
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

Data Management:
Structured Query Language (SQL)

Version 2

[This page intentionally left blank]

X/Open CAE Specification

Data Management:

Structured Query Language (SQL), Version 2

X/Open Company Ltd.

 March 1996, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

Data Management: Structured Query Language (SQL), Version 2

ISBN: 1-85912-151-9
X/Open Document Number: C449

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

ii X/Open CAE Specification

Contents

Chapter 1 Introduction... 1
 1.1 Relational Database Standards .. 1
 1.2 The X/Open Specification .. 2
 1.2.1 Audience.. 2
 1.2.2 Compliance Terminology... 2
 1.3 Compliance Policy.. 5
 1.3.1 Language Embedding... 5
 1.3.2 Flagging Non-portable Usage ... 5
 1.3.3 Distributed Transaction Delimitation.. 6
 1.3.4 Character Set Support... 6
 1.4 This Issue .. 7
 1.4.1 Transitional SQL... 7
 1.4.2 Internationalisation ... 9
 1.4.3 Alignment with SPIRIT SQL ... 9
 1.4.4 Other New Material in this Issue ... 10
 1.4.5 Substantive Changes in this Issue.. 10
 1.4.6 Documentation and Policy Changes in this Issue............................. 12
 1.5 SQL Registry .. 13

Chapter 2 Concepts .. 15
 2.1 Introduction ... 15
 2.1.1 General Terms... 15
 2.2 Data Types and Values... 16
 2.3 Tables... 17
 2.3.1 Attributes of Columns .. 17
 2.3.2 Types of Table ... 17
 2.3.3 Indexes ... 18
 2.3.4 System Views.. 18
 2.3.5 Integrity Constraints ... 18
 2.4 Database System ... 19
 2.4.1 Clients and Servers.. 19
 2.4.2 Database Organisation ... 20
 2.4.3 Character Sets ... 21
 2.4.4 Collations... 23
 2.5 Using SQL... 24
 2.5.1 Cursors... 24
 2.5.2 Executable SQL Statements ... 24
 2.5.3 Embedded Constructs .. 24
 2.5.4 Dynamic SQL.. 25
 2.5.5 Return Status .. 25
 2.6 Access Control... 26
 2.6.1 Users... 26

Data Management: Structured Query Language (SQL), Version 2 iii

Contents

 2.6.2 Ownership... 26
 2.6.3 Authorisation Identifiers.. 26
 2.6.4 Privileges ... 27
 2.7 Transactions ... 28
 2.7.1 Transaction Attributes .. 28
 2.7.2 Concurrent Transactions .. 29

Chapter 3 Common Elements .. 31
 3.1 Notation and Language Structure... 31
 3.1.1 Notation... 31
 3.1.2 Language Structure ... 32
 3.1.3 Format of Object Qualification.. 35
 3.1.4 Format of Column Qualification .. 36
 3.1.5 Specifying the Character Set.. 36
 3.1.6 Keywords... 37
 3.2 Generic Data Types... 39
 3.2.1 Character String ... 40
 3.2.2 Numeric... 41
 3.2.3 Date/Time... 42
 3.2.4 Interval... 44
 3.3 Rules for Determining Data Types.. 47
 3.4 Literals... 48
 3.4.1 Pseudo-literals .. 50
 3.5 Assignment .. 51
 3.6 Comparison.. 53
 3.7 Null Values... 54
 3.8 Indicator Variables.. 56
 3.9 Expressions .. 57
 3.9.1 Arithmetic Operators .. 57
 3.9.2 Date/Time and Interval Arithmetic .. 57
 3.9.3 String Operations... 59
 3.9.4 Set Functions... 63
 3.9.5 Dynamic Parameters ... 64
 3.9.6 CAST Function ... 65
 3.9.7 Specifying a Collation ... 66
 3.10 Search Conditions and Predicates ... 67
 3.10.1 Comparison Predicate... 67
 3.10.2 Quantified Comparison Predicate.. 68
 3.10.3 BETWEEN Predicate ... 68
 3.10.4 IN Predicate... 68
 3.10.5 LIKE Predicate .. 69
 3.10.6 NULL Predicate.. 69
 3.10.7 EXISTS Predicate.. 70
 3.10.8 OVERLAPS Predicate ... 70
 3.11 Queries .. 71
 3.11.1 Query Specifications ... 71
 3.11.2 Joined Tables ... 73
 3.11.3 Query Expressions... 75

iv X/Open CAE Specification

Contents

 3.11.4 Sub-queries.. 76
 3.11.5 Correlation .. 76
 3.12 Row Value Constructor ... 78

Chapter 4 Embedded Aspects .. 79
 4.1 Embedded SQL Host Program... 79
 4.1.1 Embedded SQL Constructs ... 79
 4.1.2 Embedded Host Variables and Indicator Variables.......................... 80
 4.1.3 Data Types and Embedded Host Variables.. 82
 4.2 SQL Declare Section ... 84
 4.3 DECLARE AUTHORIZATION Statement .. 86
 4.4 Cursors.. 87
 4.4.1 DECLARE CURSOR Statement .. 88
 4.4.2 Dynamic DECLARE CURSOR Statement .. 89
 4.5 SQL Statement Outcomes ... 90
 4.5.1 Outcome Categories.. 90
 4.5.2 SQLSTATE Status Variable... 90
 4.5.3 Diagnostics Area.. 91
 4.5.4 SQLCODE Status Variable... 92
 4.5.5 Application Usage ... 93
 4.5.6 Other Effects of Errors... 93
 4.6 WHENEVER Statement .. 94
 4.6.1 Special Rule for C... 94
 4.6.2 Special Rules for COBOL ... 94
 4.7 Multiple Compilation Units ... 95

Chapter 5 Executable SQL Statements... 97
 5.1 Classification of SQL Statements... 97
 5.2 General Diagnostics ... 99
 5.2.1 Syntax Checking .. 99
 5.2.2 Expression Errors... 100
 5.2.3 Assignment Errors... 100
 5.2.4 Constraint Checking ... 101
 5.2.5 Read-only Transaction Violation.. 101
 5.2.6 Connection Errors.. 101
 5.3 Data Definition Statements... 102
 5.3.1 General Diagnostics .. 102
 5.3.2 ALTER TABLE.. 102
 5.3.3 CREATE CHARACTER SET ... 103
 5.3.4 CREATE COLLATION ... 104
 5.3.5 CREATE INDEX... 105
 5.3.6 CREATE SCHEMA.. 106
 5.3.7 CREATE TABLE ... 107
 5.3.8 CREATE TRANSLATION.. 110
 5.3.9 CREATE VIEW ... 111
 5.3.10 DROP CHARACTER SET.. 112
 5.3.11 DROP COLLATION.. 113
 5.3.12 DROP INDEX ... 113

Data Management: Structured Query Language (SQL), Version 2 v

Contents

 5.3.13 DROP SCHEMA .. 113
 5.3.14 DROP TABLE.. 114
 5.3.15 DROP TRANSLATION .. 114
 5.3.16 DROP VIEW.. 114
 5.3.17 GRANT .. 115
 5.3.18 REVOKE .. 116
 5.4 Data Manipulation Statements .. 118
 5.4.1 CLOSE.. 118
 5.4.2 Positioned DELETE ... 118
 5.4.3 Searched DELETE.. 118
 5.4.4 FETCH.. 119
 5.4.5 INSERT... 119
 5.4.6 OPEN.. 120
 5.4.7 SELECT INTO .. 121
 5.4.8 Positioned UPDATE .. 121
 5.4.9 Searched UPDATE... 122
 5.5 Dynamic SQL Statements ... 124
 5.5.1 SQL Descriptor Areas ... 124
 5.5.2 USING and INTO Clauses... 129
 5.5.3 ALLOCATE DESCRIPTOR.. 130
 5.5.4 DEALLOCATE DESCRIPTOR .. 130
 5.5.5 DESCRIBE ... 131
 5.5.6 EXECUTE .. 132
 5.5.7 EXECUTE IMMEDIATE ... 133
 5.5.8 Dynamic FETCH.. 133
 5.5.9 GET DESCRIPTOR.. 134
 5.5.10 Dynamic OPEN.. 135
 5.5.11 PREPARE... 136
 5.5.12 SET DESCRIPTOR... 137
 5.6 Transaction Control Statements .. 139
 5.6.1 General Diagnostics .. 139
 5.6.2 COMMIT ... 139
 5.6.3 ROLLBACK... 140
 5.6.4 SET TRANSACTION .. 140
 5.7 Connection Statements .. 142
 5.7.1 Current and Dormant Connections ... 142
 5.7.2 Default Connection ... 142
 5.7.3 State Table.. 142
 5.7.4 Connection Context... 143
 5.7.5 General Diagnostics .. 143
 5.7.6 CONNECT .. 145
 5.7.7 DISCONNECT ... 146
 5.7.8 SET CONNECTION.. 146
 5.8 Session Statements ... 147
 5.8.1 SET CATALOG... 147
 5.8.2 SET NAMES.. 147
 5.8.3 SET SCHEMA... 148
 5.9 SET SESSION AUTHORIZATION.. 149

vi X/Open CAE Specification

Contents

 5.10 Diagnostic Statement ... 150

Chapter 6 Information Schema... 155
 CHARACTER_SETS .. 156
 COLLATIONS ... 157
 COLUMN_PRIVILEGES ... 158
 COLUMNS .. 160
 INDEXES ... 164
 SCHEMATA ... 165
 SERVER_INFO ... 166
 SQL_LANGUAGES .. 168
 TABLE_PRIVILEGES ... 169
 TABLES .. 171
 TRANSLATIONS .. 172
 USAGE_PRIVILEGES ... 173
 VIEWS .. 174

Chapter 7 Implementation-specific Issues .. 175
 7.1 Limits... 175
 7.1.1 Supplementary Definitions.. 175
 7.1.2 Additional Limits... 177
 7.1.3 Storage Capacity .. 178
 7.1.4 Statement Complexity .. 179
 7.1.5 Embedded Aspects (SPIRIT Only) ... 179
 7.1.6 Derived Limits (SPIRIT Only)... 179
 7.1.7 Language-specific Limits (SPIRIT Only) .. 180
 7.2 Vendor-specific SQL... 181
 7.2.1 Vendor Escape Clause... 181
 7.3 Restrictions on Names ... 183
 7.4 Data Definition Statements in Transactions.. 183
 7.5 Commitment of Transactions... 184
 7.6 Error Treatment ... 184
 7.7 Textual Sequencing... 184
 7.8 SELECT ... 185

Appendix A Syntax Summary... 187
 A.1 Common Elements ... 187
 A.2 Embedded Aspects ... 195
 A.3 Executable SQL Statements .. 198

Appendix B SQLSTATE Values... 203

Appendix C ISO Database Language SQL ... 209
 C.1 Included Features from Intermediate and Full SQL............................ 210
 C.2 Extensions to the International Standard .. 212

Data Management: Structured Query Language (SQL), Version 2 vii

Contents

Appendix D SPIRIT SQL, Issue 2 ... 213
 D.1 Introduction to SPIRIT... 213
 D.2 Conformance Requirements... 215
 D.3 INCLUDE SQLCA.. 225
 D.3.1 Contents of the SQLCA .. 225
 D.4 Sizing for Database Constructs.. 227
 D.5 Resolution of Implementation-defined Items....................................... 228
 D.6 Interpretation of the International Standard... 231
 D.7 Differences from X/Open SQL .. 231
 D.8 Conformance Claim in SQL_LANGUAGES... 231

Appendix E SPIRIT SQL, Issue 3 ... 233
 E.1 Conformance Requirements... 233
 E.2 Sizing for Database Constructs.. 237
 E.3 Resolution of Additional Implementation-defined Items.................. 238
 E.4 Enhanced Internationalisation ... 239
 E.5 Differences from X/Open SQL .. 241
 E.6 Conformance Claim in SQL_LANGUAGES... 242

Appendix F Future Extensions... 243
 F.1 Security ... 243
 F.2 Adoption of Additional Material from SQL Standards...................... 243
 F.3 Host Language Issues .. 243

 Glossary ... 245

 Index... 251

List of Figures

5-1 Reporting of Connection Errors (Flowchart) ... 144

List of Tables

2-1 Database Phenomena Possible at Various Transaction
Isolation Levels... 29

3-1 Classification of Data Types .. 39
3-2 Named Character String Data Types... 40
3-3 Named Numeric Data Types... 41
3-4 Named Date/Time Data Types .. 43
3-5 Named INTERVAL Data Types.. 45
3-6 Lengths of Named INTERVAL Data Types ... 46
3-7 Treatment of Null Values in Various Contexts .. 55
3-8 String Operations... 59
3-9 Set Functions... 63
5-1 Object Types with General Diagnostics for Existence Checking......... 100
5-2 Assumed Data Type of Dynamic Parameters Based on Context......... 136
5-3 Implicit Setting of Item Descriptor Area Fields....................................... 138

viii X/Open CAE Specification

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of application
programs at the source code level, along with definitions of and references to protocols and
protocol profiles which significantly enhance the interoperability of applications and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

Data Management: Structured Query Language (SQL), Version 2 ix

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are released
in a controlled manner for the purpose of validation through implementation of products. A
Preliminary specification is not a draft specification. In fact, it is as stable as X/Open can
make it, and on publication has gone through the same rigorous X/Open development and
review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open CAE Specification

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

SQL Access Group Moved into X/Open

Until the fourth quarter of 1994, the SQL Access Group was a separate body operating in the
U.S.A., working with X/Open under a joint development and publishing agreement. It
developed SQL-related specifications in collaboration with the X/Open Data Management
Group.

During the fourth quarter of 1994, the SQL Access Group transferred all its assets and current
activities to X/Open. These activities are now continuing in a technical working group within
X/Open, called the X/Open SQL Access Group.

Much of the development work on this Structured Query Language (SQL), Version 2 CAE
Specification was achieved before the transfer of the SQL Access Group to X/Open. Under the
joint agreement which applied before this transfer, this joint development work resulted in joint
publication of the Embedded SQL, Version 2 Snapshot (S424) in September, 1994. The
Acknowledgements section of this publication expresses recognition of this progression, which
has now resulted in publication of this CAE Specification.

Network Management Forum (NMF) SPIRIT Project

X/Open and NMF collaborate in a number of ways; the Service Provider’s Integrated
Requirements for Information Technology (SPIRIT) project is one example. SPIRIT provides a
procurement specification for world-wide telecommunications service providers on a range of
topics including SQL. The SPIRIT SQL procurement specification is included as Appendix D in
this X/Open Specification. This illustrates the desire of X/Open and NMF to work together to
achieve technical convergence of their respective specifications. The SPIRIT project, as a whole,
is described in the SPIRIT Platform Blueprint (J401), whilst the SPIRIT SQL specification is

Data Management: Structured Query Language (SQL), Version 2 xi

Preface

covered in SPIRIT Language Profiles (J402). However, readers wishing to refer to the full text of
the SPIRIT SQL specification are referred back to Appendix D as well as to the tables of limits in
Section 7.1 on page 175.

This Document

This document is an X/Open CAE Specification (see above). It specifies the application program
interface (API) for X/Open-compliant relational database management systems. It is closely
based on the International Standard for the Database Language SQL, ISO 9075: 1992, but includes
some extensions to the International Standard based on current implementations. This
document encompasses the features required by NIST FIPS 127-2, also known as Transitional
SQL. This document also contains two SPIRIT profiles of SQL.

Chapter 1 is an introduction to this specification.

Chapter 2 defines concepts and terms for relational database systems, and is an essential basis
for the rest of the specification.

Chapter 3 introduces the syntax and semantics of the common elements of SQL and defines the
notation used in the formal SQL syntax sections.

Chapter 4 describes how SQL constructs are embedded within a host-language source program,
with particular reference to the COBOL and C languages.

Chapter 5 fully defines the syntax and semantics of executable SQL statements.

Chapter 6 describes the schema information available to the database user through system
views.

Chapter 7 addresses implementation-specific issues and enumerates limits typically imposed by
implementations.

Appendix A is a complete, symbolic definition of X/Open SQL syntax.

Appendix B lists all SQLSTATE return values that apply to X/Open SQL.

Appendix C compares X/Open SQL with the International Standard.

Appendix D and Appendix E define SPIRIT SQL, technically equivalent to that presented by
Draft 2 of the Service Providers Integrated Requirements for Information Technology (SPIRIT)
procurement specification. Appendix D is technically equivalent to SPIRIT SQL Issue 2;
Appendix E contains additional information which, in conjunction with the information in
Appendix D, is technically equivalent to SPIRIT SQL Issue 3. These appendices form a complete
definition except that tabular information is included in the tables in Chapter 7.

Appendix F identifies possible future developments of the X/Open SQL definition.

xii X/Open CAE Specification

Trade Marks

AcrobatTM is a trade mark of Adobe Systems Incorporated.

Postscript is a registered trade mark of Adobe Systems Incorporated.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

Data Management: Structured Query Language (SQL), Version 2 xiii

Acknowledgements

X/Open gratefully acknowledges past collaboration with and contributions from members of
the SQL Access Group, which transferred its activities and assets to X/Open in the fourth
quarter of 1994. Its activities are now continuing in a technical working group within X/Open,
called the X/Open SQL Access Group.

xiv X/Open CAE Specification

Referenced Documents

The following documents are referenced in this specification:

ANS X3.168-1989
American National Standard Database Language Embedded SQL.

CLI
X/Open CAE Specification, February 1995, Data Management: SQL Call Level Interface
(CLI) (ISBN: 1-85912-081-2, C451).

FIPS 1-2
Federal Information Procurement Standard (FIPS) 1-2, Code for Information Interchange, Its
Representations, Subsets and Extensions, NIST, 14 November 1994.

FIPS 127-2
Federal Information Procurement Standard (FIPS) 127-2, Database Language SQL, NIST, 25
January 1993.

Internationalisation Guide
X/Open Guide, July 1993, Internationalisation Guide, Version 2 (ISBN: 1-859120-02-4, G304).

ISO 1989:1985
ISO 1989: 1985, Programming Languages — COBOL (endorsement of ANSI Standard
X3.23-1985).

ISO 8859-1:1987
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 1539
ISO/IEC 1539: 1991, Information Technology — Programming Languages — Fortran
(technically identical to ANSI standard X3.9-1978 [FORTRAN 77]).

ISO/IEC 1989:1974
ISO/IEC 1989:1974, Programming Languages — COBOL (endorsement of ANSI Standard
X3.23-1974).

ISO/IEC 4873
ISO/IEC 4873: 1991, Information Technology — ISO 8-bit Code for Information Interchange
— Structure and Rules for Implementation.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO SQL or International Standard
ISO/IEC 9075: 1992, Information Technology — Database Language SQL (endorsement of
ANSI standard X3.135-1992).

MIA
Multivendor Integration Architecture, Book 5: Division 2, Application Program Interface
Specifications, Part 4: Database Language, 31 March 1992.

Data Management: Structured Query Language (SQL), Version 2 xv

Referenced Documents

RDA
X/Open CAE Specification, August 1993, Data Management: SQL Remote Database Access
(ISBN: 1-872630-98-7, C307).

SPIRIT Issue 2.0, Volume 1
X/Open NMF SPIRIT Documentation, November 1994, SPIRIT Platform Blueprint, Issue
2.0, Volume 1 (ISBN: 1-85912-059-8, J401).

SPIRIT Issue 2.0, Volume 2
X/Open NMF SPIRIT Documentation, March 1995, SPIRIT Language Profiles, Issue 2.0,
Volume 2 (ISBN: 1-85912-062-8, J402).

SPIRIT Issue 3.0
X/Open NMF SPIRIT Documentation, December 1995, SPIRIT Platform Blueprint (SPIRIT
Issue 3.0) (ISBN: 1-85912-110-1, J405).

SQL Technical Corrigendum
SQL Technical Corrigendum, December 1994, to ISO/IEC 9075: 1992, Information
Technology — Database Language SQL.

TX
X/Open Preliminary Specification, October 1992, Distributed Transaction Processing: The
TX (Transaction Demarcation) Specification (ISBN: 1-872630-65-0, P209).

XA
X/Open CAE Specification, December 1991, Distributed Transaction Processing: The XA
Specification (ISBN: 1-872630-24-3, C193 or XO/CAE/91/300).

xvi X/Open CAE Specification

Chapter 1

Introduction

1.1 Relational Database Standards
This document specifies the application program interface (API) for X/Open-compliant
relational database management systems.

The widely-accepted standard for such an interface is the International Standard for the
Database Language SQL, ISO 9075: 1992, which is identical to the American National Standard,
X3.135-1992. References in this X/Open specification to the International Standard also
implicitly reference the identical ANSI Standard. (See Appendix C on page 209 for a detailed
comparison to the International Standard.)

This X/Open definition is based closely on the International Standard. However, it also reflects
the capabilities of current implementations. X/Open has worked closely with vendors of the
leading database management systems. This definition includes some features that were
widely-available at the time of publication, and also some enhancements of these products
known to be imminent.

This document encompasses the features required by the Transitional Level of NIST FIPS 127-2,
also known as Transitional SQL (see Section 1.4.1 on page 7).1

1. The FIPS (Federal Information Processing Standards publication) is a procurement specification of the U.S. Government.

Data Management: Structured Query Language (SQL), Version 2 1

The X/Open Specification Introduction

1.2 The X/Open Specification

1.2.1 Audience

This specification is written for writers of application programs and for implementors of
database management systems.

For application writers, this specification emphasises portability — the ability to move the
application to any X/Open-compliant database system without the need to modify source code.
The specification embraces a common subset of facilities that various SQL products support. An
important chapter for application writers is Chapter 7. It summarises maximum values for
certain limits that application writers can safely assume all X/Open-compliant implementations
support. It also discusses features that vary among implementations, giving coding
recommendations in each case. Finally, it provides a syntactic technique application writers can
use to delimit SQL code that is non-portable, without inhibiting the compilation of the program
on any X/Open-compliant implementation.

For implementors, this specification guides the implementation of a database system for which
portable applications can be written. In addition, this specification addresses emerging SQL
features that are not yet widespread in the industry. It encourages future portability by giving a
preferred specification for these features. Implementors should study the definition in this
document of optional features (see below) and read Appendix F to discern areas of likely future
X/Open specification activity.

1.2.2 Compliance Terminology

The dual nature of the specification (discussed above) requires that the following terms be
defined clearly:

Optional features
An optional feature serves as guidance to implementors on the preferred syntax for an SQL
feature that is not yet widespread. Implementors are currently free not to implement the
feature, but if they implement it, they should do so as specified in this document. X/Open
does not currently enforce the implementation of optional features, but intends to make
them mandatory in future issues of this document, in the manner in which they are
specified herein. At that time, implementations will be required to provide the feature.

X/Open may test implementations to see if they implement optional features as specified in
this document.

Application writers may use optional features that are known to be available on the
implementation in use, at the risk of reduced portability.

Discussions of optional features are shaded with the OP margin notation, as shown below.

OP The optional features in X/Open SQL are:

• catalogs, a component of qualified object names

• the DESCRIBE INPUT statement.

Deprecated features
Deprecated features include SQL syntax that X/Open views as obsolete or non-optimal.
Deprecation indicates that X/Open intends to remove such features from future issues of
this document.

X/Open’s policy on deprecated SQL features is to maintain the deprecated designation for
at least one issue of this document. This gives application writers adequate notice to change
their coding to the recommended method. Each deprecated feature lists a preferred method

2 X/Open CAE Specification

Introduction The X/Open Specification

of performing the same function. When X/Open reissues this document with a feature
omitted, implementations may remove support for the feature.

Discussions of deprecated features are shaded with the DE margin notation, as shown
below.

Implications on Applications

For syntax that is valid in this issue and that will become invalid in future issues,
application writers should not use this deprecated syntax, but should instead use the
alternatives specified in this document.

For syntax that is optional in this issue and that will become mandatory in future issues, it is
the optionality that is deprecated. Application writers should convert to the new syntax.

Implications on Implementations

X/Open-compliant database systems are required to provide features even if they are
deprecated, in the interest of backward-compatibility.

Inventory

The following feature of X/Open SQL is deprecated:

DE • the schema OLD_INFO_SCHEM described in Chapter 6.

Compliance
A database implementation is X/Open-compliant if it supports all the assertions this
document makes that are not labelled optional. In particular:

• It must support the limits2 defined in Section 7.1 on page 175 and the escape clause
defined in Section 7.2 on page 181.

• It must support the embedding of SQL in either C or COBOL or both as defined in
Chapter 4.

The implementation may also support the features labelled optional.

An application program is X/Open-compliant if it uses only the SQL syntax contained in
this document and not labelled optional. For portability, applications should follow the
recommendations in Chapter 7. X/Open currently does not test compliance of application
programs.

For specific details of X/Open policy regarding compliance with this specification, see
Section 1.3 on page 5. For detailed information on compliance with respect to the
International Standard, see Appendix C.

Implementation-defined
Implementation-defined means that the resolution of the issue in question may vary
between implementations, and that each X/Open-compliant implementation must publish
information on how it resolves that issue.

2. Where Section 7.1 on page 175 contains tables with X/Open and SPIRIT columns, X/Open-compliant implementations are only
required to support the limits in the X/Open column.

Data Management: Structured Query Language (SQL), Version 2 3

The X/Open Specification Introduction

Undefined
Undefined means that the resolution of the issue in question may vary between
implementations, and that an X/Open-compliant implementation need not publish
information on how it resolves that issue.

4 X/Open CAE Specification

Introduction Compliance Policy

1.3 Compliance Policy

1.3.1 Language Embedding

An embedded SQL host program is a compilation unit that consists of statements in a host
programming language and embedded SQL constructs. Chapter 4 defines the way in which SQL
statements can be embedded in COBOL and C. Many SQL products support additional
languages. The programming language statements must conform to the X/Open definitions for
the host language with restrictions as indicated in Chapter 4 In particular, this X/Open
specification does not yet support new features in the ISO 1989: 1985 COBOL Standard that
impact the definition of host variables.

The goal of this X/Open specification is the ability to write portable SQL programs.
Conformance to this specification means that the SQL implementation must include bindings to
an X/Open-compliant COBOL or C implementation. X/Open intends to publish, for each SQL
product it brands, the extent to which purchasers can use the product to write portable
applications.

1.3.2 Flagging Non-portable Usage

During compilation of SQL programs, X/Open-compliant implementations report all non-
portable SQL usage in the application program. A null report should assert that the program
being compiled is fully portable to all X/Open SQL implementations. Therefore, the
implementation checks all the following aspects of SQL usage:

• use of SQL language not defined in this specification, even if the implementation allows that
usage as an extension to X/Open SQL; this includes use of SQL features selected by
compile-time option

• use of a reserved word (from Section 3.1.6 on page 37, including the words not currently used
by X/Open) as identifiers.

The portability report is a check of the program’s use of SQL syntax, not whether the code is
meaningful or likely to produce the desired effect.

Implementations may also check data type compatibility of SQL operations, but doing so
requires knowledge of the metadata at compile time.

Implementations are not required to report non-conformant usage of the host programming
language, nor erroneous use of the host language that is detected by the compiler, nor non-
portable SQL usage in a host language statement that is in error. It is not possible for
implementations to report at compile time all cases that will constitute access violations at run
time.

The dynamic SQL statements described in Section 5.5 on page 124 accommodate SQL statement
text that may not be known at compile time. The implementation detects and reports non-
portable usage in dynamic SQL, as listed above, at run time.

To assist the writing of portable programs, X/Open recommends that implementations also
report all uses of the following features of X/Open SQL:

• features that X/Open defines as optional

• features that X/Open defines as deprecated

• features for which Chapter 7 discusses implementation variability, including any use of the
vendor escape clause defined in Section 7.2 on page 181 that specifies an ISO SQL dialect
other than YEAR(1992).

Data Management: Structured Query Language (SQL), Version 2 5

Compliance Policy Introduction

1.3.3 Distributed Transaction Delimitation

Section 2.7 on page 28 discusses transactions, which are sequences of database operations with
certain collective characteristics such as atomicity. Transaction delimitation must exist in order
to define the grouping of database operations into transactions.

X/Open compliance policy on transaction delimitation is as follows:

• All implementations support the rule that a transaction begins when an application executes
an SQL statement that operates on a database, as defined in Section 5.6 on page 139. The
transaction ends when the application executes the SQL statement COMMIT or ROLLBACK.

• It is implementation-defined if a transaction begins when an application executes the
tx_begin() function described in the X/Open TX Specification; and ends when it executes
tx_end().

• Other implementation-defined transaction delimitation interfaces may be supported.

The application must mark the end of a transaction using the same technique it used to mark the
start of a transaction.

The second option above is mandatory for X/Open-compliant SQL implementations that also
comply with the X/Open XA Specification. The tx_begin() and tx_end() functions call a
transaction manager, which coordinates completion of SQL and non-SQL work so as to provide
global atomicity. The SQL implementation supports the X/Open XA interface, in the role of a
Resource Manager (RM). The XA interface lets the transaction manager inform the SQL
implementation of the delimitation and disposition of transactions.

1.3.4 Character Set Support

Section 2.4.3 on page 21 defines character sets. Other parts of this specification discuss various
cases where an embedded SQL program can specify character sets, but do not indicate which
character sets the implementation supports.

X/Open-compliant implementations shall support at least the following character sets:

ASCII_FULL
ASCII_GRAPHIC
LATIN1
SQL_CHARACTER
SQL_TEXT

These character sets are defined in Section 16.7 of FIPS 127-2. SQL_CHARACTER is the SQL
character set, which is also discussed in SQL Character Set on page 32.

(SPIRIT Issue 3 also requires this degree of support, beginning in the summer of 1997; see item
(44)(a) in Section E.4 on page 239 of this specification.)

6 X/Open CAE Specification

Introduction This Issue

1.4 This Issue
This section describes the differences between this issue and the August 1992 issue of this
document.

1.4.1 Transitional SQL

The primary reason for the new issue is to align this specification with the definition of the
Transitional SQL level of FIPS 127-2. X/Open anticipates that Transitional SQL will be a
frequently-cited level of SQL implementation because it incorporates some advanced SQL
features but is likely to be widely implemented by products in the marketplace.

This issue includes the features listed below, which are required for classification as Transitional
SQL and which were not included in the August 1992 issue. Other features of Transitional SQL
were already specified in the August 1992 issue.

New Table Combination Operations

Joined tables are now specified in Section 3.11.2 on page 73. X/Open specifies NATURAL JOIN,
JOIN ON, and JOIN USING, qualified by INNER, LEFT OUTER, and RIGHT OUTER.

The query-expression syntactic element is moved to the Common Elements chapter because it can
now be used in a CREATE VIEW statement as well as in DECLARE CURSOR. This means the
keyword UNION can appear within CREATE VIEW.

Referential ON DELETE Actions

This issue defines the ON DELETE clause of the CREATE TABLE statement, specifying how
database integrity should be maintained if deletion of rows from a table results in the violation
of a FOREIGN KEY reference in the table being defined. X/Open defines the NO ACTION,
CASCADE, SET NULL, and SET DEFAULT actions.3

CAST Function

The CAST function explicitly converts an expression or null value from one data type to another
data type. The CAST function can raise a variety of syntax, range, and formatting exceptions.

String Operations

This issue defines operations on fixed-length and variable-length character strings, including the
concatenation operator and the CHAR_LENGTH, SUBSTRING and TRIM scalar functions.

Date/Time

This issue includes the date/time and interval generic data type with the DATE, INTERVAL,
TIME and TIMESTAMP named data types, as specified in the International Standard.4

3. Neither this document nor the Transitional SQL level of FIPS 127-2 specifies the corresponding ON UPDATE clause.
4. Neither this document nor the Transitional SQL level of FIPS 127-2 specifies timezones in date/time and interval data types.

Data Management: Structured Query Language (SQL), Version 2 7

This Issue Introduction

Expanded ALTER TABLE Statement

A new form of the ALTER TABLE statement is specified that lets applications drop as well as
add columns. The ADD COLUMN form adopts all the syntax for defining the new column that
can be used in the CREATE TABLE statement.

Transaction Control

The previous issue specified SERIALIZABLE as the isolation level for all transactions and
discussed database phenomena that can occur at lower isolation levels. The current issue allows
three lower isolation levels. Specifying a lower isolation level waives guarantees against such
phenomena and may increase database performance. Implementations are not required to
provide four discrete isolation levels as long as they provide all the guarantees the application
specified.

The SET TRANSACTION statement is now specified. This statement sets the access mode,
isolation level, and size of the diagnostics area for the next transaction.

Session Statements

The SET CATALOG and SET SCHEMA statements are added. They let applications specify the
default catalog and schema name in a session that implicitly qualify objects in cases where the
application does not use explicit qualification.

PRIMARY KEY Enhancement

It is now possible to specify a unique constraint (PRIMARY KEY or UNIQUE) in CREATE
TABLE without also specifying NOT NULL. Removal of the previous restriction permits
UNIQUE constraints on columns where null values are permitted; PRIMARY KEY always
prohibits null values.

New System Views

This issue specifies the COLUMN_PRIVILEGES, INDEXES, SCHEMATA, TABLE_PRIVILEGES,
USAGE_PRIVILEGES and VIEWS system views. The INDEXES system view is an extension to
the International Standard because the concept of indexes is an X/Open extension.

New Syntax Options

This issue permits the keyword AS in correlation names, TABLE in the GRANT and REVOKE
statements, and FROM in the FETCH statement. This issue also makes the keyword WORK
optional in the COMMIT and ROLLBACK statements; it was formerly mandatory.

Enhancements to GET DIAGNOSTICS

The GET DIAGNOSTICS statement can now be used to determine the type of SQL statement
that generated the diagnostics.

New fields associated with a specific diagnostic indicate any table, column or cursor to which
the diagnostic applies. The message length is now indicated in characters as well as octets.
Additional fields indicate any constraint to which the diagnostic applies, but their use is not
mandatory for implementations because this specification does not define constraints as
persistent objects.

8 X/Open CAE Specification

Introduction This Issue

Enhancements to INSERT

New forms of the INSERT statement let the application program specify the values to be
inserted using a row-value-constructor or specify a row consisting totally of the columns’ default
values.

1.4.2 Internationalisation

This issue includes the following internationalisation features from the International Standard:

• A new compliance policy, specifying which character sets an implementation must support,
now appears as Section 1.3.4 on page 6.

• A general discussion of character sets and collations in SQL appears in Section 2.4.3 on page
21. Section 3.1.2 on page 32 has been rewritten to apply to non-European character sets and
to define syntactic elements used in the specification of character sets. Section 3.1.5 on page
36 specifies syntax by which syntactic elements of SQL can be modified to specify their
character set. Section 3.2.1 on page 40 contains new information on how a character set is
specified for a variable of a character-string data type.

• This issue adds support for the NATIONAL CHARACTER data type (and its synonyms
NATIONAL CHAR and NCHAR, and their VARYING counterparts).

• The CONVERT and TRANSLATE functions are added to Section 3.9.3 on page 59.

• New syntax is allowed in the SQL declare section (see Section 4.2 on page 84) to specify the
character set of any host variable declared therein; and, by using the SQL NAMES ARE
syntax, to specify a default character set for the compilation unit.

• Chapter 5 defines new executable SQL statements:

— CREATE and DROP statements are defined for CHARACTER SET, COLLATION and
TRANSLATION.

— The existing GRANT and REVOKE statements are extended to apply to character sets,
collations and translations.

• The CHARACTER_SETS, COLLATIONS and TRANSLATIONS system views are added to
Chapter 6.

1.4.3 Alignment with SPIRIT SQL

SPIRIT SQL is defined, separately from the definition of X/Open SQL, in Appendix D and
Appendix E. X/Open has modified its definition of embedded SQL to more closely align its
feature set with that chosen by SPIRIT. This resulted in the following changes:

LOWER, POSITION and UPPER String Functions

The LOWER, POSITION and UPPER string functions are added. LOWER and UPPER convert
relevant characters within a character string to the corresponding upper-case or lower-case
letter. POSITION reports the location of a specified string within another string.

Data Management: Structured Query Language (SQL), Version 2 9

This Issue Introduction

1.4.4 Other New Material in this Issue

The August 1992 issue eliminated the majority of the exclusions that previously existed with
respect to the Entry Level of the International Standard. The current issue eliminates the two
remaining exclusions and converges completely with Entry Level SQL as specified in the
International Standard. (See Appendix C for a detailed comparison to the International
Standard.)

The two changes are as follows:

• The previous issue did not address how a schema is created, as it does not affect production
application programs. The current issue specifies CREATE SCHEMA and DROP SCHEMA
statements that conform to the definition in the International Standard.

• The Integrity Enhancement Feature (IEF), an optional SQL feature in the August 1992 issue, is
now mandatory. (The IEF lets the database designer indicate which columns of a table form
a primary key, which columns of a table form a foreign key referencing the same or another
table, and what values are permitted in an individual column. It also allows specification of a
default value for a column.)

In addition, two sections of Chapter 7, which gave the impression that the CONNECT and
EXECUTE IMMEDIATE statements were optional for X/Open-compliance, have been deleted.

Three-part Naming

OP This issue includes catalogs as an optional feature. It specifies a unique naming scheme
consisting of catalog, schema, and object name, while providing subsetted and implementation-
defined alternatives. A schema name no longer has to be the same as the user name. This
provides the possibility of more than one schema per user.

DESCRIBE INPUT

OP New syntax is specified for the DESCRIBE statement. DESCRIBE OUTPUT, discussed in the
previous issue, retrieves information on columns of a result set that would result from execution
of a specified statement. A new DESCRIBE INPUT form retrieves information on dynamic
parameters of a specified statement.

ISO Technical Corrigendum

Minor clarifications have been added to this specification based on a study of the referenced
Technical Corrigendum (ISO SQL TC1) to the International Standard.

1.4.5 Substantive Changes in this Issue

This issue is designed to be harmonious with previous specifications. However, the following
changes from previous issues have been made:

Additional Keywords

This issue reserves the following keywords, which the previous issue permitted applications to
use as user-defined names:

• The keywords ACTION, BOTH, CROSS, CURRENT_USER, INNER, JOIN, LEADING, LEFT,
NATURAL, NO, OUTER, PAD, RELATIVE, RIGHT, SCHEMA, SESSION, SESSION_USER,
SPACE, SYSTEM_USER, TRAILING and TRIM appear in the International Standard but were
omitted from the previous X/Open issue.

