmt_stop_server_listening() routine directs a server to stop listening for remote
procedure calls.

On receipt of such a request, the RPC run-time system stops accepting new remote procedure
calls.

RETURN VALUE
None.

SEE ALSO
rpc_server_listen()
rpc_mgmt_set authorization_fn ()
rpc_ep_resolve_binding ().

Part 2 RPC Application Programmer’s Interface 111

rpc_network ing_protseqs() RPC API Manual Pages

NAME
rpc_network_ing_protseqs — returns all protocol sequences supported both by the local
implementation of the RPC run-time system and the operating system
SYNOPSIS
#include <dce/rpc.h>
void rpc network ing protsegs (
rpc_protseq vector t **protseq vector,
unsigned32 *status) ;
ARGUMENTS
Output
protseq_vector Returns the address of a protocol sequence vector.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success. One or more protocol sequences are supported
by the local implementation of the RPC run-time
system and the operating system.
rpc_s_no_protseqs
No supported protocol sequences.
DESCRIPTION
The rpc_network_ing_protseqs() routine obtains a vector containing the protocol sequences
supported by the RPC run-time system and the operating system. A protocol sequence is
supported when the RPC run-time system and the operating system implement the protocol
stack specified by the protocol sequence.
In order to offer its services remotely, a server must accept remote procedure calls over one or
more of the supported protocol sequences. When there are no supported protocol sequences,
this routine returns the rpc_s_no_protseqs status code and the value NULL in the returned
protseq_vector.
The application is responsible for calling the rpc_protseq_vector free() routine to release the
memory used by the returned protocol sequence vector.
RETURN VALUE
None.
SEE ALSO

rpc_protseq_vector_free().

112 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_network is_protseq_valid()

NAME
rpc_network_is_protseq_valid — tells whether the specified protocol sequence is valid and/or is
supported by the local implementation of the RPC run-time system and the operating system

SYNOPSIS
#include <dce/rpc.h>

boolean32 rpc network is protseq valid/(
unsigned char t *protseq,
unsigned32 *status) ;

ARGUMENTS
Input
protseq Specifies a protocol sequence. Appendix B lists valid protocol sequence
identifiers that may be used for this argument.
The rpc_network is_protseq_valid() routine determines whether this
argument contains a valid and/or supported protocol sequence.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success. The protocol sequence is valid and supported
by the local implementation of the RPC run-time
system and the operating system.
rpc_s_invalid_protseq
Invalid protocol sequence.
rpc_s_protseq_not_supported
The protocol sequence is valid but not supported by
the local implementation of the RPC run-time system
and/or the operating system.
DESCRIPTION

The rpc_network_is_protseq_valid () routine determines whether a specified protocol sequence is
both valid and supported and thus available for making remote procedure calls.

« A protocol sequence is valid if it is one of the protocol sequence strings recognised by the
implementation. Information about valid protocol sequence strings is given in Appendix B.

« A protocol sequence is supported if the local RPC run-time system and the operating system
implement the protocol stack specified by the protocol sequence.

An application can obtain the set of valid and supported protocol sequences by calling the
rpc_network_ing_protseqs() routine.

RETURN VALUE
The rpc_network_is_protseq_valid () routine returns the following values:

TRUE The protocol sequence specified in the protseq argument is valid and
supported by the RPC run-time system and the operating system. The
routine also returns the status code rpc_s_ok in the status argument.

Part 2 RPC Application Programmer’s Interface 113

rpc_network is_protseq_valid() RPC API Manual Pages

FALSE The protocol sequence specified in the protseq argument is not valid or not
supported. The routine also returns a status code not equal to rpc_s_ok.

SEE ALSO
rpc_network_ing_protseqs()
rpc_string_binding_parse().

114 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_export()

NAME
rpc_ns_binding_export — establishes a name service database entry with binding handles
and/or object UUIDs for a server

SYNOPSIS
#include <dce/rpc.h>

void rpc ns binding export (
unsigned32 entry name syntax,
unsigned char t *entry name,
rpc_if handle t if handle,
rpc_binding vector t *binding vec,
uuid vector t *object uuid vec,
unsigned32 *status) ;

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. See
Appendix C for the possible values of this argument.

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry to which binding handles and/or object UUIDs are
exported. The entry name syntax is identified by the argument
entry_name_syntax.

if_handle Identifies the interface to export. Specifying the value NULL indicates
that there are no binding handles to export, and the binding_vec argument
is ignored.

binding_vec Specifies a vector of server bindings to export. The application specifies
the value NULL for this argument when there are no binding handles to
export.

object_uuid_vec Identifies a vector of object UUIDs offered by the application. The
application constructs this vector. NULL indicates that there are no object
UUIDs to export.

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Part 2 RPC Application Programmer’s Interface 115

rpc_ns_binding_export() RPC API Manual Pages

DESCRIPTION

The rpc_ns_binding_export() routine allows a server application to make bindings to an interface
it offers available in a name service. A server application can also use this routine to make
available the object UUIDs of application resources.

To export an interface, the server application calls rpc_ns_binding_export() with an interface and
server binding handles that reference bindings a client can use to access the server.

A server can export interfaces and objects in a single call to this routine, or it can export them
separately.

If the entry in the name service database specified by the entry_name argument does not exist,
the rpc_ns_binding_export() routine tries to create it. In this case a server must have the correct
permissions to create the entry.

Before calling the rpc_ns_binding_export() routine to export interfaces (but not to export object
UUIDs), a server must do the following:

« Register one or more protocol sequences with the local RPC run-time system by calling the
one of the following routines:

rpc_server_use_protseq()
rpc_server_use_protseq_if()
rpc_server_use protseq_ep()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()

- Obtain a list of server bindings by calling the rpc_server_ing_bindings() routine.

The application uses the vector returned from the rpc_server_ing_bindings() routine to supply
the hinding_vec argument for rpc_ns_binding_export(). To prevent a binding from being
exported, the application can set the selected vector element to the value NULL.

In addition to calling rpc_ns_binding_export(), a server that calls either of the routines
rpc_server_use all_protseqs() or rpc_server_use_protseq() must also register with the local endpoint
map by calling the rpc_ep_register() or rpc_ep_register_no_replace() routines.

If a server exports an interface to the same entry in the name service database more than once,
the second and subsequent calls to this routine add the binding information and object UUIDs
only if they differ from the ones in the server entry. Existing data is not removed from the entry.

Permissions Required

The application needs both read permission and write permission to the target hame service
entry. If the entry does not exist, the application also needs insert permission to the parent
directory.

RETURN VALUE

116

None.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_export()

SEE ALSO
rpc_ep_register()
rpc_ep_register_no_replace()
rpc_ns_binding_unexport()
rpc_ns_mgmt_binding_unexport()
rpc_ns_mgmt_entry create()
rpc_server_ing_bindings()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()
rpc_server_use protseq_if().

Part 2 RPC Application Programmer’s Interface 117

rpc_ns_binding_import_begin() RPC API Manual Pages

NAME

rpc_ns_binding_import_begin — creates an import context for an interface and an object in the

name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc ns binding import begin(

unsigned3?2

entry name syntax,

unsigned char t *entry name,
rpc_if handle t if handle,
uuid t *obj uuid,

rpc_ns _handle t *import context,

unsigned3?2

ARGUMENTS

118

Input

entry_name_syntax

entry_name

if_handle

obj_uuid

*status) ;

An integer value that specifies the syntax of argument entry_name. See
Appendix C for the possible values of this argument.

The value rpc_c_ns_syntax_default specifies the syntax given by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

The name of the entry where the search for compatible binding handles
begins. The entry name syntax is identified by the argument
entry_name_syntax.

To use the entry name found in the RPC_DEFAULT_ENTRY environment
variable, the application supplies NULL or an empty string (") for this
argument. When the default entry name is used, the RPC run-time system
uses the default name syntax specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Specifies the interface to import.

If the interface specification has not been exported or is of no concern to
the caller, the application specifies NULL for this argument. In this case
the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and, depending on the value of argument
obj_uuid, contain the specified object UUID.

Specifies an object UUID.

If the application specifies a nil UUID for this argument, and the
compatible server exported object UUIDs, bindings returned by
subsequent calls to rpc_ns_binding_import_done() contain one of the
exported object UUIDs. If the server did not export any object UUIDs, the
returned binding handles contain a nil object UUID.

If the application specifies a non-nil UUID for this argument, subsequent
calls to rpc_ns_binding_import_done() return bindings that contain the
specified non-nil object UUID.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_import_begin()

Output
import_context Returns a name service handle for use with the
rpc_ns_hinding_import_done() and rpc_ns_binding_import_done () routines.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
rpc_s_unsupported_name_syntax
Unsupported name syntax.
DESCRIPTION

The rpc_ns_binding_import_begin() routine creates an import context for importing compatible
server bindings. Compatible bindings are those that offer the interface and object UUIDS
specified by the if_handle and obj_uuid arguments.

The application must call this routine to create an import context before calling the
rpc_ns_hinding_import_done() routine.

After importing bindings, the the application calls the rpc_ns_binding_import_done() routine to
delete the import context.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_hinding_import_done()
rpc_ns_hinding_import_done()
rpc_ns_mgmt_handle_set exp_age().

Part 2 RPC Application Programmer’s Interface 119

rpc_ns_binding_import_done() RPC API Manual Pages

NAME

rpc_ns_binding_import_done — deletes the import context for searching the name service
database

SYNOPSIS
#include <dce/rpc.h>
void rpc ns binding import done (
rpc_ns _handle t *import context,
unsigned32 *status);

ARGUMENTS
Input/Output
import_context Specifies the name service handle to delete. (A name service handle is
created by calling the rpc_ns_binding_import_begin() routine.)
On success, returns the value NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_ns_binding_import_done() routine deletes an import context created by calling the
rpc_ns_hinding_import_begin() routine. This deletion does not affect any previously imported
bindings.

Note: Typically, a client calls this routine after completing remote procedure calls to a server
using a binding handle returned from the rpc_ns_binding_import _done() routine. A
client program calls this routine for each created import context, regardless of the
status returned from the rpc_ns_binding_import_done () routine, or the success in making
remote procedure calls.

Permissions Required
None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_import_begin()
rpc_ns_hinding_import_done().

120 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_import_next()

NAME
rpc_ns_binding_import_done — returns a binding handle of a compatible server (if found) from
the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc ns binding import next (
rpc_ns _handle t import context,
rpc_binding handle t *binding,
unsigned32 *status) ;

ARGUMENTS
Input
import_context Specifies a name service handle. Applications obtain this handle by
calling rpc_ns_binding_import_begin ().
Output
binding Returns a compatible server binding handle.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_entry not_found
Name service entry not found.
rpc_s_not_rpc_entry
Not an RPC entry.
rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.
rpc_s_name_service_unavailable
Name service unavailable.
rpc_s_no_more_bindings
No more bindings.
rpc_s_no_ns_permission
No permission for name service operation.
DESCRIPTION

The rpc_ns_binding_import_done() routine returns one compatible, exported server binding
handle. Compatible binding handles are specified by the import_context argument that the
application obtains by calling rpc_ns_binding_import_begin (). (See rpc_ns_binding_import_begin()
on page 118 for further information on the selection of compatible binding handles.)

Note: A similar routine is rpc_ns_binding_lookup_next (), which returns a vector of compatible
server binding handles for one or more servers.