10 X/Open CAE Specification

Introduction This Issue

• The previous issue advised applications not to use the reserved words AUTHORIZATION,
COLLATE, COLLATION, CURRENT_USER, INPUT, NATIONAL, NCHAR,
SESSION_USER, SYSTEM_USER and TRANSLATE. These reserved words are now used in
X/Open SQL.

The keywords DICTIONARY, DISPLACEMENT, IGNORE, OFF, and SYSTEM, reserved in the
last issue, are no longer reserved and are available for use as user-defined names.

A complete list of reserved SQL keywords appears in Section 3.1.6 on page 37.

Removal of Deprecated Features

The August 1992 issue listed five deprecated features. These features were present in existing
implementations and used by existing application programs despite their deviation from
standards. Deprecation obliged X/Open-compliant implementations to maintain support for
the features but warned application writers to cease to use them. All five deprecated features are
deviations from the International Standard and are omitted from the current X/Open issue. This
means that X/Open-compliant implementations are no longer required to support the features
and that applications that continue to use the features will not necessarily still be portable. The
changes are as follows:

• The SQL Communication Area (SQLCA) is no longer specified in this issue.

• A form of the ALTER TABLE statement that lets a single statement specify changes to more
than one column is no longer specified in this issue. Application writers should code
separate ALTER TABLE statements for each column.

• This issue no longer lets CREATE TABLE statements have multiple UNIQUE or PRIMARY
KEY clauses that apply to the same set of columns.

• This issue requires every DROP TABLE, DROP VIEW, and REVOKE statement to use either
the CASCADE or the RESTRICT keyword to specify the effect if the statement would require
the dropping of other tables or constraints. In the previous issue, CASCADE was assumed,
but the specification noted some implementation variability.

• The keyword PRIVILEGES (in GRANT ALL PRIVILEGES and REVOKE ALL PRIVILEGES) is
mandatory in this issue. The previous issue let applications omit the keyword.

Changes to Diagnostics

The subtle differences between SQLSTATEs ’37000’ and ’42000’ have been deleted. Consistent
with a recent correction to the International Standard, all syntax error reports now use
SQLSTATE ’42000’.

There is a change to the criteria by which the implementation determines which record to place
first in the diagnostics area; see Section 4.5.2 on page 90.

Other Changes

This issue includes error corrections previously reported in the X/Open SQL CAE Corrigendum.

Data Management: Structured Query Language (SQL), Version 2 11

This Issue Introduction

1.4.6 Documentation and Policy Changes in this Issue

Flagger

This issue includes the compliance requirement that implementations report at compile time on
any non-conformant or non-portable SQL usage (see Section 1.3.2 on page 5).

XA Specification

This issue includes, in Section 1.3.3 on page 6, a description of how to use SQL implementations
that comply with this specification and with the X/Open XA Specification to achieve atomic
completion of SQL and non-SQL work.

Rewritten Text

Finally, a small amount of text has been rewritten in the continuing interest of clarity. Readers
should not interpret a change in phrasing as a change to the substance of this specification.

12 X/Open CAE Specification

Introduction SQL Registry

1.5 SQL Registry
X/Open maintains a registry of values associated with the Structured Query Language
(database language SQL) and the Call-Level Interface (CLI) for SQL. This registry provides
several different categories of values, such as return values of CLI functions and character
strings representing different implementations. For each category, the registry may indicate that
a specific value, a list of values, or a range of values is reserved for the ISO standard, to X/Open,
or to a vendor of a related product.

Implementors and vendors of SQL-related products should consult this registry whenever
assigning values for any relevant category. Vendors of SQL or CLI products should request
registry of values (or ranges of values) specific to their implementations. (See Submitting
Requests to the Registry below.)

Obtaining Copies of the Registry

Copies of the X/Open SQL registry (including CLI) are available from X/Open as follows:

• On the World-Wide Web using the following Universal Resource Locators (URL):

— Plain text in http://www.xopen.org/infosrv/SQL_Registry/registry.txt

— Acrobat PDF in http://www.xopen.org/infosrv/SQL_Registry/registry.pdf

— HTML in http://www.xopen.org/infosrv/SQL_Registry/registry.htm

— PostScript in http://www.xopen.org/infosrv/SQL_Registry/registry.ps.

Links to these can be found on the public pages for the X/Open SQL Access Group at
http://www.xopen.org/public/tech/datam/index.htm.

• X/Open offers anonymous access to a File Transfer Protocol (FTP) server. Access to the
service is available only over the Internet. Anonymous FTP allows on-line access to a
restricted area of filestore, where publically available files are stored. Users can retrieve them
interactively.

The text below describes the anonymous ftp service.

— From a machine with FTP capabilities and access to the Internet, type:

ftp ftp.xopen.org

— At the login prompt, enter anonymous or ftp as your user name.

— You will then be prompted for a password. Respond by typing your full e-mail address
including Internet domain. You will be granted access to any of the files that have been
made available for anonymous FTP, but not to other files on the system.

— Select the SQL Registry by typing:

cd pub/SQL_Registry

— Retrieve registry information by typing one of the following:

get registry.pdf for the Acrobat PDF version
get registry.ps for the PostScript version
get registry.txt for a plain text version

There are also password-protected FTP services that disclose information to validated users
on a need-to-know basis. Full instructions for use of the FTP server are accessible on the
World-Wide Web as http://www.xopen.org/connections/ftpserver .

Data Management: Structured Query Language (SQL), Version 2 13

SQL Registry Introduction

Submitting Requests to the Registry

Before submitting a request, obtain a copy of the registry, as described above, and determine the
table in the registry in which your organisation requires entries.

To register one or more values (or ranges of values), an electronic mail message should be sent to
sql.registry@xopen.org. The message should contain the character string SQL REGISTRY
REQUEST in the From: field. Failure to include this string, exactly as shown, including the use
of all upper-case letters, may delay the response.

The text of the message must specify:

• the organization on whose behalf the request is being made

• the name of the individual making the request

• the exact title of each table in the Registry into which values should be allocated

• for each category of values, an approximation of the number of values needed.

In most cases, the registrar will assign a limited range of values, similar to the ranges assigned to
other requestors, as shown in the existing registry. Requirements for a large number of values
should please include a justification.

All requests will be answered within a month. The registrar’s response will indicate the specific
values or ranges assigned for each category for which a request was made. When the registrar
determines that values and/or ranges have already been assigned to the requesting organization;
the response will point the requestor to the previous requestor from the same organization, thus
avoiding redundancy.

14 X/Open CAE Specification

Chapter 2

Concepts

2.1 Introduction
This chapter defines terms and concepts of relational database systems. The remainder of this
X/Open specification relies on these definitions.

2.1.1 General Terms

A program means the host application program that uses SQL to access data.

Compilation means the process of converting a program to its executable form. It is
implementation-defined whether a pre-compiler is used and how the task of processing SQL
syntax is divided between the compiler and any pre-compiler. When this specification asserts
that a fact must be known at compilation time, the fact must be known before any pre-
compilation begins.

A set is an unordered collection of distinct objects.

A multi-set is an unordered collection of objects that are not necessarily distinct.

A sequence is an ordered collection of objects that are not necessarily distinct.

The cardinality of a collection is the number of objects in that collection. Unless specified
otherwise, any collection may be empty.

Data Management: Structured Query Language (SQL), Version 2 15

Data Types and Values Concepts

2.2 Data Types and Values
A value is a data item in the database. A single value is the smallest logical subdivision in the
database. The physical representation of a value in a database is undefined.

A null value is distinct from all non-null values and represents a case where an actual value is
not known or not applicable.

Each non-null value has a data type. A data type is a set of possible values. Section 3.2 on page
39 defines four generic data types, character string, numeric, date/time and interval. Within
each generic data type, there are several named data types with specific attributes.

The null value is a valid value for all data types. It is distinct from all non-null values of that
data type.

Each non-null value has a logical representation which is its display form in the syntax of SQL.
Its logical representation is a literal (see Section 3.4 on page 48). The null value has no literal
representation. In some SQL statements, the keyword NULL refers to a null value.

Each non-null value is in the character-string, date/time, interval or numeric class. Any two
values can be compared unless they are in different classes.

The SQL language provides expressions that let database queries be based on computations (see
Section 3.9 on page 57) and predicates that extract rows from tables based on whether they
satisfy true/false assertions (see Section 3.10 on page 67). The host language may provide
mechanisms to perform additional computations, whose results can be used to generate a query.

16 X/Open CAE Specification

Concepts Tables

2.3 Tables
A table is a collection of values that may vary over time. The table’s values are arranged into
rows and columns. The columns are ordered and at least one must be present. The rows are not
ordered and a table can have zero rows. Thus, a table is a multi-set of rows; a row is a non-
empty sequence of values.

A value is the smallest unit of data in a table that can be selected or updated. A row is the
smallest unit of data that can be inserted into a table and deleted from a table.

A table has a specification, which includes a specification of each of its columns.

Every row of a table has the same cardinality and contains a value of every column of that table.
The ith value in every row of a table is a value of the ith column of that table.

The degree of a table is its number of columns, which is the cardinality of each row.

The cardinality of the table is its number of rows, which is the cardinality of each column.

2.3.1 Attributes of Columns

A column is a multi-set of values. The creator of a table specifies each column’s attributes and
ordinal position within the table. A column’s attributes include its name, its data type, and
whether it is constrained to contain only non-null values. Columns can also be added to a table
after it is created.

Each column has a default value. This is the value to be given to the column when a program
inserts a new row into the table without specifying a value for that column. A default value can
be specified when the column is added to a table. If no default value is specified, the column’s
default value is the null value.

The creator of a table can specify additional constraints on a table or on a column.

2.3.2 Types of Table

Each user-defined table is one of the following:

Base table A base table is a named table defined by a CREATE TABLE statement. The
specification of a base table includes its name.

Derived table A derived table is a table derived directly or indirectly from one or more other
tables by the evaluation of a query-expression. Section 3.11.3 on page 75
describes the options the SQL program has for conceptually combining tables
and for extracting desired information from the table(s).

Examples of derived tables include:

Viewed table A viewed table (or a view) is a named derived table defined by a CREATE
VIEW statement. The specification of a viewed table includes its name.
(Derived tables other than views are not named.)

Grouped table When a query specification contains a GROUP BY or HAVING clause,
evaluation involves arranging rows into groups so that, in each group, all
values of specified columns (called the grouping columns) are equal. A
grouped table is a derived table that contains such groups. In some contexts,
set functions operate on the individual groups. For example, a computation
can use the sum, average, or cardinality of a group.

Grouped view A grouped view is a viewed table derived from a grouped table.

Data Management: Structured Query Language (SQL), Version 2 17

Tables Concepts

In this document, table generally refers to viewed tables as well as base tables.

Updatability of Tables

A table is either updatable or read-only. Updatability means whether it is valid to modify the
table. The INSERT, UPDATE and DELETE statements are permitted for updatable tables and are
not permitted for read-only tables.

All base tables are updatable. No grouped tables nor grouped views are updatable. A viewed
table is updatable if it is derived from an updatable query-expression. The updatability of a
query-expression is defined in Section 3.11.3 on page 75. It generally depends on the updatability
of the constituent query-specification(s), which is defined in Section 3.11.1 on page 71.

The positioned DELETE and positioned UPDATE statements modify a table using a cursor. Any
cursor used in these contexts must be updatable. Updatability of a cursor is discussed in Section
4.4 on page 87. It depends on the updatability of the underlying query-expression and on the
syntax used in the DECLARE CURSOR statement.

2.3.3 Indexes

An index can be thought of as a list of pointers to the rows of a table, ordered based on the
values of one or more specified columns of the table. Existence of an index may enhance
performance by obviating certain sort operations or by reducing the scanning of the table that is
necessary to build a result set.

2.3.4 System Views

In addition to user-defined viewed tables, there are predefined viewed tables called system
views. They are user-accessible, read-only viewed tables that contain information about the
database. System views are described in more detail in Chapter 6.

2.3.5 Integrity Constraints

Databases may have integrity constraints. They define a database’s valid states by constraining
the values in its base tables.

• NOT NULL constraint

A table may prevent a column from containing null values.

• Unique constraint

A table may require that each row’s values for a column, or for a group of columns taken
together, be unique. One set of unique columns may form a primary key for the table. (The
indexes mentioned in Section 2.3.3 can also be used to prevent two rows in a table from
containing the same values in one or more columns.)

• Referential constraint

A table may require that each row’s values for a column, or for a group of columns taken
together (provided none are null), be present in a corresponding set of columns in some table
in the database. These columns are called a foreign key.

• Check constraint

A table may limit the values that may be stored in a row.

Integrity constraints are checked at the end of the SQL statement.

18 X/Open CAE Specification

Concepts Tables

A CREATE TABLE statement that creates a table with integrity constraints specifies the result of
subsequent operations that would violate a constraint. For example, the subsequent statement
may fail, it may have no effect, or it may make additional changes to the database to preserve the
required integrity.

2.4 Database System

2.4.1 Clients and Servers

The operation of a database system effectively involves two processors, a client and a server.
The terms client and server in this document always mean SQL client and SQL server.
Connection statements such as the CONNECT statement (see Connections) manage the
associations between a client and one or more servers.

When a program is active, it is bound in an implementation-defined manner to a single client
that processes the first implicit or explicit CONNECT statement. The client communicates with
one or more servers, either directly or through other agents such as RDA. The client processes
the GET DIAGNOSTICS statement and has the primary role in processing connect statements.
The client may provide other functions independent of any server.

A server processes database requests from the client. Following the execution of such
statements, diagnostic information is passed (in an undefined way) into the diagnostics area of
the client.

Number and Location of Servers

An X/Open-compliant client lets the application connect to multiple servers. The application
uses a single SQL programming paradigm to gain access to both local and remote servers.

Connections

A connection is an association between a client and a server. The following statements manage
connections:

• The CONNECT statement associates a client with a server.
• The DISCONNECT statement ends this association.
• The SET CONNECTION statement chooses a connection from among existing connections.

Some implementations restrict the use of connection statements when a transaction is active; see
Section 2.7 on page 28.

Connection Context

For the duration of a connection5 between a client and server, the implementation preserves at
least the following context:

• The following information that affects the execution of SQL statements:

5. The International Standard associates some of the context with a SQL session, which is a concept defined separately from the
concept of a connection to a server. In this version of this specification, the terms are interchangeable. This document uses the
term connection exclusively. Depending on future development of SQL specifications, this equivalence may cease to be useful,
and some connection context may have a duration that is longer or shorter than the duration of a connection.

Data Management: Structured Query Language (SQL), Version 2 19

Database System Concepts

— The name of the default character set (see Section 2.4.3 on page 21) for user-defined names
and literals in preparable SQL statements where a character set is not specified explicitly

— The default catalog name and the default schema name (see Section 3.1.3 on page 35)

• The transaction attributes described in Section 2.7.1 on page 28.

2.4.2 Database Organisation

Metadata and Data

Each server provides a database, which consists of metadata and data.

• Metadata comprises the definitions of all active base tables, viewed tables, indexes, privileges
and user names. (An item of metadata is active if it has been defined and has not
subsequently been dropped. User names are defined in Section 2.6.1 on page 26.)

• Data comprises every value in every active table.

Schemata

A schema (the plural is schemata) is a collection of named objects.6 There are the following
classes of schema object:

• Character sets (see Section 2.4.3 on page 21)
• Collations (see Section 2.4.4 on page 23)
• Indexes (see Section 2.3.3 on page 18)
• Tables (see Section 2.3 on page 17)
• Translations (see TRANSLATE on page 62)

A schema may contain base tables, and contains any indexes that are defined on the base tables.

A schema has a separate namespace for each class of object; that is, the name of every such
object in the schema must be unique. Every schema has an owner, who has exclusive control
over the objects in the schema. (See also Section 2.6.2 on page 26.)

Three-part Naming

An application can uniquely identify a table or index by qualifying the table or index identifier
OPOP (preceding it with its catalog and schema name). The use of catalog, schema, and object name is

called three-part naming. For the syntax of qualification, see Section 3.1.3 on page 35.

OP Support for catalogs is optional. If the implementation supports catalogs, every schema resides
in a catalog.

6. Correlations and cursors also have names but are not persistent objects in the schema. A correlation relates to a specific query
(see Section 3.11.1 on page 71) and its name need only be unique within that query. A cursor relates to a specific table and its
name need only be unique within that table.

20 X/Open CAE Specification

Concepts Database System

2.4.3 Character Sets

Every character string has a character set. A character set is a named object.

The most significant aspect of the character set to the user of SQL is that it defines a repertoire of
characters that can be used to form a string. Different character sets allow use of SQL to
represent data in different human languages.

Along with the repertoire, a character set also defines a form-of-use (see the Glossary) and an
encoding (which octet values represent each character). These aspects become relevant to the
user of SQL when moving information between the database and host-language variables. An
implementation may define conversions that let application programs convert a character string
from one form-of-use to another using the CONVERT string operation (see application
programs translate a character string from one character set to another using the TRANSLATE
string operation (see TRANSLATE on page 62).

A character set also defines a default collation (see Section 2.4.4 on page 23).

Notable Character Sets

The SQL character set is a minimal character set consisting of English-language letters, digits,
and those symbols required by the syntax of SQL. It is defined in Section 3.1.2 on page 32.

There is a collection of named character sets available to the SQL user. Certain named character
sets are specified in Section 1.3.4 on page 6. In most cases where strings appear in an SQL
program, the program can specify the character set of those strings. (This specification is in the
SQL character set.)

There may be other implementation-defined named character sets. Examples of these are
LATIN1 and UNICODE. The contents of each such character set, and the name used to reference
it, are implementation-defined.

The national character set is a single specific character set. It is one of the named character sets
that the implementation supports. In some cases, special SQL syntax specifies the national
character set more simply than having to name the character set.

It is implementation-defined how a character set is designated as the national character set. The
designation may be the result of administrative action at the SQL installation. The designation
of a national character set is not a part of an SQL program.

The character set named SQL_TEXT is an implementation-defined character set whose
repertoire contains all the characters the implementation can represent. SQL_TEXT is the union
of all the named character sets the implementation supports. Specifying that a string uses
SQL_TEXT indicates that its selection of characters is not limited to the repertoire of a specific,
named character set.

Character-set Contexts

Character strings occur in three different contexts in SQL, which are subject to different rules:

• SQL language components

The predefined components of the SQL language (the tokens defined in Section 3.1.2 on page
32 and the keywords listed in Section 3.1.6 on page 37) are in the SQL character set. Aspects
of the embedded SQL source program that represent information in the following two items
are not restricted to the SQL character set.

Data Management: Structured Query Language (SQL), Version 2 21

Database System Concepts

• User-defined names and literals

The user-defined names discussed in User-defined Names on page 33 (for example, variable
names) and character-string literals discussed in Section 3.4 on page 48 have a character set
defined as follows:

— Syntax defined in Section 3.1.5 on page 36 lets the character set of a single such element be
specified.

— An embedded SQL source program can define a default character set (using the NAMES
ARE syntax in the SQL DECLARE SECTION; see Section 4.2 on page 84). This character
set applies to elements that do not specify their own character set.

When an SQL statement is prepared, elements in that statement that do not specify their
own character set are in the default character set for the connection, which can be
changed using the SET NAMES statement.

— Elements for which a character set is not specified in either of the above methods are in an
implementation-defined default character set.

The default character set for user-defined names and literals may be different from the
default character set for database data and host variables, presented below. The default
character set for user-defined names and literals may be the national character set.

• Database data and host variables

For table columns whose data type is a character-string data type, the metadata includes an
indication of the character set.

— When a table is created with character-string columns, or when character-string columns
are added to an existing table, a character set can be specified for the column.

— A schema can define a default character set. This character set applies to all character-
string columns that do not specify their own character set.

— Columns for which a character set is not specified in either of the above two methods are
in an implementation-defined default character set.

The default character set for database data may be different from the default character set
for user-defined names and literals. The default character set for database data may be
the national character set.

Metadata (for example, names and definitions of objects in the database) is stored in the
SQL_TEXT character set, in order to accommodate all characters from all character sets the
implementation supports. An indication of the character set that was used when the object was
defined is also stored.

The description of each host variable includes an indication of the character set. The rules by
which this indication is stored are implementation-defined.

22 X/Open CAE Specification

Concepts Database System

2.4.4 Collations

A collation is a method of determining the sort order of two character strings in a particular
character set. A collation is a named object. Every character set (see Section 2.4.3 on page 21)
specifies a default collation. Several collations may be defined for the same character set.

The relevant collation indicates the effect of comparing two character strings. For each case in
SQL where character strings are compared, a collation is specified or implied.

Collation is defined to apply to character strings, not to individual characters, because there are
many aspects of natural languages that make it impossible to compare two strings by simply
comparing pairs of corresponding characters in turn. Often the sort order of single characters
depends on context, such as on the adjacent characters.

The collation that applies to a string expression is determined as follows:

• Any string expression can use SQL syntax to specify a collation (see Section 3.9.7 on page 66).

• If it does not, but the string is an object in the database, then its collation is implied (from the
default collation of its character set) or specified when the object is defined.

• Literals and host variables are assumed to use the collation of an object against which they
are compared.

• An attempt to compare two strings for which a collation has not been defined or inferred
using one of the above techniques is a syntax error.

In every computation involving strings, the implementation must keep track of the governing
collation at every step in the computation, in order to retain the collation that will govern any
comparisons performed on the result of the computation.7

Pad Attribute

Every collation has a pad attribute, which influences the method of comparing character strings.
The pad attribute of built-in collations is implementation-defined; the pad attribute of user-
defined collations is specified in the CREATE COLLATION executable statement.

The pad attribute of any collation is one of the following:

Pad space Before such a comparison, the shorter string is conceptually padded with spaces to
the length in characters of the longer string.

No pad No such conceptual padding occurs.

The effect of each value of the pad attribute is discussed in Character on page 53.

7. The above rules summarise for the benefit of the application writer the detailed coercibility rules for strings of collations
contained in the International Standard (Subclause 4.2.3, Rules determining collating sequence usage). These rules indicate the
collation of a string expression resulting from the use of operators and its effect on subsequent comparisons. X/Open-compliant
implementations must obey these rules in order to produce results that are identical to those on implementations that comply
with the International Standard.

Data Management: Structured Query Language (SQL), Version 2 23

Using SQL Concepts

2.5 Using SQL

2.5.1 Cursors

A program gains access to a derived table, one row at a time, using cursors. The DECLARE
CURSOR statement defines the cursor by naming it, specifying a derived table, and optionally
specifying an ordering of the derived rows. Section 4.4 on page 87 describes the attributes and
usage of cursors.

2.5.2 Executable SQL Statements

An executable SQL statement is a statement from one of the following categories:

• A data definition statement modifies the metadata of the database. These statements create,
modify and drop (delete) tables and indexes (see Section 5.3 on page 102). Certain data
definition statements grant and revoke privileges on tables (see Section 2.6 on page 26).

• A data manipulation statement operates on the data of the database or controls the state of a
cursor. Users with suitable privileges can perform select, fetch, insert, update and delete
operations on the data in a table. See Section 5.4 on page 118.

• Certain SQL statements provide the capability of dynamic SQL, as discussed in Section 2.5.4
on page 25.

• A transaction control statement helps group other SQL statements into atomic sequences,
guaranteeing to apply the effects of all statements in the transaction, or of none, to the
database. These statements are summarised in Section 2.7 on page 28, and defined in Section
5.6 on page 139.

• Connection statements manage connections between SQL clients and SQL servers. These
statements are summarised in Connections on page 19, and defined in Section 5.7 on page
142.

• The diagnostic statement retrieves information on the outcome of other SQL statements (see
Section 5.10 on page 150).

2.5.3 Embedded Constructs

An embedded SQL program is a compilation unit that consists of constructs of a programming
language (called the host language), and SQL constructs from the following list:

• an SQL declare section, which defines program variables used in embedded SQL statements

• an optional DECLARE AUTHORIZATION statement, which specifies an authorization
identifier to be used to check the privileges for statements in the program

• a DECLARE CURSOR statement, which defines a cursor

• a WHENEVER statement, which tells the program what action to take when executing an
embedded SQL statement produces outcomes other than unqualified success

• an executable SQL statement.

Within the SQL declare section, the application declares all host-language variables it uses in
conjunction with embedded SQL statements:

• An embedded host variable is a normal variable that an embedded SQL statement uses to
either obtain a value from, or convey a value to, the program.

24 X/Open CAE Specification

Concepts Using SQL

• An indicator variable is an integer host-language variable associated with another embedded
host variable in an embedded SQL statement. It indicates whether the input or output value
of the associated embedded host variable is the null value, and whether it contains a
truncated character string.

These topics are discussed further in Chapter 4.

2.5.4 Dynamic SQL

Dynamic SQL statements provide a way to execute SQL statements whose specifics may not be
known at compile-time. The application may generate the SQL statement dynamically during
program execution. There are three ways to use dynamic SQL:

• One-time execution

The EXECUTE IMMEDIATE statement is used for a one-time execution of a statement other
than a cursor specification. The program prepares an executable SQL statement at execution
time and immediately executes it.

• Prepare and execute a statement

The PREPARE statement is used to generate an executable object from an SQL statement,
other than a cursor specification, and to assign it to an identifier. The EXECUTE statement is
then used to associate input values with the parameters in the prepared statement and to
execute it as though it had been coded when the program was written.

• Prepare and execute a cursor specification

A variant of the cursor mechanism is used to create cursors dynamically. The program uses a
dynamic DECLARE CURSOR declarative to associate a cursor with a statement identifier,
then uses PREPARE to prepare a cursor specification and to assign the prepared statement to
the same identifier. The DESCRIBE statement is then used to retrieve the attributes of the
columns of the derived table.

The application uses the dynamic OPEN statement to associate input values with parameters
in the prepared statement and open the dynamic cursor. Then dynamic forms of the FETCH,
DELETE and UPDATE statements can be used to retrieve and update rows in the table. A
dynamic CLOSE statement is used to close the cursor.

A variety of data definition statements and data manipulation statements can be prepared and
executed with dynamic SQL. Dynamic SQL is explained in Section 5.5 on page 124.

2.5.5 Return Status

Any SQL statement can result in unqualified success or can produce a variety of errors or
warnings. Section 4.5 on page 90 discusses these outcomes and ways that application programs
can sense error and warning outcomes. The diagnostic statement mentioned in Section 2.5 on
page 24 is one method of error detection.

Data Management: Structured Query Language (SQL), Version 2 25

Access Control Concepts

2.6 Access Control

2.6.1 Users

A server distinguishes between different users. Each user is identified by a user name. User
names are associated with a database in an implementation-defined way that identifies users
entitled to use the database.

Every program is executed on behalf of a user. The current user is the user on behalf of whom
the current program is executed. The identity of the user, and optionally authentication
information, are specified implicitly or explicitly in the CONNECT statement.

Any implementation may use additional criteria to restrict database access.

2.6.2 Ownership

Every object in a schema is owned by the owner of the schema in which it resides. Only the
owner of a schema can add tables and indexes to that schema. A schema can be owned by its
creator; or a user can create and populate a schema and specify another user who becomes the
owner of the schema.

2.6.3 Authorisation Identifiers

Every database operation performed by an SQL statement is contingent on authorisation to
perform that operation. Authorisation involves checking the privileges (see Section 2.6.4) of an
authorisation identifier.

Invoker’s Rights

By default, authorisation checking relates to the user who invokes the SQL statement. When a
connection is established, the invoker is the user name specified in the CONNECT statement, or
an implementation-defined user name if one is not specified. This can be overridden by an
authorisation identifier provided in the SET SESSION AUTHORIZATION executable statement
(if the current user is authorised to execute this statement).

Definer’s Rights

An embedded SQL program can instead be written to specify that authorisation checking relates
to the definer of the program. The program specifies this by using a DECLARE
AUTHORIZATION statement containing an authorisation identifier.

For example, such a program can perform operations on a table to which the definer has access
without regard for whether the invokers have access. The program might make these operations
available unconditionally to its invokers or it might define its own access criteria.

Programs can make their behaviour contingent on the identity or authorisation of the current
user by using several pseudo-literals:

• SYSTEM_USER always represents the operating system’s identification of the user.

• SESSION_USER is the identity of the invoker, as defined above under Invoker’s Rights.

• CURRENT_USER (or the equivalent USER) is the user name on which access is based; it is
the invoker (SESSION_USER) if the program is operating under invoker’s rights, or the
definer (specified in DECLARE AUTHORIZATION) if the program is operating under
definer’s rights.

26 X/Open CAE Specification

Concepts Access Control

These pseudo-literals are discussed as syntactic elements of SQL in Authorisation Pseudo-
literals on page 50.

2.6.4 Privileges

A privilege authorises a user to perform a given category of action on a specified object. SQL
statements report an error if the current user does not have appropriate privilege for the
operation. The privileges are:

• INSERT, DELETE, SELECT and UPDATE, which apply to all tables

• the REFERENCES privilege, which applies only to base tables

• the USAGE privilege, which applies to character sets, collations and translations.

Privileges are derived from the following sources:

• The owner of an object other than a viewed table has all privileges that apply to an object of
that type.

• The owner of a viewed table has all applicable privileges that the user has on all tables from
which the viewed table is derived. (The owner of a viewed table may lack some privileges on
the table despite being the owner, if it was created from a table owned by another user.)

• If a user holds a grantable privilege on an object, it means that user can grant that privilege
to, or revoke it from, any user.

— All the privileges the owner of an object other than a viewed table holds on it are
grantable.

— A privilege the owner of a viewed table holds on the view is grantable if the owner holds
that grantable privilege on all the tables from which the view is derived.

— Whenever a user grants a privilege on an object, the user may specify WITH GRANT
OPTION, which means that the privilege granted to the recipient is a grantable privilege
(thereby allowing the recipient to grant the same privilege in turn).

— The holder of a grantable privilege can grant it to, or revoke it from, PUBLIC, specifying a
minimum privilege for all current and future users on the object. A user can perform an
operation if either that user or PUBLIC has been granted the applicable privilege.

A user’s privileges also determine which rows in certain system views are visible to the user.

Each granted privilege references the grantor. This reference appears in the system views. The
grantor can revoke the privilege. (For the privileges that an owner of an object has on that object,
the grantor is the fictitious user _SYSTEM. This user name appears in the system views,
indicating that the privilege cannot be revoked.)

A specific privilege granted by multiple grantors is effectively multiple privileges, each of which
must be revoked before the recipient loses that specific privilege.

Column Privileges

The REFERENCES and UPDATE privileges can be specified on individual columns of a table.
Granting these privileges on an entire table results in separate grants on each column of the
table. (The recipient will also have the privilege on any column of the table subsequently
created.) The grantor can revoke the privilege on some or all of the columns as well as on the
table.

Data Management: Structured Query Language (SQL), Version 2 27

Transactions Concepts

2.7 Transactions
A transaction is a sequence of executable SQL statements that is atomic with respect to recovery
and concurrency. With one exception described below, changes that an application makes to a
database can be perceived by that application but cannot be perceived by other applications
unless and until the original transaction ends with a COMMIT statement. (Many aspects of
transactions are implementation-defined; see Section 7.4 on page 183 and Section 7.5 on page
184.)

A transaction starts (becomes active) when a program that does not already have an active
transaction executes an SQL statement that operates on a database. The program can end the
transaction by executing one of these statements:

• COMMIT enacts all changes made to the database during the transaction.

• ROLLBACK cancels all changes made to the database during the transaction.

If the program ceases execution without ending the transaction, then according to undefined
criteria, either a COMMIT or ROLLBACK occurs.

It is implementation-defined whether a transaction can span SQL servers. That is, it is
implementation-defined whether the application can execute CONNECT or SET CONNECTION
while a transaction is active. If an implementation lets a transaction span SQL servers, the scope
of a COMMIT or ROLLBACK statement is implementation-defined.

The execution of an SQL statement within a transaction has no effect on the database other than
the effect stated in the description of that SQL statement.

2.7.1 Transaction Attributes

A transaction has the following attributes:

• Access mode

A transaction’s access mode is either read-only or read-write. The read-only access mode
applies only to tables. Even if the relevant tables and cursors are updatable, a DELETE,
INSERT or UPDATE statement fails if it is within a transaction with the read-only access
mode. Changes to metadata (data definition statements) are also disallowed in such
transactions.

In a transaction with the read-write access mode, the above restriction does not apply, but
updates to metadata and data may be prevented by other restrictions in this specification
such as a non-updatable cursor or table or lack of access rights.

• Isolation level

A transaction’s isolation level is either READ UNCOMMITTED, READ COMMITTED,
REPEATABLE READ or SERIALIZABLE. The isolation level specifies the degree to which the
operations on metadata or data interact with the effects of concurrent transactions discussed
in Section 2.7.2 on page 29.

• Size of Diagnostics Area

The size of the diagnostics area (the number of diagnostic records that it can contain) is also a
transaction attribute.

In SQL, the application does not specify the attributes when starting a transaction. Instead, the
SET TRANSACTION statement specifies the attributes to be used in the next transaction.

28 X/Open CAE Specification

Concepts Transactions

2.7.2 Concurrent Transactions

Concurrent transactions are transactions begun by different programs that gain access to the
same metadata or data and that overlap in time. All concurrent transactions are by default
guaranteed to be serialisable; that is, any interaction between the transactions occurs only in
ways that guarantee that the result is the same as some serial sequence of the same transactions.
This corresponds to the SERIALIZABLE isolation level defined in the International Standard. It
is the highest isolation level.

At lower isolation levels, one or more of the following phenomena may occur during the
execution of the following transactions:

• Phantoms

Selecting rows a second time with the same search conditions may retrieve a different set of
rows. The second set may include ‘‘phantom’’ rows that another, concurrent transaction
inserted after the first retrieval.

• Non-repeatable reads

Reading the same row a second time may produce a different result, if the row is updated or
deleted by another concurrent transactions.

• Dirty reads

All transactions perceive changes to the database even before they are committed.

The various transaction isolation levels are defined below as guarantees that certain of the above
phenomena are not possible:

Non-repeatable
Isolation Level Dirty Read Read Phantom

SERIALIZABLE Not possible Not possible Not possible
REPEATABLE READ Not possible Not possible Possible
READ COMMITTED Not possible Possible Possible
READ UNCOMMITTED Possible Possible Possible

Table 2-1 Database Phenomena Possible at Various Transaction Isolation Levels

When an application specifies an isolation level, the implementation prepares to conduct the
next transaction so that the corresponding phenomena are not possible in that transaction, from
the point of view of the application, based on database operations performed by other
concurrent applications.

Specification of higher isolation levels may result in reduced concurrency.8

It is implementation-defined whether all four isolation levels are available to the application. In
all cases, however, the implementation provides at least the guarantees specified in the table
above — that is, provides an isolation level at least as high as the application requested.

8. For example, a primitive but valid method of guaranteeing serialisability would be to actually serialise concurrent transactions.
Users and implementors may evaluate the consequences of each isolation level by performance measurement of the database
product.

Data Management: Structured Query Language (SQL), Version 2 29

Transactions Concepts

Additional Guarantees

Regardless of the transaction isolation level, all transaction work is guaranteed to be atomic
(which means that the results of the transaction’s execution are either all committed or all rolled
back) and it is guaranteed that no updates are lost. In addition, it is guaranteed that none of the
phenomena listed above occur (as in the SERIALIZABLE isolation level) during the following
operations:

• the implied reading of metadata definitions that must be performed in the execution of an
SQL statement

• the checking of integrity constraints

• the execution of referential actions associated with referential constraints.

30 X/Open CAE Specification

Chapter 3

Common Elements

This chapter defines common syntactic elements of SQL. Definitions of SQL syntax in the
remainder of this specification rely on the definitions in this chapter.

3.1 Notation and Language Structure

3.1.1 Notation

The following syntactic notation is used to define the SQL syntax, both in the SYNOPSIS
sections throughout this specification, and in Appendix A:

• Words shown in upper case, such as COUNT, are literal syntactic elements of SQL and must
appear as shown.

• Words in italics, including hyphens (for example, search-condition), are descriptive terms for
syntactic elements. The term may appear in the text to refer to the element. When two
elements with the same syntactic form have different semantic rules, they may have separate
names such as field-name-1 and field-name-2.

• Square brackets [] enclose syntax that is optional.

• Vertical bars separate mutually-exclusive options.

• An ellipsis (. . .) means that the syntax enclosed by the immediately preceding pair of braces
or brackets may be repeated.

• Braces { } delimit a range of syntax to which vertical bars or ellipses apply.

• All other symbols (such as parentheses) are literal syntactic elements of SQL and must
appear as shown.

Errors and Warnings

Any SQL statement can result in unqualified success or can result in a variety of warning or error
outcomes. Section 4.5 on page 90 discusses these outcomes. The preferred way for an
application to test the outcome of an SQL statement is to test the SQLSTATE status variable.

Anywhere this specification contains a statement imposing a requirement on the application for
proper invocation of an SQL statement, it means the implementation checks that it was called
properly. The specification also indicates the SQLSTATE value by which the implementation
reports a violation of this rule. For example:

The cursor must be open (’24000’).

This imposes a requirement on the application’s use of the described SQL statement, and asserts
that an X/Open-compliant implementation of the described statement verifies that the cursor is
open and sets SQLSTATE to ’24000’ if the cursor is not open.

Data Management: Structured Query Language (SQL), Version 2 31

Notation and Language Structure Common Elements

Syntax Errors

Violation of any syntactic assertion in this specification that does not specify a SQLSTATE value
is a Syntax error (’42000’). The general rule in Section 5.2.1 on page 99 notes that this SQLSTATE
applies to the syntax rules in the SYNOPSIS and DESCRIPTION sections of SQL statement
descriptions.

3.1.2 Language Structure

An embedded SQL program resembles words, symbols and blank space. The technical terms for
these language elements are non-delimiter tokens, delimiter tokens, and separators, respectively.
These technical terms are defined below.

SQL Character Set

By default, an embedded SQL program is composed of characters from a character set called the
SQL character set. (Syntax specified later in this section can be used to indicate that parts of an
SQL program use different character sets.) All X/Open-compliant implementations support the
SQL character set. It contains at least the 26 English upper-case letters, the 26 English lower-case
letters, the 10 decimal digits, a blank character, a newline indication, and the following symbols
required by the SQL language:

, () < > . : = * + - / ? _ % |

The SQL character set is a proper subset of the X/Open Portable Character Set (see the
referenced X/Open Internationalisation Guide).

The internal coding of these characters is undefined. The transfer format for these characters is
discussed separately, depending on the interchange method; see the X/Open RDA Specification.