Part 2 RPC Application Programmer’s Interface 121

rpc_ns_binding_import_next() RPC API Manual Pages

122

On successive calls, this routine returns a series of compatible bindings, one at a time. Successive
invocations eventually return all such bindings from all relevant entries. When there are no
further compatible bindings, the routine returns a status code of rpc_s no_more_bindings and
the value NULL in the binding argument.

The rpc_ns_hinding_import_done() routine obeys the binding search rules specified in Chapter 2
and Section 2.4 on page 31. The order in which bindings are returned to the application depends
on the search rules in the following way: when the search encounters a binding attribute
containing compatible bindings, successive calls to rpc_ns binding_import_done() return all
compatible bindings from that attribute in random order.

Notes: Bindings are returned from each binding attribute in random order in order to provide
load balancing among bindings.

Implementations may buffer bindings from each binding attribute in an
implementation-dependent sized buffer. If the number of compatible bindings from a
binding attribute exceeds the buffer size, bindings are returned from the buffer in
random order until the buffer is exhausted. Then the buffer is refilled from the same
binding attribute. This process is repeated until all the bindings from the binding
attribute have been returned. In this case, returned bindings are randomised within a
buffer, but not among buffers.

Because of this randomisation, the order in which bindings are returned can be different for each
new search beginning with a call to rpc_ns_binding_import_done (). This means that the order in
which bindings are returned to an application can be different each time the application is run.

The returned compatible binding contains an object UUID. Its value depends on the value of the
obj_uuid argument to the rpc_ns_binding_import_begin() call that returned import_context:

« When obj_uuid contains a non-nil object UUID, the returned binding contains that object
UuID.

« When obj_uuid contains a nil object UUID, the object UUID returned in the binding depends
on how the servers exported object UUIDs to namespace entries. For a given namespace
entry in the traversal path:

— When servers did not export any object UUIDs to the given entry, the returned binding
contains a nil object UUID.

— When servers exported one object UUID to the given entry, the returned binding contains
that object UUID.

— When servers exported multiple object UUIDs to the given entry, the returned binding
contains one of the object UUIDs. rpc_ns_binding_import_done() selects the returned
object UUID in an unspecified way.

The client application can use the returned compatible binding handle to make a remote
procedure calls to the server.

Note: If the client fails to communicate with the server, it can call
rpc_ns_hinding_import_done() again.

Each time the client calls the rpc_ns_binding_import_done() routine, the routine returns another
server binding handle. Different binding handles can refer to different protocol sequences from
the same server.

If the same compatible binding is encountered more than once in a search,
rpc_ns_hinding_import_done() may choose not to return every instance of the binding. The
rpc_ns_hinding_import_done() routine allocates memory for the returned binding argument.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_import_next()

When a client application finishes with the binding handle, it must call the rpc_binding_free()
routine to deallocate the memory. Each call to the rpc_ns_binding_import_done () routine requires
a corresponding call to the rpc_binding_free() routine.

The application calls the rpc_ns_binding_import_done() routine when it has finished using the
import context. This deletes the import context.

Permissions Required

The application needs read permission to the starting name service entry and to any object entry
in the resulting traversal path.

RETURN VALUE
None.

SEE ALSO
rpc_ns_binding_import_begin()
rpc_ns_hinding_import_done()
rpc_ns_hinding_ing_entry _name()
rpc_ns_hinding_lookup_begin ()
rpc_ns_hinding_lookup_done ()
rpc_ns_hinding_lookup_next ()
rpc_ns_hinding_select()
rpc_ns_hinding_export()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 123

rpc_ns_binding_inq_entry name() RPC API Manual Pages

rpc_ns_binding_ing_entry_name — returns the name of the name service database entry that

void rpc ns binding ing entry name (
rpc_binding handle t binding,
unsigned32 entry name syntax,
unsigned char t **entry name,

Specifies a server binding handle whose entry name in the name service
database is returned.

An integer value that specifies the syntax of the returned entry_name. (See
Appendix C for information about values of this argument.)

To use the syntax specified in the RPC_DEFAULT_ENTRY_SYNTAX
environment variable, the application provides the value
rpc_c_ns_syntax_default.

Returns the name of the entry in the name service database in which
binding was found. The returned name conforms to the specified syntax.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_no_entry_name

No entry name for binding.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

The rpc_ns_binding_ing_entry_name() routine returns the name of the name service database
entry that contains a binding handle for a compatible server.

The RPC run-time system allocates memory for the string returned in entry _name. The
application calls the rpc_string_free() routine to deallocate this memory.

The binding argument must come from a call to one of the rpc_ns_hinding_import_done(),
rpc_ns_binding_lookup_next() or rpc_ns_hinding_select() routines.

When the binding handle specified in the binding argument is not from an entry in the name
service database, this routine returns the rpc_s_no_entry_name status code.

NAME

contains a given binding handle
SYNOPSIS

#include <dce/rpc.h>

unsigned32 *status) ;

ARGUMENTS

Input

binding

entry_name_syntax

Output

entry_name

status
DESCRIPTION
124

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_ingq_entry name()

Permissions Required
None.

RETURN VALUE
None.

SEE ALSO
rpc_binding_from_string_binding ()
rpc_ns_hinding_import_done()
rpc_ns_hinding_lookup_next ()
rpc_ns_hinding_select()
rpc_string_free().

Part 2 RPC Application Programmer’s Interface 125

rpc_ns_binding_lookup_begin() RPC API Manual Pages

NAME

rpc_ns_binding_looku
name service database

SYNOPSIS
#include <dce/rpc.h>

p_begin — creates a lookup context for an interface and an object in the

void rpc ns binding lookup begin(

unsigned3?2

entry name syntax,

unsigned char t *entry name,
rpc_if handle t if handle,
uuid t *object uuid,

unsigned3?2

binding max count,

rpc_ns_handle t *lookup context,

unsigned3?2

ARGUMENTS

126

Input

entry_name_syntax

entry_name

if_handle

obj_uuid

*status) ;

An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax given by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

The name of the entry where the search for compatible binding handles
begins. The entry name syntax is identified by the argument
entry_name_syntax.

To use the entry name found in the RPC_DEFAULT_ENTRY environment
variable, the application supplies NULL or an empty string (") for this
argument. When the default entry name is used, the RPC run-time system
uses the default name syntax specified in the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Specifies the interface to import.

If the interface specification has not been exported or is of no concern to
the caller, the application specifies NULL for this argument. In this case
the bindings returned are only guaranteed to be of a compatible and
supported protocol sequence and, depending on the value of argument
obj_uuid, contain the specified object UUID.

Specifies an object UUID.

If the application specifies a nil UUID for this argument, and the
compatible server exported object UUIDs, binding handles returned by
subsequent calls to rpc_ns_binding_lookup_next() contain one of the
exported object UUIDs. If the server did not export any object UUIDs, the
returned binding handles contain a nil object UUID.

If the application specifies a non-nil UUID for this argument, subsequent
calls to rpc_ns_hinding_lookup_next () return binding handles that contain
the specified non-nil object UUID.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_lookup_begin()

binding_max_count Sets the maximum number of bindings to return in the binding_vector
argument of the rpc_ns_binding_lookup_next () routine.

To use the default count, specify rpc_c_binding_max_count.

Output

lookup_context Returns the name service handle for use with the
rpc_ns_hinding_lookup_next () and rpc_ns_binding_lookup_done()
routines.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
rpc_s_unsupported_name_syntax

Unsupported name syntax.
DESCRIPTION

The rpc_ns_binding_lookup_begin () routine creates a lookup context for locating compatible
server binding handles for servers. Compatible binding handles are those that offer the interface
and object UUIDS specified by the if_handle and obj_uuid arguments.

The application must call this routine to create a lookup context before calling the
rpc_ns_hinding_lookup_next () routine.

After looking up binding handles, the the application calls the rpc_ns_binding_lookup_done ()
routine to delete the import context.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_hinding_lookup_next ()
rpc_ns_hinding_lookup_done ()
rpc_ns_mgmt_handle_set exp_age().

Part 2 RPC Application Programmer’s Interface 127

rpc_ns_binding_lookup _done() RPC API Manual Pages

NAME
rpc_ns_binding_lookup_done — deletes the lookup context for searching the name service
database (used by client applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc ns binding lookup done (
rpc_ns_handle t *lookup context,
unsigned32 *status) ;

ARGUMENTS
Input/Output
lookup_context Specifies the name service handle to delete. (A name service handle is
created by calling the rpc_ns_binding_lookup_begin () routine.)
On success, returns the value NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_ns_hinding_lookup_done () routine deletes a lookup context created by calling the
rpc_ns_hinding_lookup_begin () routine.

Note: Typically, a client calls this routine after completing remote procedure calls to a server
using a binding handle returned from the rpc_ns_binding_lookup_next() routine. A client
program calls this routine for each created lookup context, regardless of the status
returned from the rpc_ns_binding_lookup_next() routine, or success in making remote
procedure calls.

Permissions Required
None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_hinding_lookup_begin ()
rpc_ns_bhinding_lookup_next ().

128 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_lookup_ next()

NAME
rpc_ns_binding_lookup _next — returns a list of binding handles of one or more compatible
servers, if found, from the name service database (used by client applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc ns binding lookup next (
rpc_ns_handle t lookup context,
rpc_binding vector t **binding vec,
unsigned32 *status) ;

ARGUMENTS
Input
lookup_context Specifies a name service handle. This handle is returned from the
rpc_ns_hinding_lookup_begin () routine.
Output
binding_vec Returns a vector of compatible server binding handles.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.
rpc_s_entry not_found
Name service entry not found.
rpc_s_not_rpc_entry
Not an RPC entry.
rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.
rpc_s_name_service_unavailable
Name service unavailable.
rpc_s_no_more_bindings
No more bindings.
rpc_s_no_ns_permission
No permission for name service operation.
DESCRIPTION

The rpc_ns_binding_lookup_next () routine returns a vector of compatible exported server binding
handles. Compatible binding handles are specified by the import_context argument that the
application obtains by calling rpc_ns_binding_lookup_begin (). (See rpc_ns_binding_lookup_begin ()
on page 126 for further information on the selection of compatible binding handles.)

A similar routine is rpc_ns_binding_import_done (), which returns one compatible server binding
handle.

On successive calls, this routine traverses entries in the name service database, returning
compatible server binding handles from each entry. The routine can return multiple binding
handles from each entry. Successive invocations eventually return all such binding handles from

Part 2 RPC Application Programmer’s Interface 129

rpc_ns_binding_lookup_ next() RPC API Manual Pages

130

all relevant entries. When there are no further compatible binding handles, the routine returns a
status code of rpc_s_no_more_bindings and the value NULL in binding_vec.

The rpc_ns_binding_lookup_next () routine obeys the binding search rules specified in Chapter 2
and Section 2.4 on page 31.

Each returned compatible binding handle contains an object UUID. Its value depends on the
value of the obj_uuid argument to the rpc_ns_binding_lookup begin() call that returned
lookup_context:

« When obj_uuid contains a non-nil object UUID, the returned binding handle contains that
object UUID.

« When obj_uuid contains a nil object UUID, the object UUID returned in the binding handle
depends on how the servers exported object UUIDs to namespace entries. For a given
namespace entry in the traversal path:

— When servers did not export any object UUIDs to the given entry, the returned binding
handle contains a nil object UUID.

— When servers exported one object UUID to the given entry, the returned binding handle
contains that object UUID.

— When servers exported multiple object UUIDs to the given entry, the returned binding
handle contains one of the object UUIDs. rpc_ns_binding_lookup next() selects the
returned object UUID in an unspecified way.

Notes: From the returned vector of server binding handles, the client application can employ
its own criteria for selecting individual binding handles, or the application can call the
rpc_ns_hinding_select() routine to select a binding handle. The
rpc_binding_to_string_binding () and rpc_string_binding_parse() routines are useful for a
client creating its own selection criteria.

The client application can use the selected binding handle to attempt a remote
procedure call to the server. If the client fails to communicate with the server, it can
select another binding handle from the vector. When all of the binding handles in the
vector are used, the client application calls the rpc_ns_binding_lookup_next() routine
again.

Each time the client calls the rpc_ns_binding_lookup_next () routine, the routine returns another
vector of binding handles. The binding handles returned in each vector are randomly ordered.
The vectors returned from multiple calls to this routine are also randomly ordered.

When looking up compatible binding handles from a profile, the binding handles from entries of
equal profile priority are randomly ordered in the returned vector. In addition, the vector
returned from a call to rpc_ns_binding_lookup_next() contains only compatible binding handles
from entries of equal profile priority. This means the returned vector may be partially full.

For example, if the binding_max_count argument value in rpc_ns_binding_lookup_begin() was 5
and rpc_ns_binding_lookup_next() finds only three compatible binding handles from profile
entries of priority 1, rpc_ns_binding_lookup_next() returns a partially full binding vector (with
three binding handles). The next call to rpc_ns_hinding_lookup_next() creates a new binding
vector and begins looking for compatible binding handles from profile entries of priority 0.

If the same compatible binding is encountered more than once in a search,
rpc_ns_hinding_lookup_next () may choose not to return every instance of the binding.

When the search finishes, the routine returns a status code of rpc_s no_more_bindings and
returns the value NULL in binding_vec.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_lookup_ next()

Note: The rpc_ns_binding_ing_entry _name() routine is called by an application in order to
obtain the name of the entry in the name service database where the binding handle
came from.

The rpc_ns_binding_lookup_next () routine allocates memory for the returned binding_vec. When
an application finishes with the vector, it must call the rpc_binding_vector free() routine to
deallocate the memory. Each call to the rpc_ns_binding_lookup_next() routine requires a
corresponding call to the rpc_binding_vector_free() routine.

The application calls the rpc_ns_binding_lookup_done () to delete the lookup context when it is
done with a search or to begin a new search for compatible servers (by calling the
rpc_ns_hinding_lookup_begin () routine). The order of binding handles returned can be different
for each new search. This means that the order in which binding handles are returned to an
application can be different each time the application is run.

Permissions Required

The application needs read permission to the specified name service object entry (the starting
name service entry) and to any name service object entry in the resulting search path.

RETURN VALUE
None.

SEE ALSO
rpc_ns_hinding_import_done()
rpc_ns_hinding_lookup_begin ()
rpc_ns_hinding_lookup_done ()
rpc_ns_hinding_select()
rpc_binding_vector_free()
rpc_ns_bhinding_ing_entry _name()
rpc_binding_to_string_binding ()
rpc_string_binding_parse()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 131

rpc_ns_binding_select() RPC API Manual Pages

NAME

rpc_ns_binding_select — returns a binding handle from a list of compatible binding handles

SYNOPSIS
#include <dce/rpc.h>

void rpc ns binding select (
rpc_binding vector t *binding vec,
rpc_binding handle t *binding,
unsigned32 *status) ;

ARGUMENTS

Input/Output

binding_vec

Output
binding

status

DESCRIPTION
The rpc_ns_binding_select() routine randomly chooses and returns a server binding handle from
a vector of server binding handles.

132

Specifies the vector of compatible server binding handles from which a
binding handle is selected. The returned binding vector no longer
references the selected binding handle (which is returned separately in
binding).

Returns a selected server binding handle.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_no_more_bindings
No more bindings.

Each time the application calls the rpc_ns_binding_select() routine, the routine returns another
binding handle from the vector.

When all of the binding handles are returned from the vector, the routine returns a status code of
rpc_s_no_more_bindings and returns the value NULL in binding.

The RPC run-time system allocates storage for the data referenced by the returned binding.
When an application finishes with the binding handle, it calls the rpc_binding_free() routine to
deallocate the storage. Each call to the rpc_ns_binding_select() routine requires a corresponding
call to the rpc_binding_free() routine.

Note: Instead of using this routine, applications can select a binding handle according to their

specific

needs. In this case the rpc_binding_to string binding() and

rpc_string_binding_parse() routines are useful to the applications since the routines
work together to extract the individual fields of a binding handle for examination.

Permissions Required

None.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_select()

RETURN VALUE
None.

SEE ALSO
rpc_binding_free()
rpc_binding_to_string_binding ()
rpc_ns_hinding_lookup_next ()
rpc_string_binding_parse().

Part 2 RPC Application Programmer’s Interface 133

rpc_ns_binding_unexport() RPC API Manual Pages

NAME
rpc_ns_binding_unexport — removes binding handles and/or object UUIDs from an entry in the
name service database
SYNOPSIS
#include <dce/rpc.h>
void rpc _ns binding unexport (
unsigned32 entry name syntax,
unsigned char t *entry name,
rpc_if handle t if handle,
uuid vector t *object uuid vec,
unsigned32 *status) ;
ARGUMENTS
Input
entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)
The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.
entry_name The name of the entry from which binding handles or objects UUIDs are
removed. The entry name syntax is identified by the argument
entry_name_syntax.
if_handle An interface specification for the binding handles to be removed from the
name service database. The value NULL indicates that no binding
handles are removed.
object_uuid_vec A vector of object UUIDs to be removed from the name service database.
The application constructs this vector. The value NULL indicates that no
object UUIDs are removed.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_entry not_found
Name service entry not found.
rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.
rpc_s_interface_not_found
Interface not found.
rpc_s_name_service_unavailable
Name service unavailable.
rpc_s_no_ns_permission
No permission for name service operation.
134 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_binding_unexport()

rpc_s_not_all_objs_unexported
Not all objects unexported.

rpc_s_not_rpc_entry
Not an RPC entry.

DESCRIPTION
The rpc_ns_binding_unexport() routine allows an application to unexport (that is, remove) one of
the following from an entry in the name service database:

- all the binding handles for an interface
- one or more object UUIDs for a resource or resources
- both binding handles and object UUIDs.

The rpc_ns_binding_unexport() routine removes only those binding handles that match the
interface UUID and the major and minor interface version numbers found in the if _handle
argument. To remove multiple versions of an interface, applications use the
rpc_ns_mgmt_binding_unexport() routine.

Note: A server application can remove an interface and objects in a single call to this routine,
or it can remove them separately.

If the rpc_ns_binding_unexport() routine does not find any binding handles for the specified
interface, the routine returns an rpc_s_interface_not_found status code and does not remove the
object UUIDs, if any are specified.

If the application specifies both binding handles and object UUIDs, the object UUIDs are
removed only if the rpc_ns_binding_unexport() routine succeeds in removing the binding
handles.

If any of the specified object UUIDs are not found, routine rpc_ns_binding_unexport() returns the
status code rpc_s_not_all_objs_unexported.

Notes: Besides calling this routine, an application also calls the rpc_ep_unregister() routine to
unregister any endpoints that the server previously registered with the local endpoint
map.

Applications normally call this routine only when a server is expected to be unavailable
for an extended time.

Permissions Required

The application needs both read permission and write permission to the target nhame service
entry.

RETURN VALUE
None.

SEE ALSO
rpc_ep_unregister()
rpc_ns_hinding_export()
rpc_ns_mgmt_binding_unexport().

Part 2 RPC Application Programmer’s Interface 135

rpc_ns_entry_expand_name() RPC API Manual Pages

NAME
rpc_ns_entry_expand_name — returns a canonicalised version of an entry name

SYNOPSIS
#include <dce/rpc.h>

void rpc ns entry expand name (
unsigned32 entry name syntax,
unsigned char t *entry name,
unsigned char t **expanded name,
unsigned32 *status) ;

ARGUMENTS

Input

entry_name_syntax Specifies the syntax of argument entry _name. (See Appendix C for the
possible values of this argument.)

An application can supply the value rpc_c_ns_syntax_default to use the
syntax specified by the RPC_DEFAULT_ENTRY_SYNTAX environment
variable.

entry_name The name of the entry to canonicalise. The entry name syntax is identified
by the argument entry_name_syntax.

Output
expanded_name Returns a pointer to the canonicalised version of argument entry_name.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

An application calls the rpc_ns_entry expand_name() routine to obtain a canonicalised version of
an entry name. Canonicalisation rules depend on the underlying name service.

The RPC run-time system allocates memory for the returned expanded_name. The application is
responsible for calling the rpc_string_free() routine to free this memory.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_string_free().

136 X/Open CAE Specification (1994)

RPC API Manual Pages

NAME

rpc_ns_entry_object_ing_begin()

rpc_ns_entry_object_inq_begin — creates an inquiry context for viewing the objects of an entry
in the name service database

SYNOPSIS

#include <dce/rpc.h>

void rpc ns entry object ing begin(
unsigned32 entry name syntax,
unsigned char t *entry name,
rpc_ns _handle t *inquiry context,
unsigned32 *status) ;

ARGUMENTS

Input

entry_name_syntax

entry_name

Output

inquiry_context

status

DESCRIPTION

An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

The name of the entry in the name service database for which object
UUIDs are viewed. The entry name syntax is identified by the argument
entry_name_syntax.

Returns an inquiry context for use with routines
rpc_ns_entry _object_ing_next() and rpc_ns_entry object_ing_done().

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

The rpc_ns_entry object_ing_begin() routine creates an inquiry context for viewing the object
UUIDs exported to entry_name.

Before calling the rpc_ns_entry object ing_next() routine, the application must first call this
routine to create an inquiry context.

When finished viewing the object UUIDs, the application calls the rpc_ns_entry_object_ing_done()
routine to delete the inquiry context.

Permissions Required

None.

RETURN VALUE
None.

Part 2 RPC Application Programmer’s Interface 137

rpc_ns_entry _object_ing_begin() RPC API Manual Pages

SEE ALSO
rpc_ns_hinding_export()
rpc_ns_entry object_inqg_done()
rpc_ns_entry_object_ing_next()
rpc_ns_mgmt_handle_set exp_age().

138 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_entry object_ing_done()

NAME
rpc_ns_entry_object_inq_done — deletes the inquiry context for viewing the objects of an entry
in the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc ns_ entry object ing done(
rpc_ns _handle t *inquiry context,
unsigned32 *status) ;

ARGUMENTS
Input/Output
inquiry_context Specifies the inquiry context to delete. (An inquiry context is created by
calling the rpc_ns_entry_object_ing_begin() routine.)
On success, returns the value NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_ns_entry _object ing_done() routine deletes an inquiry context created by calling the
rpc_ns_entry_object_ing_begin() routine.

An application calls this routine after viewing exported object UUIDs using the
rpc_ns_entry_object ing_next() routine.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_entry_object_ing_begin()
rpc_ns_entry object_ing_next().