Separators and SQL Comments

A separator is a space, a newline indication, or an SQL comment. (Spaces and newline
indications are components of the implementation’s character set; SQL comments are defined
below.) A separator may be followed by another separator or a token. If the newline indication
is a character, it cannot be used to form a token.

An SQL comment begins with two or more consecutive hyphens and runs up to the next
newline indication.9

Tokens

A token is either a non-delimiter token or a delimiter token.

A non-delimiter token is one of the words in an embedded SQL program. A non-delimiter
token is a user-defined name, a host identifier, a keyword, a numeric-literal or a national
character string literal. Two non-delimiter tokens may not be run together; a separator or a
delimiter token must appear between them (in conformance with the syntax rules that apply to
the context).

9. Consecutive hyphens inside a delimited user-defined name or character-string literal do not begin an SQL comment.

32 X/Open CAE Specification

Common Elements Notation and Language Structure

A delimiter token is a character-string-literal, a delimited user-defined name, one of the
following characters:

, () < > . : = * + − ? and /

or one of the following character-pairs:

<> >= <= and ||

A user-defined name or a keyword may contain lower-case letters. In these tokens, a lower-case
letter is equivalent to the corresponding upper-case letter.

Literals are described in Section 3.4 on page 48, and host identifiers in Chapter 4; user-defined
names and keywords are described below.

User-defined Names

A user-defined name is a non-delimiter token that is selected by the writer of the embedded SQL
program as a name. The types of objects that can be named are listed in Types of User-defined
Name on page 34.

The first character of a user-defined name must be a letter.10 Any subsequent character of a user-
defined name must be a letter, a digit or the underscore character.

The maximum length of a user-defined name is 18 characters. For certain types of user-defined
name, some implementations impose further restrictions; see Section 7.3 on page 183.

A user-defined name must not be one of the reserved words listed in Section 3.1.6 on page 37.

Delimited User-defined Names

User-defined names may be enclosed in double quotes ("). These are called delimited user-
defined names. The text within the double quotes is called the body of the user-defined name.
To specify a double quote as a component character of the user-defined name, two consecutive
double quotes appear in the body.

Delimited user-defined names are special in three respects:

• They can contain characters that the syntax of SQL would not permit or would interpret
specially if they occurred without delimitation, including blanks in any or all positions.

• They can be identical to a reserved keyword.

• They are treated in a case-sensitive manner, allowing the application to specify upper-case
and lower-case letters without any implicit conversion by the implementation.

The value of a delimited user-defined name is the body (defined above) of the name, after
converting each instance of two consecutive double quotes to a single double quote. (The value
is visible to applications through the system views in Chapter 6.) The length limit specified in

10. Section 3.1.5 on page 36 describes user-defined names that use character sets other than the SQL character set. In some character
sets, a ‘‘letter’’ may be a syllable or an ideogram. In each such character set, the list of characters available for use in user-defined
names is implementation-defined. Characters that are SQL delimiter tokens or separators are never in this list.

When a user-defined name is in a character set that has corresponding upper-case and lower-case characters, (1) an upper-case
character is considered equivalent to the corresponding lower-case character and (2) lower-case characters are converted to the
corresponding upper-case character before a character string is stored in the metadata. There is no other situation in any
character set in which such an equivalence or automatic conversion occurs in SQL. Equivalence or automatic conversion does
not apply to database data.

Data Management: Structured Query Language (SQL), Version 2 33

Notation and Language Structure Common Elements

User-defined Names applies to this value.

Types of User-defined Name

The following syntactic elements are user-defined names:11

unqualified-base-table-name
The name of a base table. It can be qualified, as discussed in Section 3.1.3 on page 35.

unqualified-character-set-name
The name of a character set. The syntax defined in Section 3.1.5 on page 36 for specifying
the character set cannot be applied to the name of a character set; character set names are
always in the SQL character set.

unqualified-collation-name
The name of a collation.

unqualified-column-name
The name of a column, which must be unique within its table. It can be qualified, as
discussed in Section 3.1.4 on page 36.

unqualified-conversion-name
The name of a conversion.

correlation-name
An alias for a table-name. It is specified by being paired with the table-name in a FROM
clause. Its function is described in Section 3.11.5 on page 76. It is used in table-references,
which are defined in Section 3.11.3 on page 75.

cursor-name
The name of a cursor. It must be unique within a host program.

unqualified-index-name
The name of an index. It can be qualified, as discussed in Section 3.1.3 on page 35.

product-name
A name that identifies an implementation’s SQL version. It appears only in a vendor-escape-
clause (see Section 7.2 on page 181).

statement-name
A name that identifies an SQL statement that is prepared for execution.

unqualified-translation-name
The name of a translation.

user-name
The name of a user (not necessarily the login name). It must be unique within the names of
authorised users of the database.

vendor-name
A name that identifies a supplier of an SQL implementation. It appears only in a vendor-

11. The user-defined-names in this document are generally called identifiers in the International Standard. As presented in this
section, this document uses the suffix −name in syntactic elements for classes of user-defined-name. The prefix unqualified−
denotes the element without qualification; when the prefix is omitted, it denotes the user-defined-name with any optional
qualification allowed for that class. By contrast, the International Standard applies a suffix −name to qualified identifiers and
−identifier to unqualified identifiers.

34 X/Open CAE Specification

Common Elements Notation and Language Structure

escape-clause (see Section 7.2 on page 181).

unqualified-viewed-table-name
The name of a viewed table. It can be qualified, as discussed in Section 3.1.3.

The host-identifier syntactic element described in Chapter 4 is not a user-defined name as
specified in this section.

3.1.3 Format of Object Qualification

Any of the syntactic elements defined above that use the prefix ‘‘unqualified-’’ may be uniquely
identified (qualified) by preceding it with an object-qualifier, which specifies the catalog and
schema in which the object resides.12 An object-qualifier has the following syntax:13

[catalog-name.] schema-name

The catalog-name and schema-name are each syntactically a user-defined-name. Implementation-
defined object naming systems may also be supported. In all cases, use of the object-qualifier is an
application option.

This specification defines the additional SQL syntax elements listed in the right-hand column of
the following table as the corresponding element from the left-hand column preceded by: object-
qualifier.

Unqualified Element Qualified Element
unqualified-base-table-name base-table-name
unqualified-character-set-name character-set-name
unqualified-collation-name collation-name
unqualified-conversion-name conversion-name
unqualified-index-name index-name
unqualified-translation-name translation-name
unqualified-viewed-table-name viewed-table-name

Since SQL syntax usually allows object qualification, the elements in the right-hand column are
the elements that typically appear in this specification.

A table-name is either a base-table-name or a viewed-table-name.

Default Qualification

For each connection, there is a default catalog name and a default schema name, as described in
Section 2.4.1 on page 19. In any identifier that could be qualified, if there is no catalog name,
then the default catalog is implicit; if there is no schema name, then the default schema is
implicit.

The application can change the default catalog name and default schema name by using the SET
CATALOG and SET SCHEMA statements described in Section 5.8 on page 147.

12. Catalogs are an optional feature, as discussed in Three-part Naming on page 20. An application can determine whether the
implementation supports catalog names by examining the CATALOG_NAME attribute in the SERVER_INFO system view (see
SERVER_INFO on page 166).

13. The only object qualification scheme specified in the previous issue of this specification provided that the object-qualifier is always
a schema-name that is identical to the user-name of the owner of the schema.

Data Management: Structured Query Language (SQL), Version 2 35

Notation and Language Structure Common Elements

The initial values of the default catalog name and default schema name are implementation-
defined.14

3.1.4 Format of Column Qualification

A column-identifier names a column and must be unique within the names of the columns of the
associated table. A column-identifier may be uniquely identified by being qualified by a table-name
or correlation-name.

The construct [{table-name | correlation-name}.]unqualified-column-name is referred to as a column-
name.

3.1.5 Specifying the Character Set

Certain types of user-defined name (listed below) can use character sets other than the SQL
character set. The character set that is used for such a name is defined by the first applicable
element from the following list:

• The user-defined name can indicate the character set they use.

• The syntax SQL NAMES ARE in an SQL declare section (see Section 4.2 on page 84) can
declare a default character set for other such user-defined names in the compilation unit.

• Otherwise, the default character set for such user-defined names is an implementation-
defined character set.

Format

The following syntax specifies a character set for an applicable user-defined name:

_character-set-name user-defined-name

That is, the user-defined-name is preceded by the underscore character, a character-set-name (which
never begins with the underscore character and always uses the SQL character set), and one or
more separators.

Applicability

A character set can be specified for the following syntactic elements:

unqualified-base-table-name correlation-name statement-name
catalog-name cursor-name unqualified-translation-name

unqualified-collation-name unqualified-index-name user-name
unqualified-column-name product-name vendor-name
unqualified-conversion-name schema-name unqualified-viewed-table-name

The same syntax is also valid for the character-string-literal defined in Section 3.4 on page 48.

14. For philosophical consistency with previous versions of this specification, X/Open recommends that the initial value of the
default schema name be the value of USER.

36 X/Open CAE Specification

Common Elements Notation and Language Structure

3.1.6 Keywords

Keywords are predefined words that are required literally in some situations in SQL syntax. The
syntax definitions in this specification show keywords in upper-case letters.

Reserved Words

The following keywords are also reserved words: Portable applications must not use them as
user-defined names. An implementation may allow the use of any or all of these keywords, but
flags such usage:

ABSOLUTE * CROSS * GLOBAL * NOT SOME
ACTION * CURRENT GO NULL SPACE *
ADD CURRENT_DATE GOTO NULLIF * SQL
ALL CURRENT_TIME GRANT NUMERIC SQLCA *
ALLOCATE CURRENT_TIMESTAMP GROUP OCTET_LENGTH SQLCODE *
ALTER CURRENT_USER HAVING OF SQLERROR
AND CURSOR HOUR ON SQLSTATE *
ANY DATE IDENTITY * ONLY SQLWARNING
ARE * DAY IMMEDIATE OPEN SUBSTRING
AS DEALLOCATE IN OPTION SUM
ASC DEC INCLUDE OR SYSTEM_USER
ASSERTION * DECIMAL INDEX ORDER TABLE
AT * DECLARE INDICATOR OUTER TEMPORARY *
AUTHORIZATION DEFAULT INITIALLY * OUTPUT * THEN *
AVG DEFERRABLE * INNER OVERLAPS TIME
BEGIN DEFERRED * INPUT PAD * TIMESTAMP
BETWEEN DELETE INSENSITIVE * PARTIAL * TIMEZONE_HOUR *
BIT * DESC INSERT POSITION TIMEZONE_MINUTE *
BIT_LENGTH * DESCRIBE INT PRECISION TO
BOTH DESCRIPTOR INTEGER PREPARE TRAILING
BY DIAGNOSTICS INTERSECT * PRESERVE * TRANSACTION
CASCADE DISCONNECT INTERVAL PRIMARY TRANSLATE
CASCADED * DISTINCT INTO PRIOR * TRANSLATION *
CASE * DOMAIN * IS PRIVILEGES TRIM
CAST DOUBLE ISOLATION PROCEDURE * TRUE *
CATALOG * DROP JOIN PUBLIC UNCOMMITTED
CHAR ELSE * KEY READ UNION
CHARACTER END LANGUAGE * REAL UNIQUE
CHARACTER_LENGTH END-EXEC * LAST * REFERENCES UNKNOWN *
CHAR_LENGTH ESCAPE LEADING RELATIVE * UPDATE
CHECK EXCEPT * LEFT REPEATABLE UPPER
CLOSE EXCEPTION LEVEL RESTRICT USAGE *
COALESCE * EXEC LIKE REVOKE USER
COLLATE EXECUTE LOCAL * RIGHT USING
COLLATION EXISTS LOWER ROLLBACK VALUE
COLUMN EXTERNAL * MATCH * ROWS * VALUES
COMMIT EXTRACT MAX SCHEMA VARCHAR
COMMITTED FALSE * MIN SCROLL * VARYING
CONNECT FETCH MINUTE SECOND VIEW
CONNECTION FIRST * MODULE * SECTION WHEN *
CONSTRAINT * FLOAT MONTH SELECT WHENEVER
CONSTRAINTS * FOR NAMES * SERIALIZABLE WHERE
CONTINUE FOREIGN NATIONAL SESSION * WITH
CONVERT * FOUND NATURAL * SESSION_USER WORK
CORRESPONDING * FROM NCHAR SET WRITE *
COUNT FULL * NEXT * SIZE * YEAR
CREATE GET NO * SMALLINT ZONE *

* X/Open SQL does not use these keywords, but they are defined in the International
Standard.

Data Management: Structured Query Language (SQL), Version 2 37

Notation and Language Structure Common Elements

Non-reserved Words

The following keywords are defined in X/Open SQL but are not reserved words. Applications
may use them as user-defined names:

CLASS_ORIGIN RETURNED_LENGTH
CONNECTION_NAME RETURNED_SQLSTATE
DATA ROW_COUNT
LENGTH SCALE
MESSAGE_LENGTH SERVER_NAME
MESSAGE_TEXT SUBCLASS_ORIGIN
MORE TYPE
NAME UNNAMED
NULLABLE

(Some implementations may reserve additional keywords; see Section 7.3 on page 183.)

38 X/Open CAE Specification

Common Elements Generic Data Types

3.2 Generic Data Types
A data type is a set of representable values. A data type restricts the contents or representation
of a value.

There are four generic data types: character string, date/time, interval and numeric. Non-null
values within a generic data type can be assigned to one another and compared to one another.
Generally, values cannot be assigned to or compared with values of another generic data type.
(The null value is treated specially in comparisons and assignment; see Section 3.7 on page 54.)
However, the application may explicitly convert values from one generic data type to another
using the CAST function (see Section 3.9.6 on page 65).

Within each generic data type, there are a variety of named data types. A named data type has
specific characteristics and SQL syntax. The application identifies a named data type using an
SQL keyword and, for some named data types, may specify additional attributes such as length
and precision. Named data types are classified as shown below, and are defined in the following
sections.

Generic Data Type Subclassification Named Data Types
Character String
(see Section 3.2.1 on
page 40)

Fixed-Length

Variable-Length

CHARACTER
NATIONAL CHARACTER
CHARACTER VARYING
NATIONAL CHARACTER VARYING

Numeric
(see Section 3.2.2 on
page 41)

DECIMAL
INTEGER
NUMERIC
SMALLINT

Exact Numeric

DOUBLE PRECISION
FLOAT
REAL

Approximate Numeric

Date/Time
(see Section 3.2.3 on
page 42)

DATE
TIME
TIMESTAMP

Interval
(see Section 3.2.4 on
page 44)

INTERVAL YEAR
INTERVAL MONTH
INTERVAL YEAR TO MONTH

Long Interval

INTERVAL DAY
INTERVAL HOUR
INTERVAL MINUTE
INTERVAL SECOND
INTERVAL DAY TO HOUR
INTERVAL DAY TO MINUTE
INTERVAL DAY TO SECOND
INTERVAL HOUR TO MINUTE
INTERVAL HOUR TO SECOND
INTERVAL MINUTE TO SECOND

Short Interval

Table 3-1 Classification of Data Types

Data Management: Structured Query Language (SQL), Version 2 39

Generic Data Types Common Elements

Notes on the Tables

The named data types are presented in tables in the following sections. The tables specify
minimum values for ranges, precisions and lengths that application developers can assume all
compliant implementations support. Implementations may support larger ranges, precisions
and lengths than shown.

The tables show the basic syntax of each named data type. Information about optionality of the
syntax, and about valid synonyms for keywords shown in the table, appears following the table.

3.2.1 Character String

A character string is a sequence of characters taken from a specific character set (see below). A
character string has a length, which is the number of characters in the sequence.

A character string is either a fixed-length or variable-length character string. For variable-length
strings, the length may be zero.

The following named character-string data types are defined:

Named Data Type Description
CHARACTER(n) 1 ≤ n ≤ 254 Character string of fixed length n.

Variable-length character string
with a maximum string length n.

CHARACTER VARYING(n) 1 ≤ n ≤ 254

Character string in the national
character set of fixed length n.

NATIONAL CHARACTER(n) 1 ≤ n ≤ 254

Variable-length character string
in the national character set with
a maximum string length n.

NATIONAL CHARACTER VARYING(n) 1 ≤ n ≤ 254

Table 3-2 Named Character String Data Types

The application may omit the parenthesised length specification (n) following CHARACTER.
The default length is 1.

X/Open SQL also allows CHAR as a synonym for CHARACTER, NCHAR as a synonym for
NATIONAL CHARACTER and VARCHAR as a synonym for CHARACTER VARYING.
However, the forms NATIONAL VARCHAR and NVARCHAR are invalid.

Character Set

The character set used by character-string variables and columns of tables in the database is
defined by the first applicable element from the following list:15

• The elements can indicate the character set they use. This is done by preceding the element
by an underscore, then a character set name, then one or more separators. This is the same
syntax given for specifying the character set of user-defined names in Section 3.1.5 on page
36.

15. The list is similar in structure, but not identical, to the list given for user-defined names in Section 3.1.5 on page 36.

40 X/Open CAE Specification

Common Elements Generic Data Types

However, if the data type of an element is NATIONAL CHARACTER, NATIONAL
CHARACTER VARYING or one of the synonyms defined above, then its character set is
defined to be the national character set and the explicit syntax for specifying a character set
cannot be used.

• Other elements use the default character set if one has been defined for the schema.

• Otherwise, the default character set for such elements is an implementation-defined character
set.

3.2.2 Numeric

Each numeric value is either exact or approximate.

• An exact numeric value has a precision and scale. The precision is a positive integer that
determines the total number of significant decimal digits. The scale is a non-negative integer
representing the number of significant decimal digits to the right of the decimal point.

• An approximate numeric value consists of a mantissa and an exponent. The mantissa is a
signed numeric value and the exponent is a signed integer value that specifies the magnitude
of the mantissa. An approximate numeric value has a precision, which represents the
number of significant bits in the mantissa.

The following named numeric data types are defined:

Named Data Type Description
Exact numeric, signed, precision p, scale s.DECIMAL(p,s) 1 ≤ p ≤ 15; 0 ≤ s ≤ p

Approximate numeric, signed, mantissa
precision 47 bits; value zero or absolute
value 10−38 to 1038.

DOUBLE PRECISION

Approximate numeric, signed, mantissa
precision at least p; value zero or absolute
value 10−38 to 1038.

FLOAT(p) 1 ≤ p ≤ 47

Exact numeric, signed, precision 10 digits,
scale zero; value from −2,147,483,648
through 2,147,483,647

INTEGER

NUMERIC(p,s) 1 ≤ p ≤ 15; 0 ≤ s ≤ p Exact numeric, signed, precision p, scale s.

Approximate numeric, signed, mantissa
precision 21 bits; value zero or absolute
value 10−38 to 1038.

REAL

Exact numeric, signed, precision 5 digits,
scale zero; value from −32,768 through
32,767.

SMALLINT

Table 3-3 Named Numeric Data Types

Following DECIMAL and NUMERIC, the application may omit the scale, writing (p) as a
synonym for (p,0), or omit the precision and scale specifications entirely. The application may
likewise omit the precision specification following FLOAT. The default scale is 0. Default
precisions for DECIMAL, NUMERIC, and FLOAT data are discussed in Section 7.1 on page 175.

Data Management: Structured Query Language (SQL), Version 2 41

Generic Data Types Common Elements

X/Open SQL also allows DEC as a synonym for DECIMAL and INT as a synonym for
INTEGER.

3.2.3 Date/Time

A date/time value contains some or all of the fields YEAR, MONTH, DAY, HOUR, MINUTE and
SECOND. These fields always occur in the order listed here, which is from most significant to
least significant. Each field is an integer except that the SECOND field can have an integer
fractional seconds component. Date/time values are not character strings and cannot be used
interchangeably with character strings in comparison or assignment unless explicitly converted
by use of the CAST function.

The three classes of date/time data type are as follows:

DATE Contains the YEAR, MONTH and DAY fields.

TIME Contains the HOUR, MINUTE and SECOND fields.

TIMESTAMP Contains the YEAR, MONTH, DAY, HOUR, MINUTE and SECOND fields.

A date/time data item may have the null value, but if a date/time data item is non-null, then all
fields required by the item’s class must be non-null.

Each field that is present in a date/time value has a non-negative value that denotes a date
(using the Gregorian calendar) and/or a time (using a 24-hour clock). The limit on the value of
each field is that normally imposed by the Gregorian calendar and the 24-hour time system:

0001 ≤ YEAR ≤ 9999
01 ≤ MONTH ≤ 12
01 ≤ DAY ≤ 31, constrained by MONTH and YEAR
00 ≤ HOUR ≤ 23
00 ≤ MINUTE ≤ 59
00 ≤ SECOND < 6216

A date/time is only meaningful in conjunction with a time zone.17 However, date/time values in
X/Open SQL (in a database or in an application program) do not specify a time zone. Neither
clients nor servers are required to account for different time zones or convert date/time values
from one time zone to another. If the application or the user cannot infer a time zone (for
example, from the context of the user’s session) then the date/time value is ambiguous.18

16. The normal constraint on the value of SECOND, including any fractional part, is 00 ≤ SECOND < 60. However, as many as two
leap seconds are added to certain minutes. No implementation is required to test a date/time value whose SECOND field is 60
or greater to ensure that the designated minute actually contained leap seconds.

17. Time zones are political divisions of the earth’s surface within which the time is the same and approximates the time as it would
be measured based on the sun. However, the law may specify different time offsets within a time zone based on political
subdivisions or varying over the course of the year.

18. Applications that have to reconcile date/time values that represent times in different time zones should associate time zone
information with each date/time value. However, the application should do so in a way that can accommodate database
products in which date/time values contain time zone information.

42 X/Open CAE Specification

Common Elements Generic Data Types

The following named date/time data types are defined:

Named Data Type Description
Date/time value describing a date. Its length is 10 and it
contains a YEAR, MONTH and DAY field (constrained as
described in Section 3.2.3 on page 42) in the format:
YYYY−MM−DD

DATE

Date/time value describing the time in an unspecified day,
with precision p. Its length is 8 (or 9+p if p > 0) and it contains
an HOUR, MINUTE, and SECOND field (constrained as
described in Section 3.2.3 on page 42) in the format:

TIME(p)

HH:MM:SS[.F]
where F is the fractional part.

Date/time value describing both a date and a time, with
precision p. Its length is 19 (or 20+p if p > 0) and it contains a
YEAR, MONTH, DAY, HOUR, MINUTE, and SECOND field
(constrained as described in Section 3.2.3 on page 42) in the
format:

TIMESTAMP(p)

YYYY−MM−DD HH:MM:SS[.F]
where F is the fractional part.

Table 3-4 Named Date/Time Data Types

The application may omit the parenthesised specification of seconds precision (p) following
TIME and TIMESTAMP. The default seconds precision is 0 for TIME and 6 for TIMESTAMP.

Data Management: Structured Query Language (SQL), Version 2 43

Generic Data Types Common Elements

3.2.4 Interval

An interval value is one of the following:

• one or both of the fields YEAR and MONTH

• one or more consecutive fields from the set: DAY, HOUR, MINUTE and SECOND.

Interval Precision

Named interval data types (which are enumerated in Table 3-5 on page 45) have an interval
precision, which is a list of all the fields that values of that data type may contain. For example,
in a value of type INTERVAL HOUR TO SECOND, the date/time precision is HOUR, MINUTE,
SECOND.

Leading Precision

Conceptually, an interval is a signed numeric quantity comprising a specific set of fields. The
fields have the same ordering, relative significance, and Gregorian-calendar constraints as
described above for date/time values except as described below.

In all intervals, the high-order field is not constrained by the Gregorian calendar. Named
interval data types have a leading precision, which is the number of decimal digits that the
high-order field can accommodate.

For example, in an INTERVAL HOUR TO MINUTE, the MINUTE field is constrained as
described above but the HOUR field is constrained only by the leading precision. If interval
arithmetic generates an intermediate value of 01:61, the implementation converts it to 02:01
before making it visible to the application.

Seconds Precision

Any interval data type that has a SECOND field has a seconds precision. This is the number of
decimal digits allowed in the fractional part of the SECOND value.

In the named data type INTERVAL SECOND, the SECOND field is the only field and has both a
leading precision and a seconds precision.

Interval Qualifier

The syntactic element interval-qualifier follows every use of the keyword INTERVAL to specify
the interval precision (the set of available fields). Valid interval-qualifiers are listed in Table 3-5 on
page 45.

An interval-qualifier specifies or implies the interval precision, leading precision, and seconds
precision (if applicable) of the value.

18. Syntax using the interval-qualifier also appears in Subtracting Two Date/Times on page 58, and as a qualification for dynamic
parameters (see Section 3.9.5 on page 64 and in the COLUMNS system view (see COLUMNS on page 160).

44 X/Open CAE Specification

Common Elements Generic Data Types

Named Interval Data Types

A named interval data type consists of the word INTERVAL followed by one of the following
interval-qualifiers:

interval-qualifier Description of Named Data Type
Interval class describing a number of years, with leading
precision p. It contains a YEAR field in the format: YYYY

YEAR(p)

Interval class describing a number of months, with leading
precision p. It contains a MONTH field in the format: MM

MONTH(p)

Interval class describing a number of years and months, with
leading precision p. Its format is: YYYY-MM

YEAR(p) TO MONTH

Interval class describing a number of days. Its leading
precision is p. It contains a DAY field in the format: DD

DAY(p)

Interval class describing a number of hours, with leading
precision p. It contains an HOUR field in the format: HH

HOUR(p)

Interval class describing a number of minutes, with leading
precision p. It contains a MINUTE field in the format: MM

MINUTE(p)

Interval class describing a number of seconds, with leading
precision p and seconds precision s. It contains a SECOND
field in the format: SS[.F]

SECOND(p, s)

Interval class describing a number of days and hours, with
leading precision p. Its format is: DD HH

DAY(p) TO HOUR

Interval class describing a number of days, hours and minutes,
with leading precision p. Its format is: DD HH:MM

DAY(p) TO MINUTE

DAY(p) TO
SECOND(s)

Interval class describing a number of days, hours, minutes,
and seconds, with leading precision p and seconds precision s.
Its format is: DD HH:MM:SS[.F]

HOUR(p) TO
MINUTE

Interval class describing a number of hours and minutes, with
leading precision p. Its format is: HH:MM

HOUR(p) TO
SECOND(s)

Interval class describing a number of hours, minutes and
seconds, with leading precision p and seconds precision s. Its
format is: HH:MM:SS[.F]

MINUTE(p) TO
SECOND(s)

Interval class describing a number of minutes and seconds,
with leading precision p and seconds precision s. Its format is:
MM:SS[.F]

Table 3-5 Named INTERVAL Data Types

The application may omit the parenthesised specification of leading precision (p). The default
leading precision is 2, even if the high-order field is YEAR. The application may omit the
parenthesised specification of seconds precision (s). The default seconds precision is
implementation-defined. In the case of INTERVAL SECOND(p, s), the application may omit the
seconds precision, writing (p) and implying the implementation-defined default seconds
precision. The application can also omit both precision specifications.

Data Management: Structured Query Language (SQL), Version 2 45

Generic Data Types Common Elements

Length of an Interval

The three types of precision determine the maximum length of any interval value. Length is
expressed in positions. This is the same as a number of characters of the string representation of
the interval (using a single-byte character set). The rules for computing an interval’s maximum
length are as follows:

• Allow two positions for every field in the interval that is not the high-order field.

• For the high-order field, allow the number of positions that is the leading precision.19

• Add one position for each separator between fields.

• If the seconds precision is nonzero, add that number of positions, plus one for the decimal
point.

Applying these rules to each named interval data type produces the following lengths, where p
is the leading precision and s is the seconds precision (specified or implied):

interval-qualifier Length of Named Data Type
YEAR p
MONTH p
YEAR TO MONTH 3 + p
DAY p
HOUR p
MINUTE p
SECOND p (or p + s + 1 if s > 0)
DAY TO HOUR 3 + p
DAY TO MINUTE 6 + p
DAY TO SECOND 9 + p (or 10 + p + s if s > 0)
HOUR TO MINUTE 3 + p
HOUR TO SECOND 6 + p (or 7 + p + s if s > 0)
MINUTE TO SECOND 3 + p (or 4 + p + s if s > 0)

Table 3-6 Lengths of Named INTERVAL Data Types

19. This algorithm, derived from the International Standard, does not allow for the minus sign that is present in the string
representation of negative intervals. Application writers are advised that such a string representation could be one character
longer than the ‘‘maximum’’ length.

46 X/Open CAE Specification

Common Elements Rules for Determining Data Types

3.3 Rules for Determining Data Types

Data Types of Table Columns

Each column of a base table is given a named data type when the column is created (that is,
when the table is created or when the column is added to the table).

The data types of a derived table’s columns may be generic data types or named data types:

• Columns of derived tables, defined by a query-specification, derive their data types from the
expressions in the query-specification that define columns.

• Columns of a viewed table inherit the data types of the corresponding result columns of the
query-specification that defines the view.

• Columns defined by a cursor specification inherit the data types of the corresponding result
columns of the first query-specification in the cursor specification.

Data Types of Expressions

If an expression (see Section 3.9 on page 57) contains a single operand, the data type of the
expression is the data type of that operand.

The data type of the result of an arithmetic operation depends on the data types of the two
operands and is determined as follows:

• If the data type of either operand is approximate numeric, the data type of the result is
approximate numeric with implementation-defined precision and range of magnitude.

• If the data type of the result is approximate numeric, the result must be within the
implementation-defined range of magnitude.

• If the data type of both operands is exact numeric, the data type of the result is exact numeric
with implementation-defined precision and range, and scale dependent on the operation as
follows:

— If the operation is addition or subtraction, the scale is the larger of the scales of the two
operands.

— If the operation is multiplication, the scale is the sum of the scales of the two operands.

— If the operation is division, the scale is implementation-defined.

• If the data type of the result is exact numeric and the operator is not division, the result must
be exactly representable within its data type. If the data type of the result is exact numeric
and the operator is division, the result must be representable within its data type without
losing any leading significant digits.

The data type of a result of a set function depends on the function and on the type of its
argument. (See Table 3-9 on page 63.)

The data type of a result of a date/time or interval computation is specified in Section 3.9.2 on
page 57.

The data type of a result of the various string operations is specified in Section 3.9.3 on page 59.

The data type of an expression can be explicitly converted to another data type using the CAST
function.

Data Management: Structured Query Language (SQL), Version 2 47

Literals Common Elements

3.4 Literals
A literal is a sequence of characters representing a value. The classification of literals is according
to the values that they represent.

Character-string Literals

A character-string-literal represents a character string and consists of a sequence of characters
from a certain character set (see below) delimited at each end by the single quote character.

That is, it has the following format:

’{ character } . . .’

Within the delimiters, a single quote character is represented by two consecutive single quote
characters. The value of the literal is the value of the sequence of characters within the
delimiters. The data type of a character-string-literal is fixed-length character string.

The rules for determining the character set of a character-string-literal is the same as for user-
defined-names (see Section 3.1.5 on page 36). For example, a character-string-literal can be
preceded by syntax explicitly specifying a character set.

A separate form of character-string-literal is the national character string literal:

N’{ character } . . .’

This is a character-string-literal where the character set is always the national character set. The
character set cannot be specified explicitly for a national character set literal.

Numeric Literals

A numeric-literal represents a number and consists of a character string whose characters are
selected from the digits 0 through 9, the plus sign, the minus sign, the decimal point and the
character E.

A numeric-literal is either an exact-numeric-literal representing an exact numeric value or an
approximate-numeric-literal representing an approximate numeric value.

An exact-numeric-literal has the following format:

[+| −]{ unsigned-integer [. unsigned-integer]
| unsigned-integer .
|. unsigned-integer }

where unsigned-integer is defined as:

{ digit } . . .

The data type of an exact-numeric-literal is exact numeric, its precision is the number of digits that
it contains, and its scale is the number of digits to the right of the decimal point. The value of an
exact-numeric-literal is derived from the normal mathematical interpretation of the specified
notation.

An approximate-numeric-literal has the format mantissaEexponent, where the mantissa is an exact-
numeric-literal and the exponent has the form:

[+| −] unsigned-integer

The data type of an approximate-numeric-literal is approximate numeric and its precision is the
precision of its mantissa .

48 X/Open CAE Specification

Common Elements Literals

The value of an approximate-numeric-literal is the product of the value represented by the mantissa
with the number obtained by raising the number 10 to the power represented by the exponent .

Date/Time Literals

A date/time literal represents a date/time value and consists of one of the keywords shown
below, followed by text delimited at each end by a single quote character. It can have the
following formats:

DATE ’date-value ’
TIME ’ time-value ’
TIMESTAMP ’date-value space time-value’

The quoted text contains the fields specified in Section 3.2.3 on page 42 for the respective
date/time subtype, in the order and with the limits described there, using the delimiters shown
in Table 3-4 on page 43 (’22007’).

A date-value has the following format:

year-value − month-value − day-value

A time-value has the following format:

hour-value : minute-value : second-value

where year-value, month-value, day-value, hour-value and minute-value are unsigned-integers and
second-value has the following format:

unsigned-integer [. unsigned-integer]

and −, : and space above represent single characters determined by the character set in use.

Interval Literals

An interval literal represents a date/time value and consists of the INTERVAL keyword
followed by text delimited at each end by a single quote character. It can have the following
formats:

INTERVAL [+| −] ’ interval-value ’ interval-qualifier

The text of interval-value must be a valid representation of a value of the named interval data
type specified by interval-qualifier. The text contains a decimal value for every field implied by
interval-qualifier.

• If the interval precision includes the fields YEAR and MONTH, values of these fields are
separated by the minus sign.

• If the interval precision includes the fields DAY and HOUR, values of these fields are
separated by a space.

• If the interval precision includes HOUR and lower-order fields, values of these fields are
separated by the colon.

• No field value can be more than two digits long except that:

— The value of a YEAR field can be 4 digits long.

— The value of the high-order field can be as long as the leading precision specified in
interval-qualifier.

— The SECOND field can have a fractional part whose maximum length is specified or
implied by interval-qualifier.

Data Management: Structured Query Language (SQL), Version 2 49

Literals Common Elements

3.4.1 Pseudo-literals

A pseudo-literal is a syntactic element that can be used as a literal. Rather than a constant value, it
returns variable information obtained from the implementation.

Current Date and Time

The following keywords denote date/time values:20

CURRENT_DATE
A DATE value denoting the current date.

CURRENT_TIME[(precision)]
A TIME value denoting the current time.

CURRENT_TIMESTAMP[(precision)]
A TIMESTAMP value denoting the current date and time.

If specified, precision determines the seconds precision of the time or timestamp value returned.

If a single SQL statement references several instances of CURRENT_DATE, CURRENT_TIME
and CURRENT_TIMESTAMP, they all return values that denote the same date and time.

Authorisation Pseudo-literals

Several pseudo-literals describe users of the database system. These pseudo-literals represent
character strings using characters from the character set SQL_TEXT:

CURRENT_USER
SESSION_USER
SYSTEM_USER
USER

The contents of these pseudo-literals are defined and their uses are discussed in the overview of
authorisation in Section 2.6.3 on page 26.

SYSTEM_USER, SESSION_USER, CURRENT_USER and USER are explicitly permitted in a
small number of cases where pseudo-literals in general are not valid.

20. The International Standard classifies these three pseudo-literals as date/time value functions. In X/Open SQL, they are valid
anywhere other date/time literals are, with one exception noted for column constraints in Section 5.3.7 on page 107.

50 X/Open CAE Specification

Common Elements Assignment

3.5 Assignment

Character String Assignments

The following rules apply when assigning a non-null character string of length S (source) to a
table column or host variable whose data type is fixed-length character string of length D
(destination) or variable-length character string of maximum length D.

1. If the assignment is to a table column and S is larger than D, then the rightmost S−D
characters of the source string must all be blanks (’22001’) and only the leftmost D
characters of the source string are assigned.

2. If the assignment is to a host variable and S is larger than D, the leftmost D characters of
the character string are assigned (’01004’).21

3. If S is smaller than D, the character string is assigned to the leftmost S character positions
of the destination field. If the destination’s data type is fixed-length character string, the
remaining D−S positions are blank-filled.

4. If S is equal to D, the character string is assigned to the destination field.

Character-String Storage for C

For C, a character string of length D requires an array of D+1 elements. The elements are
numbered 0 through D. The application must place a null byte (\0) in the position following the
last one that contains character data, in order to ensure correct interpretation by the database
(’22024’). When assigning a value to such a host variable, the database places a null byte in the
Dth position.

Numeric Assignments

When assigning a non-null numeric value to an exact numeric table column or host variable,
there must be a representation of the numeric value in the data type of the destination field that
does not cause the whole part of the number (that is, the leading significant digits) to be
truncated (’22003’). The fractional part of the number (that is, the trailing significant digits) may
be truncated as necessary and it is implementation-defined whether warning flags or indicator
variables are set.

When assigning a non-null numeric value to an approximate numeric table column or host
variable, the numeric value must be within the range of magnitude of the destination field
(’22003’). The result is an approximation of the source numeric value that has the precision of
the destination field.

21. Using the classification in Section 4.5.1 on page 90, truncation of non-blank data on assignment to the database is an error (and
the SQL statement fails), whereas truncation on extracting data from the database is just a warning, whether or not the truncated
data is blank.

Indicator variables can detect truncation, as described in Section 3.8 on page 56.

Data Management: Structured Query Language (SQL), Version 2 51

Assignment Common Elements

Date/Time and Interval Assignment

When assigning a non-null date/time value to a column, the data type of the target location
must also be date/time.

Its subtype (DATE, TIME or TIMESTAMP) must be the same as that of the source (’22007’).

When assigning a non-null value to a date/time table column, the leading precision of the target
must be sufficient to represent the value of the source (’22008’).

When assigning a non-null value to an interval table column, the leading precision of the target
must be sufficient to represent the value of the source (’22015’).

Truncation of a fraction in a SECOND field is subject to the rules stated above for Numeric
Assignments.

52 X/Open CAE Specification

Common Elements Comparison

3.6 Comparison

Numeric

All numbers are comparable and are compared according to their algebraic value.

Character

The rules for comparing character strings depend on a specific collation. The collation that
governs any string expression is derived from its component character strings (see Section 2.4.4
on page 23), or can be specified explicitly.

Before comparing two character strings, if the strings are of unequal length in characters and if
the governing collation has a pad attribute of pad space (see Pad Attribute on page 23), space
characters are conceptually appended to the shorter string to match the length of the longer
string. If the governing collation has a pad attribute of no pad, no such padding occurs.