Part 2 RPC Application Programmer’s Interface 139

rpc_ns_entry_object_ing_next() RPC API Manual Pages

NAME
rpc_ns_entry_object_ing_next — returns one object at a time from an entry in the name service
database
SYNOPSIS
#include <dce/rpc.h>
void rpc ns entry object ing next (
rpc_ns _handle t inquiry context,
uuid t *obj uuid,
unsigned32 *status) ;
ARGUMENTS
Input
inquiry_context Specifies an inquiry context. The application obtains the inquiry context
by calling the rpc_ns_entry_object_ing_begin() routine.
Output
obj_uuid Returns an exported object UUID.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_entry not_found
Name service entry not found.
rpc_s_not_rpc_entry
Not an RPC entry.
rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.
rpc_s_name_service_unavailable
Name service unavailable.
rpc_s_no_more_members
No more members.
rpc_s_no_ns_permission
No permission for name service operation.
DESCRIPTION
The rpc_ns_entry_object_ing_next() routine returns one of the object UUIDs exported to an entry
in the name service database. The entry_name argument in the rpc_ns_entry_object_ing_begin()
routine specifies the entry.
An application can view all of the exported object UUIDs by repeatedly calling the
rpc_ns_entry object ing_next() routine. When all the object UUIDs are viewed, this routine
returns an rpc_s_no_more_members status. The returned object UUIDs are returned in
unspecified order.
The application supplies the memory for the object UUID returned in obj_uuid.
140 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_entry_object_ing_next()

After viewing the object UUIDs, the application must call the rpc_ns_entry object_ing_done()
routine to delete the inquiry context.

The order in which routine rpc_ns_entry_object_ing_next() returns object UUIDs can be different
for each viewing of an entry. This means that the order in which an application receives object
UUIDs can be different each time the application is run.

Permissions Required
The application needs read permission for the target name service entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_hinding_export()
rpc_ns_entry_object_ing_begin()
rpc_ns_entry object_ing_done()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 141

rpc_ns_group_delete() RPC API Manual Pages

NAME
rpc_ns_group_delete — deletes a group attribute

SYNOPSIS
#include <dce/rpc.h>

void rpc ns group delete(
unsigned32 group name syntax,
unsigned char t *group name,
unsigned32 *status) ;

ARGUMENTS

Input

group_name_syntax An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

group_name The name of the group to delete. The group name syntax is identified by
the argument group_name_syntax.
Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION

The rpc_ns_group_delete() routine deletes the group attribute from the specified entry in the
name service database.

Neither the specified entry nor the entries represented by the group members are deleted.

Permissions Required

The application needs write permission to the target name service entry.

142 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_delete()

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_add()
rpc_ns_group_delete().

Part 2 RPC Application Programmer’s Interface 143

rpc_ns_group_mbr_add() RPC API Manual Pages

NAME

rpc_ns_group_mbr_add — adds an entry name to a group; if necessary, creates the entry

SYNOPSIS

#include <dce/rpc.h>

void rpc ns group mbr add (
unsigned32 group name syntax,
unsigned char t *group name,
unsigned32 member name syntax,
unsigned char t *member name,
unsigned32 *status) ;

ARGUMENTS

Input

group_name_syntax

group_name

member_name_syntax

member_name

Output

status

DESCRIPTION

An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

The name of the group to which the member is added. The group name
syntax is identified by the argument group_name_syntax.

An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

The name of the group member to add. The member name syntax is
identified by the argument member_name_syntax.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

The rpc_ns_group_mbr_add() routine adds a group member to the group attribute of a name
service entry. The group_name argument specifies the entry.

144

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_mbr_add()

If the specified group_name entry does not exist, this routine creates the entry with a group
attribute and adds the group member specified by the member_name argument. In this case, the
application must have permission to create the entry.

An application can add the entry in argument member_name to a group before it creates the
member itself.

Permissions Required

The application needs both read permission and write permission for the target name service
entry. If the entry does not exist, the application also needs insert permission for the parent
directory.

RETURN VALUE
None.

SEE ALSO
rpc_group_mbr_remove()
rpc_ns_mgmt_entry create().

Part 2 RPC Application Programmer’s Interface 145

rpc_ns_group_mbr_ing_begin() RPC API Manual Pages

NAME

rpc_ns_group_mbr_ing_begin — creates an inquiry context for viewing group members

SYNOPSIS

#include <dce/rpc.h>

void rpc ns group mbr ing begin(
unsigned32 group name syntax,
unsigned char t *group name,
unsigned32 member name syntax,
rpc_ns _handle t *inquiry context,
unsigned32 *status) ;

ARGUMENTS

Input

group_name_syntax An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

group_name The name of the group to view. The group name syntax is identified by
the argument group_name_syntax.

member_name_syntax An integer value that specifies the syntax of return argument
member_name for the rpc_ns_group_mbr_ing_next() routine. (See Appendix
C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Output

inquiry_context Returns an inquiry context for use with the rpc_ns_group_mbr_ing_next()
and rpc_ns_group_mbr_ing_done() routines.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_unsupported_name_syntax

Unsupported name syntax.
DESCRIPTION

146

The rpc_ns_group_mbr_ing_begin() routine creates an inquiry context for viewing the members of
an RPC group.

The application calls this routine to create an inquiry context before calling the
rpc_ns_group_mbr_ing_next() routine.

When finished viewing the RPC group members, the application calls the
rpc_ns_group_mbr_ing_done() routine to delete the inquiry context.

X/0pen CAE Specification (1994)

RPC API Manual Pages

Permissions Required
None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_add()
rpc_ns_group_mbr_ing_done()
rpc_ns_group_mbr_ing_next()

rpc_ns_mgmt_handle_set exp_age().

Part 2 RPC Application Programmer’s Interface

rpc_ns_group_mbr_ing_begin()

147

rpc_ns_group_mbr_ing_done() RPC API Manual Pages

NAME
rpc_ns_group_mbr_ing_done — deletes the inquiry context for a group

SYNOPSIS
#include <dce/rpc.h>

void rpc ns group mbr ing done(
rpc_ns _handle t *inquiry context,
unsigned32 *status) ;

ARGUMENTS
Input/Output
inquiry_context Specifies the inquiry context to delete. (An inquiry context is created by
calling the rpc_ns_group_mbr_ing_begin() routine.)
On success, returns the value NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_ns_group_mbr_ing_done() routine deletes an inquiry context created by calling the
rpc_ns_group_mbr_ing_begin() routine.

An application calls this routine after viewing RPC group members using the
rpc_ns_group_mbr_ing_next() routine.

Permissions Required

None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_ing_begin()
rpc_ns_group_mbr_ing_next().

148 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_mbr_ing_next()

NAME
rpc_ns_group_mbr_ing_next — returns one member name at a time from a group

SYNOPSIS
#include <dce/rpc.h>
void rpc ns group mbr ing next (
rpc_ns _handle t inquiry context,
unsigned char t **member name,
unsigned32 *status) ;

ARGUMENTS

Input

inquiry_context Specifies an inquiry context. The application obtains the inquiry context
by calling the rpc_ns_group_mbr_ing_begin() routine.

Output
member_name Returns a pointer to an RPC group member name.

The syntax of the member_name argument depends on the value of
inquiry_context. The application specifies this syntax with the
member_name_syntax argument when it calls
rpc_ns_group_mbr_ing_begin() to obtain the inquiry context.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s_ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_more_members
No more members.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_group_mbr_ing_next() routine returns one member of the RPC group specified by the
group_name argument in the rpc_ns_group_mbr_ing_begin() routine.

An application can view all the members of an RPC group by repeatedly calling the
rpc_ns_group_mbr_ing_next() routine. When all the group members have been viewed, this
routine returns an rpc_s no_more_members status. The group members are returned in
unspecified order.

Part 2 RPC Application Programmer’s Interface 149

rpc_ns_group_mbr_ing_next() RPC API Manual Pages

On each call to this routine that returns a member name, the RPC run-time system allocates
memory for the returned member_name. The application calls the rpc_string_free() routine for
each returned member_name string.

After viewing the RPC group’s members, the application must call the
rpc_ns_group_mbr_ing_done() routine to delete the inquiry context.
Permissions Required

The application needs read permission to the target name service entry.

RETURN VALUE

None.

SEE ALSO

150

rpc_ns_group_mbr_ing_begin()
rpc_ns_group_mbr_ing_done()
rpc_string_free()
rpc_ns_mgmt_set_exp_age().

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_group_mbr_remove()

NAME
rpc_ns_group_mbr_remove — removes an entry name from a group (used by client, server or
management applications)

SYNOPSIS
#include <dce/rpc.h>

void rpc_ns group mbr remove (
unsigned32 group name syntax,
unsigned char t *group name,
unsigned32 member name syntax,
unsigned char t *member name,
unsigned32 *status) ;

ARGUMENTS

Input

group_name_syntax An integer value that specifies the syntax of argument group_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

group_name The name of the group from which the member is removed. The group
name syntax is identified by the argument group_name_syntax.

member_name_syntax An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

member_name The name of the group member to remove. The member name syntax is
identified by the argument member_name_syntax.
Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_group_member_not found
Group member not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

Part 2 RPC Application Programmer’s Interface 151

rpc_ns_group_mbr_remove() RPC API Manual Pages

DESCRIPTION
The rpc_ns_group_mbr_remove() routine removes a member from the group attribute in the
group_name entry.

Permissions Required

The application needs both read permission and write permission for the target name service
entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_group_mbr_add().

152 X/Open CAE Specification (1994)

RPC API Manual Pages

NAME

rpc_ns_mgmt_binding_unexport()

rpc_ns_mgmt_binding_unexport — removes multiple binding handles, or object UUIDs, from
an entry in the name service database

SYNOPSIS

#include <dce/rpc.h>

void rpc ns mgmt binding unexport (
unsigned32 entry name syntax,
unsigned char t *entry name,
rpc_if id t *if id,
unsigned32 vers option,
uuid vector t *object uuid vec,
unsigned32 *status) ;

ARGUMENTS

Input

entry_name_syntax

entry_name

if_id

vers_option

An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

The name of the entry from which binding handles or object UUIDs are
removed. The entry name syntax is identified by the argument
entry_name_syntax.

Specifies an interface identifier for the binding handles to be removed
from the name service database. The value NULL indicates that no
binding handles are removed.

Specifies how the rpc_ns_mgmt_binding_unexport() routine uses the
vers_major and the vers_minor fields of the if_id argument.

The following list presents the accepted values for this argument:

Value Description

rpc_c_vers_all Unexports (that is, removes) all bindings for the
interface UUID in if_id, regardless of the wversion
numbers.

rpc_c_vers_compatible
Removes those bindings for the interface UUID in if_id
with the same major version as in if id, and with a
minor version greater than or equal to the minor
version in if_id.

rpc_c_vers_exact Removes those bindings for the interface UUID in if_id
with the same major and minor versions as in if_id.

rpc_c_vers_major_only
Removes those bindings for the interface UUID in if_id
with the same major version as in if_id (ignores the
minor version).

rpc_c_vers_upto Removes those bindings that offer a version of the
specified interface UUID less than or equal to the

Part 2 RPC Application Programmer’s Interface 153

rpc_ns_mgmt_binding_unexport() RPC API Manual Pages

specified major and minor version.

object_uuid_vec A vector of object UUIDs to be removed from the name service database.
The application constructs this vector. The value NULL indicates that no
object UUIDs are removed

Output
status Returns the status code from this routine. The status code indicates

whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_entry not_found

Name service entry not found.
rpc_s_interface_not_found

Interface not found.
rpc_s_name_service_unavailable

Name service unavailable.
rpc_s_no_ns_permission

No permission for name service operation.
rpc_s_not_all_objs_unexported

Not all objects unexported.
rpc_s_not_rpc_entry

Not an RPC entry.
rpc_s_unsupported_name_syntax

Unsupported name syntax.