A string comparison starts at the start of the strings and ends on detecting either an inequality or
the end of one of the strings (whichever is detected first). The governing collation defines the
method and the result of comparing two strings.

The pad attribute is relevant only when comparing two strings of different lengths in characters
that are identical through the entire length of the shorter string. Under a collation whose
attribute is no pad, the longer string is greater than the shorter string in all such cases. Under
pad space, the remaining characters of the longer string are compared to the spaces in the
conceptual padding of the shorter string. The resulting sort order of the strings depends on the
result of this comparison under the governing collation.

The rules of a given collation may dictate that two character strings compare equal even if they
are of different length or contain different sequences of characters. If this is the case in the MAX
and MIN functions, in references to a grouping column, or in the operations specified by the
DISTINCT and UNION keywords, one of the equal values is chosen, using undefined criteria.

Date/Time

Two date/time values are comparable if their subtype (DATE, TIME or TIMESTAMP) is
identical. When comparing two TIME or TIMESTAMP values, the implementation conceptually
extends the seconds precision of the value with the lower precision by adding trailing zeros.

Interval

Two interval values are comparable only if they have some fields in common. Interval types
with YEAR or MONTH fields are not comparable to interval types with DAY, HOUR, MINUTE
or SECOND interval types. Interval types with different interval precision are conceptually
converted to the same precision before comparison by adding fields as required.22

22. Added low-order fields have the value zero. Added high-order fields have the value zero unless the previous high-order field
exceeds the limit imposed by the Gregorian calendar; in this case its value is normalised, resulting in a nonzero value in the new
field. For example, to compare an INTERVAL MINUTE containing the valid value 75 to an INTERVAL HOUR TO MINUTE, the
invalid value 0:75 is converted to the valid value 1:15.

Data Management: Structured Query Language (SQL), Version 2 53

Null Values Common Elements

3.7 Null Values
Every data type includes the null value, which is distinct from all non-null values. The null
value represents a value that is not known or not applicable.

There is no literal that represents the null value. However, in some situations, SQL syntax uses
the keyword NULL to represent the null value.

A table may constrain certain columns (using NOT NULL) to contain only non-null values. SQL
inserts null values into tables in several situations when the application fails to specify or imply
non-null values for insertion into the table. In these cases, the destination columns must not be
constrained by NOT NULL.

The application and the database can communicate null values in embedded host variables by
using an associated indicator-variable (see Section 3.8 on page 56).

Null Values in Computations

If the value of any operand in an expression is the null value then the value of the expression is the
null value. (In particular, subtracting a null value from a null value evaluates to null and not to
zero.)

If any operand in an expression is allowed to contain the null value, the result of that expression is
conceptually allowed to contain the null value.

Assigning Null Values

In a database operation that would assign a null value to a table column, the column must be
allowed to contain null values (that is, NOT NULL must not have been specified).

In a database operation that would assign a null value to a host variable, the application must
provide an associated indicator variable (see Section 3.8 on page 56) (’22002’). The content of the
host variable is undefined.

Comparing Null Values Explicitly

Generally, comparing a null value with any value, even another null value, evaluates to the
unknown truth value. The only way to test for the presence or absence of null values is the IS
[NOT] NULL predicate (see Section 3.10.6 on page 69).

Implicit Comparisons

Certain SQL comparisons and predicates imply comparison of values. The following table
describes how these comparisons handle null values:

54 X/Open CAE Specification

Common Elements Null Values

Context Treatment
If any column of a FOREIGN KEY is null, the referential
constraint is met.

FOREIGN KEY

GROUP BY Null grouping column values are treated as equal.

Null values are treated as equal and are either greater than or
less than all non-null values. (The choice is implementation-
defined.)

ORDER BY

PRIMARY KEY Null values are not allowed.

SELECT DISTINCT Null values are treated as equal.

Null values are eliminated regardless of whether DISTINCT is
specified except that COUNT(*) includes all null values.

Set functions

Null values are treated as not equal, so multiple rows with null
values in the same columns are allowed.

UNIQUE columns

Null values are treated as equal, so the table cannot have
multiple rows with null values in the column.

UNIQUE INDEX

Table 3-7 Treatment of Null Values in Various Contexts

Data Management: Structured Query Language (SQL), Version 2 55

Indicator Variables Common Elements

3.8 Indicator Variables
A host variable may be accompanied by an indicator variable. The indicator variable contains
information about a value that the host variable does not contain. (See Section 4.1.2 on page 80,
for rules on the SQL syntax for indicator variables.)

Implementations use indicator variables in these cases:

• The database indicates that the associated host variable represents the null value by setting
the required indicator variable to −1.

• The database sets the required indicator variable to a positive value if the associated host
variable’s data type is character string and the executable SQL statement truncates the value
it assigns to the variable (’01004’). The positive indicator value is typically the total length of
the original character string the database would have assigned to the host variable except for
truncation.

• If neither of these cases occurs (if the database returns a non-null value that is not a truncated
character string), the database sets the indicator variable to 0.

• Negative values other than −1 are reserved for future definition by X/Open.

Applications set any indicator variable to −1 to indicate a null value, and to 0 to indicate a non-
null value, in the associated host variable.

56 X/Open CAE Specification

Common Elements Expressions

3.9 Expressions
An expression represents a single value. It consists of one of the following:

• a host-variable-reference

• a literal (see Section 3.4 on page 48), including pseudo-literals

• a column-name

• a set-function-reference (see Section 3.9.4 on page 63)

• a dynamic-parameter (see Section 3.9.5 on page 64)

• one of the scalar functions CHAR_LENGTH, CHARACTER_LENGTH, EXTRACT, LOWER,
OCTET_LENGTH, POSITION, SUBSTRING, TRIM or UPPER (see Section 3.9.3 on page 59);
or the CAST function (see Section 3.9.6 on page 65)

• any valid combination of these primary components connected by operators.

Any expression whose result is a character string has an implicit collation (see Section 2.4.4 on
page 23), which indicates the manner of performing any comparison on the string. Any
expression whose result is a character string can explicitly specify a collation by following the
expression with the word COLLATE and then a collation-name (see Section 3.9.7 on page 66).

3.9.1 Arithmetic Operators

Arithmetic operators combine numeric expressions and yield a numeric value. The following
arithmetic operators are allowed (in descending order of precedence):

+, − unary plus and minus (negation)
*, / multiplication and division
+, − addition and subtraction

The operand following a unary plus or minus must not be a signed numeric literal.

Operations with the same precedence are executed from left to right. Parentheses may be used
to depart from the above precedence order since, when used in an expression, they determine the
binding of expression components to arithmetic operators.

Arithmetic errors occur in evaluating an expression (that does not involve date/time or interval
values) on a violation of the following rules:

• No computed value, as a final or intermediate result, may exceed the range of the data type
(’22003’).

• Division by zero may not be performed (’22012’).

3.9.2 Date/Time and Interval Arithmetic

The following table lists the only valid arithmetic operations involving values whose generic
data type is date/time or interval:

Data Management: Structured Query Language (SQL), Version 2 57

Expressions Common Elements

Operand 1 Operator Operand 2 Result Type
Date/Time − Date/Time (see below)
Date/Time + or − Interval Date/Time
Interval + Date/Time Date/Time
Interval + or − Interval Interval
Interval * or / Numeric Interval
Numeric * Interval Interval

Operands cannot be combined arithmetically unless their data types are comparable (as defined
in Section 3.6 on page 53). If either operand is the null value, then the result of any arithmetic
operation is the null value.

If arithmetic involves two date/time or interval values with a defined scale, then the scale of the
result is the larger of the scales of the two operands.

Interval arithmetic that involves date ranges that span discontinuities in calendars23 produces
implementation-defined results.

Arithmetic errors occur in date/time and interval arithmetic, on a violation of the following
rules:

• No computed date/time value, as a final or intermediate result, can exceed the leading
precision of the data type (’22008’).

• No computed interval value, as a final or intermediate result, can exceed the leading
precision of the data type (’22015’).

• Division by zero may not be performed (’22012’).

Subtracting Two Date/Times

One date/time value may be subtracted from another to produce an interval that is the signed
difference between the stated dates or times. However, the application program must specify a
named interval data type for the result by using an interval-qualifier. The required syntax is:

(date-time-1 − date-time-2) interval-qualifier

EXTRACT Function

The EXTRACT function extracts a single numeric field from a date/time or interval value. It has
the form:

EXTRACT (field-name FROMexpression)

where field-name is one of YEAR, MONTH, DAY, HOUR, MINUTE or SECOND. The expression
must be of type date/time or interval and must contain the field specified by field-name.

The data type of the result is exact numeric. The precision and scale are implementation-defined
except that, for field-names other than SECOND, the scale is 0.

23. Discontinuities are decisions to add units to, or remove units from, a calendar at a specified point in time. The International
Standard lists leap seconds (see Section 3.2.3 on page 42) as an example of discontinuity. Another example is the addition of 10
days to the Gregorian calendar in the 18th century. The acceptance and timing of a discontinuity depends on the locale.

58 X/Open CAE Specification

Common Elements Expressions

If expression is null, then the result is the null value. Extracting any field from a negative interval
produces a negative value. All other uses of EXTRACT produce a non-negative value.

3.9.3 String Operations

The following table lists the valid operations on character strings. In the table, s1 and s2 stand
for character-string operands and i and j stand for arithmetic-expressions. Additional valid syntax
and details of the respective operations follow the table.

Simplified Syntax Result Returned
s1 || s2 A character string formed by concatenating s1 and s2.

An exact numeric indicating the length of s1.CHAR_LENGTH(s1)

CHARACTER_LENGTH(s1) Same as CHAR_LENGTH.

A string resulting from applying conversion c to
string s.

CONVERT(s USING c)

A copy of s with any upper-case letters converted to
lower case.

LOWER(s)

OCTET_LENGTH(s1) Same as CHAR_LENGTH.

An exact numeric indicating the character position of
the first occurrence of s1 in s2.

POSITION(s1 IN s2)

A string extracted from s1, starting at character
position i and continuing for j characters.

SUBSTRING(s1 FROM i [FOR j])

A string resulting from applying translation t to
string s.

TRANSLATE(s USING t)

A string consisting of s1 with leading and/or trailing
pad characters removed.

TRIM(s1)

A copy of s with any lower-case letters converted to
upper case.

UPPER(s)

Table 3-8 String Operations

Long Strings

An exact numeric return value is specified above for CHAR_LENGTH,
CHARACTER_LENGTH, OCTET_LENGTH and POSITION. Applications can use integer
values to retrieve these return values, and elsewhere to represent the length of, or position
within, a string. However, if it is possible that the string length could exceed the capacity of an
integer variable:

• COBOL applications should use DECIMAL(p, 0), where p is large enough for the data of
interest.

• C applications should do one of the following:

— use long and be prepared to handle overflow exceptions

— use double and be prepared for the result to be inexact without notification.

Data Management: Structured Query Language (SQL), Version 2 59

Expressions Common Elements

Concatenation

The result of the concatenation operation is the value of the string operand preceding the ||
operator, followed by the value of the string operand following the || operator.

If the data type of both operands is a fixed-length string, then the data type of the result is a
fixed-length string. If the data type of either operand is a variable-length string, then the data
type of the result is a variable-length string. If the value of either operand is null, the result is the
null value.

The length of the result is the sum of the lengths of the operands except when this is excessive:

• If the data type of both operands is a fixed-length string and if the length of the resulting
string exceeds the implementation-defined maximum for fixed-length strings, the operation
fails (’42000’).

• If the data type of either operand is a variable-length string and if the length of the resulting
string exceeds the implementation-defined maximum for variable-length strings, then:

— If all the characters in the positions beyond the maximum length are the space character,
the result is truncated on the right to the maximum length (without warning).

— Otherwise, the operation fails (’22001’).

Capitalisation Functions

The LOWER function returns a copy of its string argument, in which any upper-case letter is
replaced with the corresponding lower-case equivalent. The UPPER function returns a copy of
its string argument, in which any lower-case letter is replaced with the corresponding upper-
case equivalent.

Upper-case letters, lower-case letters, and the correspondence referred to above are defined by
the character set associated with the string argument. The string result is in the same character
set. The expressions UPPER(LOWER(s)) and LOWER(UPPER(s)) do not necessarily yield s in all
cases.

CHAR_LENGTH

The CHAR_LENGTH function returns the length of the value (the number of characters) of its
single character-string operand.

If the value of the operand is null, then the function returns the null value.

The keyword CHARACTER_LENGTH can be used instead of CHAR_LENGTH. For single-byte
character sets, the keyword OCTET_LENGTH can be used instead of CHAR_LENGTH.

CONVERT

The CONVERT function returns a character string that is the value of the string operand with a
specified conversion applied. Converting a string changes it to use a different form-of-use (see
Section 2.4.3 on page 21).

The names and effects of any available conversions are implementation-defined.

60 X/Open CAE Specification

Common Elements Expressions

POSITION

The POSITION function returns an integer indicating the first position at which the value of one
character string occurs within another. The first position in a character string is position number
1. POSITION returns the value 0 in several cases specified below where there is no such
occurrence. The function has the form:

POSITION (search-string IN source-string)

where search-string and source-string are both string-expressions.

The function performs the following tests in sequence:

• If the value of either operand is null, the function returns the null value.

• If source-string has a length of zero, the function returns zero.

• If the characters of search-string occur consecutively within source-string, then the function
returns the character position of the start of the first such occurrence.

• Otherwise (if search-string does not occur within source-string), the function returns zero.

All comparisons of characters within the two operands are case-insensitive.

SUBSTRING

The substring function returns a character string which is a portion (zero-length, partial, or
complete) of its character-string operand. The function has the form:

SUBSTRING (source-string FROMstart-position [FOR string-length])

where source-string is a string-expression and start-position and string-length are both arithmetic-
expressions.

The data type of the result is variable-length character string, with the same maximum length as
source-string (or as the fixed length of source-string, if it is a fixed-length string). The data type of
both numeric operands is exact numeric with a scale of zero.

If string-length is omitted, then its value is assumed to be:

CHAR_LENGTH(source-string) + 1 − start-position

This denotes the entire remainder of source-string at and beyond start-position.

The SUBSTRING function performs the following steps in sequence:

• If the value of any operand is null, the function returns the null value.

• If string-length is negative, or if start-position is greater than the number of characters in
source-string, the function fails (’22011’).

• Otherwise, the function returns a character string containing string-length characters of
source-string, starting at the character specified by start-position and in the same sequence that
the characters appear in source-string. (To the extent that some of these positions are before
the start or beyond the end of source-string, then no character is returned. If all the characters
specified are thus, then the result is the null string.)

Data Management: Structured Query Language (SQL), Version 2 61

Expressions Common Elements

TRANSLATE

The TRANSLATE function returns a character string that is the value of the string operand with
a specified translation applied. A translation might be defined to simply translate text from one
character set to another. Other translations might perform more complex translations. The
LOWER and UPPER string functions might be implemented as translations.

The names and effects of any available translations are implementation-defined. An application
can query the TRANSLATIONS system view (see TRANSLATIONS on page 172) to determine
what translations are accessible. An application can execute the CREATE TRANSLATION and
DELETE TRANSLATION statements to control user-defined translations.

Each translation has a source character set and a target character set. These are
implementation-defined and available through the TRANSLATIONS system view. The string
operand must be in the source character set.

The TRANSLATE function must not apply a translation to a string operand so as to produce a
character that is not in the repertoire of the character set defined as the target character set of the
translation (’22021’).

TRIM

The TRIM function returns a character string that is the value of a string operand with certain
pad characters removed. The complete syntax of TRIM is as follows:

TRIM ([[LEADING | TRAILING | BOTH] [trim-character] FROM]
source-string)

where trim-character and source-string are both string-expressions.

The brackets above indicate optional syntax. However, if the word FROM is specified, then
some valid syntax must appear between the opening parenthesis and the word FROM. If neither
LEADING, TRAILING nor BOTH is specified, then BOTH is assumed.

The value of trim-character is the trim character: the single character that is to be removed from
the start and/or end of source-string. If trim-character is omitted, then the space character is the
trim character.

The data type of the result is variable-length character string, with the same maximum length as
source-string (or as the fixed length of source-string, if it is a fixed-length string).

The TRIM function performs the following steps in sequence:

• If the value of any operand is null, the function returns the null value.

• If the length of the value of trim-character is not 1, the operation fails (’22027’).

• Otherwise, the function returns the value of source-string after trimming characters from it as
follows:

— If LEADING is specified: Any consecutive occurrences of the trim character at the start of
source-string are removed.

— If TRAILING is specified: Any consecutive occurrences of the trim character at the end of
source-string are removed.

— If BOTH is specified or assumed: Both leading and trailing occurrences of the trim
character are removed.

62 X/Open CAE Specification

Common Elements Expressions

3.9.4 Set Functions

A set function can appear in an expression in two contexts within a query-specification (see Section
3.11.1 on page 71):

• Within a select-sublist, the set function analyses the entire virtual table.

• Within the search-condition in a HAVING clause, the query-specification specifies a grouped
table and the set function analyses the current group.

The set function returns a single value as a result.

A set-function-reference requires an argument in parentheses. The rules for a valid argument
depend on the form used and are discussed below. The general format of a set-function-reference
is:

set-function-name ([ALL | DISTINCT] argument)

For the COUNT function, X/Open SQL supports these two forms:

COUNT(*)
COUNT(DISTINCT argument)

The set-function-name may be any of those shown in the following table:

Function Result Data Type of Result
Average of the values in the
column.

Same generic data type as the argument;
implementation-defined attributes.

AVG

Total number of values in
(cardinality of) the column.*

Exact numeric, scale 0, implementation-
defined precision and range.

COUNT

MAX Largest value in the column. Same as the argument.
MIN Smallest value in the column. Same as the argument.

Exact numeric argument: Exact numeric
result; same scale as argument;
implementation-defined precision and
range.

Approximate numeric argument:
Approximate numeric result;
implementation-defined precision and
range of magnitude.

SUM Sum of the values in the column.

Table 3-9 Set Functions

Functions AVG and SUM can be applied only to numeric columns.

If DISTINCT is specified, the set function calculates the result after excluding duplicate values of
the argument. In this case, argument must be a simple column-name and the set function cannot be
combined with other terms using binary arithmetic operators. The keyword DISTINCT cannot
be used in a query or sub-query which itself uses the form SELECT DISTINCT; see Section 3.11
on page 71.

* COUNT(*) does not refer to columns but returns the cardinality of the entire virtual table (or, if it occurs in a HAVING clause, the
cardinality of the current group).

Data Management: Structured Query Language (SQL), Version 2 63

Expressions Common Elements

If ALL is specified (or in the case of COUNT(*)), duplicate values are retained. In this case, the
argument may be an expression but it must contain at least one column-name and may not contain
any set-function-references.

If neither ALL nor DISTINCT is specified, ALL is assumed.

In both cases, any null argument values are eliminated before the function is applied. (If any null
values are eliminated, SQLSTATE is set to (’01003’).) However, COUNT(*) counts all values,
even duplicate and null values.

A set-function-reference may be specified only in an expression in a SELECT clause or in an
expression that is contained within the search-condition of a HAVING clause. If it appears in a
sub-query of a HAVING clause, its argument must be a correlated reference.

An expression directly contained within the search-condition of a WHERE clause must not
reference a column derived from a set function.

A column-name specified in the argument of a set-function-reference must not reference a column
derived from a set function. If such a column-name is a correlated reference (see Section 3.11.5 on
page 76), then all of the following must be true:

• The argument must consist solely of that column-name.

• The set-function-reference must be contained in a sub-query of a HAVING clause.

• The correlated reference must be to a table-reference contained in the FROM clause of the outer
query that contains the HAVING clause.

Set Function Exceptions

The sum of the column values on which a call to AVG or SUM operates must be within the range
of the data type of the result (’22003’).

All set functions return the null value if applied to an empty set, except that COUNT(*) returns
the value 0.

3.9.5 Dynamic Parameters

A dynamic parameter is represented by a question mark (?) and identifies a parameter in a
dynamically prepared SQL statement.

If the context in which the dynamic parameter is used requires an interval, then the question
mark must be followed by a suitable interval-qualifier to specify the interval precision. There are
two exceptions, in which no interval-qualifier is required:

• a quantity added to, or subtracted from, a DATE is assumed to be of type INTERVAL
YEAR(p) TO MONTH

• a quantity added to, or subtracted from, a TIME or TIMESTAMP is assumed to be of type
INTERVAL YEAR(p) TO SECOND(s)

where p and s above are the implementation-defined maxima for the respective precision.

64 X/Open CAE Specification

Common Elements Expressions

3.9.6 CAST Function

The CAST function explicitly converts data of one data type to another data type. The CAST
function has the form:

CAST({ expression | NULL}) AS data-type)

where data-type is one of the named data types specified in Section 3.2 on page 39.

The resulting data type of the CAST function is data-type. Applying the CAST function to NULL,
or to an expression that has the null value, yields the null value of the target data type.

Casting an expression from a source data type (specified by the data type of expression) to a
target data type (specified as data-type) is subject to the rules set out below. Conversions not
specifically permitted below are invalid.

Source and Target Data Types Identical

Use of the CAST function is essentially an assignment, subject to the rules in Section 3.5 on page
51.

Character Source

The value of expression must conform to the natural limits imposed on intervals (’22006’) and on
date/time values (’22007’) by the Gregorian calendar (see Section 3.2.3 on page 42); and must in
other respects be a valid literal representation of a value of the target data type (’22018’).

Character Target

There must exist a representation of a literal with the value of expression in the character set
defined by the implementation (’22018’).

For conversions to the character class, the length of the converted value must not exceed the
length of the target (for CHARACTER) or the maximum string length (for CHARACTER
VARYING) (’22001’).

For conversions to the CHARACTER data type, the value of the source expression is padded on
the right with spaces if the length of the converted value is less than the length of the target data
type. For conversions to the CHARACTER VARYING data type, this blank padding does not
take place.

Numeric Source

If the source data type is exact numeric, any conversion to an interval data type must not result
in the loss of leading significant digits (’22015’).

Date/Time Source

The CAST function can be used to cast an expression of one date/time data type to another with
the following effects:

• When casting a DATE to a TIMESTAMP, the HOUR, MINUTE and SECOND fields of the
target are set to zero. Other fields are set to the corresponding values in the source
expression.

• When casting a TIME to a TIMESTAMP, the YEAR, MONTH and DAY fields of the target are
set to the respective values obtained by evaluating CURRENT_DATE. Other fields are set to
the corresponding values in the source expression.

Data Management: Structured Query Language (SQL), Version 2 65

Expressions Common Elements

• When casting a TIMESTAMP to a DATE or TIME, the fields of the target are set to the
corresponding values in the source expression. Some fields of the source expression are not
present in the target.

Interval Source

The value of the source expression must be representable as an exact numeric value without the
loss of leading significant digits (’22003’).

3.9.7 Specifying a Collation

Section 2.4.4 on page 23 lists the rules that determine the collation of a character string. The rule
with the highest precedence is that the collation can be specified explicitly in the embedded SQL
program.

To specify a collation explicitly, the program element is followed by the word COLLATE and
then the name of a collation:

element COLLATE collation-name

where element is one of the following:

• A reference to a column of a table whose data type is character string.

• A character-string-literal defined in Section 3.4 on page 48, and the pseudo-literals defined in
Authorisation Pseudo-literals on page 50).

• Any of the expressions defined in Section 3.9 on page 57 whose result is a character string:

— the CAST, CONVERT, LOWER, SUBSTRING, TRANSLATE, TRIM and UPPER functions

— any of the set functions defined in Section 3.9.4 on page 63, when used in a context such
that its result is a character string

— a dynamic parameter (see Section 3.9.5 on page 64) whose data type is character string.

• A sub-query (see Section 3.11.4 on page 76) whose data type is character string. (The
COLLATE syntax appears outside the parentheses of the sub-query.)

• A host variable (see Section 4.1.2 on page 80) whose data type is character string.

66 X/Open CAE Specification

Common Elements Search Conditions and Predicates

3.10 Search Conditions and Predicates
A predicate is an assertion about a relationship between values. The valid SQL predicates are
described in the remainder of this section. These predicates specify or imply comparisons
between two values. In any such comparison, the data types of these values must be
comparable (as defined in Section 3.6 on page 53). A search condition is a combination of one or
more predicates using the logical operators AND, OR and NOT.

Search conditions, predicates and logical operators in SQL use tri-state logic, dealing with the
truth values true, false and unknown. The unknown truth value often results from comparisons
with a null value.

Uses of Search Conditions

In query specifications and in sub-queries (see Section 3.11 on page 71), the WHERE clause uses
a search-condition to qualify its selection of rows. The HAVING clause uses a search-condition to
qualify its selection of groups. The CHECK clause in the CREATE TABLE statement uses a
search-condition to restrict the values that rows of that table may contain. The predicates in a
search-condition are evaluated once for each row or group selected. Qualifying rows or groups in
a SELECT are those for which the search-condition evaluates to true.

A column-name or expression specified in a search-condition is directly contained in that search-
condition if the column-name or expression is not specified within a set-function-reference or a sub-
query of that search-condition.

Logical Operators

The logical operators AND, OR and NOT operate on the truth values true (T), false (F) and
unknown (U), as follows:

AND T F U OR T F U NOT
T T F U T T T T T F
F F F F F T F U F T
U U F U U T U U U U

The order of precedence among the logical operators is NOT (highest), followed by AND,
followed by OR. The order of evaluation at the same precedence level is from left to right. The
application may use parentheses to change this order since, when used in a search-condition, they
determine the binding of predicates to logical operators.

3.10.1 Comparison Predicate

A comparison predicate compares two values and has the form:

expression-1 comparison-operator { expression-2 | (sub-query)}

where comparison-operator may be any of the following:

= equal to
<> not equal to
> greater than

>= greater than or equal to
< less than

<= less than or equal to

Within the context of a comparison predicate, a sub-query must result in either a single value or
an empty set (’21000’). If the result of the sub-query is an empty set, the result of the predicate is
unknown. If the result of the sub-query is a single value, the same rules apply as for expression-2.

Data Management: Structured Query Language (SQL), Version 2 67

Search Conditions and Predicates Common Elements

If either expression-1 or expression-2 evaluates to the null value, the result of the predicate is
unknown. Otherwise, the result is true or false, depending on the outcome of the comparison.

3.10.2 Quantified Comparison Predicate

A quantified comparison predicate compares a value with a number of derived values and has
the form:

expression comparison-operator {ALL | ANY | SOME} (sub-query)

where comparison-operator is as described in Section 3.10.1 on page 67.

If ALL is Specified

The result of the predicate is true if the sub-query results in an empty set or if the comparison is
true for every value returned by the sub-query. The result of the predicate is false if the
comparison is false for at least one value returned by the sub-query. Otherwise, the result of the
predicate is unknown.

If SOME or ANY is Specified

The result of the predicate is true if the comparison is true for at least one value returned by the
sub-query. The result of the predicate is false if the sub-query results in an empty set or if the
comparison is false for every value returned by the sub-query. Otherwise, the result of the
predicate is unknown.

3.10.3 BETWEEN Predicate

A BETWEEN predicate tests whether a value is within a range of values and has the form:

expression-1 [NOT] BETWEEN expression-2 AND expression-3

The predicate (without NOT) is equivalent to:

expression-1 >= expression-2
AND expression-1 <= expression-3

Using the keyword NOT negates the result in the manner of the NOT logical operator.

3.10.4 IN Predicate

An IN predicate compares a value with a list of values or with a number of derived values and
has the form:

expression [NOT] IN {(value [, value] . . .) | (sub-query)}

where value is a dynamic-parameter, a literal or a host-variable-reference.24

The operator IN is equivalent to the operator = ANY. Thus, when NOT is not specified, the
result of the predicate is true if the implied equality comparison is true for at least one specified
or derived comparison value; false if the implied equality comparison is false for every specified
or derived comparison value or if the sub-query results in an empty set; and unknown otherwise.
Using the keyword NOT negates the result in the manner of the NOT logical operator.

24. Any character-string pseudo-literal (for example, USER) is also valid here, but not useful.

68 X/Open CAE Specification

Common Elements Search Conditions and Predicates

3.10.5 LIKE Predicate

A LIKE predicate compares a column value with a pattern and has the form:

column-name [NOT] LIKE pattern-value [ESCAPE escape-character]

where pattern-value and escape-character are each a dynamic-parameter , a character-string-literal , a
host-variable-reference , or the pseudo-literals defined in Authorisation Pseudo-literals on page 50.

The column column-name must reference a character string column. If host-variable-reference is
specified, it must reference a character string variable.

If escape-character , pattern-value , or the value of the column referenced by column-name is the null
value, the result of the predicate is unknown. If NOT is not specified, the result of the predicate
is true or false depending on whether or not the value of the column referenced by column-name
conforms to the specified pattern. Using the keyword NOT negates the result in the manner of
the NOT logical operator.

Pattern Syntax

Within the character string represented by pattern-value, characters are interpreted as follows:

The underscore character (_) stands for any single character.

The percent character (%) stands for any sequence of zero or more characters.

All other characters stand for themselves.

For example, LIKE ’%A%’ is true for any column value that contains the character A. LIKE
’B__’ is true for any column value that is three characters long and starts with the character B.

Escape Character

The ESCAPE clause introduces a single character as the escape character for pattern-value . The
escape character is not treated as part of the pattern, and causes the following character in
pattern-value to be taken literally (without the special effects for _ and % described above). For
example, LIKE ’e%%’ ESCAPE ’e’ is true for any column value that begins with a percent
sign.

To include the escape-character literally within pattern-value , it must appear twice in succession.

DIAGNOSTICS

The length of escape-character must be exactly 1 character (’22019’).

The character following an occurrence of escape-character in pattern-value must be a character
whose effect can be defeated by escape-character ; namely, the underscore character, the percent
character, or another escape-character (’22025’).

3.10.6 NULL Predicate

A NULL predicate compares a value against the null value and has the form:

column-name IS [NOT] NULL

The result of the IS NULL predicate is true if the value of the column referenced by column-name
is the null value, and false otherwise. Using the keyword NOT negates the result in the manner
of the NOT logical operator.

This predicate is the only way to test for the presence or absence of null values. An application
cannot identify null values by comparing them with an embedded host variable whose

Data Management: Structured Query Language (SQL), Version 2 69

Search Conditions and Predicates Common Elements

indicator-variable identifies it as a null value because the comparison always returns the unknown
truth value.

3.10.7 EXISTS Predicate

An EXISTS predicate tests for the existence of a row satisfying some condition and has the form:

EXISTS(sub-query)

The result of the predicate is true if the sub-query does not result in an empty set, otherwise the
result of the predicate is false.

3.10.8 OVERLAPS Predicate

An OVERLAPS predicate tests two ranges of dates and times to see if the ranges overlap. It has
the form:

row-value-constructor-1 OVERLAPSrow-value-constructor-2

Row value constructors are defined in Section 3.12 on page 78.

The degree of both row-value-constructors must be two. Therefore, another way to illustrate the
OVERLAPS predicate is:

(a1, b1) OVERLAPS (a2, b2)

The values a1 and a2 must be date/time values whose data type is comparable (as defined in
Section 3.6 on page 53). Each parenthesised pair of values defines a range of dates or times. The
values a and b in a pair must relate to one another in one of the following ways:

• If a and b are date/time values whose data type is comparable, then the pair defines the range
of dates or times between a and b, (either of which may be the earlier).

• If a is a date/time value and b is an interval value that could be added to it (as defined in
Section 3.9.2 on page 57), then the pair defines the range between a and a + b. (This sum is
earlier or later than a depending on the sign of b.)

The result of the OVERLAPS predicate is true if the two ranges have any date or time in
common, including either endpoint of the ranges. If the two ranges do not overlap, the result is
false. If any of the values is null, then the result is undefined.

70 X/Open CAE Specification

Common Elements Queries

3.11 Queries
A query-specification is the basic data retrieval construct. Evaluating a query-specification may
involve conceptually joining several specified tables and may involve arranging and extracting
information from the table(s) based on specified criteria. (See Section 3.11.1.)

A query-specification is used in the INSERT statement. It is also a component of a query-expression.
A query-expression is an expression involving either one query-specification or several combined
with the UNION operator. (See Section 3.11.3 on page 75.) The query-expression syntactic
element appears in the DECLARE CURSOR and CREATE VIEW statements.

Queries can occur in other contexts, such as predicates. Such a query is a sub-query (see Section
3.11.4 on page 76).

3.11.1 Query Specifications

FUNCTION
Specify a derived table.

SYNOPSIS
A query-specification has the form:

SELECT [ALL | DISTINCT] select-list
FROMtable-reference [, table-reference] . . .
[WHERE search-condition]
[GROUP BYcolumn-clause [, column-clause] . . .]
[HAVING search-condition]

where column-clause is defined as:

column-name [COLLATE collation-name]

and where select-list is defined as:

* | select-sublist [, select-sublist] . . .

and select-sublist is defined as:

expression [[AS] unqualified-column-name]
| { table-name | correlation-name }.*

and table-reference is defined as:

table-name [[AS] correlation-name]
| joined-table

and joined-table is as defined in Section 3.11.2 on page 73.

DESCRIPTION
The result of evaluating a query-specification can be explained in terms of a multi-step
algorithm. The order of steps in this algorithm follows the mandatory order of the clauses
(FROM, WHERE, and so on) of the SELECT statement:

Step 1 For each table-reference that is a joined-table, conceptually join the tables as specified
to form a single table, as described in Section 3.11.2 on page 73.

Step 2 Form a Cartesian product of all the table-references, so that each row of the result is
a concatenation of one row from each of the tables in the order specified, and there
is one row in the result for each combination of rows of the referenced tables.

Step 3 Eliminate all rows that do not satisfy the search-condition in the WHERE clause.

Data Management: Structured Query Language (SQL), Version 2 71

Queries Common Elements

Step 4 Arrange the resulting rows into groups.

— If there is no GROUP BY clause, there is a single group and there are no
grouping columns.

— If there is a GROUP BY clause specifying grouping columns, then form groups
so that all rows within each group have equal values for the grouping columns
according to the specified or implicit collation.

Collation is specified by use of the COLLATE syntax. If this is not used, the
groups are formed according to the collation that the table specifies for the
grouping columns. The COLLATE syntax can be used only on grouping
columns whose data type is character string.

— If a grouping column contains any null values, these values are considered
equal and give rise to only a single group.

Step 5 If there is a HAVING clause, eliminate all groups that do not satisfy its search-
condition. The expressions in the HAVING clause must be single-valued per group.
Thus each column-name directly contained within the search-condition must
reference a grouping column or be a correlated reference (see Section 3.11.5 on
page 76), and if a sub-query contained in the search-condition contains a correlated
reference, it must be to a grouping column or must be specified as the argument of
a set function reference.

Step 6 Generate result rows based on the result columns specified by the select-list.

The select-list ‘‘*’’ is equivalent to a sequence of expressions in which each expression
is a column-name that references a column resulting from Step 2. The columns are
referenced once each, in the order of their ordinal position at the end of Step 2.

If the select-sublist ‘‘{table-name | correlation-name }.*’’ is specified, table-name or
correlation-name must denote a table referenced by the FROM clause. The form
select-sublist ‘‘{table-name | correlation-name }.*’’ is equivalent to a sequence of
expressions in which each expression is a column-name that references a column of the
table denoted by table-name or correlation-name. The columns are referenced once
each, in the order of their ordinal position in the denoted table.

The above uses of the * character may produce different results on different
X/Open SQL implementations; see Section 7.8 on page 185.

Each implicit or explicit expression in the select-list represents a result column.

If GROUP BY was specified, each group generates one result row and the result
columns must be single-valued per group. Therefore, any column referenced by
the select-list must either be a grouping column or be referenced within the
argument of a set-function-reference. If there are no groups, the result of the query-
specification is an empty set.

All result columns have names, derived as follows:

• If an AS clause (a select-sublist) is specified for the column, then its unqualified-
column-name specifies the name of the result column.

• Otherwise, if expression for the column consists only of a column-name, then the
column-name specifies the name of the result column.

• Otherwise, the name of the result column is undefined, except that it is
guaranteed to be different from the name of any column, other than itself, of a
table referenced by a table-reference in the SQL statement.

72 X/Open CAE Specification

Common Elements Queries

If GROUP BY was not specified, each row generates one result row unless a result
column is derived from a set function, in which case the query-specification results
in only a single row and any column referenced by the select-list must be referenced
within the argument of a set-function-reference.

Step 7 In the case of SELECT DISTINCT, eliminate duplicate rows from the result.

The form SELECT DISTINCT cannot use the keyword DISTINCT again in set
functions within the query-specification. For example, if you use SELECT DISTINCT
to eliminate duplicate rows from the result, you cannot also use DISTINCT to
eliminate duplicate rows from the argument of a set function. However, the
keyword DISTINCT may reappear in a sub-query (see Section 3.11.4 on page 76).

Updatability

A query-specification is updatable if and only if the following conditions are satisfied:

• The FROM clause contains a single table-reference, either to a base table or to a derived table
that is updatable.

• Neither the GROUP BY clause nor the HAVING clause is present.

• DISTINCT is not specified.

• All the result columns are derived from column-names and no column-name appears more than
once. That is, either the select-list contains no explicit expressions or every explicit expression it
contains consists of a single distinct column-name.

• If there is a WHERE clause and it contains a sub-query, then the sub-query must not reference
any table referenced in the FROM clause (including indirect references).

3.11.2 Joined Tables

The JOIN syntax provides methods of combining information in tables. Varieties of
combinations, defined below, are the natural join, the inner join, the left outer join, and the right
outer join. (Specifying two or more tables in the FROM clause of a query specification also
conceptually joins the tables, in the same manner as an inner join.)

FUNCTION
Specify combinations of tables within a query-specification.

SYNOPSIS
A joined-table is defined as:

qualified-join | (joined-table)

and qualified-join is defined as:

table-reference-1
[NATURAL]
[INNER | LEFT [OUTER] | RIGHT [OUTER]]
JOIN table-reference-2
{ON search-condition | USING (column-name [, column-name . . .])}

DESCRIPTION
Every use of qualified-join (that is, every case of combining two tables using the JOIN
operator) must specify exactly one of NATURAL, ON, and USING to indicate one of the
following operations:

Data Management: Structured Query Language (SQL), Version 2 73

Queries Common Elements

NATURAL NATURAL JOIN produces a non-null table when the two tables being joined
have common columns (columns with the same name). The operation is
meaningful when common columns contain identical information in the case
where the respective rows are related. For example, two tables may contain
different sets of information on persons, but a common column called NAME
indicates in both tables the person to which the information in that row
pertains. In this example, if the NAME column contains the same value in
rows of two tables, it means those two rows are related.