DESCRIPTION

154

The rpc_ns_mgmt_binding_unexport() routine allows an application to unexport (that is, remove)
one of the following from an entry in the name service database:

. all the binding handles for a specified interface UUID, qualified by the interface version
numbers (major and minor)

- one or more object UUIDs for a resource or resources
- both binding handles and object UUIDs.

An application can remove an interface and objects in a single call to this routine, or it can
remove them separately.

If the rpc_ns_mgmt_binding_unexport() routine does not find any binding handles for the
specified interface, the routine returns an rpc_s_interface_not_found status and does not remove
the object UUIDs, if any are specified.

If the application specifies both binding handles and object UUIDs, the object UUIDs are
removed only if the routine succeeds in removing the binding handles.

If any of the specified object UUIDs are not found, routine rpc_ns_mgmt_binding_unexport()
returns the rpc_not_all_objs_unexported status code.

Notes: Besides calling this routine, an application also calls the rpc_mgmt ep_unregister()
routine to remove any servers that have registered with the local endpoint map.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_binding_unexport()

Applications normally call this routine only when a server is expected to be unavailable
for an extended time.

Permissions Required

The application needs both read permission and write permission to the target hame service
entry.

RETURN VALUE
None.

SEE ALSO
rpc_mgmt_ep_unregister()
rpc_ns_hinding_export()
rpc_ns_binding_unexport().

Part 2 RPC Application Programmer’s Interface 155

rpc_ns_mgmt_entry create() RPC API Manual Pages

NAME
rpc_ns_mgmt_entry create — creates an entry in the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc ns mgmt entry create(
unsigned32 entry name syntax,
unsigned char t *entry name,
unsigned32 *status) ;

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry to create. The entry name syntax is identified by
the argument entry_name_syntax.
Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_entry already_exists
Name service entry already exists.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_mgmt_entry_create() routine creates an entry in the name service database.

A management application can call rpc_ns_mgmt_entry create() to create an entry in the name
service database for use by another application that does not itself have the necessary name
service permissions to create an entry.

156 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_entry create()

Permissions Required

The application that calls rpc_ns_mgmt_entry create() needs insert permission for the parent
directory. In order to modify the entry, the application for which it was created needs both read
permission and write permission.

RETURN VALUE
None.

SEE ALSO

Part 2 RPC Application Programmer’s Interface 157

rpc_ns_mgmt_entry delete() RPC API Manual Pages

NAME
rpc_ns_mgmt_entry_delete — deletes an entry from the name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc ns mgmt entry delete(
unsigned32 entry name syntax,
unsigned char t *entry name,
unsigned32 *status) ;

ARGUMENTS

Input

entry_name_syntax An integer value that specifies the syntax of argument entry_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

entry_name The name of the entry to delete. The entry name syntax is identified by
the argument entry_name_syntax.
Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_name_service_unavailable

Name service unavailable.
rpc_s_no_ns_permission

No permission for name service operation.
rpc_s_not_rpc_entry

Not an RPC entry.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_mgmt_entry_delete() routine removes an RPC entry from the name service database.

Note: Management applications use this routine only when an entry is no longer needed,
such as when a server is permanently removed from service. If the entry is a member
of a group or profile, it must also be deleted from the group or profile.

158 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_entry delete()

Permissions Required

The application needs read permission for the target name service entry. The application also
needs delete permission for the entry or for the parent directory.

RETURN VALUE
None.

SEE ALSO
rpc_ns_mgmt_entry create().

Part 2 RPC Application Programmer’s Interface 159

rpc_ns_mgmt_entry ing_if_ids() RPC API Manual Pages

NAME

rpc_ns_mgmt_entry_ing_if_ids — returns the list of interface IDs exported to an entry in the

name service database

SYNOPSIS
#include <dce/rpc.h>

void rpc ns mgmt entry ing if ids(
unsigned32 entry name syntax,
unsigned char t *entry name,
rpc_if id vector t **if id vec,
unsigned32 *status);

ARGUMENTS

Input

entry_name_syntax

entry_name

Output
if id vec

status

DESCRIPTION

160

Specifies the syntax of argument entry _name. (See Appendix C for the
possible values of this argument.)

An application can supply the value rpc_c_ns_syntax_default to use the
syntax specified by the RPC_DEFAULT_ENTRY_SYNTAX environment
variable.

Specifies the entry in the name service database for which an interface
identifier vector is returned. The entry name must conform to the syntax
specified by entry_name_syntax.

Returns the interface identifier vector.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_interfaces_exported

No interfaces were exported to the entry.
rpc_s_no_ns_permission

No permission for name service operation.

The rpc_ns_mgmt_entry _ing_if ids() routine returns an interface identifier vector that contains

interface 1Ds from the binding information in a name service entry. This routine returns binding
information from the specified entry only; it does not search any profile or group members

contained in the specified entry.

In implementations that cache name service data, this routine always gets its returned data

directly from the name service, updating any local cache.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_entry ing_if_ids()

Applications must call rpc_if_id_vector_free () to free the memory used by the returned if_id_vec.

Permissions Required
The application needs read permission to the target name service entry.

RETURN VALUE
None.

SEE ALSO
rpc_if _id_vector free()
rpc_if_ing_id()
rpc_ns_hinding_export().

Part 2 RPC Application Programmer’s Interface 161

rpc_ns_mgmt_handle_set exp _age() RPC API Manual Pages

NAME
rpc_ns_mgmt_handle_set_exp_age — sets the expiration age for cached copies of name service
data obtained with a given handle

SYNOPSIS
#include <dce/rpc.h>

void rpc _ns mgmt handle set exp age(
rpc_ns_handle t ns handle,
unsigned32 expiration age,
unsigned32 *status) ;

ARGUMENTS
Input
ns_handle Specifies the name service handle for which the application supplies an
expiration age.
expiration_age Specifies the expiration age, in seconds, for cached copies of name service
data obtained with ns_handle.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_ns_mgmt_handle_set_exp_age() routine sets the expiration age for the specified name
service handle, ns_handle. This expiration age is used, instead of the application’s global
expiration age, for all name service operations obtained using ns_handle. Expiration age is
further described in rpc_ns_mgmt_ing_exp_age() on page 164.

Because name service caching is implementation-dependent, the effect of setting a handle’s
expiration age (on subsequent name service operations performed with the handle) is
implementation dependent.

Note: In implementations that perform name service caching, setting the handle expiration
age to a small value may cause operations that retrieve data from the name service to
update cached data frequently. An expiration age of 0 (zero) forces an update on each
operation involving the same attribute data. Frequent updates may adversely affect the
performance both of the calling application and any other applications that share the
same cache.

Permissions Required
None.

RETURN VALUE
None.

162 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_handle_set exp_age()

SEE ALSO
rpc_ns_binding_import_begin()
rpc_ns_hinding_lookup_begin ()
rpc_ns_entry_object_ing_begin()
rpc_ns_group_mbr_ing_begin()
rpc_ns_mgmt_ing_exp_age()
rpc_ns_mgmt_set_exp_age()
rpc_ns_profile_elt_ing_begin().

Part 2 RPC Application Programmer’s Interface 163

rpc_ns_mgmt_inq_exp_age() RPC API Manual Pages

NAME

rpc_ns_mgmt_ing_exp_age — returns the application’s global expiration age for cached copies
of name service data

SYNOPSIS

#include <dce/rpc.h>

void rpc ns mgmt ing exp age(
unsigned32 *expiration age,
unsigned32 *status) ;

ARGUMENTS

Input

None.

Output

expiration_age The application’s global expiration age, in seconds, for cached copies of
name service data.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;

rpc_s ok Success.

DESCRIPTION

164

The rpc_ns_mgmt_ing_exp_age() routine returns the application’s global name service expiration
age.

The effect of expiration age on name service operations is implementation-dependent. For
implementations that cache, the expiration age is the maximum amount of time, in seconds, that
a cached copy of data from a name service attribute is considered valid by name service
operations that read data from a name service. Name service routines that may be affected by
expiration age are as follows:

rpc_ns_hinding_import_done()
rpc_ns_hinding_lookup_next ()
rpc_ns_entry_object_ing_next()
rpc_ns_group_mbr_ing_next()
rpc_ns_profile_elt_ing_next()

Implementations that cache look for cached copies of the requested data. When there is no
cached copy, the operation creates one with fresh data from the name service database. When
there is a cached copy, the operation compares its age with the calling application’s expiration
age. If the copy’s age exceeds the expiration age, the operation attempts to update the cached
copy with fresh data from the name service. If updating fails, the cached data remains
unchanged and the requested operation fails, returning the rpc_s name_service_unavailable
status code.

Implementations that do not cache behave as if the expiration age were 0 (zero). Fresh data is
always retrieved from the name service.

Every application maintains a global expiration age value. When an application begins running,
the RPC run-time system specifies an implementation-dependent default global expiration age
for the application. Applications may change this value by calling rpc_ns_mgmt_set_exp_age().

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_inqg_exp_age()

Applications may also set the expiration ages of individual name service handles. Whenever a
name service operation is performed using a handle for which the application has not set an
expiration age, the global expiration age value is used.

Permissions Required
None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_mgmt_handle_set_exp_age()
rpc_ns_mgmt_set_exp_age()
rpc_ns_hinding_import_done()
rpc_ns_hinding_lookup_next ()
rpc_ns_entry_object_ing_next()
rpc_ns_group_mbr_ing_next()
rpc_ns_profile_elt_ing_next().

Part 2 RPC Application Programmer’s Interface 165

rpc_ns_mgmt_set exp_age() RPC API Manual Pages

NAME

rpc_ns_mgmt_set_exp_age — Modifies an application’s global expiration age for cached copies
of name service data

SYNOPSIS

#include <dce/rpc.h>

void rpc ns mgmt set exp age(
unsigned32 expiration age,
unsigned32 *status) ;

ARGUMENTS

Input

expiration_age Specifies the application’s global expiration age, in seconds, for cached
copies of name service data.

Applications can reset the expiration age to the implementation-specific
default by supplying the value rpc_c_ns_default_exp_age.
Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;

rpc_s ok Success.

DESCRIPTION

166

The rpc_ns_mgmt_set_exp_age() routine sets the application’s global name service expiration age.

The effect of expiration age on name service operations is implementation-dependent. For
implementations that cache name service data, the expiration age is the maximum amount of
time, in seconds, that a cached copy of data from a hame service attribute is considered valid by
name service operations that read data from a name service. Name service routines that may be
affected by expiration age are as follows:

rpc_ns_hinding_import_done()
rpc_ns_hinding_lookup_next ()
rpc_ns_entry_object_ing_next()
rpc_ns_group_mbr_ing_next()
rpc_ns_profile_elt_ing_next()

Implementations that cache look for cached copies of the requested data. When there is no
cached copy, the operation creates one with fresh data from the name service database. When
there is a cached copy, the operation compares its age with the calling application’s expiration
age. If the copy’s age exceeds the expiration age, the operation attempts to update the cached
copy with fresh data from the name service. If updating fails, the cached data remains
unchanged and the requested operation fails, returning the rpc_s name_service_unavailable
status code.

Implementations that do not cache behave as if the expiration age were 0 (zero). Fresh data is
always retrieved from the name service.

Every application maintains a global expiration age value. When an application begins running,
the RPC run-time system specifies an implementation-dependent default global expiration age
for the application. Applications may query this value by calling rpc_ns_mgmt_ing_exp_age().

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_mgmt_set exp_age()

Applications may also set the expiration ages of individual name service handles. Whenever a
name service operation is performed using a handle for which the application has not set an
expiration age, the global expiration age value is used.

Note: In implementations that cache name service data, setting the expiration age to a small
value may cause operations that retrieve data from the name service to update cached
data frequently. An expiration age of 0 (zero) forces an update on each operation
involving the same attribute data. Frequent updates may adversely affect the
performance both of the calling application and any other applications that share the
same cache.

Permissions Required
None.

RETURN VALUE
None.

SEE ALSO
rpc_ns_mgmt_handle_set_exp_age()
rpc_ns_mgmt_set_exp_age()
rpc_ns_hinding_import_done()
rpc_ns_hinding_lookup_next ()
rpc_ns_entry_object_ing_next()
rpc_ns_group_mbr_ing_next()
rpc_ns_profile_elt_ing_next().

Part 2 RPC Application Programmer’s Interface 167

rpc_ns_profile_delete() RPC API Manual Pages

NAME
rpc_ns_profile_delete — deletes a profile attribute

SYNOPSIS
#include <dce/rpc.h>

void rpc ns profile delete(
unsigned32 profile name syntax,
unsigned char t *profile name,
unsigned32 *status) ;

ARGUMENTS

Input

profile_name_syntax An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

profile_name The name of the profile to delete. The profile name syntax is identified by
the argument profile_name_syntax.
Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s_ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION

The rpc_ns_profile_delete() routine deletes the profile attribute from the specified entry in the
name service database.

Neither the specified entry nor the entry names included as members in each profile element are
deleted.

Note: Use this routine cautiously; deleting a profile may break a hierarchy of profiles.

168 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_delete()

Permissions Required
The application needs write permission to the target name service profile entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_profile_elt_add ()
rpc_ns_profile_elt_remove().

Part 2 RPC Application Programmer’s Interface 169

rpc_ns_profile_elt add() RPC API Manual Pages

NAME

rpc_ns_profile_elt add — adds an element to a profile; if necessary, creates the entry

SYNOPSIS
#include <dce/rpc.h>

void rpc ns profile elt add(
unsigned32 profile name syntax,
unsigned char t *profile name,
rpc_if id t *if id,
unsigned32 member name syntax,
unsigned char t *member name,
unsigned32 priority,
unsigned char t *annotation,
unsigned32 *status) ;

ARGUMENTS

170

Input

profile_name_syntax

profile_name

if_id

member_name_syntax

member_name

priority

annotation

An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Specifies the RPC profile that receives the new element. The profile name
syntax is identified by the argument profile_name_syntax.

Specifies the interface identifier of the new profile element. To add or
replace the default profile element, specify NULL.

An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Specifies an entry in the name service database to include in the new
profile element. The member name syntax is identified by the argument
member_name_syntax.

An integer value (0 to 7) that specifies the relative priority for using the
new profile element during the import and lookup operations. A value of
0 (zero) is the highest priority. A value of 7 is the lowest priority. Two or
more elements can have the same priority.

The default profile element has a priority of 0. When adding the default
profile, the result is unspecified if the application specifies a value other
than 0 here.

Specifies an annotation string that is stored as part of the new profile
element. The string can be up to rpc_c_annotation_max characters long,
including the null terminator. The application specifies NULL or the
empty string (") if there is no annotation string.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt add()

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_profile_elt_add () routine adds an element to the profile attribute of the entry in the
name service database specified by the profile_name argument.

If the profile_name entry does not exist, this routine creates the entry with a profile attribute and
adds the profile element specified by the if_id, member_name, priority and annotation arguments.
In this case, the application must have permission to create the entry.

If an element with the specified member name and interface identifier is already in the profile,
this routine updates the element’s priority and annotation string using the values provided in
the priority and annotation arguments.

An application can add the entry in argument member_name to a profile before it creates the entry
itself.

Permissions Required

The application needs both read permission and write permission for the target name service
profile entry. If the entry does not exist, the application also needs insert permission for the
parent directory.

RETURN VALUE
None.

SEE ALSO
rpc_if_ing_id()
rpc_ns_mgmt_entry create()
rpc_ns_profile_elt_remove().

Part 2 RPC Application Programmer’s Interface 171

rpc_ns_profile_elt_ing_begin() RPC API Manual Pages

NAME

rpc_ns_profile_elt_ing_begin — creates an inquiry context for viewing the elements in a profile

SYNOPSIS
#include <dce/rpc.h>

void rpc ns profile elt ing begin(
unsigned32 profile name syntax,
unsigned char t *profile name,
unsigned32 inquiry type,
rpc_if id t *if id,
unsigned32 vers option,
unsigned32 member name syntax,
unsigned char t *member name,
rpc_ns _handle t *inquiry context,
unsigned32 *status) ;

ARGUMENTS

172

Input

profile_name_syntax

profile_name

inquiry_type

An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Specifies the RPC profile to view. The profile name syntax is identified by
the argument profile_name_syntax.

An integer value that specifies the type of inquiry to perform on the
profile. The following list describes the valid values for this argument:

Value Description

rpc_c_profile_default_elt
Searches the profile for the default profile element, if
any.

The if_id, vers_option, and member_name arguments are
ignored.

rpc_c_profile_all_elts
Returns every element from the profile.
The if_id, vers_option, and member_name arguments are
ignored.
rpc_c_profile_match_by if
Searches the profile for those elements that contain the

interface identifier specified by the if_id and vers_option
values.

The member_name argument is ignored.

rpc_c_profile_match_by mbr
Searches the profile for those elements that contain the
member name specified by the member_name argument.

X/0pen CAE Specification (1994)

RPC API Manual Pages

if_id

vers_option

member_name_syntax

member_name

rpc_ns_profile_elt ing_begin()

The if_id and vers_option arguments are ignored.

rpc_c_profile_match_by both
Searches the profile for those elements that contain the
interface identifier and member name specified by the
if_id, vers_option and member_name arguments.

Specifies the interface identifier of the profile elements to be returned by
the rpc_ns_profile_elt_ing_next() routine.

This argument is meaningful only when specifying a value of
rpc_c_profile_match_by if or rpc_c_profile_match_by both for the
inquiry_type argument. Otherwise, this argument is ignored and the
application can specify the value NULL.

Specifies how the rpc_ns_profile_elt_ing_next() routine uses the if id
argument.

This argument is wused only when specifying a value of
rpc_c_profile_match_by if or rpc_c_profile_match_by both for the
inquiry_type argument. Otherwise, this argument is ignored.

The following list describes the valid values for this argument:
Value Description

rpc_c_vers_all Returns profile elements that offer the specified
interface UUID, regardless of the version numbers.

rpc_c_vers_compatible
Returns profile elements that offer the same major
version of the specified interface UUID and a minor
version greater than or equal to the minor version of
the specified interface UUID.

rpc_c_vers_exact Returns profile elements that offer the specified version
of the specified interface UUID.

rpc_c_vers_major_only
Returns profile elements that offer the same major
version of the specified interface UUID (ignores the
minor version).

rpc_c_vers_upto Returns profile elements that offer a version of the
specified interface UUID less than or equal to the
specified major and minor version.

An integer value that specifies the syntax of argument member_name in
this routine and the syntax of argument member_name in the
rpc_ns_profile_elt_ing_next() routine. (See Appendix C for the possible
values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Specifies the member name that the rpc_ns_profile_elt_ing_next() routine
looks for in profile elements. The member name syntax is identified by
the argument member_name_syntax.

Part 2 RPC Application Programmer’s Interface 173

rpc_ns_profile_elt ing_begin() RPC API Manual Pages

Output

inquiry_context

status

DESCRIPTION

This argument is meaningful only when specifying a value of
rpc_c_profile_match_by mbr or rpc_c_profile_match_by both for the
inquiry_type argument. Otherwise, this argument is ignored.

Returns a name service handle for use with the
rpc_ns_profile_elt_ing_next() and rpc_ns_profile_elt_ing_done() routines.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_unsupported_name_syntax
Unsupported name syntax.

The rpc_ns_profile_elt_ing_begin () routine creates an inquiry context for viewing the elements in a

profile.

Using the inquiry_type and vers_option arguments, an application specifies which of the following
profile elements will be returned from calls to the rpc_ns_profile_elt_ing_next() routine:

- the default element

. all elements

- those elements with the specified interface identifier

- those elements with the specified member name

- those elements with both the specified interface identifier and member name.

The application calls this routine to create an inquiry context before calling the
rpc_ns_profile_elt_ing_next() routine.

When finished viewing profile elements, the application calls the rpc_ns_profile_elt_ing_done()
routine to delete the inquiry context.

Permissions Required
None.

RETURN VALUE
None.

SEE ALSO
rpc_if_ing_id()

rpc_ns_mgmt_handle_set_exp_age()
rpc_ns_profile_elt_ing_done()
rpc_ns_profile_elt_ing_next().

174

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt_ing_done()

NAME

rpc_ns_profile_elt_inq_done — deletes the inquiry context for a profile

SYNOPSIS

#include <dce/rpc.h>

void rpc ns profile elt ing done(
rpc_ns _handle t *inquiry context,
unsigned32 *status) ;

ARGUMENTS
Input/Output
inquiry_context Specifies the name service handle to delete. (A name service handle is
created by calling the rpc_ns_profile_elt_ing_begin() routine.)
On success, returns the value NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_ns_profile_elt_ing_done() routine deletes an inquiry context created by calling the
rpc_ns_profile_elt_ing_begin() routine.

An application calls this routine after viewing profile elements wusing the
rpc_ns_profile_elt_ing_next() routine.
Permissions Required

None.

RETURN VALUE

None.

SEE ALSO

rpc_ns_profile_elt_ing_begin()
rpc_ns_profile_elt_ing_next().

Part 2 RPC Application Programmer’s Interface 175

rpc_ns_profile_elt_ing_next() RPC API Manual Pages

NAME

rpc_ns_profile_elt_ing_next — returns one element at a time from a profile

SYNOPSIS
#include <dce/rpc.h>

void rpc ns profile elt ing next(
rpc_ns _handle t inquiry context,
rpc_if id t *if id,
unsigned char t **member name,
unsigned32 *priority,
unsigned char t **annotation,
unsigned32 *status) ;

ARGUMENTS

176

Input

inquiry_context
Output

if_id

member_name

priority

annotation

status

Specifies a name service handle. This handle is returned from the
rpc_ns_profile_elt_ing_begin() routine.

Returns the interface identifier of the profile element.
Returns a pointer to the profile element’s member name.

The syntax of the returned name is specified by the member_name_syntax
argument in the rpc_ns_profile_elt_ing_begin () routine.

Specifying NULL prevents the routine from returning this argument. In
this case the application need not call the rpc_string_free() routine.

Returns the profile element priority.

Returns the annotation string for the profile element. If there is no
annotation string in the profile element, the empty string (") is returned.

Specifying NULL prevents the routine from returning this argument. In
this case the application need not call the rpc_string_free() routine.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_not_rpc_entry
Not an RPC entry.

rpc_s_class_version_mismatch
Name service entry has incompatible RPC class
version.

rpc_s_name_service_unavailable
Name service unavailable.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt_ing_next()

rpc_s_no_more_elements
No more elements.

rpc_s_no_ns_permission
No permission for name service operation.

DESCRIPTION
The rpc_ns_profile_elt_ing_next() routine returns one element from the profile specified by the
profile_name argument in the rpc_ns_profile_elt_ing_begin() routine.