The result set of a NATURAL JOIN contains one row for each case where all
common columns in the two tables are equal. The result set contains all the
columns from both tables, except that the matching common columns appear
only once in the result set.

Performing a NATURAL JOIN on the two tables of personal information
discussed in the example above produces a result set with one composite row
for each person, based on the value of the common NAME column.

Every common column in the two tables must have a data type that permits
the values in the two tables to be compared.

USING USING introduces a list of column-names. The operation is conceptually the
same as NATURAL JOIN, but JOIN USING takes the specified columns,
instead of all common columns, as the basis for joining the rows.

Specifying the columns explicitly instead of using the entire set of common
columns is useful when both tables contain common columns (for example, a
REMARKS column) which might not be identical even though the rows are
related. Specifying the columns explicitly also guards against undesired
rejection of rows in cases where columns have identical names by accident.

Every specified column in the two tables must have a data type that permits
the values in the two tables to be compared.

ON ON introduces a search-condition. From a Cartesian product of the two tables
(defined in Section 3.11.1 on page 71), the result set contains only those rows
for which the search-condition is true. The search-condition cannot reference
common columns unless it qualifies them, such as by table name.

OUTER JOIN

The above discussion describes the effect if INNER is specified, or if neither INNER, LEFT
OUTER, or RIGHT OUTER is specified. (The keyword OUTER is always optional.) The
INNER JOIN includes rows in the result set based on the respective criteria listed above.
LEFT OUTER JOIN includes in the result table additional rows from the table specified to
the left of the word JOIN (that is, table-reference-1). RIGHT OUTER JOIN includes additional
rows from the table to the right (table-reference-2):

• In LEFT OUTER JOIN, rows from table-reference-1 that were not the basis for any row of
the INNER JOIN appear at the end of the result set. All information from table-reference-1
thus is present in at least one row of the result set.

• In RIGHT OUTER JOIN, rows from table-reference-2 that were not the basis for any row
of the OUTER JOIN appear at the end of the result set. All information from table-
reference-2 thus is present in at least one row of the result set.

Both OUTER JOINs add rows to the result set based on a row of only one of the joined
tables. In each row, the columns that are defined only in the other table contain the null

74 X/Open CAE Specification

Common Elements Queries

value. These rows are combined with the result of the INNER JOIN as in the UNION ALL
operator discussed in Section 3.11.3.

3.11.3 Query Expressions

A query-expression is one or a combination of query-specifications defined as follows:

query-expression UNION [ALL] query-expression
| (query-expression)
| query-specification

Parentheses control the order of evaluation of any UNION operators.

UNION of Tables

The UNION or UNION ALL operator forms a union of two derived tables specified as the
operands. The union is a derived table that contains all the rows of the two operands. In the
UNION ALL form, duplicate rows are retained; if ALL does not follow UNION, then duplicate
rows are eliminated from the union. The two operands must have the same number of columns.

Corresponding columns in a UNION or UNION ALL operation must have compatible data
types. The following list shows all valid combinations of operand columns and, for each
combination, shows the data type of the resulting column:

• If the data type of one operand is a character string, then the data type of the other operand
must be character string.

If either of the operand data types is variable-length character string, then the result data type
is variable-length character string whose maximum length is the largest maximum length of
either operand.

Otherwise, the result data type is fixed-length character string whose length is the largest
length of either of the operands.

• If both of the operand data types are exact numeric, then the result data type is exact
numeric, with implementation-defined precision, and whose scale is the largest scale of either
of the operands.

• If the data type of one operand is approximate numeric, then the data type of the other
operand must be numeric. The result data type is approximate numeric with
implementation-defined precision.

• If the data type of one operand is date/time, then the data type of the other operand must be
date/time and the subtypes must be identical. The result data type is date/time with this
same subtype.

• If the data type of one operand is interval, then the data type of the other operand must also
be interval. Either both operands’ interval precisions must specify YEAR or MONTH, or
both operands’ interval precisions must specify DAY, HOUR, MINUTE or SECOND. The
result data type is interval and its interval precision is selected to accommodate the
date/time fields of either operand. For example, the union of INTERVAL DAY with
INTERVAL MINUTE TO SECOND produces a result of data type INTERVAL DAY TO
SECOND.

The result column allows null values if and only if either operand column allows them.

When these corresponding columns have the same name, the result column takes that name.
Otherwise, the name of the result columns is undefined, except that it is guaranteed to be
different from the name of any column, other than itself, of a table referenced by a table-reference

Data Management: Structured Query Language (SQL), Version 2 75

Queries Common Elements

in the SQL statement.

UNION may be specified several times; the application can use parentheses to indicate the order
in which the union operations are performed. If two or more UNION operations are specified
without parentheses, the operations are performed from left to right. The result set of the cursor
is the result of the final UNION.

Updatability

A query-expression that contains the keyword UNION is not updatable. A query-expression that is
a single query-specification is updatable depending on whether the query-specification is updatable.
This is defined in Section 3.11.1 on page 71.

3.11.4 Sub-queries

FUNCTION
Provide a multi-set of values or rows within a predicate.

SYNOPSIS
A sub-query has the same syntax as a query-specification (see Section 3.11.1 on page 71) but is
enclosed in parentheses.

DESCRIPTION
A sub-query is a limited form of query-specification. A sub-query can be used only on the right
hand side of a comparison predicate, quantified predicate, or IN predicate, or as the subject
of an EXISTS predicate. A sub-query can be nested in expressions within another sub-query.
The result of the sub-query is substituted into the predicate of the outer query.

A sub-query used in a context where each result row is compared to a scalar value (in the
quantified comparison and IN predicates) must have a single result column. A sub-query
used in a comparison predicate must have a single result row and column.

A sub-query in an EXISTS predicate is used to derive a multi-set of rows, but it is the
existence of one or more result rows, rather than the values in these rows, that is significant;
therefore, in this case, the result columns can only be specified using a single asterisk (the
normal case), a single asterisk qualified by a table-name or correlation-name , or a single
column-name.

A sub-query is subject to the same restriction as for query-specification regarding multiple use
of the keyword DISTINCT.

DIAGNOSTICS
When a sub-query is used in a position that requires at most a single value, its evaluation
must produce a result of no more than one row (’21000’).

3.11.5 Correlation

The column-name element has been defined as:

[{ table-name | correlation-name }.] unqualified-column-name

A qualifier is added to a unqualified-column-name to show which table, and which reference to
that table, the column-name relates to. The reasons for using a qualifier are (1) to override the
scope rules, given below, that assume a default table reference; and (2) to differentiate among
simultaneous references to the same table in cases described below. In addition, labelling
references to tables with correlation-names may increase the readability of the application
program even in cases where their use is not strictly required.

76 X/Open CAE Specification

Common Elements Queries

In any table-reference in a FROM clause, the table-name can be followed by a correlation-name. If a
correlation-name appears, it is the name that specifies this table reference. If it does not appear,
the table-name itself specifies this table reference. This name of the table reference is the name
that can be used to qualify a unqualified-column-name.

Scope of Table Reference Names

The scope of a name that denotes a table reference is the entire innermost sub-query, query-
specification or SELECT statement that contains the FROM clause.

Within a FROM clause, table-names that denote table references must be unique, and correlation-
names must be unique and distinct from the unqualified table-names that denote table references.

The scope of a table-name in an UPDATE or searched DELETE statement is the entire statement.

If a column-name contains a qualifier, the column-name must be within the scope of that qualifier.
If the column-name is within the scope of more than one qualifier with the specified name, the
name refers to the qualifier with the most local scope. The specified table reference must be to a
table that contains a column with the specified unqualified-column-name.

If a column-name does not include a qualifier, the column-name must be within the scope of, and is
assumed to be qualified by, a qualifier whose associated table contains a column with the
specified unqualified-column-name. If there is more than one possible qualifier, there must be only
one with the most local scope and that one is assumed.

Multiple References to the Same Table

There are two notable cases:

• A FROM clause references the same table twice.

A typical example of this is joining a table to itself (joining rows of the same table). Since
there are two simultaneous distinct references to the same table, two distinct, explicit
qualifiers are needed to distinguish between the two references. Thus, at least one of the
table-references must contain a correlation-name.

• A sub-query and an outer query reference the same table.

If the sub-query refers to both references — the table reference within the sub-query and the
reference to the same table in the outer query — then the references are simultaneous, and
qualifiers must be used to distinguish between the two occurrences. Thus, at least one of the
table-references must contain a correlation-name.

In this example, only the reference in the sub-query to the occurrence in the outer query needs
an explicit qualifier for unique identification. The reference to the occurrence within the sub-
query could be implicit because of the rule that the reference with the most local scope is
assumed.

If the value of a sub-query depends on the value of a column in a row of an outer query, the
sub-query is a ‘‘correlated sub-query’’ and the reference to the column of the outer query is a
‘‘correlated reference’’. A correlated sub-query has to be evaluated once for each row of the
outer query.

A correlated reference need not be explicitly qualified unless required for uniqueness of
reference. However, it may improve clarity to associate a correlation-name with the relevant
table-name in the FROM clause of the outer query, and to qualify the correlated reference with
this name.

Data Management: Structured Query Language (SQL), Version 2 77

Queries Common Elements

If the sub-query refers only to its own occurrence, then this reference and the reference in the
outer query are not simultaneous and do not need to be distinguished. This case is not a
correlated reference.

3.12 Row Value Constructor
FUNCTION

Specify the value of each column of a table row.

SYNOPSIS
A row-value-constructor has the form:

(column-spec [, column-spec]...)

where each column-spec can be an expression, NULL, or DEFAULT.

DESCRIPTION
There are two cases in X/Open SQL syntax where the application uses a row-value-
constructor to specify a complete row of a table:

• One form of the INSERT statement, which inserts a row into a table, lets the application
specify values of each column in the new row.

• The OVERLAPS predicate, which compares two ranges of dates or times, deals with
each range as a row containing two columns of type date/time or interval.

These valid contexts for a row-value-constructor impose restrictions on the number and
values of the column-specs.

The degree of a row-value-constructor is the number of column-specs it contains.

78 X/Open CAE Specification

Chapter 4

Embedded Aspects

This chapter begins the discussion of the actual contents of an embedded SQL program.

A host program can contain two categories of SQL constructs:

• Declaratives, specified in the data declaration part of a program, let the host program and
the database system exchange data values and other information. The SQL declarative is the
SQL declare section (see Section 4.2 on page 84).

• Statements appear in the procedural part of a program and specify operations on the
contents of a database (metadata and data). This chapter discusses the following SQL
statements that are usually non-executable:

— the DECLARE AUTHORIZATION statement (see Section 4.3 on page 86)

— the DECLARE CURSOR statement (see Section 4.4.1 on page 88)

— the dynamic DECLARE CURSOR statement (see Section 4.4.2 on page 89)

— the WHENEVER statement (see Section 4.6 on page 94).

The executable SQL statements are discussed in Chapter 5.

4.1 Embedded SQL Host Program

4.1.1 Embedded SQL Constructs

SQL constructs are distinguished from programming language statements by starting with the
prefix EXEC SQL and ending with a host-language-dependent special terminator. The prefix
EXEC SQL must be specified on a single line of the source program and the keywords must be
separated only by one or more spaces.

The SYNOPSIS sections of this specification generally do not include the prefix EXEC SQL nor
the terminator. Section 4.2 on page 84 breaks this general rule in order to illustrate that the SQL
declare section includes a header (BEGIN DECLARE SECTION) and a trailer (END DECLARE
SECTION), both of which have the prefix EXEC SQL and a terminator. The escape clause (see
Section 7.2 on page 181) is another exception; escape clauses do not use the prefix EXEC SQL nor
the terminator but have their own delimiter syntax.

The rules for the placement of host-language comments in SQL constructs are those of the host
language. SQL constructs embedded in host-language comments are treated as comments.

An SQL comment may appear anywhere in an SQL construct that a separator may appear
(except between the keywords in EXEC SQL, EXEC SQL BEGIN DECLARE SECTION, and
EXEC SQL END DECLARE SECTION). SQL comments are ignored during the compilation of
the SQL construct.

Lower-case letters are allowed for SQL keywords and user-defined names.

The only token that may be split across lines is a character-string literal. This is achieved using
the continuation syntax of the host language.

Data Management: Structured Query Language (SQL), Version 2 79

Embedded SQL Host Program Embedded Aspects

Special Rules for COBOL

• The SQL terminator is END-EXEC.

• SQL constructs must not be contained within library text processed by a COPY statement
and must not be modified by a REPLACE statement.

• SQL constructs must be specified in Area B.

• An SQL construct must not be specified on a debugging line.

• SQL statements must be specified in the program’s Procedure Division and may appear
anywhere an imperative statement is allowed. A paragraph name may precede EXEC SQL
on the line, subject to the usual restrictions in COBOL.

Special Rules for C

• The SQL terminator is a semicolon (;).

• SQL constructs must not be contained within an #include file and must not be modified by a
#define directive.

• SQL statements may be specified anywhere a C statement may be specified within a function
block. A label may precede EXEC SQL on the line, subject to the usual restrictions in C.

Additional constraints on the location of SQL declaratives are listed in Section 4.2 on page 84.
Additional constraints on the use of SQL statements governed by a WHENEVER statement are
listed in Section 4.6 on page 94.

4.1.2 Embedded Host Variables and Indicator Variables

Embedded host variables are normal host-language variables that executable SQL statements
use to exchange data with the database.

A host variable in an SQL statement is immediately preceded by a colon (:). The term embedded-
variable-name is thus defined as:

: host-identifier

For COBOL, a host-identifier is a data-name. For C, a host-identifier is a variable identifier. Any
host-identifier used must be declared in the SQL declare section. It may be the same as an SQL
keyword or user-defined name. (Some implementations restrict the names of these variables; see
Section 7.3 on page 183.)

An embedded-variable-name used as a descriptor-name in an ALLOCATE DESCRIPTOR,
DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR statement or USING
clause identifies a host variable whose value identifies an SQL descriptor area. An embedded-
variable-name used in the get-descriptor-information clause of a GET DESCRIPTOR statement
identifies a host variable that is receiving a value from an SQL descriptor area. In all other
contexts, an embedded-variable-name identifies a host variable that is supplying a value.

80 X/Open CAE Specification

Embedded Aspects Embedded SQL Host Program

Indicator Variables

An embedded host variable may be accompanied by an indicator variable. An indicator variable
is a host-language variable capable of holding a two-byte integer value. It indicates whether the
associated embedded host variable contains the null value and whether the implementation
truncated a character string value. (See Section 3.8 on page 56.)

Any indicator variable immediately follows its associated embedded host variable, except that
the keyword INDICATOR may introduce the indicator variable. Like an embedded host
variable, an indicator variable is preceded by a colon.

The term host-variable-reference refers to an embedded host variable with an optional indicator
variable. Its syntax is:

embedded-variable-name [[INDICATOR] indicator-variable]

where each of embedded-variable-name and indicator-variable is a host-identifier (defined above)
preceded by a colon.

A host-variable-reference used in the INTO clause of a FETCH or SELECT statement identifies a
host variable to which a column value is to be assigned. In all other contexts, a host-variable-
reference identifies a host variable that is supplying a value.

Scope of Host Variables

It is implementation-defined whether the scope of a host variable follows the scope rules of the
host language or the textual order of embedded SQL constructs. (For host variables referenced
by a cursor specification, the scope rule applies to the OPEN statements rather than the
DECLARE CURSOR statement.)

Data Management: Structured Query Language (SQL), Version 2 81

Embedded SQL Host Program Embedded Aspects

4.1.3 Data Types and Embedded Host Variables

An embedded host variable must have a description that corresponds to one of the SQL data
types. The data type of the host variable is considered to be that corresponding data type. All
embedded host variables are conceptually allowed to contain null values.

Here is the most nearly equivalent SQL data type for several COBOL data types:

COBOL Data Type X/Open SQL Equivalent
PIC X(n); 1 ≤ n ≤ 254 CHARACTER(n)*

PIC S9(5) SMALLINT
or PIC S9(5) COMP-3
or PIC S9(4) COMP
or PIC S9(4) BINARY

PIC S9(10) INTEGER
or PIC S9(10) COMP-3
or PIC S9(9) COMP
or PIC S9(9) BINARY

PIC S9(m)V9(n) DECIMAL(m+n,n)
or PIC S9(m)V9(n) COMP-3 or
or PIC S9(m)V9(n) COMP NUMERIC(m+n,n)
m,n ≥ 0; 0 < m+n ≤ 15
Note: V is optional if n = 0.

(COMPUTATIONAL is a valid synonym for COMP and PICTURE is a valid synonym for PIC.)
The CHARACTER VARYING, DATE, DOUBLE PRECISION, FLOAT, INTERVAL, REAL, TIME
and TIMESTAMP data types of X/Open SQL have no direct equivalent in COBOL.

COBOL data definitions using the PACKED-DECIMAL storage type are not currently recognised
as having equivalent SQL data types.

Here is the most nearly equivalent SQL data type for several C data types:

C Data Type X/Open SQL Equivalent
char[n]; 2 ≤ n ≤ 255 CHARACTER(n−1)*
short or int SMALLINT (see below)
long INTEGER
float REAL
double DOUBLE PRECISION

The DATE, DECIMAL, INTERVAL, FLOAT, NUMERIC, TIME and TIMESTAMP data types of
X/Open SQL have no direct equivalent in C. The CHARACTER VARYING data type of
X/Open SQL can be expressed in C using a special syntax defined in Special Rules for C on
page 85.

* This host-language data type can also be used to represent values of type DATE, TIME, TIMESTAMP and INTERVAL (and REAL
and DOUBLE PRECISION in COBOL, and DECIMAL and NUMERIC in C) after using the CAST function (see Section 3.9.6 on
page 65) to obtain the string representation. The length must be sufficient to hold a value of the respective type (as defined for
date/time values in Table 3-4 on page 43 and for intervals in Length of an Interval on page 46). (The length must be one greater
than this in C due to the null terminator.)

82 X/Open CAE Specification

Embedded Aspects Embedded SQL Host Program

Any C int variables used must be portable: that is, their absolute values must be less than 32768.

If an application uses a C char variable to assign a value to a column of a table, it must terminate
the character string with a null byte (\0). When the implementation assigns a value to such a
host variable, it pads the value with blanks and terminates it with a null byte (\0).

Some implementations may support larger ranges than shown in the above tables. The tables
state the largest values that application writers may safely assume that all implementations
support.

Data Management: Structured Query Language (SQL), Version 2 83

SQL Declare Section Embedded Aspects

4.2 SQL Declare Section
FUNCTION

Define SQL-specific aspects of the compilation unit.

SYNOPSIS
EXEC SQL BEGIN DECLARE SECTIONsql-terminator

[SQL NAMES ARE character-set-name]
[host-variable-definition] . . .

EXEC SQL END DECLARE SECTIONsql-terminator

DESCRIPTION
A compilation unit may contain one or more SQL declare sections. They define the default
character set and define host variables used in SQL statements.

The header (BEGIN DECLARE SECTION) and trailer (END DECLARE SECTION) are
separately delimited as shown. The header and trailer, including their delimiters, must each
be specified on a single line of the source program, and their keywords must be separated
from each other only by one or more spaces.

Special Rules for COBOL

• The declare section must be placed in the Working Storage or Linkage Section of the
Data Division.

• The declare section must not contain any COPY statements, REPLACE statements, or
debugging lines, and must not be modified by any REPLACE statement.

Special Rules for C

• The declare section may be placed anywhere C variables may be declared.

• The declare section must not contain any #include or #define directives and must not be
modified by any #define directive.

SQL NAMES Clause
The optional SQL NAMES clause defines a default character set for every user-defined name
and character-string literal in the compilation unit (except those that explicitly declare their
own character set, using the syntax discussed in Section 3.1.5 on page 36).

If an SQL NAMES clause does not appear in any SQL declare section in the compilation
unit, user-defined names and character-string literals that do not declare their own character
set are assumed to use an implementation-defined character set that contains at least every
character in the SQL character set (see Section 2.4.3 on page 21).

Only one SQL NAMES clause is allowed anywhere in the compilation unit.

Host Variable Declarations
Every host variable that a statement references, including indicator variables and
SQLSTATE, must be declared in exactly one SQL declare section, which must textually
precede all SQL statements that reference that variable.

These variable declarations resemble the form of variable declarations in the host language,
but they contain SQL-specific syntax and are subject to SQL-specific rules, listed below for
COBOL and C.

Host variables declared in SQL declare sections are normal host program variables and may
be referenced by host program statements without restriction.

84 X/Open CAE Specification

Embedded Aspects SQL Declare Section

Special Rules for COBOL

• Each declared variable must be an elementary data item with a level number of 01 or 77.

• A data item may contain PICTURE, SIGN, SYNCHRONIZED, USAGE and VALUE
clauses. (For the uses of various PICTURE clauses, see Section 4.1.3 on page 82.) It may
not contain the BLANK, JUSTIFIED, OCCURS or REDEFINES clauses.

• The following ISO 1989: 1985 COBOL Standard extensions are not allowed:

— GLOBAL and EXTERNAL clauses
— lower-case letters, except in non-numeric literals
— the interchangeability of the separators comma, semicolon and space
— picture string continuation
— blank lines preceding continuation lines
— the ALL figurative constant in the VALUE clause
— symbolic character in the VALUE clause.

• To specify the character set of a character-string value, the syntax PIC X(n) or PICTURE
X(n) can be preceded by the following syntax:

CHARACTER SET [IS] character-set-name

If this syntax is omitted, the variable uses the character set specified in the SQL NAMES
clause (see above); if there is no SQL NAMES clause, the variable is assumed to use an
implementation-defined character set. If the resulting character set is a multi-byte
character set, then the effective length of the variable in the COBOL program is
implicitly multiplied by the number of bytes of a character in that character set.

Special Rules for C

• A C variable must not be a pointer variable, and must not be part of a structure or union.

• The storage classes auto, const, extern, static, and volatile may be specified.

• A declarator may specify an initial value for the identifier being declared.

• In the specification of a char array, any of the following can be coded in place of the C
keyword char:

char CHARACTER SET [IS] character-set-name
VARCHAR
VARCHAR CHARACTER SET [IS]character-set-name

A variable or array defined using the word char can be referenced in executable SQL
statements as a variable of type CHAR.

Use of the keyword VARCHAR lets the variable or array be referenced in executable
SQL statements as a variable of type VARCHAR. The array uses a null termination byte
to indicate the length of the meaningful data in the VARCHAR variable. The declared
length of the C array must be 2 or greater.

Use of the CHARACTER SET clause specifies a character set for its contents. If this
syntax is omitted, the variable is assumed to use the character set specified in the SQL
NAMES clause (see above); if there is no SQL NAMES clause, the variable is assumed to
use an implementation-defined character set. If the resulting character set is a multi-byte
character set, then the effective length of the variable or array in the C program is
implicitly multiplied by the number of bytes of a character in that character set.

Data Management: Structured Query Language (SQL), Version 2 85

DECLARE AUTHORIZATION Statement Embedded Aspects

4.3 DECLARE AUTHORIZATION Statement
FUNCTION

Define an authorization identifier to be used to check the privileges for statements in the
program.

SYNOPSIS
DECLARE AUTHORIZATIONauthorization-identifier [FOR STATIC ONLY]
P where authorization-identifier is defined as:

character-string-literal

DESCRIPTION
A DECLARE AUTHORIZATION statement provides an authorization identifier to be used
when checking the privileges of the statements contained in a program.

The existence of a DECLARE AUTHORIZATION statement in the program indicates that
the program is to be executed with definer’s rights, as discussed in Section 2.6.3 on page 26.

If this statement is specified, it must be the first SQL statement in the program.

If FOR STATIC ONLY specified, authorization-identifier is only used to check static SQL. Any
dynamic SQL executed using EXECUTE or EXECUTE IMMEDIATE statements uses the
current authorization identifier for the session.

If FOR STATIC ONLY is not specified, authorization-identifier is used to check both static and
dynamic SQL.

86 X/Open CAE Specification

Embedded Aspects DECLARE AUTHORIZATION Statement

4.4 Cursors
A cursor is a means for a host program to gain access to a table, one row at a time.

A cursor is defined by a DECLARE CURSOR statement (see Section 4.4.1 on page 88) or by a
dynamic DECLARE CURSOR statement (see Section 4.4.2 on page 89). Declaring a cursor
defines the following:

• It defines a name for the cursor.

• It defines the result set of the cursor as a derived table based on a query-expression and it may
define an ordering of the rows of that table. If it does not define an ordering, then the rows of
the result set occur in an undefined order.

Statements that Affect Cursors

Executable SQL statements that operate on a cursor defined by DECLARE CURSOR are as
follows: OPEN opens a cursor and CLOSE closes a cursor. While a cursor is open, FETCH
extracts the row of the result set pointed to by the cursor, and updates the cursor position;
positioned UPDATE updates the row of the result set pointed to by the cursor; and positioned
DELETE deletes the row pointed to by the cursor.

Cursors defined by dynamic DECLARE CURSOR statements are operated on by the
corresponding dynamic cursor statements: Dynamic OPEN, dynamic CLOSE, dynamic FETCH,
dynamic positioned UPDATE, and dynamic positioned DELETE.

All these executable statements refer to the cursor using its declared name.

Openness and Cursor Position

During execution, information associated with a cursor is whether it is open, and, if it is open, its
position:

A cursor is open when the application has used the OPEN statement on it and has not yet used
the CLOSE statement on it. Otherwise the cursor is closed.

The position of an open cursor is either before a certain row, on a certain row, or after the last
row. A cursor may be before the first row or after the last row even though the result set is
empty. If the position is on a row, then that row is the current row of the result set.

If the cursor position is on or before a row that gets deleted through that cursor, then the cursor
assumes a position before the next row. If such a row does not exist, then the cursor is
positioned after the last row.

Other Cursor Effects

If a cursor is open, and the current transaction makes a change to the database other than
through that cursor, then whether the change will be visible through that cursor before it is
closed is undefined.

If an error occurs during the execution of an SQL statement that identifies an open cursor, then
any effect on the position or state of that cursor is undefined, except where this specification
explicitly defines an effect.

Data Management: Structured Query Language (SQL), Version 2 87

Cursors Embedded Aspects

4.4.1 DECLARE CURSOR Statement

FUNCTION
Define a cursor.

SYNOPSIS
DECLAREcursor-name CURSOR FORcursor-specification

where cursor-specification is defined as:

query-expression
[ORDER BY sort-specification [, sort-specification]. ..]
[FOR {READ ONLY

| UPDATE [OF unqualified-column-name [, unqualified-column-name]. ..]}]

and sort-specification is defined as:

{ unqualified-column-name | unsigned-integer } [ASC | DESC]

and query-expression is defined in Section 3.11.3 on page 75.

DESCRIPTION
A DECLARE CURSOR statement defines and names a cursor for subsequent use within the
compilation unit.

A compilation unit may define several cursors, provided they have distinct names. The
DECLARE CURSOR statement defining a cursor must textually precede any SQL
statements that reference that cursor.

Updatability of the cursor

The application may specify FOR READ ONLY or FOR UPDATE, subject to restrictions
below, to indicate whether it will perform updates using the cursor. Knowledge that a
cursor will not be used for update may let the implementation optimise its processing of the
cursor.

The cursor is updatable, and therefore can appear in positioned DELETE and positioned
UPDATE statements, if and only if all of the following are true:

1. The query-expression is updatable (see Section 3.11.3 on page 75).

2. The application does not specify ORDER BY.

3. The application does not specify FOR READ ONLY.

If the cursor is not updatable because conditions (1) or (2) above are not met, then the
application may also specify FOR READ ONLY but it must not specify FOR UPDATE. If
conditions (1) and (2) above are both met, FOR UPDATE is implicit (with no specified
columns). The application may specify FOR UPDATE or FOR READ ONLY.

A FOR UPDATE clause may specify a list of columns. If it does, these are the only ones that
a positioned UPDATE statement can update using this cursor. Any columns specified must
be columns of the table referenced by the (single) FROM clause of the query-specification (but
need not be columns of the result set of the cursor). If the FOR UPDATE clause does not
specify columns, it implicitly refers to all columns of the query-specification .

88 X/Open CAE Specification

Embedded Aspects Cursors

Ordering of Rows

An application can control the ordering of rows in the result set by using ORDER BY. If the
application does not do so, the ordering is undefined. ORDER BY introduces one or more
sort-specifications. Each identifies a column, either by its name or by an unsigned integer that
represents its ordinal position within the result set. (To specify a column whose name is not
known, the application must use the unsigned integer.25)

The rows are ordered in ascending order of that column’s values unless the application
specifies DESC (descending), in which case they are ordered in descending order. The
application may redundantly specify ASC for ascending.

If there is more than one sort-specification, then the rows are ordered first according to the
first sort-specification. Where the specified column contains duplicate values, those rows are
then ordered according to the second sort-specification, and so on. Rows that have duplicate
values in the columns specified by all the sort-specifications appear in the result set together,
but in an undefined order.

Ordering is determined by the comparison rules defined in Section 3.6 on page 53. (See
Section 3.7 on page 54 for a description of implicit comparison methods on the null value.)

Implementation

No code is generated for a DECLARE CURSOR statement. Instead, the application
effectively executes the statement each time it opens the defined cursor. This is also the
point at which any referenced host variables are evaluated.

4.4.2 Dynamic DECLARE CURSOR Statement

FUNCTION
Define a dynamic cursor.

SYNOPSIS
DECLAREcursor-name CURSOR FORstatement-name

DESCRIPTION
A dynamic DECLARE CURSOR statement associates cursor-name with statement-name. The
description of the DECLARE CURSOR statement in Section 4.4.1 on page 88 applies to the
dynamic DECLARE CURSOR statement too.

The dynamic DECLARE CURSOR statement must be preceded by a PREPARE statement for
this statement-name in the text of an embedded host program.

To refer to the cursor-name by positioned DELETE or positioned UPDATE statements, the
embedded-variable-name specified in the associated PREPARE statement must contain a FOR
UPDATE clause.

It is implementation-defined whether multiple dynamic DECLARE CURSOR statements
can reference the same statement-name.

25. To ensure portability, an application should use unsigned integers to specify columns whose names are implementation-
generated, even if the actual names are known to the application.

Data Management: Structured Query Language (SQL), Version 2 89

SQL Statement Outcomes Embedded Aspects

4.5 SQL Statement Outcomes
Information on the outcome of executable SQL statements notifies applications of the actual
effects and may let them take compensatory action to convert failure to success. X/Open-
compliant implementations predictably return specified error information.

X/Open specifies the SQLSTATE and SQLCODE status variables that an application can include
in its SQL declaratives. The implementation uses these variables to return status information to
the application.

In addition, the diagnostics area may be able to report multiple outcome records for a single
executable SQL statement. Each record may include a text description of the outcome.

4.5.1 Outcome Categories

The effect of an executable SQL statement can fall into four general categories:

• Success means that the statement executed successfully without limitation.

• Success with warning means that the statement executed successfully but its effect was
limited and may not be as the application desired.

• No data means that the statement executed successfully but that there were no rows that
satisfied conditions in the statement, or the statement operated on no rows of the table. (This
implies that the statement has made no change to the database.) No data occurs in these
situations:

— The FETCH statement fetches no row. (This typically means that the implicit movement
of the cursor failed because the cursor was already at the end of the set.)

— The SELECT statement produces an empty table as its result.

— The condition specified in an INSERT, searched DELETE or searched UPDATE statement
is not satisfied.

• Error means that the statement did not execute successfully. The statement makes no change
to the database. The statement’s effect on associated host variables and on SQL descriptor
areas is undefined unless this document explicitly specifies an effect.

4.5.2 SQLSTATE Status Variable

An application can define a host variable named SQLSTATE in its SQL declare section.
SQLSTATE describes the result (or primary exception code) of the most recently executed SQL
statement.

A list of valid SQLSTATE values appears in Appendix B.

If a C program defines SQLSTATE, its data type must be char[6]. If a COBOL program defines
SQLSTATE, its data type must be PIC X(5).

Fields of SQLSTATE

SQLSTATE is a 5-character string that an SQL statement returns to indicate status. SQLSTATE
can contain only digits and capital letters. The first two characters of SQLSTATE indicate a class;
the following three characters indicate a subclass. Class codes are unique, but subclass codes are
not; the meaning of a subclass code depends on the class code that accompanies it.

The initial character of the class and subclass indicates the source document that defines that
return condition:

90 X/Open CAE Specification

Embedded Aspects SQL Statement Outcomes

• Class codes starting with 0-4 or A-H mean that the result condition is defined in the
International Standard (or, for class ’HZ’, in ISO RDA). In this case, subclass codes for
conditions specified in the same standard also start with 0-4 or A-H. The meaning of all other
subclass codes is implementation-defined.

• Class codes starting with 5-9 or I-Z denote implementation-specific conditions. In this case,
subclass codes can start with any character. The meaning of all subclass codes is
implementation-defined, except that implementations may not define ’000’ but return ’000’
when there is no subclass information.

Application Use of SQLSTATE

Applications can test just the class (first 2 characters) of SQLSTATE, to determine the category of
result. Class ’00’ indicates Success; class ’01’ indicates Success with warning; class ’02’
indicates No data; and other class codes each describe a general group of Errors (for example,
’07’ indicates a dynamic SQL error). An application can test the entire string (the 2-character
class code and the 3-character subclass code) to obtain a more precise error report.

4.5.3 Diagnostics Area

The diagnostics area holds a sequence of diagnostic records, with information pertaining to the
most recently executed SQL statement. This information can be obtained using the GET
DIAGNOSTICS statement.

The first record (exception number 1) corresponds to the SQLSTATE value set by the most recent
SQL statement other than GET DIAGNOSTICS. That is, all executable SQL statements set
SQLSTATE as though they had been followed by:

GET DIAGNOSTICS EXCEPTION 1 :SQLSTATE = RETURNED_SQLSTATE

(However, the scope of GET DIAGNOSTICS and of SQLSTATE may differ. Since the diagnostics
area is global to the application, exception number 1 may not correspond to the value of
SQLSTATE in the compilation unit that executes the GET DIAGNOSTICS statement.) The
association between other exception numbers and other exceptions raised by that SQL statement
is undefined.

The number of records in the diagnostics area is a transaction attribute, settable using SET
TRANSACTION (see Section 5.6.4 on page 140).

There is only one diagnostics area for the application, regardless of the number of connections or
compilation units.

Multiple Non-success Outcomes — Primary Outcome

Multiple conditions may occur that would produce outcomes other than Success. If there are
two or more status records, they occur in an undefined order, except that the primary outcome ,
which is placed in the first record of the diagnostics area and is also assigned to SQLSTATE, is
defined as the highest-ranking condition using the following ranking:

1. Errors. If two or more status records describe the same condition, then the standardised or
X/Open-defined SQLSTATE (classes from ’03’ to and including ’HZ’) outranks the
implementation-defined SQLSTATE.26

26. In addition, records that indicate a failure or possible failure of the transaction outrank records that indicate statement failure.

Data Management: Structured Query Language (SQL), Version 2 91

SQL Statement Outcomes Embedded Aspects

2. Warnings values in class ’01’.

3. Implementation-defined No Data values in class ’02’.

If the implementation generates two or more status records that all have the highest rank of any
status record generated, then it is undefined which of these is the first record.

In the remainder of the diagnostics data structure, an application cannot assume that errors
precede warnings. Applications should scan the entire diagnostic data structure to obtain
complete information on the non-success outcome of a CLI function.

Access Violations

Some users are not entitled to know whether a table or other object exists. In this case,
SQLSTATE reports an access violation. If the user is entitled to more precise information, the
diagnostics area may contain additional result indications. See Access Violations on page 99.

Omissions from the Diagnostics Area

Implementations are required to place a record corresponding to the outcome that SQLSTATE
reports in record 1 of the diagnostics area. However, despite the hierarchy of outcomes
presented above, implementations are not required to populate the diagnostics area with other
outcomes that might apply to the execution of the SQL statement.

Textual Outcome Description

The MESSAGE_TEXT field of a diagnostic record may contain informative text on the statement
outcome that the record reports. However, even when the text is meaningful, it is not
standardised and is not a portable way for applications to test result status. Implementations
may return a zero-length string for diagnostic text.

4.5.4 SQLCODE Status Variable

An application can define a host variable named SQLCODE in its SQL declare section. This
must be a signed, 4-byte integer capable of holding a value in the INTEGER range. The value of
SQLCODE indicates the outcome of the most recently executed SQL statement:

• An SQL statement that achieves Success or Success with warning sets SQLCODE to 0.

• The implementation reports the No data outcome by setting SQLCODE to +100. (Some
implementations use positive numbers for certain error conditions; see Section 7.6 on page
184.)

• Negative values of SQLCODE indicate the Error outcome, but do not portably describe the
reason for the error.

SQLSTATE provides more precise information than SQLCODE. X/Open does not specify
SQLCODE values for all SQL statement outcomes. Applications should test SQLSTATE, not
SQLCODE, to determine the status of an executable SQL statement. If a C program defines
SQLCODE, its data type must be long. If a COBOL program defines SQLCODE, its data type
must be PIC S9(9) COMP.

92 X/Open CAE Specification

Embedded Aspects SQL Statement Outcomes

4.5.5 Application Usage

Preferred Error Detection Methods

An application should test for exceptions using one of these methods:

• Examine the status variable SQLSTATE.

If SQLSTATE indicates an outcome other than unqualified success (’00000’), execute GET
DIAGNOSTICS. This statement retrieves from the diagnostics area (see Section 4.5.3 on page
91) one or more error or warning indications that apply to the most recently executed SQL
statement. The indications are in the SQLSTATE (5-character) format. Some
implementations may also provide diagnostic text for some or all indications.

• Use the WHENEVER statement (see Section 4.6 on page 94) to force subsequent executable
SQL statements to effect a transfer of control (GOTO) in the Success with warning, No data
and Error categories. The WHENEVER statement adds code to each executable SQL
statement to effect the transfer of control if any selected result category occurs.

Application Coding Options

X/Open intends this specification to support even application programs written before
SQLSTATE was developed. Different compilation units may define different destination
variables to hold status information. The implementation returns status in variables based on
the following rules:

• If the application defines either the SQLSTATE or SQLCODE status variable in the SQL
declare section, the implementation sets the defined variable.