The selection criteria for the element returned are based on the inquiry_type argument in routine
rpc_ns_profile_elt_ing_begin(). Routine rpc_ns_profile_elt ing_next() returns all the components
(interface identifier, member name, priority, annotation string) of a profile element.

An application can view all the selected profile entries by repeatedly calling the
rpc_ns_profile_elt_ing_next() routine. When all the elements have been viewed, this routine
returns an rpc_s_no_more_elements status code. The returned elements are unordered.

On each call to this routine that returns a profile element, the RPC run-time system allocates
memory for the returned member_name and annotation strings. The application is responsible for
calling the rpc_string_free() routine for each returned member_name and annotation string.

After viewing the profile’s elements, the application must call the rpc_ns_profile_elt_ing_done()
routine to delete the inquiry context.

Permissions Required
The application needs read permission to the the target name service profile entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_profile_elt_ing_begin()
rpc_ns_profile_elt_ing_done()
rpc_string_free()
rpc_ns_mgmt_set_exp_age().

Part 2 RPC Application Programmer’s Interface 177

rpc_ns_profile_elt remove() RPC API Manual Pages

NAME

rpc_ns_profile_elt_remove — removes an element from a profile

SYNOPSIS
#include <dce/rpc.h>

void rpc ns profile elt remove (
unsigned32 profile name syntax,
unsigned char t *profile name,
rpc_if id t *if id,
unsigned32 member name syntax,
unsigned char t *member name,
unsigned32 *status) ;

ARGUMENTS

178

Input

profile_name_syntax

profile_name

if_id

member_name_syntax

member_name

Output

status

An integer value that specifies the syntax of argument profile_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

The name of the profile from which an element is removed. The profile
name syntax is identified by the argument profile_name_syntax.

Specifies the interface identifier of the profile element to be removed.
The application specifies NULL to remove the default profile member.

An integer value that specifies the syntax of argument member_name. (See
Appendix C for the possible values of this argument.)

The value rpc_c_ns_syntax_default specifies the syntax specified by the
RPC_DEFAULT_ENTRY_SYNTAX environment variable.

Specifies the name service entry to remove from the profile. The member
name syntax is identified by the argument member_name_syntax.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_entry not_found
Name service entry not found.

rpc_s_name_service_unavailable
Name service unavailable.

rpc_s_no_ns_permission
No permission for name service operation.

rpc_s_profile_element_not_found
Profile element not found.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_ns_profile_elt remove()

rpc_s_unsupported_name_syntax
Unsupported name syntax.

DESCRIPTION
The rpc_ns_profile_elt_remove() routine removes a profile element from the profile attribute in the
profile_name entry. Note that the member_name argument and the if id argument must match
exactly for an element to be removed.

The entry (member_name) referred to as a member in the profile element is not deleted.

Note: Use this routine cautiously. Removing elements from a profile may break a hierarchy of
profiles.

Permissions Required

The application needs both read permission and write permission to the target nhame service
profile entry.

RETURN VALUE
None.

SEE ALSO
rpc_ns_profile_delete()
rpc_ns_profile_elt_add ().

Part 2 RPC Application Programmer’s Interface 179

rpc_object_ing_type() RPC API Manual Pages

NAME

rpc_object_ing_type — returns the type of an object

SYNOPSIS

#include <dce/rpc.h>

void rpc _object ing type(
uuid t *obj uuid,
uuid t *type uuid,
unsigned32 *status) ;

ARGUMENTS

Input

obj_uuid

Output
type_uuid

status

DESCRIPTION

Specifies the object UUID whose associated type UUID is returned. This
may be the nil UUID.

Returns the type UUID corresponding to the object UUID supplied in
argument obj_uuid.

Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.

Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_object_not_found
Obiject not found.

A server application calls the rpc_object_ing_type () routine to obtain the type UUID of an object.

If the object is registered with the RPC run-time system using the rpc_object_set type() routine,
the registered type is returned.

An application can also privately maintain an object/type registration. In this case, if the
application provides an object inquiry function (see rpc_object _set_ing_fn() on page 182). the
RPC run-time system uses that function to determine an object’s type.

The following table summarises how routine rpc_object ing_type() obtains the returned type

UuID.

Has the application registered an:

Object UUID?

Object inquiry function? Return Value

Yes

(Ignored) Returns the object’s registered type UUID.

No

Yes Returns the type UUID returned from calling the
inquiry function.

No

No Returns the nil UUID.

RETURN VALUE
None.

180

Table 3-2 Rules for Returning an Object’s Type

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_object_ing_type()

SEE ALSO
rpc_object_set_ing_fn()
rpc_object_set_type().

Part 2 RPC Application Programmer’s Interface 181

rpc_object set ing_fn() RPC API Manual Pages

NAME
rpc_object_set ing_fn — registers an object inquiry function
SYNOPSIS
#include <dce/rpc.h>
void rpc _object set ing fn(
rpc_object ing fn t inquiry fn,
unsigned32 *status) ;
ARGUMENTS
Input
inquiry_fn Specifies a pointer to an object type inquiry function. When an
application calls the rpc_object_ing_type() routine, and the RPC run-time
system finds that the specified object is not registered, the run-time
system automatically calls this routine to determine the object’s type.
Specifying NULL removes a previously set inquiry function.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION
A server application calls the rpc_object_set_ing_fn() routine to specify a function to determine an
object’s type. If an application privately maintains object/type registrations, the specified
inquiry function returns the type UUID of an object from that registration.
The RPC run-time system automatically calls the inquiry function when the application calls
routine rpc_object ing_type() and the object was not previously registered by the
rpc_object_set_type() routine. The RPC run-time system also automatically calls the inquiry
function for every remote procedure call it receives if the object was not previously registered by
rpc_object_set_type().
The following C-language definition for rpc_object_inqg_fn_t illustrates the prototype for this
function:
typedef void (*rpc object ing fn t)
(
uuid t *object uuid, /* in ¥/
uuid t *type uuid, /* out */
unsigned3?2 *status /* out */
The returned type uuid and status values are returned as the output arguments from the
rpc_object_ing_type() routine.
RETURN VALUE
None.
SEE ALSO
rpc_object_ing_type()
rpc_object_set_type().
182 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_object set type()

NAME
rpc_object_set type — registers the type of an object with the RPC run-time system

SYNOPSIS
#include <dce/rpc.h>

void rpc object set type(
uuid t *obj uuid,
uuid t *type uuid,
unsigned32 *status) ;

ARGUMENTS
Input
obj_uuid Specifies an object UUID to associate with the type UUID in the type_uuid
argument. This may not be the nil UUID.
type_uuid Specifies the type UUID of the obj_uuid argument.
Specify the nil UUID to reset the object type to the default association of
object UUID/nil type UUID.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_already_registered
Obiject already registered.
rpc_s_invalid_object
Invalid object.
DESCRIPTION

The rpc_object_set_type() routine assigns a type UUID to an object UUID.

By default, the RPC run-time system assumes that the type of all objects is nil. A server program
that contains one implementation of an interface (one manager entry point vector) does not need
to call this routine, provided that the server registered the interface with the nil type UUID (see
rpc_server_register_if() on page 193 for a description).

A server program that contains multiple implementations of an interface (multiple manager
entry point vectors; that is, multiple type UUIDs) calls this routine once for each non-default
object UUID the server offers. Associating each object with a type UUID tells the RPC run-time
system which manager entry point vector (interface implementation) to use when the server
receives a remote procedure call for a non-nil object UUID.

The RPC run-time system allows an application to set the type for an unlimited number of
objects.

To remove the association between an object UUID and its type UUID (established by calling
this routine), a server calls this routine again and specifies the nil UUID for the type uuid
argument. This resets the association between an object UUID and type UUID to the default.

A server cannot register a nil object UUID. The RPC run-time system automatically registers the
nil object UUID with a nil type UUID. Attempting to set the type of a nil object UUID will result

Part 2 RPC Application Programmer’s Interface 183

rpc_object set type() RPC API Manual Pages

in the routine’s returning the status code rpc_s_invalid_object.

Servers that want to maintain their own object UUID to type UUID mapping can use the
rpc_object_set_ing_fn() routine in place of, or in addition to, the rpc_object_set type() routine.

RETURN VALUE
None.

SEE ALSO
rpc_object_set_ing_fn()
rpc_server_register_if().

184 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_protseq_vector free()

NAME
rpc_protseq_vector_free — frees the memory used by a protocol sequence vector and its
protocol sequences

SYNOPSIS
#include <dce/rpc.h>

void rpc_protseq vector free(
rpc_protseq vector t **protseq vector,
unsigned32 *status) ;

ARGUMENTS
Input/Output
protseq_vector Specifies the address of a pointer to a vector of protocol sequences. On
return the pointer is set to NULL.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
DESCRIPTION

The rpc_protseq_vector_free() routine frees the memory used to store a vector of protocol
sequences when the vector was obtained by calling rpc_network_ing_protsegs(). Both the protocol
sequences and the protocol sequence vector are freed.

RETURN VALUE
None.

SEE ALSO
rpc_network_ing_protseqs().

Part 2 RPC Application Programmer’s Interface 185

rpc_server_ing_bindings() RPC API Manual Pages

NAME
rpc_server_ing_bindings — returns binding handles for communication with a server
SYNOPSIS
#include <dce/rpc.h>
void rpc_server ing bindings(
rpc_binding vector t **binding vector,
unsigned32 *status) ;
ARGUMENTS
Input
None.
Output
binding_vector Returns the address of a vector of server binding handles.
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_no_bindings
No bindings.
DESCRIPTION
The rpc_server_ing_bindings() routine obtains a vector of server binding handles. Binding handles
are created by the RPC run-time system when a server application calls any of the following
routines to register protocol sequences:
rpc_server_use all_protseqs()
rpc_server_use all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()
rpc_server_use protseq_if()
The returned binding vector can contain binding handles with dynamic endpoints and binding
handles with well-known endpoints, depending on which of the above routines the server
application called.
A server uses the vector of binding handles for exporting to the name service, for registering
with the local endpoint map, or for conversion to string bindings.
When there are no binding handles (no registered protocol sequences), this routine returns the
rpc_s_no_bindings status code and returns the value NULL in binding_vector.
The application is responsible for calling the rpc_binding_vector free() routine to deallocate the
memory used by the vector.
RETURN VALUE
None.
186 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_ing_bindings()

SEE ALSO
rpc_binding_vector_free()
rpc_ep_registerP()
rpc_ep_register_no_replace()
rpc_ns_hinding_export()
rpc_server_use_protseq()
rpc_server_use_all_protseqs()
rpc_server_use protseq_ep()
rpc_server_use_protseq_if()
rpc_server_use all_protseqs().

Part 2 RPC Application Programmer’s Interface 187

rpc_server_ing_if() RPC API Manual Pages

NAME
rpc_server_ing_if — returns the manager entry point vector registered for an interface

SYNOPSIS
#include <dce/rpc.h>

void rpc_server ing if(
rpc_if handle t if handle,
uuid t *mgr type uuid,
rpc_mgr_epv_t *mgr epv,
unsigned32 *status) ;

ARGUMENTS

Input

if_handle Specifies the interface specification whose manager entry point vector
(EPV) pointer is returned in argument mgr_epv.

mgr_type_uuid Specifies a type UUID for the manager whose EPV pointer is returned in
argument mgr_epv.
Specifying the nil UUID for this argument causes the routine to return a
pointer to the manager EPV that is registered with if_handle and the nil
type UUID for the manager.