• If the application defines both SQLSTATE and SQLCODE in the SQL declare section, the
implementation sets both. When at least one of the status variables is defined in the SQL
declare section, the implementation does not return information in any SQLCODE or
SQLSTATE variables defined outside the SQL declare section.

• When neither of the status variables is defined in the SQL declare section, the
implementation assumes there is an SQLCODE variable defined outside the SQL declare
section and uses it. The implementation does not check the application to ensure that
SQLCODE is a valid variable name, so this option can produce compilation or execution
errors. (If the application defines an SQLSTATE variable outside the SQL declare section, the
implementation does not use it.)

4.5.6 Other Effects of Errors

Some errors may close an open cursor, or end an active transaction with an implicit ROLLBACK
statement.

Some distributed implementations do not correctly notify the application of the outcome of
COMMIT in cases where communication errors occur. See Section 7.5 on page 184.

Data Management: Structured Query Language (SQL), Version 2 93

WHENEVER Statement Embedded Aspects

4.6 WHENEVER Statement
FUNCTION

Enable or disable subsequent executable SQL statements from transferring control if they
produce exceptions.

SYNOPSIS
WHENEVER {SQLERROR | SQLWARNING | NOT FOUND}

{{GOTO | GO TO} host-label | CONTINUE}

DESCRIPTION
The WHENEVER statement affects executable SQL statements that textually follow it. The
keyword GOTO (or the equivalent GO TO) indicates that applicable SQL statements may
transfer control to host-label . The keyword CONTINUE specifies no special transfer of
control following applicable SQL statements; this form is typically used to cancel the effect
of a WHENEVER . . . GOTO statement.

Each WHENEVER statement relates to a single statement outcome class. The keywords
NOT FOUND, SQLERROR and SQLWARNING correspond to the outcomes No data, Error
and Success with warning respectively, as specified in Section 4.5 on page 90. Such a
WHENEVER statement has no effect on invocations of SQL statements that produce a
different outcome. Up to three WHENEVER statements, one for each of the three outcomes,
can be in force for each SQL statement. The WHENEVER statement relating to a given
outcome class remains in force until another WHENEVER statement relating to the same
outcome class appears.

For example, if an executable SQL statement produces No data, then it may transfer control
depending on the nearest WHENEVER NOT FOUND statement that precedes it textually.
If this statement used GOTO, the executable SQL statement transfers control to the host-label
specified in that WHENEVER statement. If this statement used CONTINUE, or if there is
no such statement textually preceding the executable SQL statement, then there is no special
transfer of control.

No code is generated for a WHENEVER statement at the point at which it is declared.
Rather, appropriate code is effectively generated immediately following those executable
SQL statements within its scope.

4.6.1 Special Rule for C

• host-label must be a label defined in the same program block or in a block of a higher scope.

4.6.2 Special Rules for COBOL

• host-label must be a section name or unqualified paragraph name.

• Executable SQL statements which could transfer control because of prior use of a
WHENEVER . . . GOTO statement:

— must not be within the scope of an IF statement terminated by its explicit scope
terminator END-IF

— must not immediately precede a scope terminator (for example, ELSE, NOT ON SIZE
ERROR or END-ADD), except for a terminating period

— are essentially conditional statements; ISO 1989: 1985 COBOL Standard implementations
that treat such SQL statements as conditional statements further restrict the locations
where they can appear.

94 X/Open CAE Specification

Embedded Aspects Multiple Compilation Units

4.7 Multiple Compilation Units
An embedded SQL host program may invoke other embedded SQL host programs written in the
same host language. In these cases, the following rules apply:

• The scope of a cursor declaration is limited to a single compilation unit. The same cursor-
name must not be used in more than one compilation unit.

• The scope of a statement-name is limited to a single compilation unit. The same statement-
name must not be used in more than one compilation unit.

• The scope of a descriptor-name is limited to a single compilation unit. The same descriptor-
name must not be used in more than one compilation unit.

• The scope of an exception declarative is limited to a single compilation unit.

• A host variable can be used in SQL statements only in that compilation unit in which it is
declared.

• The flow of control may freely cross the boundaries of compilation units. Crossing a unit
boundary has no effect on transactions or the states of cursors.

• The limit on the number of open cursors applies to the application as a whole, not to the
individual compilation units.

In this context, a COBOL source program contained in another COBOL source program is
considered a separate compilation unit.

Data Management: Structured Query Language (SQL), Version 2 95

Embedded Aspects

96 X/Open CAE Specification

Chapter 5

Executable SQL Statements

This chapter gives a synopsis of each SQL statement’s syntax, describes its behaviour, and lists
its associated diagnostics, such as SQLSTATE values.

5.1 Classification of SQL Statements
The following table shows the classification and function of each executable SQL statement:

Name Function Section
Create/Drop Schema
CREATE SCHEMA Create a schema. 5.3.6
DROP SCHEMA Drop a schema. 5.3.13
Other Data Definition Statements
ALTER TABLE Add or destroy a column in an existing base table. 5.3.2
CREATE CHARACTER SET Create a character set. 5.3.3
CREATE COLLATION Create a collation. 5.3.4
CREATE INDEX Create an index on a base table. 5.3.5
CREATE TABLE Create a base table. 5.3.7
CREATE TRANSLATION Create a translation. 5.3.8
CREATE VIEW Create a viewed table. 5.3.9
DROP CHARACTER SET Destroy a character set. 5.3.10
DROP COLLATION Destroy a collation. 5.3.11
DROP INDEX Destroy an index. 5.3.12
DROP TABLE Destroy a base table. 5.3.14
DROP TRANSLATION Destroy a translation 5.3.15
DROP VIEW Destroy a view. 5.3.16
GRANT Grant privileges on a table. 5.3.17
REVOKE Revoke privileges on a table. 5.3.18
Data Manipulation Statements
CLOSE Close a cursor. 5.4.1 *
Positioned DELETE Delete a row of a table. 5.4.2 *
Searched DELETE Delete rows based on a search-condition. 5.4.3
FETCH Advance the cursor and fetch a row of a table. 5.4.4
INSERT Insert rows into a table. 5.4.5
OPEN Open a cursor. 5.4.6
SELECT INTO Assign table values to host variables. 5.4.7
Positioned UPDATE Update a row of a table. 5.4.8 *
Searched UPDATE Update a table based on a search-condition. 5.4.9

* The section defines both the data manipulation statement and the corresponding dynamic SQL statement.

Data Management: Structured Query Language (SQL), Version 2 97

Classification of SQL Statements Executable SQL Statements

Name Function Section
Dynamic SQL Statements
ALLOCATE DESCRIPTOR Allocate an SQL descriptor area. 5.5.3
Dynamic CLOSE Close a dynamic cursor. 5.4.1 *
DEALLOCATE DESCRIPTOR Deallocate an SQL descriptor area. 5.5.4
Dyn. Positioned DELETE Delete a row of a table. 5.4.2 *
DESCRIBE Get information about a prepared statement. 5.5.5
EXECUTE Execute a prepared statement. 5.5.6
EXECUTE IMMEDIATE Execute an SQL statement in a host variable. 5.5.7
Dynamic FETCH Fetch a row for a cursor. 5.5.8
GET DESCRIPTOR Get information from an SQL descriptor area. 5.5.9
Dynamic OPEN Associate input values and open a cursor. 5.5.10
PREPARE Prepare a statement for execution. 5.5.11
SET DESCRIPTOR Assign values to an SQL descriptor area. 5.5.12
Dyn. Positioned UPDATE Update a table based on a search-condition. 5.4.8 *
Transaction Control Statements
COMMIT Successfully complete the current transaction. 5.6.2
ROLLBACK Cancel the current transaction. 5.6.3
SET TRANSACTION Set the attributes of the next transaction. 5.6.4
Connection Statements
CONNECT Connect the client with a server. 5.7.6
DISCONNECT End a connection between a client and a server. 5.7.7
SET CONNECTION Make a specified connection the current one. 5.7.8
Session Statements
SET CATALOG Set the default catalog name. 5.8.1
SET NAMES Set the default character set 5.8.2
SET SCHEMA Set the default schema name. 5.8.3
SET SESSION AUTHORIZATION Set the session authorisation identifier 5.8.4
Diagnostic Statement
GET DIAGNOSTICS Get information from the diagnostics area. 5.9

* The section defines both the data manipulation statement and the corresponding dynamic SQL statement.

98 X/Open CAE Specification

Executable SQL Statements General Diagnostics

5.2 General Diagnostics
This section is important since the following material applies to many types of SQL statement. It
is not repeated in the sections that define the applicable statements.

General diagnostics also appear in the following locations:

• Section 5.3.1 on page 102 for data definition statements

• Section 5.6.1 on page 139 for transaction control statements

• Section 5.7.5 on page 143 for connection statements.

5.2.1 Syntax Checking

Syntax checking of an SQL statement includes tests of all of the following:

• that the statement syntax conforms to the SYNOPSIS given in this chapter

• that the statement satisfies other syntactic rules stated in text in the DESCRIPTION sections

• access violations and adequacy of references to objects, as discussed below.

Syntax checking is typically done at compile-time. However, in some situations, such as sending
an SQL statement to a remote server, run-time syntax checking occurs and SQLSTATE is set to
(’42000’) for syntax errors.

Access Violations

Access to each database object is subject to privileges (see the GRANT statement in Section
5.3.17 on page 115 and the REVOKE statement in Section 5.3.18 on page 116). Any applicable
data definition statements, data manipulation statements, and dynamic SQL statements detect
violations of these privileges. A violation is reported as a syntax error (’42000’, but see also
below).

A general rule implicit in the International Standard, and made more explicit in emerging
standards, is that a database system may check security at compile-time, but must validate access
again at execution. It is unacceptable for compiled database access routines to perpetuate the
security policy that was in effect when they were compiled.

Disclosure of Access Violations

For certain types of access violation, the implementation is able to disclose additional
information that some applications are not entitled to obtain. In all these cases, SQLSTATE is set
to ’42000’. However, the DIAGNOSTICS sections in this chapter specify a different value, from
the following sets:

• diagnostics of invalid cardinality, which begin with ’21S’

• diagnostics of existence of an object in a schema, which begin with ’42S’.

If the application is entitled to know the exact cause of the failure, the codes listed above may
appear in the diagnostics area.

Data Management: Structured Query Language (SQL), Version 2 99

General Diagnostics Executable SQL Statements

Object References

The following diagnostics are examples of access violations that are issued when an object of the
type given in the left-hand column is specified in an embedded SQL statement and does not exist
in the specified or implied schema. The reporting of these diagnostics is subject to the rules
specified above. Following the table are exceptions under which the diagnostics are not
reported.

Object Type Syntax Reference Diagnostic
Section 3.1.3 on page 35Catalog ’42S42’
Section 3.1.5 on page 36Character set ’42S52’
Section 3.9.7 on page 66Collation* ’42S62’
CONVERT on page 60Conversion* ’42S72’
Section 3.1.3 on page 35Schema ’42S32’
[various]Table ’42S02’
TRANSLATE on page 62Translation* ’42S82’

Table 5-1 Object Types with General Diagnostics for Existence Checking

Exceptions. It is not an error that a referenced object does not exist if either of the following
applies:

• The reference occurs in a CREATE statement that is bringing the object into existence.

• The reference occurs in a statement that is enclosed in a CREATE SCHEMA statement and
the referenced object is defined somewhere in the same CREATE SCHEMA statement.

5.2.2 Expression Errors

Any data manipulation statement or dynamic SQL statement with a query-specification can
produce the expression errors specified in Section 3.9 on page 57.

5.2.3 Assignment Errors

Any SQL statement that assigns values to embedded host variables or to database columns can
produce the data transfer errors described in Section 3.5 on page 51.

Certain SQL statements assign values to host variables or to DATA and INDICATOR fields of an
SQL descriptor area. X/Open does not specify the sequence of these assignments nor the result
value of an assignment in which an error occurs. If such an SQL statement produces an
assignment error, the contents of all host variables or SQL descriptor area fields that should have
been modified is undefined.

* The diagnostic is not raised if the referenced object name is in an implementation-defined list of built-in objects of that type. In
the case of character sets, Section 1.3.4 on page 6 specifies character sets that are built-in on all X/Open-compliant
implementations.

100 X/Open CAE Specification

Executable SQL Statements General Diagnostics

5.2.4 Constraint Checking

At the completion of any SQL statement that changes the contents of a table, all applicable
constraints must be satisfied (’23000’). For example, a null value cannot be given to a column
constrained by NOT NULL; a duplicate value cannot be given to a column constrained by
UNIQUE; and any foreign key or primary key referential constraint or CHECK constraint that
applies to the table or to any column must continue to be satisfied. Constraints are specified in
the CREATE TABLE statement that created the table, and are discussed in Section 5.3.7 on page
107.

5.2.5 Read-only Transaction Violation

The following statements cannot be executed within a transaction whose access level is READ
ONLY (’25000’):

• any data definition statement

• DELETE, INSERT and UPDATE.

The transaction access level is specified by the SET TRANSACTION statement (see Section 5.6.4
on page 140).

5.2.6 Connection Errors

Connection statements give the application access to multiple servers, some of which may be
remote. X/Open SQL syntax does not distinguish between local and remote servers.
Subsequent SQL statements can report failure if the application is disconnected from the server,
either through its use of the DISCONNECT statement or because of communication errors,
administrative action, or other events. See Section 5.7.5 on page 143 for details.

Communication errors are reported promptly; a success return indicates that the current
statement completed without communication errors.

Data Management: Structured Query Language (SQL), Version 2 101

Data Definition Statements Executable SQL Statements

5.3 Data Definition Statements
A data definition statement modifies the metadata of the database. Data definition statements
define tables and views; data manipulation statements store and retrieve data from them.

For the data manipulation statements to work correctly, the definitions of the tables they
reference must exist at compile-time. For example, the CREATE TABLE or CREATE VIEW
statements that define specific tables must have been executed before compiling a program that
inserts data into those tables. If the metadata with respect to those tables subsequently changes,
then the behaviour of the program is implementation-defined.

Applications should not mix data definition statements and data manipulation statements
within transactions. See Section 7.4 on page 183.

5.3.1 General Diagnostics

Only the owner of a schema can alter the definition of the objects within the schema. Therefore,
the current user must be the owner of the schema that contains the object referenced by ALTER
TABLE, CREATE INDEX, DROP INDEX, DROP TABLE or DROP VIEW; or the owner of the
schema dropped by DROP SCHEMA (’42000’). (The CREATE SCHEMA statement lets a user
create and populate a schema to be owned by another user.)

5.3.2 ALTER TABLE

NAME
ALTER TABLE — Add or destroy a column in an existing base table.

SYNOPSIS
ALTER TABLE base-table-name

ADD [COLUMN] column-definition
| DROP [COLUMN] identifier {CASCADE | RESTRICT}

where column-definition is as defined in Section 5.3.7 on page 107.

DESCRIPTION
The ALTER TABLE statement adds a new column to, or drops an existing column from,
base-table-name.27

Adding a Column

The ADD clause specifies the column name and data type of a new column, and may also
specify a default value and column constraints, using the same syntax as in the CREATE
TABLE statement (see Section 5.3.7 on page 107). The new column appears at the right-hand
side of the table, so that a new value is added at the end of every existing row of the table.
The column’s initial value is the default value. (If ALTER TABLE does not specify a default
value, the default value is the null value.)

Adding a column to a table has no effect on any existing query-specification contained in a
view definition, since any implicit column references are resolved when the view definition
is originally executed.

27. A former alternative syntax for the ALTER statement that specified several columns in parentheses is no longer supported. To
add more than one column to an existing base table, use multiple ALTER TABLE statements.

102 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

Dropping a Column

In an ALTER TABLE statement that contains the DROP clause, the application must use the
keyword CASCADE or RESTRICT. Doing so specifies the effect if the dropped column is
referenced in the query-specification of a view definition or in the search-condition of a
constraint:

CASCADE All such viewed tables and constraints are also dropped.

RESTRICT The statement is invalid.

A column cannot be dropped when it is the only column in the table.

DIAGNOSTICS
The ALTER TABLE statement must not specify any column twice and must not identify any
existing columns in the base table (’42S21’).

When adding a column that does not allow null values to a non-empty table, the ALTER
TABLE statement must specify a non-null default value (’23000’).

The Success with warning outcome occurs if a default value was specified (see Section 5.3.7
on page 107, DEFAULT clause) whose length exceeds 254 characters (’0100B’). The warning
indicates that the application cannot retrieve the default value by querying the COLUMNS
system view (see COLUMNS on page 160).

APPLICATION USAGE
The ALTER TABLE. . . ADD COLUMN statement, which sets the new column to its default
value in all rows of the table, fails due to a constraint violation in the following cases:

• If the new column is constrained to be NOT NULL, the default value is null and the table
is not empty, then an immediate violation of the NOT NULL constraint occurs because
the statement would extend all existing rows to contain the new column with a null
value.

• If the new column is constrained to be UNIQUE, the default value is non-null and the
table has two or more rows, then an immediate violation of the UNIQUE constraint
occurs because the statement would extend all existing rows to contain the new column
with the same value.

5.3.3 CREATE CHARACTER SET

NAME
CREATE CHARACTER SET — Create a character set.

SYNOPSIS
CREATE CHARACTER SETnew-char-set [AS]

GET character-set-name
[COLLATE collation-name
| COLLATION FROMcollation-source]

where collation-source is as defined in Section 5.3.4 on page 104.

DESCRIPTION
The CREATE CHARACTER SET statement creates a character set named new-char-set
derived from an existing character set. The statement also defines the default collation for
new-char-set.

If a collation is specified using the COLLATE or COLLATION FROM clause, then it is the
default collation for new-char-set. The COLLATE syntax allows reference to an existing,
named collation. The COLLATION FROM syntax allows use of the more general syntax for

Data Management: Structured Query Language (SQL), Version 2 103

Data Definition Statements Executable SQL Statements

specifying a collation, as defined in Section 5.3.4.

If a collation is not specified in the CREATE CHARACTER SET statement, then the default
collation for new-char-set is the same collation that would be achieved by use of the
statement CREATE COLLATION ... FOR new-char-set FROM DEFAULT (see Section 5.3.4).

DIAGNOSTICS
The new-char-set must not identify an existing character set (’42S51’).

5.3.4 CREATE COLLATION

NAME
CREATE COLLATION — Create a collation.

SYNOPSIS
CREATE COLLATIONnew-collation FOR character-set-name

FROMcollation-source
[PAD SPACE
| NO PAD]

where collation-source is as follows:

collation-name
| DEFAULT
| DESC(collation-name)
| EXTERNAL(character-string-literal)
| TRANSLATION translation-name [THEN COLLATION collation-name]

DESCRIPTION
The CREATE COLLATION statement creates a collation named new-collation, defined on the
specified, existing character set. A collation is a sort order to be used when character strings
of the specified character set are compared.

The collation-source specifies the collation. The following forms are valid:

• The collation-source can be a collation-name of an existing collation. The effect of a
CREATE COLLATION statement that uses this form is basically to define a new name
for the existing collation. (However, the pad attribute of the new collation may be
defined to be different from that of the existing collation; see below.)

• The word DEFAULT specifies that the collation is to be performed using the order of
characters as they appear in the character repertoire.

When a CREATE CHARACTER SET does not specify a default collation for the new
character set, the character set uses this same DEFAULT rule.

• The syntax DESC(collation-name) specifies that the new collation is the same collation as
collation-name except that the order is reversed.

• The syntax EXTERNAL(character-string-literal) specifies an implementation-defined
EXTERNAL collation. The set of valid values for the literal is implementation-defined.

An implementation can define a certain collation as a built-in collation-name. This means
it can be used in embedded SQL programs. By contrast, an implementation can also
define a certain collation as a valid EXTERNAL collation. This means it must be
assigned a collation-name using the CREATE COLLATION statement before it can be
used.

• The TRANSLATION clause specifies that, in comparing two strings under the collation
being defined, each string is first translated using translation-name.

104 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

— If the THEN COLLATION clause is present, then the results of the above translation
are compared using collation-name.

— If the THEN COLLATION clause is not present, then the results of the above
translation are compared using the default collation defined for the target character
set of translation-name.

The CREATE COLLATION statement can specify a pad attribute for the new collation using
either the PAD SPACE clause or the NO PAD clause. If neither clause is present, PAD
SPACE is assumed, except that if collation-source uses any syntax that specifies a collation-
name, then the pad attribute of that collation becomes the pad attribute of the collation being
defined.

DIAGNOSTICS
The new-collation must not identify an existing collation (’42S61’).

5.3.5 CREATE INDEX

NAME
CREATE INDEX — Create an index on a base table. Ensure uniqueness of the values in the
specified columns.

SYNOPSIS
CREATE [UNIQUE] INDEX index-name

ON base-table-name (unqualified-column-name [ASC | DESC]
[, unqualified-column-name [ASC | DESC]]...)

DESCRIPTION
The CREATE INDEX statement creates an index named index-name on the existing base
table base-table-name. The schema specified or implied by index-name must be the schema in
which the base table resides.

The index key is constructed of columns from the specified base table in the given order of
significance. When ASC is specified, the order of the referenced column is ascending. When
DESC is specified, the order of the referenced column is descending. The default order is
ascending.

UNIQUE indicates that at most one row is allowed in the table for each combination of
values in the specified columns. For the purpose of this clause two null values are
considered equal. The constraint is enforced when rows are inserted or updated and
checked during execution of the CREATE INDEX statement.

DIAGNOSTICS
The base-table-name must identify a table that already exists (’42S02’). However, the index-
name must not identify an existing index (’42S11’).

Any specified column must already exist (’42S22’). (See the exception in Object References
on page 100.)

Data Management: Structured Query Language (SQL), Version 2 105

Data Definition Statements Executable SQL Statements

5.3.6 CREATE SCHEMA

NAME
CREATE SCHEMA — Create a schema.

SYNOPSIS
CREATE SCHEMA [object-qualifier] [AUTHORIZATION auth-id]

[DEFAULT CHARACTER SETcharacter-set-name]
[schema-element [schema-element]...]

where each schema-element is a CREATE TABLE, CREATE VIEW, CREATE INDEX or
GRANT statement.

DESCRIPTION
The CREATE SCHEMA statement creates a schema, a unit that can contain tables, indexes
and privileges.

OP If object-qualifier is of the form schema-name, then it specifies the name of the new schema. If it
is of the form catalog-name.schema-name, then schema-name is the name of the new schema
and the schema resides in the catalog catalog-name. (If the catalog is not specified, the
catalog in which the schema resides is implementation-defined.) If object-qualifier is omitted,
then the name of the new schema is the user name specified by the AUTHORIZATION
clause, which must be present.

The AUTHORIZATION clause specifies, as auth-id, the owner of the new schema. If the
AUTHORIZATION clause is omitted, the current user owns the new schema.

If the DEFAULT CHARACTER SET clause is present, then character-set-name is the name of
the character set that all data within the schema will use, unless contrary declarations are
made on a more local level, such as by the CREATE TABLE statement for specific columns
of a table. If the clause is omitted, then the default character set for the schema is
implementation-defined.

By finishing the CREATE SCHEMA statement with one or more schema-elements, the user
can specify the initial contents of the schema. This can be some sequence of the following
statements:

• the CREATE INDEX statement specified in Section 5.3.5 on page 105

• the CREATE TABLE statement specified in Section 5.3.7 on page 107

• the CREATE VIEW statement specified in Section 5.3.9 on page 111

• the GRANT statement specified in Section 5.3.17 on page 115.

The statements can appear in any order; in fact, the definition of a view or index can precede
the definition of the underlying base table, and tables can reference columns in tables that
appear later in the CREATE SCHEMA statement.

A CREATE SCHEMA statement need not specify any schema-element. Objects can be created
and privileges granted by data definition statements executed subsequently.

DIAGNOSTICS
The object-qualifier must not identify an existing schema (’42S31’).

There are no other diagnostics specific to CREATE SCHEMA. However, if schema-elements
are specified, these operations can fail with the diagnostics specified in the respective
section. If any error occurs executing a schema-element, then CREATE SCHEMA returns the
associated diagnostics and does not create the schema.

106 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

APPLICATION USAGE
Applications can use the AUTHORIZATION clause to specify auth-id as the owner of the
created schema. The list of schema-elements in CREATE SCHEMA is the user’s last chance to
affect the set of objects in the schema, because the user will not own the schema when
CREATE SCHEMA completes.

5.3.7 CREATE TABLE

NAME
CREATE TABLE — Create a base table.

SYNOPSIS
CREATE TABLEbase-table-name-1

(column-element [, column-element]...)

where column-element is defined as:

column-definition | table-constraint-definition

and column-definition is defined as:

unqualified-column-name data-type [DEFAULT default-value]
[column-constraint-definition [, column-constraint-definition]...]

[COLLATE collation-name]

and column-constraint-definition is defined as:

CHECK (search-condition)
| NOT NULL
| PRIMARY KEY
| REFERENCESbase-table-name-2 [(unqualified-column-name)]
| UNIQUE

and default-value is defined as:

literal | NULL

and table-constraint-definition is defined as:

UNIQUE (unqualified-column-name [, unqualified-column-name]...)
| PRIMARY KEY (unqualified-column-name [, unqualified-column-name]...)
| CHECK (search-condition)
| FOREIGN KEY referencing-columns

REFERENCESbase-table-name-2 [referenced-columns]
[ON DELETE {NO ACTION | CASCADE | SET NULL | SET DEFAULT}]

and referencing-columns and referenced-columns are defined as:

(unqualified-column-name [, unqualified-column-name]...)

and where no two column-definitions begin with the same unqualified-column-name.

DESCRIPTION
The CREATE TABLE statement creates a base table named base-table-name-1. The current
user becomes the owner of the base table. The owner has all privileges on the table, and can
GRANT and REVOKE privileges on the table to other users.

The CREATE TABLE statement specifies each column of the created base table, giving its
name in unqualified-column-name and its data type in the corresponding data-type. The
column allows null values unless NOT NULL or PRIMARY KEY appears in that column
definition.

Data Management: Structured Query Language (SQL), Version 2 107

Data Definition Statements Executable SQL Statements

In each column-definition , if data-type is a character-string data type, then the COLLATE
clause can be used to specify a collation; if the COLLATE clause is omitted, the default
collation associated with data-type is assumed.

It is implementation-defined which users can execute CREATE TABLE.

Table Constraints

A table-constraint-definition may contain UNIQUE, PRIMARY KEY, CHECK or FOREIGN
KEY:

• If UNIQUE appears, then each row is constrained to contain a different value in the
specified column (or specified columns taken together).

• PRIMARY KEY has the same meaning as UNIQUE, but also declares that the column
names are the ones implicitly referenced in any FOREIGN KEY constraints (see below)
that reference base-table-name-1. PRIMARY KEY may not occur more than once in a
CREATE TABLE statement. Designating a column as the PRIMARY KEY also implicitly
constrains the column to be NOT NULL.

• If CHECK appears, then each row is constrained to contain values that satisfy the
search-condition.

• If FOREIGN KEY appears, then each row is constrained in that the referencing-columns
must contain values found in base-table-name-2. The valid values are contained in the
referenced-columns or, if this is omitted, in the primary key of base-table-name-2.

Each unqualified-column-name specified in UNIQUE, PRIMARY KEY or referencing-columns
must identify a column of base-table-name1. In each case, if a list is specified, it must not
identify the same column more than once.

Multiple unique (UNIQUE or PRIMARY KEY) clauses cannot apply to the same set of
columns.

ON DELETE Actions

As described above, specifying FOREIGN KEY for one or more referencing-columns in the
table being defined restricts their valid values to those existing in certain columns of a table
base-table-name-2. If those values in base-table-name-2 were deleted, all referencing-columns
that contained the deleted values would immediately violate the FOREIGN KEY
constraint.28

When creating a table with a FOREIGN KEY, the application can specify what happens in
this case by using an ON DELETE clause. This specifies the effect of certain positioned
DELETE or searched DELETE statements applied to base-table-name-2. ON DELETE is
followed by exactly one of the following:

NO ACTION
The positioned DELETE or searched DELETE fails with ’23000’ and makes no change to
the database. (This was the only option in the previous issue of this specification,
which did not specify the ON DELETE clause.)

28. The table being defined could also violate this constraint if the values in base-table-name-2 were modified. The International
Standard includes an ON UPDATE clause, which works in the same manner as the ON DELETE clause specified here, to cover
this case. X/Open does not require implementations to support the ON UPDATE clause.

108 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

CASCADE
All rows where any referencing-columns are affected are also deleted. If some columns of
a deleted row are themselves the object of FOREIGN KEY references, the deletion of the
row may cause additional rows to be deleted, possibly including rows in other tables.

SET NULL
Affected referencing-columns are set to the null value.*

SET DEFAULT
Each affected column of referencing-columns is set to its respective default value.*

If the CREATE TABLE statement contains a FOREIGN KEY clause that does not contain an
ON DELETE clause, ON DELETE NO ACTION is assumed.

Column Constraints

A column-constraint-definition is a distinct syntactic form that achieves the same purposes as
a table-constraint-definition but applies to a single column. This form may contain CHECK,
NOT NULL, PRIMARY KEY, REFERENCES or UNIQUE.

• The NOT NULL constraint constrains the column to not contain null values. NOT
NULL may not occur more than once in a column-definition.

• The PRIMARY KEY and UNIQUE constraints have the same effect as described above
for table constraints. In the case of column constraints, the application cannot specify
both PRIMARY KEY and UNIQUE.29

• The REFERENCES column constraint is equivalent to a FOREIGN KEY table constraint
(see above). It constrains each row to contain only values contained in a specified base
table.

• If CHECK appears, then each row is constrained to contain a value that satisfies the
search-condition. The search-condition may only contain literals and references to the
column being defined.

The DEFAULT clause specifies a value that is given to the column if an INSERT statement
does not furnish a value. All columns have a default value; if the application does not use
the DEFAULT clause, the column’s default value is the null value.

The specified or implied default value can be NULL, even if the column is constrained by
NOT NULL, but it is then a constraint violation to insert a row without overriding the
default value.

Any specified default value is subject to the following rules:

• If the data type of the column is character string, default-value must be a character string
literal or pseudo-literal and its length must not exceed the column’s length or maximum
length; blanks are appended to a literal if necessary to make it the length of a fixed-
length column.

* Doing so may itself violate an integrity constraint, such as a NOT NULL or CHECK constraint. In this case, the positioned
DELETE or searched DELETE fails as described for the NO ACTION case.

29. Implementation Note: UNIQUE columns may specify NOT NULL, and PRIMARY KEY columns imply NOT NULL. In
X/Open SQL, a UNIQUE index (which is functionally similar to a unique constraint) may be created including columns which
are defined to allow null values. This means X/Open-compliant implementations cannot implement unique constraints using
UNIQUE indexes unless they enforce the NOT NULL constraint separately.

Data Management: Structured Query Language (SQL), Version 2 109

Data Definition Statements Executable SQL Statements

If default-value is a pseudo-literal such as CURRENT_TIMESTAMP or CURRENT_USER,
the column’s default value reflects the value the pseudo-literal has at the time of the
particular insertion, not the value it had at the time of the CREATE TABLE statement.

• If the data type of the column is exact numeric, default-value must be a numeric literal for
which there is a valid representation in the column that does not lose any significant
digits.

• If the data type of the column is approximate numeric, default-value must be a numeric
literal.

In the CHECK clause, the search-condition may not contain a set function reference, a sub-
query, CURRENT_DATE, CURRENT_TIME or CURRENT_TIMESTAMP.

FOREIGN KEY lets one table reference itself or another table. The REFERENCES keyword
can appear in a column-constraint-definition to apply to the column being defined, or in a
table-constraint-definition to apply to one column or to a set of columns taken together.
Referencing and referenced columns must be equal in number and in data type. The
sequence of referenced-columns must be the same as that in a UNIQUE or PRIMARY KEY list
in the CREATE TABLE statement that defines base-table-name-2.

DIAGNOSTICS
The base-table-name-1 must not identify an existing base table or viewed table (’42S01’).

Any column specified in a constraint (referencing a table other than the one being created)
must already exist (’42S22’). (See the exception in Object References on page 100.)

The current user must have the REFERENCES privilege on all referenced-columns (’42000’).

The Success with warning outcome occurs if a default value was specified whose length
exceeds 254 characters (’0100B’). The warning indicates that the application cannot retrieve
the default value by querying the COLUMNS system view (see COLUMNS on page 160).

5.3.8 CREATE TRANSLATION

NAME
CREATE TRANSLATION — Create a translation.

SYNOPSIS
CREATE TRANSLATIONnew-translation

FOR source-char-set TO target-char-set FROM
{ IDENTITY
| translation-name
| EXTERNAL(character-string-literal)

DESCRIPTION
The CREATE TRANSLATION statement creates a translation named new-translation, for use
in the TRANSLATE function specified in TRANSLATE on page 62. A translation takes a
character string in source-char-set and produces a string in target-char-set.

The CREATE TRANSLATION statement can specify the translation in one of the following
ways:

• The keyword IDENTITY means that the translation is null; the translation being defined
translates every character of the source string into the corresponding character from
target-char-set. Although the characters are unchanged by the IDENTITY translation,
their encodings may be different in the target character string.

110 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

• An existing translation-name can be specified. The effect of a CREATE TRANSLATION
statement that uses this form is basically to define a new name for the existing
translation.

• The syntax EXTERNAL(character-string-literal) specifies an implementation-defined
EXTERNAL translation. The set of valid values for the literal is implementation-defined.

An implementation can define a certain translation as a built-in translation-name. This
means it can be used in embedded SQL programs. By contrast, an implementation can
also define a certain translation as a valid EXTERNAL translation. This means it must be
assigned a translation-name using the CREATE TRANSLATION statement before it can
be used.

DIAGNOSTICS
The new-translation must not identify an existing translation (’42S81’).

5.3.9 CREATE VIEW

NAME
CREATE VIEW — Create a viewed table.

SYNOPSIS
CREATE VIEWviewed-table-name

[(unqualified-column-name [, unqualified-column-name]...)]
AS query-expression
[WITH CHECK OPTION]

where a given unqualified-column-name appears only once.

DESCRIPTION
The CREATE VIEW statement creates a viewed table viewed-table-name that is the result of
evaluating query-expression.

The query-expression defines a derived table, as specified in Section 3.11.3 on page 75. The
resulting viewed table is updatable if this derived table is updatable. The data types of the
viewed table’s columns are the same as those of the corresponding columns of the derived
table. The viewed table’s column names are the names of the corresponding columns of the
derived table unless the CREATE VIEW statement contains unqualified-column-names. (If the
derived table contains any columns with undefined or duplicate names, then the CREATE
VIEW statement must contain unqualified-column-names.)

The current user becomes the owner of the viewed table. The owner has INSERT or
DELETE privileges on the viewed table if the viewed table is updatable and if the owner has
that privilege on the table from which the viewed table is derived. The owner has UPDATE
privilege on a given column of the viewed table if the viewed table is updatable and if the
owner has that privilege on the corresponding column of the table from which the viewed
table is derived. Otherwise the owner only has SELECT privilege on the viewed table.

If any query-specification in query-expression contains a GROUP BY clause, viewed-table-name
identifies a grouped view.

No query-specification in query-expression may reference any host variables, contain any
dynamic parameters, or reference the viewed table being created.

Data Management: Structured Query Language (SQL), Version 2 111

Data Definition Statements Executable SQL Statements

WITH CHECK OPTION

The search conditions in the query-specification in the CREATE VIEW statement, combined
with those in any underlying CREATE VIEW statement, are called the view criteria.

If WITH CHECK OPTION is specified, then any insert or update performed on the viewed
table, or on any table derived from the viewed table, fails (setting SQLSTATE to ’44000’) if
the resulting row violates the view criteria. That is, the insert or update fails if the effect of
the change would be that the resulting row is no longer present in viewed-table-name .

If WITH CHECK OPTION is not specified, then query-expression determines the initial
definition of the viewed table, but does not regulate the changes that can be made to the
viewed table. In this case, the application may insert or update rows in the viewed table
that it is subsequently unable to retrieve through that viewed table.

DIAGNOSTICS
The viewed-table-name must not identify an existing base table or viewed table (’42S01’).

If CREATE VIEW contains unqualified-column-names, the number of names specified must be
the same as the degree of the derived table defined by query-expression (’21S02’).

The current user must have SELECT privilege on every table referenced by query-expression
(’42000’). If SELECT privilege is revoked at any time on any such table, the viewed table is
dropped automatically.

5.3.10 DROP CHARACTER SET

NAME
DROP CHARACTER SET — Destroy a character set.

SYNOPSIS
DROP CHARACTER SETcharacter-set-name

DESCRIPTION
The DROP CHARACTER SET statement removes the character set character-set-name from
the database.

The statement is invalid if there is any of the following dependencies on the character set
being dropped:

• If any table column of a character-string data type is defined to use character-set-name.

• If any named collation is defined for character-set-name.

• If any translation uses character-set-name as either its source character set or its target
character set.

• If the SQL NAMES clause in an SQL declare section specifies character-set-name as the
default character set for user-defined names and character-string literals in the
compilation unit.

(A CASCADE option, in which the implementation would resolve any of the above
dependencies, is not defined.)

DIAGNOSTICS
The character-set-name must identify a character set that already exists (’42S52’).

112 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

5.3.11 DROP COLLATION

NAME
DROP COLLATION — Destroy a collation.

SYNOPSIS
DROP COLLATIONcollation-name

DESCRIPTION
The DROP COLLATION statement removes the collation collation-name from the database.

The statement is invalid if there is any of the following dependencies on the collation being
dropped:

• If the collation is specified as the default collation for any character set.

• If the collation is specified as the collation to be used for any string expression in the
database, such as in a constraint.

• If the collation is used in the definition of another collation.

(A CASCADE option, in which the implementation would resolve any of the above
dependencies, is not defined.)

DIAGNOSTICS
The collation-name must identify a collation that already exists (’42S62’).

5.3.12 DROP INDEX

NAME
DROP INDEX — Destroy an index.

SYNOPSIS
DROP INDEXindex-name

DESCRIPTION
The DROP INDEX statement removes the index index-name from the database.

DIAGNOSTICS
The index-name must identify an index that already exists (’42S12’).

5.3.13 DROP SCHEMA

NAME
DROP SCHEMA — Destroy a schema.