Output

mgr_epv On success, returns a pointer to the manager EPV that corresponds to
arguments if_handle and mgr_type_uuid.

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_unknown_if

Unknown interface.
rpc_s_unknown_mgr_type
Unknown manager type.
DESCRIPTION

An application calls the rpc_server_ing_if() routine to determine the manager EPV for a
registered interface and type UUID of the manager.

RETURN VALUE
None.

SEE ALSO
rpc_server_register_if().

188 X/Open CAE Specification (1994)

RPC API Manual Pages rpc_server_listen()

NAME
rpc_server_listen — tells the RPC run-time system to listen for remote procedure calls

SYNOPSIS
#include <dce/rpc.h>

void rpc_server listen(
unsigned32 max calls exec,
unsigned32 *status) ;

ARGUMENTS
Input
max_calls_exec Specifies the number of concurrent executing remote procedure calls the
server must be able to handle. The RPC run-time system allocates
sufficient call threads to handle this number of concurrent calls.
The value rpc_c_listen_max_calls_default specifies an implementation-
dependent default value = 1.
Note: The five rpc_server_use_*protseq*() routines:
rpc_server_use all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()
rpc_server_use protseq_if())
also specify a max_call_requests argument that specifies the
network resources allocated for concurrent call requests.
Normally the values of max_calls_exec and max_call_requests are
the same. Servers are guaranteed to support the minimum of
max_calls_exec and max_call_requests concurrent remote
procedure calls. Applications should not rely on a server
handling more than this number.
Output
status Returns the status code from this routine. The status code indicates

whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.

rpc_s_already_listening
Server already listening.

rpc_s_max_calls_too_small
Maximum calls value is too small. Must be > 0.

rpc_s_no_protseqs_registered
No protocol sequences registered.

Part 2 RPC Application Programmer’s Interface 189

rpc_server_listen() RPC API Manual Pages

DESCRIPTION

The rpc_server_listen() routine causes a server to listen for remote procedure calls. The
max_calls_exec argument specifies the number of concurrent remote procedure calls the server is
guaranteed to be able to execute, assuming that the server has allocated sufficient network
resources to receive this number of call requests.

A server application that specifies a value for max_calls_exec greater than 1 is responsible for
concurrency control among the server manager routines, since each executes in a separate
thread.

When the server receives more remote procedure calls than it can execute (that is, more calls
than the value of max_calls_exec), the RPC run-time system accepts and queues additional
remote procedure calls until a call execution thread is available; that is, the number of
concurrently executing threads is < max_calls_exec. From the client’s perspective a queued
remote procedure call appears the same as one that the server is actively executing.

The rpc_server_listen() routine returns to the caller when one of the following events occurs:

- The rpc_mgmt_stop_server_listening() routine is called by one of the server application’s
manager routines.

« A client makes an authorised remote rpc_mgmt _stop_server_listening() routine call to the
server.

After rpc_server_listen() returns, no further calls are processed.

RETURN VALUE

None.

SEE ALSO

190

rpc_mgmt_stop_server_listening()
rpc_server_register_if()
rpc_server_use_all_protseqs()
rpc_server_use_all_protseqs()
rpc_server_use_protseq()
rpc_server_use protseq_ep()
rpc_server_use protseq_if().

X/0pen CAE Specification (1994)

RPC API Manual Pages

NAME

rpc_server_register_auth_info()

rpc_server_register_auth_info — registers authentication information with the RPC run-time
system (used by server applications)

SYNOPSIS

#include <dce/rpc.h>

void rpc_server register auth info(
unsigned char t *server princ name,
unsigned32 authn svc,
rpc_auth key retrieval fn t get key fn,

void *arg,

unsigned32 *status) ;

ARGUMENTS

Input

server_princ_name

authn_svc

get key fn

Specifies a server principal name to use when authenticating remote
procedure calls using the service specified by authn_svc. The content and
syntax of the name depend on the value of authn_svc. (See Appendix D
for authentication service specific syntax.)

Specifies the authentication service to use when the server receives a
remote procedure call request. (See Appendix D for the possible values
of this argument.)

Specifies the address of a server application-provided routine that returns
keys suitable for the specified authn_svc.

To use the authentication service-specific default method of acquiring
keys, NULL may be specified for this argument. (See Appendix D for a
description of the authentication service-specific run-time behaviour for
acquiring keys.)

The following C definition for rpc_auth_key retrieval_fn_t illustrates the
prototype for the key acquisition routine:

typedef void (*rpc_auth key retrieval fn t)
(

void *arg, /* in */
unsigned char t *server princ name, /* in */
unsigned3?2 key ver, /* in */
void *x*key, /* out */
unsigned3?2 *status /* out */

)i

The RPC run-time system passes the server_princ_name argument value
for rpc_server_register_auth_info(), as the server_princ_name argument
value for the get_key fn key acquisition routine. The RPC run-time system
automatically supplies a value for the key_ver argument.

The implementation of the key acquisition routine depends on the
authentication service in use. The routine must return a key appropriate
to the authentication service in the get key fn argument. For a key_ ver
value of 0 (zero), the key acquisition routine must return the most recent
key available, as defined by the authentication service.

Part 2 RPC Application Programmer’s Interface 191

rpc_server_register_auth_info() RPC API Manual Pages

The key acquisition routine may be called from
rpc_server_register_auth_info(). In this case, if the key acquisition routine
returns a status other than rpc_s ok, the rpc_server_register_auth_info()
routine fails and returns the error status to the calling server.

The key acquisition routine is called by the RPC run-time system while
authenticating remote procedure call requests. If it returns a status other
than rpc_s_ok, the request fails and the RPC run-time system returns the
error status to the calling client.

arg Specifies an argument to pass to the key acquisition routine. (See
Appendix D for an explanation of how this argument is treated by the
run-time system, depending on the value of authn_svc and get_key fn.)

Output

status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_unknown_authn_service

Unknown authentication service.
DESCRIPTION

Servers call the rpc_server_register_auth_info() routine to register an authentication service to use
for authenticating remote procedure calls. A server calls this routine once for each
authentication service-principal name combination that it wants to register. Severs can register a
non-default key acquisition function and a key acquisition function argument when calling
rpc_server_register_auth_info().

Applications may make multiple calls to rpc_server_register_auth_info() to register several
principal name-authentication service combinations. When an application calls
rpc_server_register_auth_info() with a combination already registered, the new registration
overwrites the old one.

A client application makes authenticated remote procedure calls using a binding annotated with
authentication information. If the binding has not been annotated with one of the principal
name-authentication service combinations registered by the server, the client’'s remote
procedure call request may be rejected by the manager routine.

RETURN VALUE

None.

SEE ALSO

192

rpc_binding_set_auth_info()
rpc_server_register_auth_info().

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_server_register_if()

NAME
rpc_server_register_if — registers interface/type UUID/EPV associations with the RPC run-
time system
SYNOPSIS
#include <dce/rpc.h>
void rpc_server register if(
rpc_if handle t if handle,
uuid t *mgr type uuid,
rpc_mgr_epv_t mgr epv,
unsigned32 *status) ;
ARGUMENTS
Input
if_handle Specifies the interface to register.
mgr_type_uuid Specifies a type UUID to associate with the mgr_epv argument.
Specifying the value NULL (or a nil UUID) registers the if_handle with a
nil type UUID.
mgr_epv Specifies the manager routine’s entry point vector. Specifying NULL
causes the routine to supply a default entry point vector.
Output
status Returns the status code from this routine. The status code indicates
whether the routine completed successfully, or if not, why not.
Possible status codes and their meanings include;
rpc_s ok Success.
rpc_s_type already registered
An interface with the given type UUID already
registered.
DESCRIPTION

The rpc_server_register_if() routine registers a server interface with the RPC run-time system. A
server can register an unlimited number of interfaces. Once registered, an interface is available
to clients through any binding handle of the server, provided that the client supports the
protocols specified in the binding handle.

A server must provide the following information to register an interface with
rpc_server_register_if():

- an interface specification; the server specifies this using the if_handle argument

. a type UUID and manager entry point vector (EPV) pair, using the mgr_type uuid and

mgr_epv arguments, respectively; this data pair identifies a manager to handle calls on the
interface.

A server may register more than one manager per interface. To do so, the server calls
rpc_server_register_if() at least once for each manager, specifying a different type UUID/manager
EPV data pair each time.

The type UUID/manager EPV data pairs registered by this routine are used by the run-time
system to determine which manager is invoked when a server receives a remote procedure call

Part 2 RPC Application Programmer’s Interface 193

rpc_server_register_if()

194

RPC API Manual Pages

request from a client. When an RPC request is received on an interface, the RPC run-time system
matches the object UUID of the call to one of the registered type UUID/manager EPV pairs and
dispatches the call through the selected EPV to the appropriate manager routines.

By default, a nil object UUID matches a nil type UUID. To enable any other matches, the server
must establish a mapping of object UUIDs to type UUIDs by calling the routine
rpc_object_set_type(). The server must call rpc_object_set type() at least once for each non-nil type
UUID it has registered in order to make that type UUID available for dispatching calls.

Note: The mapping of object UUIDs to type UUIDs applies to all registered interfaces. If a
non-nil type UUID has already been set for one interface, it is not necessary to call

rpc_object_set_type again when that type UUID is registered for a different interface.

In an interface, one manager EPV may be registered with a nil type UUID. As the table below
shows, this manager, by default, receives calls with object UUIDs that do not match another type
UUID. Note that rpc_object set type() cannot be used to set the nil object UUID to match any
other type UUID. However, a non-nil object UUID may be mapped to the nil type UUID. (See
rpc_object set _type() on page 183 for further information on the object UUID to type UUID

mapping.)

More than one type UUID may be registered for each manager EPV on consecutive calls to
rpc_server_register_if(), allowing calls whose object UUIDs match different type UUIDs to be
dispatched to the same manager. However, only one manager EPV for an interface may be
registered per type UUID. When an interface has been registered with a given type UUID,
attempting to register it with the same type UUID results in the error
rpc_s_type already registered.

The following table summarises the rules used by the RPC run-time system for invoking
manager routines.

Has Server Has Server

Object Set Type Registered Type

uuID of Object for Manager Dispatching

of Call' uuID? EPV?’ Action

Nil Not applicable4 Yes Use the manager with the nil type
UulID.

Nil Not applicable4 No Error: rpc_s_unknown_mgr_type.
Reject the remote procedure call.

Non-nil | Yes Yes Use the manager with the same
type UUID.

Non-nil | No (Ignored) Use the manager with the nil type
UUID. If no manager with the nil
type UuID, error:
rpc_s_unknown_mgr_type. Reject
the remote procedure call.

Non-nil | Yes No Error: rpc_s_unknown_mgr_type.
Reject the remote procedure call.

1. This is the object UUID found in a binding handle for a remote procedure.

2. The server specifies the type UUID for an object by calling rpc_object_set_type().

3. The server registers the type for the manager EPV by calling rpc_server_register_if() using

the same type UUID.

4. The nil object UUID is always automatically assigned the nil type UUID. It is illegal to

specify a nil object UUID in the rpc_object_set_type() routine.

X/0pen CAE Specification (1994)

RPC API Manual Pages rpc_server_register_if()

Specifying the Manager EPV

To use the implementation-provided default manager EPV, a server can specify the value NULL
for the mgr_epv argument to rpc_server_register_if(). A server that registers only one manager for
an interface, and that wishes to use the default manager EPV needs to call rpc_server_register_if()
only once, specifying the value NULL for the mgr