SYNOPSIS
DROP SCHEMA [object-qualifier] {CASCADE | RESTRICT}

DESCRIPTION
The DROP SCHEMA statement destroys the schema specified by object-qualifier.

The application must use the keyword CASCADE or RESTRICT. Doing so specifies the
effect if the schema contains any object (table, index, or privilege):

CASCADE All such objects are also destroyed.

RESTRICT The statement is invalid.

DIAGNOSTICS
The object-qualifier must identify a schema that already exists (’42S32’).

Data Management: Structured Query Language (SQL), Version 2 113

Data Definition Statements Executable SQL Statements

5.3.14 DROP TABLE

NAME
DROP TABLE — Destroy a base table.

SYNOPSIS
DROP TABLEbase-table-name {CASCADE | RESTRICT}

DESCRIPTION
The DROP TABLE statement removes base-table-name from the database. It also drops any
indexes based on that base table, and revokes any privileges that were granted on that base
table.

The application must use the keyword CASCADE or RESTRICT. Doing so specifies the
effect if FOREIGN KEY or CHECK constraints reference base-table-name or if viewed tables
are based on base-table-name:

CASCADE All such constraints and viewed tables are also dropped.

RESTRICT The statement is invalid.

DIAGNOSTICS
The base-table-name must identify a table that already exists (’42S02’).

5.3.15 DROP TRANSLATION

NAME
DROP TRANSLATION — Destroy a translation.

SYNOPSIS
DROP TRANSLATIONtranslation-name

DESCRIPTION
The DROP TRANSLATION statement removes the translation translation-name from the
database.

The statement is invalid if there is any of the following dependencies on the translation
being dropped:

• If the translation is used in the definition of a collation.

• If the translation is used within any string expression in the database, such as in a
constraint.

(A CASCADE option, in which the implementation would resolve any of the above
dependencies, is not defined.)

DIAGNOSTICS
The translation-name must identify a translation that already exists (’42S82’).

5.3.16 DROP VIEW

NAME
DROP VIEW — Destroy a view.

SYNOPSIS
DROP VIEWviewed-table-name {CASCADE | RESTRICT}

DESCRIPTION
The DROP VIEW statement removes viewed-table-name from the database. It also revokes
any privileges granted on the viewed table.

114 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

The application must use the keyword CASCADE or RESTRICT. Doing so specifies the
effect if other viewed tables are based on viewed-table-name:

CASCADE All such other viewed tables are also dropped.

RESTRICT The statement is invalid.

Revoking necessary SELECT privileges from the owner of a viewed table may implicitly
drop a viewed table.

DIAGNOSTICS
The viewed-table-name must identify a table that already exists (’42S02’).

5.3.17 GRANT

NAME
GRANT — Grant privileges on a table.

SYNOPSIS
GRANT {ALL PRIVILEGES | privilege [, privilege]...}

ON privilege-object
TO {PUBLIC | user-name [, user-name]...}
[WITH GRANT OPTION]

where privilege is one of the following:

DELETE
INSERT
REFERENCES [(unqualified-column-name [, unqualified-column-name]...)]
SELECT
UPDATE [(unqualified-column-name [, unqualified-column-name]...)]
USAGE

and where privilege-object is defined as:

[TABLE] table-name
| CHARACTER SETcharacter-set-name
| COLLATION collation-name
| TRANSLATION translation-name

and where a given privilege or user-name appears only once.

DESCRIPTION
The GRANT statement grants privileges on table-name to one or more users, provided the
current user has such grantable privileges.

The GRANT statement grants one or more privileges:

DELETE Grants the right to delete rows. (May be used only when privilege-object is
a table.)

INSERT Grants the right to insert rows. (May be used only when privilege-object is
a table.)

REFERENCES Grants the right to reference the specified columns from a FOREIGN KEY.
Specifying REFERENCES without unqualified-column-names grants the
right on all columns, including any column subsequently added to
privilege-object. (May be used only when privilege-object is a table.)

SELECT Grants the right to retrieve values. (May be used only when privilege-
object is a table.)

Data Management: Structured Query Language (SQL), Version 2 115

Data Definition Statements Executable SQL Statements

UPDATE Grants the right to update the specified columns. Specifying UPDATE
without unqualified-column-names grants the right on all columns,
including any column subsequently added to privilege-object. (May be
used only when privilege-object is a table.)

USAGE Grants the right to use the object. (May be used only when privilege-object
is a character set, collation or translation.)

Specifying GRANT ALL PRIVILEGES is equivalent to specifying all the grantable privileges
that the current user has on privilege-object.

The application specifies PUBLIC to grant the specified privilege to all present and future
users, or identifies specific users by user-names.

The application specifies WITH GRANT OPTION to allow any users affected by this
GRANT statement to further grant the privileges to other users.

DIAGNOSTICS
The current user must hold at least one privilege on privilege-object (’42000’).

Any specified column must already exist (’42S22’). (See the exception in Object References
on page 100.)

A separate Success with warning outcome occurs (’01007’) in the following cases:

• Any combination of explicitly specified privilege and recipient (including PUBLIC) is not
grantable.

• ALL PRIVILEGES is specified and, for any specified recipient (including PUBLIC), the
current user has no grantable privileges on privilege-object .

5.3.18 REVOKE

NAME
REVOKE — Revoke privileges on a table.

SYNOPSIS
REVOKE {ALL PRIVILEGES | privilege [, privilege]...}

ON privilege-object
FROM {PUBLIC | user-name [, user-name]...}
{CASCADE | RESTRICT}

where privilege and privilege-object are the same as for the GRANT statement (see Section
5.3.17 on page 115) and where a given privilege or user-name appears only once.

DESCRIPTION
The REVOKE statement revokes privileges on privilege-object that are held by one or more
specified users with the current user as grantor. Each privilege may be one of the following:

DELETE Revokes the right to delete rows. (May be used only when privilege-object
is a table.)

INSERT Revokes the right to insert rows. (May be used only when privilege-object
is a table.)

REFERENCES Revokes the right to reference the specified columns from a FOREIGN
KEY. (May be used only when privilege-object is a table.)

SELECT Revokes the right to retrieve values. (May be used only when privilege-
object is a table.)

116 X/Open CAE Specification

Executable SQL Statements Data Definition Statements

UPDATE Revokes the right to update the specified columns. (May be used only
when privilege-object is a table.)

USAGE Revokes the right to use the object. (May be used only when privilege-
object is a character set, collation or translation.)

Specifying UPDATE or REFERENCES with unqualified-column-names revokes the respective
privilege on the specified columns. Applications can grant a privilege on a table at large
and then revoke it on specific columns, indicating exceptions to the general rule. In this case
the user retains privileges on all remaining columns of the table, and on all columns
subsequently added to the table.

Specifying UPDATE or REFERENCES without unqualified-column-names revokes the user’s
privilege on all columns in the table, whether granted on individual columns or on the table
at large. It also revokes any privilege the user has on columns subsequently added to the
table, which may have been granted by a previous GRANT statement that did not specify
columns.

Specifying REVOKE ALL PRIVILEGES is equivalent to specifying all the grantable
privileges that the current user has on privilege-object .

The FROM clause either identifies one or more users by their user-names, or specifies
PUBLIC to revoke privileges formerly extended to all users using GRANT . . . PUBLIC.

The application must use the keyword CASCADE or RESTRICT. Doing so specifies the
effect if there are any of the dependencies on the privilege being revoked that are defined
below. If RESTRICT is specified, the statement is invalid. If CASCADE is specified, the
following effects occur:

• If another privilege is based on the privilege being revoked: Any such privilege is also
revoked.

• Revoking a SELECT privilege that a view’s owner needed in order to create the view: Any such
view is dropped.

• Revoking a REFERENCES privilege on a column to which the user has made FOREIGN KEY
references from another table: Any such FOREIGN KEY reference is dropped from the
other table.

• Revoking a USAGE privilege on a character set, collation or translation from the owner of a table
that references it: Any column that contains such a reference is dropped.

• Revoking a USAGE privilege on a collation from the owner of a table that specifies the collation
as the collation for any column: The definition of any such column is changed to instead
specify the default collation for the character set of the column.

DIAGNOSTICS
The current user must hold at least one privilege on privilege-object (’42000’).

To revoke the INSERT, DELETE or UPDATE privilege on a viewed table, the table must be
updatable (’42000’).

A separate Success with warning outcome (’01006’) occurs in the following cases:

• For any combination of explicitly specified privilege and recipient (including PUBLIC),
the recipient does not currently hold such a privilege that the current user granted to the
recipient.

• ALL PRIVILEGES is specified and any specified recipient (including PUBLIC) currently
holds no privileges on privilege-object that the current user granted to the recipient.

Data Management: Structured Query Language (SQL), Version 2 117

Data Definition Statements Executable SQL Statements

5.4 Data Manipulation Statements
A data manipulation statement operates on the data contents of the database or controls the
state of a cursor. (Cursors are described in Section 4.4 on page 87.)

INSERT and UPDATE statements assign values to columns in tables. These assignments follow
rules specified in Section 3.5 on page 51.

Applications should not mix data definition statements and data manipulation statements
within transactions. See Section 7.4 on page 183.

5.4.1 CLOSE

NAME
CLOSE — Close a cursor.

SYNOPSIS
CLOSE cursor-name

DESCRIPTION
CLOSE closes the cursor cursor-name, so that the result set associated with it is no longer
accessible.

DIAGNOSTICS
The cursor must be open (’24000’).

5.4.2 Positioned DELETE

NAME
Positioned DELETE — Delete a row of a table.

SYNOPSIS
DELETE FROMtable-name WHERE CURRENT OFcursor-name

DESCRIPTION
This form of DELETE deletes the row from which the current row of the result set of cursor-
name is derived. If table-name is a viewed table, DELETE deletes the corresponding row of
the base table from which the viewed table is derived.

The cursor must be updatable.

The table-name must be the (single) table referenced by the FROM clause of the query-
specification that defines the result set of the cursor.

DIAGNOSTICS
The current user must have DELETE privilege on table-name (’42000’).

The cursor must be open and positioned on a row in its result set (’24000’).

5.4.3 Searched DELETE

NAME
Searched DELETE — Delete rows of a table that satisfy a search-condition.

SYNOPSIS
DELETE FROMtable-name [WHERE search-condition]

DESCRIPTION
This form of DELETE deletes any rows from table-name that satisfy search-condition. If table-
name is a viewed table, DELETE deletes the corresponding rows of the base table from

118 X/Open CAE Specification

Executable SQL Statements Data Manipulation Statements

which it is derived. If no row satisfies search-condition, DELETE deletes zero rows. If search-
condition is omitted, DELETE deletes all the rows in the table.

table-name must be updatable and not referenced (directly or indirectly) by a FROM clause of
any sub-query contained in the search-condition.

The scope of the table-name is the entire searched DELETE statement.

If search-condition is specified, then DELETE applies it to each row of table-name and deletes
all rows for which the search-condition is true.

Each sub-query in the search-condition is effectively executed for each row of table-name. The
results are used in the evaluation of the search-condition for that row.

If any executed sub-query contains a reference to a column of table-name, the reference is to
the value of that column in the given row. (See Section 3.11.5 on page 76.)

DIAGNOSTICS
The current user must have DELETE privilege on table-name and SELECT privilege on every
table referenced by search-condition (’42000’).

The No data outcome occurs if search-condition is specified, but no row satisfies it (’02000’).
In this case, DELETE deletes 0 rows.

5.4.4 FETCH

NAME
FETCH — Advance the cursor to the next row of a result set and fetch that row.

SYNOPSIS
FETCH [FROM] cursor-name

INTO host-variable-reference [, host-variable-reference]...

DESCRIPTION
FETCH advances cursor-name to the next row of its result set and assigns column values
from that row to the host variables. The number of host variables must match the number
of columns in the result set. The cursor advances to the new row even if errors occur during
the evaluation of result column values or during the assignment of these values to host
variables.

DIAGNOSTICS
The cursor must be open (’24000’).

The No data outcome occurs if the result set is empty, or the cursor is positioned on or after
the last row (’02000’). No database values are assigned to the host variables.

5.4.5 INSERT

NAME
INSERT — Insert rows into a table.

SYNOPSIS
INSERT INTO table-name

{ insert-source | DEFAULT VALUES }

where insert-source is defined as:

[(unqualified-column-name [, unqualified-column-name]...)]
{ query-specification
| VALUES row-value-constructor }

Data Management: Structured Query Language (SQL), Version 2 119

Data Manipulation Statements Executable SQL Statements

DESCRIPTION
INSERT inserts row values into table-name. (If table-name is a viewed table, then INSERT
inserts into the base table from which table-name is derived.)

Depending on the form used, INSERT inserts one row containing one of the following:

• values, for specified columns or for all columns, derived from query-specification

• values, for specified columns or for all columns, explicitly specified by a row-value-
constructor (see Section 3.12 on page 78)

• values for all columns that are the default values for that column in table-name.

In the first two cases, the ith value specified is assigned to the ith column of the table or to
the ith unqualified-column-name.

Omitting the unqualified-column-names is equivalent to specifying all the columns of table-
name, in ascending order of their position in the table.

If unqualified-column-names are present, each must identify a column of table-name, and there
can be no duplicates. There must be the same number of unqualified-column-names as the
number of values the INSERT statement produces. If INSERT omits some columns of table-
name, then these columns of the new row are set to their default values. If table-name is a
viewed table, this is also the case for any column of its base table not included in the viewed
table.

The table table-name must be updatable and not referenced by a FROM clause of the query-
specification or of any sub-query contained in the query-specification.

DIAGNOSTICS
The number of columns specified or implied must match the degree of the derived table (in
the query-specification form) or the number of expressions (in the VALUES form) (’21S01’).

The current user must have INSERT privilege on table-name and SELECT privilege on every
table in the FROM clause of query-specification (’42000’).

The No data outcome occurs if INSERT included a query-specification that produced no rows
(’02000’).

The row to be inserted must not violate any view criteria (see Section 5.3.9 on page 111)
(’44000’).

5.4.6 OPEN

NAME
OPEN — Open a cursor.

SYNOPSIS
OPEN cursor-name

DESCRIPTION
OPEN executes the cursor specification for cursor-name, identifying a multi-set of rows,
which becomes the result set for the cursor. Then OPEN opens cursor-name and positions it
before the first row in the result set.

Any host variables in the cursor specification affect the cursor specification based on their
values at the time OPEN is executed. If their values then change, it does not affect the result
set.

DIAGNOSTICS
The cursor must not already be open (’24000’).

120 X/Open CAE Specification

Executable SQL Statements Data Manipulation Statements

The current user must have SELECT privilege on every table referenced by the cursor
specification for cursor-name (’42000’).

The process of opening a cursor may produce expression exceptions, as described in Section
3.9 on page 57. These exceptions may be reported by the OPEN statement, or may be
deferred and reported by a subsequent FETCH statement.

5.4.7 SELECT INTO

NAME
SELECT INTO — Assign the values from the specified table to host variables.

SYNOPSIS
SELECT [ALL | DISTINCT] select-list

INTO host-variable-reference [, host-variable-reference]...
FROMtable-reference [, table-reference]...
[WHERE search-condition]

DESCRIPTION
The SELECT INTO statement specifies a one-row table and assigns its values to host
variables. The number of host variables must match the number of columns in the result
set.

The definitions of the SELECT, FROM and WHERE clauses and the rules regarding multiple
use of the keyword DISTINCT are the same as those for a query-specification (see Section
3.11.1 on page 71).

If the resulting table contains a single row, values in the row of this table are assigned to
their corresponding host-variable-references: the ith host-variable-reference is assigned the value
of the ith column of the result set.

DIAGNOSTICS
The current user must have SELECT privilege on all table-references (’42000’).

The SELECT INTO statement must not produce a result with more than one row (’21000’).
It is undefined whether database values are assigned to the host variables.

The No data outcome occurs if SELECT INTO produces a result with 0 rows (’02000’). No
database values are assigned to the host variables.

5.4.8 Positioned UPDATE

NAME
Positioned UPDATE — Update a row of a table.

SYNOPSIS
UPDATE table-name

SET unqualified-column-name = { expression | NULL | DEFAULT}
[, unqualified-column-name = { expression | NULL | DEFAULT}]...
WHERE CURRENT OFcursor-name

DESCRIPTION
UPDATE updates one row of table-name. The updated row is the row from which the
current row of the active set of cursor-name is derived. If table-name is a viewed table,
UPDATE updates the corresponding row of the base table from which it is derived.

Each unqualified-column-name identifies a column to be updated (an update column) and
must identify a column of table-name (the update table). The same column must not be
identified more than once.

Data Management: Structured Query Language (SQL), Version 2 121

Data Manipulation Statements Executable SQL Statements

The cursor must be updatable. The columns identified by the cursor’s implicit or explicit
FOR UPDATE clause must include the update columns.

The update table must be the (single) table referenced by the FROM clause of the query-
specification that defines the result set of the cursor. The scope of the table-name is the entire
positioned UPDATE statement.

The syntax to the right of the equal sign represents the update value of the corresponding
update column. That is, for each update column, the value of that column in the row to be
updated is replaced by the value of the corresponding expression, or by null value if NULL is
specified, or by the column’s default value if DEFAULT is specified.

If expression is specified, it must not include a set-function-reference and any column it
references must be a column of the update table. The value specified by such a referenced
column is the value of the identified column in the row to be updated before applying any
updates.

The cursor position is unchanged even if errors occur during the evaluation of update
values or the assignment of update values to update columns.

DIAGNOSTICS
The current user must have UPDATE privilege on each update column in table-name and
SELECT privilege on table-name if any of its columns is referenced by an update value
(’42000’).

The cursor must be open and positioned on a row in its result set (’24000’).

The row is not updated if the resulting row would violate any view criteria (see Section 5.3.9
on page 111) (’44000’).

5.4.9 Searched UPDATE

NAME
Searched UPDATE — Update values of columns in a table.

SYNOPSIS
UPDATE table-name

SET unqualified-column-name = { expression | NULL | DEFAULT}
[, unqualified-column-name = { expression | NULL | DEFAULT}]...
[WHERE search-condition]

DESCRIPTION
UPDATE updates zero or more rows of table-name. If table-name is a viewed table, UPDATE
applies the updates to the corresponding rows of the base table from which it is derived.

Each unqualified-column-name identifies a column to be updated (an update column) and
must identify a column of table-name (the update table). The same column must not be
identified more than once.

The update table must be updatable and must not be referenced (directly or indirectly) by
the FROM clause of any sub-query contained in the search-condition.

The scope of the table-name is the entire searched UPDATE statement.

The syntax to the right of the equal sign represents the update value of the corresponding
update column. That is, for each update column, the value of that column in the row to be
updated is replaced by the value of the corresponding expression, or by null value if NULL is
specified, or by the column’s default value if DEFAULT is specified.

122 X/Open CAE Specification

Executable SQL Statements Data Manipulation Statements

If expression is specified, it must not include a set-function-reference and any column it
references must be a column of the update table. The value specified by such a referenced
column is the value of the identified column in the row to be updated before any values in
that row are updated.

If search-condition is not specified, all rows of the update table are updated.

If search-condition is specified, it is applied to each row of the update table and all rows for
which the result of the search-condition is true are updated.

Each sub-query in the search-condition is effectively executed for each row of the update table
and the results used in the evaluation of the search-condition for that row.

If any executed sub-query contains a reference to a column of the update table, the reference
is to the value of that column in the given row. (See Section 3.11.5 on page 76.)

DIAGNOSTICS
The current user must have UPDATE privilege on each update column in table-name,
SELECT privilege on table-name if any of its columns is referenced by an update value, and
SELECT privilege on every table referenced by search-condition (’42000’).

The No data outcome occurs if no row satisfies the search-condition (’02000’).

The row is not updated if the resulting row would violate any view criteria (see Section 5.3.9
on page 111) (’44000’).

Data Management: Structured Query Language (SQL), Version 2 123

Dynamic SQL Statements Executable SQL Statements

5.5 Dynamic SQL Statements
Dynamic SQL statements provide a way to execute SQL statements whose specifics may not be
known at compile-time. For example, the application assembles the text of an SQL statement as
a character string, uses the PREPARE statement to prepare it for execution, and then specifies the
prepared statement in one or more EXECUTE statements. Dynamic SQL enables interactive
applications, such as fourth-generation languages, where the exact SQL statement text or
parameter values may be known only after computation or user interaction.

Dynamic SQL can use cursors, but the application must use a special form of the DECLARE
CURSOR statement (see Section 4.4.2 on page 89) to declare a cursor for subsequent association
with a prepared cursor specification.

Three statements already discussed can also be used on dynamic cursors:

• the CLOSE statement (see Section 5.4.1 on page 118)

• the positioned DELETE statement (see Section 5.4.2 on page 118)

• the positioned UPDATE statement (see Section 5.4.8 on page 121).

Their syntax and use is unchanged in dynamic SQL except that cursor-name identifies a dynamic
cursor. When used in dynamic SQL, they are known respectively as the dynamic CLOSE,
dynamic positioned DELETE, and dynamic positioned UPDATE.

5.5.1 SQL Descriptor Areas

An SQL descriptor area is a storage area for descriptive information pertaining to dynamic SQL
statements. Embedded SQL statements allocate and maintain these areas. An ALLOCATE
DESCRIPTOR statement allocates an SQL descriptor area. A subsequent DEALLOCATE
DESCRIPTOR statement deallocates an SQL descriptor area. The following dynamic SQL
statements use the SQL descriptor area:

• The DESCRIBE statement requires an SQL descriptor area in order to hold information about
the resulting columns in a cursor-specification.

• A dynamic FETCH statement can use an SQL descriptor area to hold values of a row of a
cursor-specification.

In these two cases, the SQL descriptor area provides output from the database system. The
application uses GET DESCRIPTOR to move information from the SQL descriptor area into
embedded host variables.

• An EXECUTE or a dynamic OPEN statement can use an SQL descriptor area to associate
values with the parameters in the prepared statement.

In these cases, the SQL descriptor area provides input to the database system. The application
uses SET DESCRIPTOR to move information from embedded host variables into the SQL
descriptor area.

In all cases except the DESCRIBE statement, use of the SQL descriptor area is optional, and
occurs only if the application uses that variant of the USING clause (see Section 5.5.2 on page
129).

124 X/Open CAE Specification

Executable SQL Statements Dynamic SQL Statements

Fields of the SQL Descriptor Area

An SQL descriptor area consists of a COUNT field and zero or more item descriptor areas.

The COUNT field specifies how many item descriptor areas contain data. In general, whichever
component (application or database system) sets the SQL descriptor area must also set the
COUNT field to show how many item descriptor areas are significant.

When the application allocates an SQL descriptor, it can specify how many descriptor areas to
reserve room for.

Fields of the Item Descriptor Areas

Depending on the situation, each item descriptor area may describe a selected column, an input
value, or an output value. In every case but DESCRIBE, the item descriptor area contains a
value, and associated fields describe the value’s attributes, such as its data type. In DESCRIBE,
the item descriptor area describes a resulting column of a cursor-specification or a dynamic
parameter. The item descriptor area does not contain data, but the associated fields specify a
data type and type attributes.

The GET DESCRIPTOR and SET DESCRIPTOR statements can refer to the individual fields of an
item descriptor area by name:

TYPE An exact numeric value with scale 0 that specifies the SQL data type (see Section
4.1.3 on page 82). For X/Open-defined named data types, the value of TYPE is one
of the following:

Code Named Data Type
1 CHARACTER(n)
2 NUMERIC
3 DECIMAL
4 INTEGER
5 SMALLINT
6 FLOAT
7 REAL
8 DOUBLE PRECISION
9 DATETIME

10 INTERVAL
12 CHARACTER VARYING

Other positive numbers are reserved for future definition. Implementors should
use negative values for implementation-defined data types.

For implementation-defined values of TYPE, the valid values for, and meanings of,
all other fields of the item descriptor area are implementation-defined.

LENGTH An exact numeric value with scale 0, whose value is either the maximum or actual
character length of a character string data type depending on the circumstances.
Its value always excludes any null byte that ends the character string.

PRECISION An exact numeric value with scale 0. For a numeric data type, its value is an
applicable precision. For the data types INTERVAL SECOND, INTERVAL DAY
TO SECOND, INTERVAL HOUR TO SECOND, INTERVAL MINUTE TO
SECOND, TIME or TIMESTAMP, its value is an applicable precision of the
fractional seconds component.

SCALE An exact numeric value with scale 0, whose value is an applicable scale for a
numeric data type.

Data Management: Structured Query Language (SQL), Version 2 125

Dynamic SQL Statements Executable SQL Statements

DATETIME_INTERVAL_CODE
An exact numeric value with scale 0 that specifies the date/time subtype. If TYPE
is 9 (DATETIME), then valid values for DATETIME_INTERVAL_CODE are as
follows:

Code Named Date/Time Subtype
1 DATE
2 TIME
3 TIMESTAMP

If TYPE is 10 (INTERVAL), then valid values for DATETIME_INTERVAL_CODE
are as follows:

Code Named Date/Time Subtype
1 YEAR
2 MONTH
3 DAY
4 HOUR
5 MINUTE
6 SECOND
7 YEAR TO MONTH
8 DAY TO HOUR
9 DAY TO MINUTE

10 DAY TO SECOND
11 HOUR TO MINUTE
12 HOUR TO SECOND
13 MINUTE TO SECOND

DATETIME_INTERVAL_PRECISION
An exact numeric value with scale 0 that specifies the leading field precision for
certain interval data types (for which TYPE is 10). This is the YEAR field for the
data types INTERVAL YEAR and INTERVAL YEAR TO MONTH; or the DAY field
for the data types INTERVAL DAY, INTERVAL DAY TO HOUR, INTERVAL DAY
TO MINUTE and INTERVAL DAY TO SECOND.

NULLABLE An exact numeric value with scale 0, used by the DESCRIBE statement to indicate
whether or not a resulting column can contain the null value.

INDICATOR An exact numeric with scale 0, used as an indicator variable for an input value
(OPEN and EXECUTE) or an output value (FETCH).

DATA If the value of the INDICATOR field is 0, this field contains an input value or an
output value whose data type is specified by the TYPE field and whose attributes
are specified by the fields applicable for that data type.

NAME A character string field in which the DESCRIBE statement returns the name of the
column. When retrieving this field, the application should provide sufficient
characters to hold a user-defined name of the maximum allowed length.

UNNAMED An exact numeric value with scale 0. The DESCRIBE statement sets it to 0 if the
value returned in NAME is an actual name, or to 1 if NAME contains an
implementation-generated column name that X/Open does not define (for
example, where the subject column represents the UNION of two columns with
different names).

126 X/Open CAE Specification

Executable SQL Statements Dynamic SQL Statements

RETURNED_LENGTH
An exact numeric value with scale 0, used by the FETCH statement to return the
actual character length of a (non-null) VARCHAR output value, or of a (non-null)
VARCHAR result column value if the data type of the output value is not
VARCHAR.

Field Usage in DESCRIBE

The value of the TYPE field determines which other fields of the item descriptor area are used by
the DESCRIBE statement, as shown in the following table. The Out legend means the DESCRIBE
statement sets the field. A blank entry means that the value of the field is undefined as a result
of the DESCRIBE statement.

TYPE
Character Exact Approx. Date/

string numeric numeric time Interval
PRECISION Out Out Out Out

SCALE Out

LENGTH Out [1] Out

NULLABLE Out Out Out Out Out

INDICATOR

DATA

NAME Out Out Out Out Out

UNNAMED Out Out Out Out Out

RETURNED_LENGTH

DATETIME_INTER- Out Out
VAL_CODE

DATETIME_INTER- Out
VAL_PRECISION

[1] The maximum length is returned.

Data Management: Structured Query Language (SQL), Version 2 127

Dynamic SQL Statements Executable SQL Statements

Field Usage in OPEN, EXECUTE and FETCH

The value of the TYPE field determines which other fields of the item descriptor area are used by
the OPEN, EXECUTE and FETCH statements, as shown in the following table. The In legend
means the application must set the field before calling OPEN, EXECUTE, or FETCH. The Out
legend means the FETCH statement sets the field. The In-Out legend means the application sets
the field before calling OPEN or EXECUTE, and the FETCH statement sets the field.

TYPE
INTEGER,

SMALLINT
Character REAL, NUMERIC, Date/

string DBL. PREC. DECIMAL FLOAT time Interval
PRECISION In In In In

SCALE In

LENGTH In [1] In

NULLABLE

INDICATOR In-Out In-Out In-Out In-Out In-Out In-Out

DATA In-Out In-Out In-Out In-Out In-Out In-Out

NAME

UNNAMED

RETURNED_LENGTH Out

DATETIME_INTER- In-Out In
VAL_CODE

DATETIME_INTER- In
VAL_PRECISION

[1] Maximum length for FETCH, actual length for OPEN/EXECUTE.

128 X/Open CAE Specification

Executable SQL Statements Dynamic SQL Statements

At the time GET DESCRIPTOR reads the DATA field, or SET DESCRIPTOR writes it, the value of
TYPE and the applicable values of LENGTH, PRECISION and SCALE, must be valid (for
example, PRECISION may not be negative) and consistent. The data type of the host variable
receiving or supplying the DATA field must match the TYPE field and the applicable values of
LENGTH, PRECISION, and SCALE according to the following table:

TYPE field Required type of host variable
CHARACTER CHARACTER(n), where n is the value of LENGTH

DATETIME CHARACTER(n), where n is the value of LENGTH

DECIMAL(p, s) or NUMERIC(p, s) where p is the
value of PRECISION and s is the value of SCALE

DECIMAL or NUMERIC

DOUBLE PRECISION DOUBLE PRECISION

INTEGER INTEGER

SHORT, INTEGER, or FLOAT according to type
(see the table in Section 4.1.3 on page 82)

INTERVAL

REAL REAL

SMALLINT SMALLINT

5.5.2 USING and INTO Clauses

NAME
USING and INTO — Describe the resulting columns, input or output values for a dynamic
SQL statement and provide a storage area for the input or output values.

SYNOPSIS
A using-clause has the form:

using-arguments | using-descriptor

where using-arguments is defined as:

{USING | INTO} host-variable-reference
[, host-variable-reference]...

and using-descriptor is defined as:

{USING | INTO} SQL DESCRIPTOR descriptor-name

and descriptor-name is defined as:

character-string-literal | embedded-variable-name

DESCRIPTION
The syntactic element using-clause describes clauses beginning with either USING or INTO.
When this element appears in a dynamic FETCH statement, it must use the keyword INTO.
Elsewhere, it must use the keyword USING.

If an embedded-variable-name is specified, it must reference a character string variable.

For COBOL, descriptor-name must be a character-string-literal .

The assignment rules in Section 3.5 on page 51 also apply to the implied assignment of the
value of any host variable or DATA field in an SQL descriptor area to the corresponding
dynamic-parameter in the dynamic SQL statement, and vice versa, to the implied assignment

Data Management: Structured Query Language (SQL), Version 2 129

Dynamic SQL Statements Executable SQL Statements

of any column value of the current row of a cursor to the corresponding host variable or
DATA field in an SQL descriptor area.

DIAGNOSTICS
If an item descriptor area describes an input value, the effective data type must be
assignment-compatible with the assumed data type of the corresponding dynamic
parameter; if it describes a target field, the effective data type must be assignment-
compatible with the data type of the corresponding result column (’07006’).

If using-descriptor is specified, an SQL descriptor area must have been allocated with the
same descriptor-name using ALLOCATE DESCRIPTOR and not subsequently deallocated
using DEALLOCATE DESCRIPTOR (’33000’).

5.5.3 ALLOCATE DESCRIPTOR

NAME
ALLOCATE DESCRIPTOR — Allocate an SQL descriptor area.

SYNOPSIS
ALLOCATE DESCRIPTORdescriptor-name [WITH MAX occurrences]

where occurrences is defined as:

unsigned-integer | embedded-variable-name

DESCRIPTION
The ALLOCATE DESCRIPTOR statement allocates an SQL descriptor area identified by
descriptor-name .

The SQL descriptor area will have at least as many item descriptor areas as the application
requests with occurrences. All values of the SQL descriptor area are initially undefined. If
the application omits occurrences, an implementation-defined number of item descriptor
areas is allocated. See Section 7.1 on page 175.

The data type of occurrences must be exact numeric with scale 0. (For COBOL, occurrences
must be an unsigned-integer.)

For the scope of a descriptor-name, see Section 4.7 on page 95.

DIAGNOSTICS
No other SQL descriptor area identified by the same descriptor-name must have been
allocated and not subsequently deallocated (’33000’).

The value of occurrences must be in the range from 1 through an implementation-defined
maximum (’07009’).

The value of descriptor-name , with leading and trailing spaces removed, must be a valid
user-defined name (’33000’).

5.5.4 DEALLOCATE DESCRIPTOR

NAME
DEALLOCATE DESCRIPTOR — Deallocate an SQL descriptor area.

SYNOPSIS
DEALLOCATE DESCRIPTORdescriptor-name

DESCRIPTION
The DEALLOCATE DESCRIPTOR statement deallocates an SQL descriptor area that was
previously allocated for the specified descriptor-name .

130 X/Open CAE Specification

Executable SQL Statements Dynamic SQL Statements

DIAGNOSTICS
An SQL descriptor area named descriptor-name must have been allocated (’33000’).

5.5.5 DESCRIBE

NAME
DESCRIBE — Get information about a prepared statement.

SYNOPSIS
DESCRIBE [INPUT | OUTPUT] statement-name

USING SQL DESCRIPTORdescriptor-name

The syntax USING SQL DESCRIPTOR descriptor-name is one of the forms of the
USING/INTO clause discussed in Section 5.5.2 on page 129, and is subject to the rules
described there.

DESCRIPTION
The DESCRIBE statement obtains two types of information about a statement identified by
statement-name:

OP • The DESCRIBE INPUT form obtains information on the dynamic parameters
corresponding to markers in the statement. For DESCRIBE INPUT, an ‘‘item’’ in the
following description is a dynamic parameter. When DESCRIBE INPUT is applied to a
prepared statement that has no dynamic parameters, the number of items is zero.
DESCRIBE INPUT can apply to a cursor specification, and the cursor need not be open.

• The DESCRIBE OUTPUT form applies only to a cursor specification. The cursor need
not be open. It obtains information on the columns of the derived table that would
result from executing the cursor specification. For DESCRIBE OUTPUT, an ‘‘item’’ in the
following description is a column. When DESCRIBE OUTPUT is applied to a prepared
statement that is not a cursor specification, the number of items is zero.

If neither INPUT nor OUTPUT is specified, OUTPUT is assumed.

DESCRIBE stores a description of the items in the SQL descriptor area specified by using-
descriptor. It sets the COUNT field to the number of items and sets the ith item descriptor
area to describe the ith item. (If the number of items is zero, DESCRIBE sets the COUNT
field of the SQL descriptor area to zero and assigns no values to item descriptor areas.)

DESCRIBE sets each item descriptor area based on the corresponding item from the
prepared statement, as follows:

NAME, UNNAMED
For DESCRIBE OUTPUT where the column has a name, NAME is set to the column
name and UNNAMED is set to 0. In all other cases, NAME is set to a value based on
undefined criteria and UNNAMED is set to 1.

TYPE and Attributes
TYPE is set to indicate the item’s data type; and other fields that apply to that data type
are set to indicate the item’s data attributes (see the table in Section 5.5.1 on page 124).

NULLABLE
For DESCRIBE OUTPUT, NULLABLE is set to 0 or 1 to indicate whether the column is
constrained by NOT NULL. For DESCRIBE INPUT, NULLABLE is always set to 1
because dynamic parameters are never constrained by NOT NULL.

DIAGNOSTICS
There must be a prepared statement associated with statement-name (’26000’). (Moreover,
the textual sequence of PREPARE and DESCRIBE is constrained on some implementations;

Data Management: Structured Query Language (SQL), Version 2 131

Dynamic SQL Statements Executable SQL Statements

see Section 7.7 on page 184).

The Success with warning outcome occurs if there are more items to describe than allocated
item descriptor areas (’01005’). COUNT is set to the total number of items to describe, but
no values are assigned to item descriptor areas.

5.5.6 EXECUTE

NAME
EXECUTE — Associate input values with a prepared statement and execute it.

SYNOPSIS
EXECUTEstatement-name [using-clause]

DESCRIPTION
An EXECUTE statement associates input values with a prepared statement and executes the
statement.

If the prepared statement associated with statement-name contains dynamic-parameters , a
using-clause describes their values (see Section 5.5.2 on page 129).

If the application uses the using-arguments form of using-clause, the ith host-variable-reference
supplies the value for the ith dynamic-parameter that appears in the prepared statement.

If the application uses the using-descriptor form, the application must set the COUNT field of
the specified descriptor-name to the number of input values (perhaps 0). The ith item
descriptor area contains the input value and its description for the ith dynamic-parameter that
appears in the prepared statement. The application sets the TYPE field based on the input
value’s data type; sets the LENGTH, PRECISION and SCALE fields, as applicable based on
the input value’s data type, to indicate the input value’s data attributes (see Section 5.5.1 on
page 124); and sets the DATA field to the input value.

The application uses the INDICATOR field as it would use a host indicator variable. The
application sets INDICATOR to −1 if the data value is the null value, or to 0 if the data value
is non-null.

DIAGNOSTICS
There must be a prepared statement associated with statement-name (’26000’), and it must
not be a cursor-specification (’07003’). (Moreover, the textual sequence of PREPARE and
EXECUTE is constrained on some implementations; see Section 7.7 on page 184).

If the prepared statement associated with the statement-name contains dynamic-parameters ,
the EXECUTE statement must have a using-clause (’07004’).

If the application uses the using-arguments form of using-clause , the prepared statement must
have one or more dynamic-parameters , and their number must equal the number of host-
variable-references (’07001’).

If the application uses the using-descriptor form of using-clause , it must set COUNT equal to
the number of dynamic parameters in the prepared statement, and must set the fields of the
item descriptor areas to valid and consistent values as applicable (’07001’). COUNT must
not be negative or exceed the allocated number of item descriptor areas (’07008’).

If EXECUTE does not produce any of the above diagnostics, it may produce other
diagnostics based on the result of the prepared statement it executes.

132 X/Open CAE Specification

Executable SQL Statements Dynamic SQL Statements

5.5.7 EXECUTE IMMEDIATE

NAME
EXECUTE IMMEDIATE — Execute an SQL statement.

SYNOPSIS
EXECUTE IMMEDIATEembedded-variable-name

DESCRIPTION
The EXECUTE IMMEDIATE statement executes the SQL statement contained in embedded-
variable-name . The effect of EXECUTE IMMEDIATE is comparable to using PREPARE on
embedded-variable-name and then executing it with EXECUTE.

The SQL statement in embedded-variable-name can be any type of statement that could be
PREPAREd, except cursor specifications. (See Section 5.5.11 on page 136).

DIAGNOSTICS
The embedded-variable-name must reference a character string variable that contains only the
text of an SQL statement that could legally be prepared (’42000’).

This SQL statement must not be a cursor specification and must not contain any dynamic-
parameters (’42000’).

If EXECUTE IMMEDIATE does not produce any of the above diagnostics, it may produce
other diagnostics based on the result of the statement it executes.

5.5.8 Dynamic FETCH

NAME
Dynamic FETCH — Fetch a row for a cursor.

SYNOPSIS
FETCH [FROM] cursor-name using-clause

DESCRIPTION
Dynamic FETCH advances cursor-name to the next row of its active set and assigns column
values from that row to host variables or to fields in an SQL descriptor area, depending on
the form of using-clause that is specified (see Section 5.5.2 on page 129). The cursor advances
to the new row even if errors occur during the evaluation of result column values or during
the assignment of these values to the targets specified by using-clause .

To use the using-descriptor form of using-clause , the application must first do the following:

• Set the COUNT field of the specified descriptor-name to the number of output values that
are described.

• In each item descriptor area:

— Set the TYPE field based on the output value’s data type.

— Set the LENGTH, PRECISION and SCALE fields, as applicable based on the output
value’s data type, to indicate the output value’s data attributes (see Section 5.5.1 on
page 124).

The ith item descriptor area contains the description of the ith output value.

The FETCH statement sets the DATA field to the respective data value; sets the
INDICATOR field to −1 for the null value, or to 0 for any non-null value; and sets the
RETURNED_LENGTH field as described in Section 5.5.1 on page 124.

Data Management: Structured Query Language (SQL), Version 2 133

Dynamic SQL Statements Executable SQL Statements

DIAGNOSTICS
The cursor must be open (’24000’).

If the application uses the using-arguments form of using-clause , the number of host-variable-
references must equal the number of columns in the result set (’07002’). If the application
uses the using-descriptor form of using-clause , it must set COUNT to the number of columns
in the result set and must set the fields of the item descriptor areas to valid and consistent
values as applicable (’07002’). For these errors, the cursor position is unchanged.

The value of COUNT must not be negative or exceed the allocated number of item
descriptor areas (’07008’).

The No data outcome occurs if (1) the result set is empty, (2) the cursor was positioned on
the last row, or (3) the cursor was positioned after the last row (’02000’). No assignment
occurs to host variables or to fields of item descriptor areas.

5.5.9 GET DESCRIPTOR

NAME
GET DESCRIPTOR — Get information from an SQL descriptor area.

SYNOPSIS
GET DESCRIPTORdescriptor-name get-descriptor-information

where get-descriptor-information is defined as:

embedded-variable-name-1 = COUNT
| VALUE item-number get-item-info [, get-item-info]...

and get-item-info is defined as:

embedded-variable-name-2 = field-name

and item-number is defined as:

unsigned-integer | embedded-variable-name-3

and field-name is defined as:

TYPE | LENGTH | PRECISION | SCALE
| DATETIME_INTERVAL_CODE | DATETIME_INTERVAL_PRECISION
| NULLABLE | INDICATOR | DATA | NAME | UNNAMED | RETURNED_LENGTH

DESCRIPTION
A GET DESCRIPTOR statement retrieves values from the SQL descriptor area descriptor-
name. To determine the number of active item descriptor areas, the application uses the
form embedded-variable-name-1 = COUNT. The application uses the VALUE form to retrieve
fields of the item descriptor area specified by item-number.

The data type of embedded-variable-name-2 must be equal to the data type of the associated
field-name (see Section 5.5.1 on page 124).

The value of DATA is undefined if INDICATOR indicates the null value. If the value of
DATA is undefined, the value of the embedded variable associated with DATA is undefined
after execution of the statement.

If present, embedded-variable-name-1 and item-number must be exact numeric with scale 0.

DIAGNOSTICS
The descriptor-name must identify a currently allocated SQL descriptor area (’33000’).

134 X/Open CAE Specification

Executable SQL Statements Dynamic SQL Statements

item-number must be in the range from 1 through the number of item descriptor areas the
application allocated (’07009’). If item-number exceeds the value of COUNT, values are
retrieved but the No data outcome occurs (’02000’).

If DATA is specified in a GET DESCRIPTOR statement and INDICATOR indicates a null
value, then INDICATOR must also be specified in that statement (’22002’).

Any host variable to which the DATA field is assigned must be appropriate for the data
type, as specified by the item descriptor’s current TYPE, and by each of the
DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, LENGTH,
PRECISION and SCALE fields that apply to that type (’22005’).

5.5.10 Dynamic OPEN

NAME
Dynamic OPEN — Associate input values and open a cursor.

SYNOPSIS
OPEN cursor-name [using-clause]

DESCRIPTION
The description of the OPEN statement in Section 5.4.6 on page 120 applies to the dynamic
OPEN statement as well.

If the prepared statement associated with cursor-name contains dynamic-parameters , a using-
clause describes their values (see Section 5.5.2 on page 129).

If the application uses the using-arguments form of using-clause, the ith host-variable-reference
supplies the value for the ith dynamic-parameter that appears in the prepared statement.

If the application uses the using-descriptor form, the application must set the COUNT field of
the specified descriptor-name to the number of input values (perhaps 0). The ith item
descriptor area contains the input value and its description for the ith dynamic-parameter that
appears in the prepared statement. The application sets the TYPE field based on the input
value’s data type; sets the LENGTH, PRECISION and SCALE fields, as applicable based on
the input value’s data type, to indicate the input value’s data attributes (see Section 5.5.1 on
page 124); and sets the DATA field to the input value.

The application uses the INDICATOR field as it would use a host indicator variable. The
application sets INDICATOR to −1 if the data value is the null value, or to 0 if the data value
is non-null.

DIAGNOSTICS
There must be a prepared statement associated with cursor-name (’26000’).

If the prepared statement associated with the cursor-name contains dynamic-parameters , the
OPEN statement must have a using-clause (’07004’).

If the application uses the using-arguments form of using-clause , the prepared statement must
have one or more dynamic-parameters , and their number must equal the number of host-
variable-references (’07001’).

If the application uses the using-descriptor form of using-clause , it must set COUNT equal to
the number of dynamic parameters in the prepared statement, and must set the fields of the
item descriptor areas to valid and consistent values as applicable (’07001’). COUNT must
not be negative or exceed the allocated number of item descriptor areas (’07008’).

Data Management: Structured Query Language (SQL), Version 2 135

Dynamic SQL Statements Executable SQL Statements

5.5.11 PREPARE

NAME
PREPARE — Prepare a statement for execution.

SYNOPSIS
PREPAREstatement-name FROMembedded-variable-name

DESCRIPTION
The PREPARE statement creates an executable SQL statement from the character string in
embedded-variable-name .

The following statements and specifications are allowed as contents of the embedded-
variable-name : ALTER, CREATE, cursor-specification , searched DELETE, dynamic positioned
DELETE, DROP, GRANT, INSERT, REVOKE, searched UPDATE, and dynamic positioned
UPDATE. (It is implementation-defined which, if any, other statements can be PREPAREd.)

For the scope of a statement-name, see Section 4.7 on page 95.

Whenever a dynamic-parameter appears in an expression, it has an assumed data type
according to the following rules:

Location of dynamic-parameter Assumed Data Type
An operand of a binary arithmetic
or comparison operator.

Same as the other operand.

BETWEEN: First operand. Same as the second operand.
BETWEEN: 2nd or 3rd operand. Same as the first operand.
IN: expression Same as the first value, or as the result column

of the sub-query.
IN: value Same as the expression.
expression in quantified predicate. Same as the result column of the sub-query.
INSERT: expression Same as the insert column.
LIKE: pattern-value VARCHAR(254)
LIKE: escape-character VARCHAR(254)
UPDATE: update value. Same as the update column.

Table 5-2 Assumed Data Type of Dynamic Parameters Based on Context

Using these assumptions, the data type of the surrounding expression is determined as
described in Section 3.3 on page 47. If the assumed data type is based on another operand,
the other operand cannot also be a dynamic-parameter because the resulting data type cannot
be inferred at the time of the PREPARE statement. Thus dynamic-parameters cannot occur (1)
as both operands of a binary operator, (2) as both the first and second operands of
BETWEEN, (3) as both the first and third operands of BETWEEN, or (4) as both the
expression and the first value of IN. A dynamic-parameter likewise cannot appear alone as the
operand of unary + or − or the argument of a set function.

A successful execution of PREPARE destroys any existing prepared statement that was
PREPAREd using the same statement-name.

If the prepared statement is a dynamic positioned DELETE or dynamic positioned UPDATE
statement, the associated cursor must be open and the prepared statement remains in
existence at least until that cursor instance is closed. Otherwise, as long as statement-name is
not reused, the prepared statement remains in existence at least until the end of the current
transaction.

136 X/Open CAE Specification

Executable SQL Statements Dynamic SQL Statements

If the prepared statement is a cursor-specification and the statement-name is associated with a
dynamic cursor, then an association is made between the prepared statement and the cursor
and is preserved until the prepared statement is destroyed.

DIAGNOSTICS
The statement-name must not identify an existing prepared statement that is the cursor-
specification of an open cursor (’24000’).

If the contents of embedded-variable-name are a dynamic positioned DELETE or a dynamic
positioned UPDATE statement, the cursor referenced by the statement being prepared must
be open (’24000’).

If the statement-name is associated with a dynamic cursor, the prepared statement must be a
cursor-specification (’07005’).

The embedded-variable-name must reference a character string variable that holds a valid SQL
statement (see DESCRIPTION for a list of allowed statements) (’42000’). This means that it
cannot contain an sql-prefix , sql-terminator or host language comment. Moreover, this
variable cannot contain any of the following (’42000’):

• an embedded-variable-name

• a dynamic-parameter in a context that prevents the data type of the surrounding
expression from being inferred (see above), or anywhere in a select-list

• an SQL comment.

5.5.12 SET DESCRIPTOR

NAME
SET DESCRIPTOR — Assign values to an SQL descriptor area.

SYNOPSIS
SET DESCRIPTORdescriptor-name set-descriptor-information

where set-descriptor-information is defined as:

COUNT = {embedded-variable-name-1 | unsigned-integer }
| VALUE item-number set-item-info [, set-item-info]...

and set-item-info is defined as:

field-name = { embedded-variable-name-2 | literal }

and item-number is defined as:

unsigned integer | embedded-variable-name-3

and field-name is defined as:

TYPE | LENGTH | PRECISION | SCALE
| DATETIME_INTERVAL_CODE | DATETIME_INTERVAL_PRECISION
| INDICATOR | DATA

DESCRIPTION
A SET DESCRIPTOR statement assigns values to the SQL descriptor area descriptor-name.
To specify the number of item descriptor areas, the application uses the COUNT form. The
application uses the VALUE form to assign values to fields of the item descriptor area
specified by item-number.

The data type of embedded-variable-name-2 or literal must be the data type of the specified
field-name (see Section 5.5.1 on page 124).

Data Management: Structured Query Language (SQL), Version 2 137

Dynamic SQL Statements Executable SQL Statements

If present, embedded-variable-name-1 and item-number must be exact numeric with scale 0.

Automatic Setting of Fields

When a statement specifies a value for any field of an item descriptor area other than DATA,
the resulting value of DATA is undefined. When a statement specifies a value for the TYPE
field, some other fields receive default values as indicated below and the remaining fields
are set to undefined values.

Application
Sets TYPE to: Other Fields Implicitly Set

CHARACTER LENGTH set to 1
CHARACTER VARYING LENGTH set to 1
DATETIME PRECISION set to 0

SCALE set to 0; PRECISION set to the
implementation-defined default precision for
the respective data type

DECIMAL or NUMERIC

PRECISION set to the implementation-
defined default precision for FLOAT

FLOAT

INTERVAL DATETIME_INTERVAL_PRECISION set to 2

Table 5-3 Implicit Setting of Item Descriptor Area Fields

Moreover, when the TYPE field is DATETIME or INTERVAL and a statement specifies a
date/time or interval subcode by setting the value of the DATETIME_INTERVAL_CODE
field, some other fields receive default values as indicated below:

• When TYPE is DATETIME and a statement sets DATETIME_INTERVAL_CODE to
indicate TIME, then PRECISION is set to 0. For TIMESTAMP, PRECISION is set to 6.

• When TYPE is INTERVAL and a statement sets DATETIME_INTERVAL_CODE to
indicate an INTERVAL data type that includes a SECOND field, PRECISION is set to 6.
For other INTERVAL data types, PRECISION is set to 0.

When a statement specifies values for DATA and for other fields, the assignment to DATA
occurs last. When a statement specifies values for TYPE and for other fields, the assignment
to TYPE occurs first. When a statement specifies field values for date/time or interval data
types, the assignments are performed so that no explicit assignment is overridden by the
implicit assignments listed above.

DIAGNOSTICS
The descriptor-name must identify a currently allocated SQL descriptor area (’33000’).

item-number must be in the range from 1 through the number of item descriptor areas the
application allocated (’07009’).

Any host variable that assigns a value to the DATA field must have the same data type as
the effective data type specified by that item descriptor area’s current TYPE and by each of
the DATETIME_INTERVAL_CODE, DATETIME_INTERVAL_PRECISION, LENGTH,
PRECISION and SCALE fields that apply to that type (’22005’).

138 X/Open CAE Specification

Executable SQL Statements Transaction Control Statements

5.6 Transaction Control Statements
A transaction is a sequence of operations on a database that must be atomic. This means that the
database system must either effect all of the operations or effect none of them.

A transaction starts (becomes active) when a program that does not already have an active
transaction executes an SQL statement that operates on a database. An ‘‘SQL statement that
operates on a database’’ does not include:

• the transaction control statements COMMIT, ROLLBACK and SET TRANSACTION
discussed later in this section (although, technically, completing a transaction using
COMMIT and ROLLBACK operates on a database, it does not start a new transaction)

• the connection statements (see Section 5.7 on page 142); this means an application can change
connections without starting a new transaction

• the session statements SET CATALOG, SET NAMES and SET SCHEMA (see Section 5.8 on
page 147)

• the GET DIAGNOSTICS statement (see Section 5.10 on page 150).

Applications should complete each transaction explicitly with either the COMMIT or
ROLLBACK statement. Ceasing execution without ending the transaction causes either a
COMMIT or ROLLBACK according to implementation-defined criteria.

Applications should not mix data definition statements and data manipulation statements
within transactions. See Section 7.4 on page 183.

5.6.1 General Diagnostics

X/Open Distributed Transaction Processing (DTP) documents describe methods of coordinating
databases so that changes to any recoverable resources are committed or rolled back atomically.
For example, the emerging Transaction Demarcation API specifies non-SQL functions by which
an application declares the start, commitment, or rollback of a global transaction. These global
transaction control functions should eventually be used instead of SQL transaction control
statements so that SQL work can be coordinated with non-SQL work.

If an implementation supports X/Open DTP, an application must not use both the global
transaction control functions and the SQL transaction control statements in a single transaction.
Specifically, the COMMIT and ROLLBACK statements fail if executed within a global
transaction that the application started by calling tx_begin() (’2D000’).

5.6.2 COMMIT

NAME
COMMIT — Complete the current transaction by applying all of the database changes.

SYNOPSIS
COMMIT [WORK]

DESCRIPTION
The COMMIT statement completes the current transaction; closes any cursors that the
transaction opened; and commits any changes made to the database since the transaction
started.

In various implementations, COMMIT can fail for a variety of reasons, with different
implications on the state of the database. See Section 7.5 on page 184.

Data Management: Structured Query Language (SQL), Version 2 139

Transaction Control Statements Executable SQL Statements

DIAGNOSTICS
If the connection fails during the COMMIT statement, the application may not be able to
determine whether commitment occurred before the failure (’08007’).

5.6.3 ROLLBACK

NAME
ROLLBACK — Complete the current transaction by applying none of the database changes.

SYNOPSIS
ROLLBACK [WORK]

DESCRIPTION
The ROLLBACK statement completes the current transaction; closes any cursors that the
transaction opened; and provides that any database changes made since the transaction
started do not take effect.

5.6.4 SET TRANSACTION

NAME
SET TRANSACTION — Set the attributes of the next transaction.

SYNOPSIS
SET TRANSACTIONtransaction-mode [, transaction-mode]...

where transaction-mode is defined as:

DIAGNOSTICS SIZE number
| ISOLATION LEVEL READ UNCOMMITTED
| ISOLATION LEVEL READ COMMITTED
| ISOLATION LEVEL REPEATABLE READ
| ISOLATION LEVEL SERIALIZABLE
| READ ONLY
| READ WRITE

DESCRIPTION
The SET TRANSACTION statement specifies the values of the transaction attributes
discussed in Section 2.7.1 on page 28. These values apply to the next transaction the
application may begin over the current connection. It is implementation-defined whether
the specified attributes persist if the application should disconnect and reconnect to the
same database.

The keywords SET TRANSACTION are followed by transaction-mode clauses. The
DIAGNOSTICS SIZE clause specifies the size of the diagnostics area; the READ ONLY and
READ WRITE clauses specify the access mode; the others specify the isolation level (see
Section 2.7.2 on page 29. Redundant and contradictory designations in a single SET
TRANSACTION statement are invalid.

Defaults

If a SET TRANSACTION statement does not specify the access mode, the resulting access
mode is READ WRITE, except that a statement that specifies ISOLATION LEVEL READ
UNCOMMITTED implies READ ONLY. It is invalid to specify both READ WRITE and
READ UNCOMMITTED in the same SET TRANSACTION statement.

If a SET TRANSACTION statement does not specify the isolation level, then ISOLATION
LEVEL SERIALIZABLE is assumed.

140 X/Open CAE Specification

Executable SQL Statements Transaction Control Statements

If a SET TRANSACTION statement does not specify the size of the diagnostics area, then an
implementation-defined default size is assumed.

If an application starts a transaction without having executed SET TRANSACTION since
the end of any previous transaction, the access mode is READ WRITE, the isolation level is
ISOLATION LEVEL SERIALIZABLE, and the size of the diagnostics area is
implementation-defined.

DIAGNOSTICS
A transaction must not already be active on the current connection (’25000’).

In the DIAGNOSTICS SIZE form, number must be 1 or greater and must not exceed an
implementation-defined maximum value (’35000’).

APPLICATION USAGE
Since SET TRANSACTION affects only the next transaction, applications should execute
SET TRANSACTION before the start of each transaction.

Data Management: Structured Query Language (SQL), Version 2 141

Connection Statements Executable SQL Statements

5.7 Connection Statements
Connection statements give the application access to multiple servers.

5.7.1 Current and Dormant Connections

The CONNECT statement connects the client (and effectively, the application bound to that
client) to a server; the DISCONNECT statement ends this connection. A client can be connected
to several servers at the same time, and can establish several connections to the same server.
(The maximum number of concurrent connections is implementation-defined.) However, only
one connection is current at any time. Other connections are dormant.

The connection that the CONNECT statement specifies becomes the current one. If the
application establishes multiple connections, it can use the SET CONNECTION statement to
select one connection as the current one. In either case, if a previous connection was current, it
becomes dormant. The application cannot use a server through a dormant connection; it must
first use SET CONNECTION.

Making a connection dormant and then current again is comparable to disconnecting and then
reconnecting to the server, except that dormancy typically avoids the need to perform
authentication again, and may avoid costs and uses of resources associated with an initial
connection.

A current or dormant connection is active if any SQL statement that operates on a database has
been successfully executed at its associated server using that connection during the current
transaction. The application must complete the current transaction before DISCONNECT will
succeed.

5.7.2 Default Connection

If the first SQL statement an application executes is not CONNECT, a default connection is
established to an implementation-defined server. This remains the current connection until the
application executes a CONNECT statement. All connection statements let the application
specify this connection explicitly using the keyword DEFAULT. DEFAULT is a discrete
connection just as named connections are.

5.7.3 State Table

The following state table shows the state of connection conn1 resulting from the execution of a
connection statement referencing it or referencing some other connection conn2 . A blank entry
means the state of conn1 is unchanged. A SQLSTATE value means that the statement fails
because of the error indicated by that SQLSTATE value.

Nonexistent Current Dormant
CONNECT TOserv AS conn1 Current ’08002’ ’08002’
DISCONNECTconn1 ’08003’ Nonexistent Nonexistent
SET CONNECTIONconn1 ’08003’ Current
CONNECT TOserv AS conn2 Dormant
DISCONNECTconn2
SET CONNECTIONconn2 Dormant

A connection’s initial state in this table is Nonexistent.

142 X/Open CAE Specification

Executable SQL Statements Connection Statements

5.7.4 Connection Context

Each current or dormant connection has a set of information called the connection context. This
includes:

• the position of all open cursors

• the contents of all SQL descriptor areas

• the name of the current user and all information the server associates with this name

• all state information the server needs in order to reference the application

• other implementation-defined context.

When the current connection becomes dormant, the server saves that connection’s context.
When a dormant connection becomes current, the server restores the context to its exact state at
the time the connection became dormant.

5.7.5 General Diagnostics

It is implementation-defined whether a single transaction (see Section 5.6 on page 139) may
encompass more than one server. If an implementation disallows this, then using CONNECT or
SET CONNECTION when a transaction is active sets SQLSTATE to ’0A001’.

Connection Errors

The DISCONNECT statement (see Section 5.7.7 on page 146) describes how an application
explicitly disconnects from a server. Disconnection can occur independently of the application,
because of communication errors, administrative action, or other events. Four SQLSTATE values
indicate a disconnection:

• The value ’08006’ occurs on a SET CONNECTION statement when the selected connection
has been independently disconnected and cannot be reestablished.

• The value ’08007’ occurs on a COMMIT statement when the current connection has been
independently disconnected.

• The value ’40003’ occurs on a statement, other than COMMIT, that is processed by a server
when the current connection has been independently disconnected. The transaction is rolled
back.

• The value ’08003’ indicates either the connection selected by a SET CONNECTION or
DISCONNECT statement has been explicitly disconnected or the following conditions apply:

— The statement is processed by a server.

— The current connection has been explicitly disconnected, or independently disconnected
but not since the last statement was executed.

— The lost current connection was not the implicit default connection.

A DISCONNECT statement specifying an active connection while a transaction is active is
rejected (’25000’). However, independent disconnection of the current connection (except on a
COMMIT) rolls back any active transaction (’40003’).

If the current connection is disconnected, then there is no current connection; subsequent SQL
statements report the nonexistent connection (’08003’) until the application uses a CONNECT or
SET CONNECTION statement. If the implicit default connection is independently
disconnected, then implicit reconnection occurs, as it did when the application began.

Data Management: Structured Query Language (SQL), Version 2 143

Connection Statements Executable SQL Statements

The diagnostics area may contain additional information on the reason for a connection failure.
(See also the referenced X/Open RDA Specification.)

The following flowchart illustrates the reporting of connection errors and the special
considerations that apply to the implicit default connection:

Connection or
diagnostics statement?

Is there a
current connection?

Execute
the statement

Is the connection
now lost?

Has a conn. stmt. ever
been explicitly executed?

Connection lost since
the last statement?

Transaction rollback;
statement completion
not known (’40003’) *

Is there a dormant
default connection?

Connection does not
exist (’08003’)

Execute an implicit
CONNECT TO DEFAULT

Execute an implicit SET
CONNECTION DEFAULT

Execute
the statement

DONE

Yes

No

No

No

No

No

No

Yes

Yes

Yes Yes

Yes

Figure 5-1 Reporting of Connection Errors (Flowchart)

* If the statement was COMMIT, then SQLSTATE may instead be ’08007’. If it is, the application cannot determine whether the
server committed the transaction before the connection was lost.

144 X/Open CAE Specification

Executable SQL Statements Connection Statements

5.7.6 CONNECT

NAME
CONNECT — Connect the client with a server.

SYNOPSIS
CONNECT TO

{ server [AS connection]
[USER user [USING authentication]]
| DEFAULT}

where server, connection and user are defined as:

character-string-literal | embedded-variable-name

and authentication is defined as:

embedded-variable-name

and all embedded-variable-names reference character-string variables.

DESCRIPTION
CONNECT connects the application to a server. If DEFAULT appears, the connection is to
the default server. If server appears, the connection is to the server it identifies. The length
of server must not exceed 128 characters. The specified connection becomes the current
connection. If another connection was current, it becomes dormant.

The optional connection can be used to reference the connection to server in any subsequent
SET CONNECTION or DISCONNECT statements. If the application does not specify
connection, then server is the implicit connection.

IMPLEMENTATION-DEFINED ISSUES
The mapping from server or DEFAULT to an actual server is implementation-defined.

The specified server uses the contents of the optional USER clause, and may apply other
criteria, at the time of the CONNECT statement to determine whether to accept or reject the
connection. (If the USER clause is omitted, there is an implicit user whose value is
implementation-defined.) If the server accepts the connection, user becomes the value of the
current authorisation identifier.

DIAGNOSTICS
A CONNECT statement can fail if it cannot establish a connection for implementation-
defined reasons (’08001’), or if the server rejects the connection (’08004’).

If DEFAULT is specified, the default connection must not be current or dormant; otherwise,
connection must not identify a current or dormant connection (’08002’).

The value of connection , with leading and trailing spaces removed, must follow the syntax
rules for user-defined names (’2E000’).

The value of user, with leading and trailing spaces removed, must follow the syntax rules
for user-defined names and must not violate any implementation-defined restrictions on its
value (’28000’).

Data Management: Structured Query Language (SQL), Version 2 145

Connection Statements Executable SQL Statements

5.7.7 DISCONNECT

NAME
DISCONNECT — End a connection between a client and server.

SYNOPSIS
DISCONNECT {connection | ALL | CURRENT | DEFAULT}

where connection is defined as:

character-string-literal | embedded-variable-name

and embedded-variable-name references a character-string variable.

DESCRIPTION
DISCONNECT ends a connection. The form DISCONNECT connection ends the specified
connection. DISCONNECT CURRENT ends the current connection. DISCONNECT
DEFAULT ends the default connection. DISCONNECT ALL ends all the application’s
current and dormant connections.

A DISCONNECT statement that does not end the current connection makes no change to
the context of the current connection.

DIAGNOSTICS
If CURRENT is specified, there must be a current connection; otherwise, all specified
connections must be either current or dormant (’08003’).

An active connection must not be disconnected (’25000’).

The Success with Warning outcome occurs if errors occur performing the disconnection
(’01002’).

5.7.8 SET CONNECTION

NAME
SET CONNECTION — Make a specified connection the current one.

SYNOPSIS
SET CONNECTION {connection | DEFAULT}

where connection is defined as:

character-string-literal | embedded-variable-name

and embedded-variable-name references a character-string variable.

DESCRIPTION
The SET CONNECTION statement makes the specified connection the current one. If
another connection was previously current, it becomes dormant.

DIAGNOSTICS
The specified connection must be current or dormant (’08003’).

A SET CONNECTION statement can fail if the specified connection cannot be made current
(’08006’).

146 X/Open CAE Specification

Executable SQL Statements Session Statements

5.8 Session Statements
Session statements set information that is associated with the session in progress over an active
connection to a server. See Section 2.4.1 on page 19 for a discussion of the concept. See Section
3.1.3 on page 35 for a discussion of the syntax of object naming.

5.8.1 SET CATALOG

NAME
SET CATALOG — Set the default catalog name for unqualified object references.

SYNOPSIS
SET CATALOGcatalog-name

where catalog-name is defined as:

character-string-literal | embedded-variable-name

DESCRIPTION
The SET CATALOG statement sets the default catalog name (for references to objects that
do not specify a catalog name) to the value of catalog-name, with any leading and trailing
spaces removed.

Execution of SET CATALOG does not check that catalog-name actually exists. This check
occurs when a subsequent dynamic SQL statement is prepared that references an object that
does not specify a catalog. The default catalog name that is set by the SET CATALOG
statement does not affect static SQL statements and affects only dynamic SQL statements
that are prepared after the execution of the SET CATALOG statement.

DIAGNOSTICS
The value of schema-name, with leading and trailing spaces removed, must be a user-defined-
name (’3D000’).

5.8.2 SET NAMES

NAME
SET NAMES — Set the default character set.

SYNOPSIS
SET NAMEScharacter-set-name

where character-set-name is defined as:

character-string-literal | embedded-variable-name

DESCRIPTION
The SET NAMES statement specifies the default character set for user-defined names and
character-string literals to the value of character-set-name, with any leading and trailing
spaces removed.

Execution of SET NAMES does not check that character-set-name actually exists. This check
occurs when a subsequent dynamic SQL statement is prepared that contains a user-defined
name or character-string-literal that does not explicitly specify a character set. The default
character set that is set by the SET NAMES statement affects only dynamic SQL statements
that are prepared after the execution of the SET NAMES statement.

DIAGNOSTICS
The value of character-set-name, with leading and trailing spaces removed, must be a user-
defined-name (’2C000’).

Data Management: Structured Query Language (SQL), Version 2 147

Session Statements Executable SQL Statements

5.8.3 SET SCHEMA

NAME
SET SCHEMA — Set the default schema name for unqualified object references.

SYNOPSIS
SET SCHEMAschema-name

where schema-name is defined as:

character-string-literal | embedded-variable-name

DESCRIPTION
The SET SCHEMA statement sets the default schema name, and may set the default catalog
name, for references to unqualified objects (that is, for objects that do not specify a catalog
and schema name).

If schema-name contains a ’.’ character, then the characters preceding ’.’ are the default
catalog name and the characters following ’.’ are the default schema name. If schema-name
does not contain a ’.’ character, then schema-name becomes the default schema name and the
default catalog name does not change.

The implementation ignores any leading and trailing spaces in schema-name.

Execution of SET SCHEMA does not check that any specified schema and catalog actually
exist. This check occurs when a subsequent dynamic SQL statement is prepared that
references an unqualified object. The default schema name that is set by the SET SCHEMA
statement affects only dynamic SQL statements that are prepared after the execution of the
SET SCHEMA statement.

DIAGNOSTICS
The value of schema-name, with leading and trailing spaces removed, must be either a user-
defined-name, or two user-defined-names separated by a single ’.’ character (’3F000’).

148 X/Open CAE Specification

Executable SQL Statements SET SESSION AUTHORIZATION

5.9 SET SESSION AUTHORIZATION
NAME

SET SESSION AUTHORIZATION -Set the session authorization identifier

SYNOPSIS
SET SESSION AUTHORIZATIONsession-authorization

where session-authorization is defined as:

character-string-literal | embedded-variable-name

DESCRIPTION
The SET SESSION AUTHORIZATION statement specifies a new value to be used for the
authorization identifier. This identifier is used to validate the privileges of subsequent SQL
statements that are running under invoker’s rights.

DIAGNOSTICS
A transaction must not be active on the current connection (’25000’).

The value of session-authorization , with leading and trailing spaces removed, must follow the
syntax rules for user-defined names and must not violate any implementation-defined
restrictions on its value (’28000’).

The current authorization identifier must satisfy any implementation-defined tests for
authorisation to execute the SET SESSION AUTHORIZATION statement (’28000’).

Data Management: Structured Query Language (SQL), Version 2 149

Diagnostic Statement Executable SQL Statements

5.10 Diagnostic Statement
NAME

GET DIAGNOSTICS — Get information from the diagnostics area.

SYNOPSIS
GET DIAGNOSTICS {statement-information | exception-information }

where statement-information is defined as:

statement-information-item [, statement-information-item]...

and statement-information-item is defined as:

embedded-variable-name-1 = field-name-1

and exception-information is defined as:

EXCEPTION exception-number exception-information-item
[, exception-information-item]...

and exception-information-item is defined as:

embedded-variable-name-2 = field-name-2

and field-name-1 is defined as:

NUMBER | MORE | DYNAMIC_FUNCTION | DYNAMIC_FUNCTION_CODE
| ROW_COUNT

and field-name-2 is one of the following:

CATALOG_NAME CONSTRAINT_NAME RETURNED_SQLSTATE
CLASS_ORIGIN CONSTRAINT_SCHEMA SCHEMA_NAME
COLUMN_NAME CURSOR_NAME SERVER_NAME
CONDITION_NUMBER MESSAGE_LENGTH SUBCLASS_ORIGIN
CONNECTION_NAME MESSAGE_OCTET_LENGTH TABLE_NAME
CONSTRAINT_CATALOG MESSAGE_TEXT

and exception-number is defined as:

unsigned-integer | embedded-variable-name-3

DESCRIPTION
A GET DIAGNOSTICS statement retrieves selected status information from the diagnostics
area. A given GET DIAGNOSTICS statement retrieves either count and overflow
information, or information on a specific exception.

The GET DIAGNOSTICS statement never changes the contents of the diagnostics area,
although it does set SQLSTATE.

Retrieving Count and Overflow

This form of GET DIAGNOSTICS deposits into the specified embedded-variable-name-1 the
value of the diagnostics area field named by field-name-1. The data type of embedded-
variable-name-1 must be that of the requested field, as described below.

NUMBER An INTEGER that is the number of exceptions that the most recently
executed SQL statement placed into the diagnostics area.

MORE A character string of length 1, whose value is ’N’ if the most recently
executed SQL statement stored in the diagnostics area all the exceptions it

150 X/Open CAE Specification

Executable SQL Statements Diagnostic Statement

detected, or ’Y’ if it detected more exceptions than it stored in the
diagnostics area.

DYNAMIC_FUNCTION
A character string of variable length, whose value denotes the statement
type of the most recently executed SQL statement, from the table below.

DYNAMIC_FUNCTION_CODE
An integer whose value denotes the statement type of the most recently
executed SQL statement, from the table below. Positive values were
chosen to align with emerging standards work. Negative values denote
statement types that are X/Open extensions to the International
Standard.

SQL Statement Value of Value of DYNAMIC_
Executed DYNAMIC_FUNCTION FUNCTION_CODE

ALTER TABLE ALTER TABLE 4
CREATE INDEX CREATE INDEX -1
CREATE TABLE CREATE TABLE 77
CREATE VIEW CREATE VIEW 84
cursor-specification SELECT CURSOR -3
searched DELETE DELETE WHERE 19
dynamic positioned DELETE DYNAMIC DELETE CURSOR 38
DROP INDEX DROP INDEX -2
DROP TABLE DROP TABLE 32
DROP VIEW DROP VIEW 36
GRANT GRANT 48
INSERT INSERT 50
REVOKE REVOKE 59
searched UPDATE UPDATE WHERE 82
dynamic positioned UPDATE DYNAMIC UPDATE CURSOR 81

ROW_COUNT An exact numeric value with scale 0 whose value, after certain SQL
statements, is the number of rows that statement processed.

— The INSERT statement sets ROW_COUNT to the number of rows
inserted into the table.

— The searched UPDATE statement sets ROW_COUNT to the number of
rows updated in the table.

— The searched DELETE statement sets ROW_COUNT to the number of
rows deleted from the table.

After any other SQL statement, the value of ROW_COUNT is undefined.

The count does not include any rows in other tables that the statement
may have affected.

OP X/Open encourages implementations to define the row count for
additional SQL statements as follows:

a. For any positioned UPDATE and positioned DELETE statement, the
row count is 1.

b. For any other SQL statement, the row count is 0.

Data Management: Structured Query Language (SQL), Version 2 151

Diagnostic Statement Executable SQL Statements

A portable application cannot assume these semantics, and should not
use the row count unless the SQL statement executed was INSERT,
searched UPDATE or searched DELETE.

Retrieving Exception Data

This form of GET DIAGNOSTICS returns one or more fields of an actual exception that the
most recent SQL statement raised. The application specifies the exception by number, using
either an unsigned-integer or embedded-variable-name-3 (which must be an exact numeric with
scale 0). The first exception is number 1.

The GET DIAGNOSTICS statement deposits into the specified embedded-variable-name-2 the
value of the diagnostics area field named by field-name-1. The data type of embedded-
variable-name-2 must be that of the requested field, as described below.

CATALOG_NAME
A varying-length character string of maximum length 254. In exceptions that pertain to
a table, this is the name of the catalog that contains the table.

CLASS_ORIGIN
A varying-length character string of maximum length 254 that identifies the defining
source of the class portion of RETURNED_SQLSTATE. Its value is ’ISO 9075’ if the
International Standard defines the class. (This is the case for all diagnostics defined in
this specification.) Otherwise, its value is implementation-defined and must not be
’ISO 9075’.

COLUMN_NAME
A varying-length character string of maximum length 254. In exceptions that pertain to
a specific column of a table, this is the name of the column.

CONDITION_NUMBER
An exact numeric with scale 0 that is the serial number of the diagnostic record; that is,
the value supplied as exception-number.

CONNECTION_NAME
A varying length character string of maximum length 128 whose value is determined as
follows:

• If the most recent statement was a connection statement, it contains the explicit or
implicit connection referenced by that statement.

• Otherwise, it contains the explicit or implicit connection associated with the most
recently executed explicit or implicit CONNECT or SET CONNECTION statement.

DEFAULT identifies the default connection.

CONSTRAINT_CATALOG
CONSTRAINT_NAME
CONSTRAINT_SCHEMA

These fields are reserved for future use.

CURSOR_NAME
A varying-length character string of maximum length 254. In exceptions that pertain to
a cursor, this is the name of the cursor.

MESSAGE_TEXT
A varying-length character string of maximum length 254 that contains an
implementation-defined explanation of this exception (such as an error message).
MESSAGE_TEXT may be a zero-length string.

152 X/Open CAE Specification

Executable SQL Statements Diagnostic Statement

MESSAGE_LENGTH
An exact numeric value with scale 0 whose value is the length of the current
MESSAGE_TEXT string in characters. See also MESSAGE_OCTET_LENGTH.

MESSAGE_OCTET_LENGTH
An exact numeric value with scale 0 whose value is the length of the current
MESSAGE_TEXT string in octets. See also MESSAGE_LENGTH.

RETURNED_SQLSTATE
A character string of length 5 that holds the SQLSTATE value describing this type of
exception (see Appendix B).

SCHEMA_NAME
A varying-length character string of maximum length 254. In exceptions that pertain to
a table, this is the name of the schema that contains the table.

SERVER_NAME
A varying-length character string of maximum length 128 that contains the value of
server associated with CONNECTION_NAME.

DEFAULT identifies the default server.

SUBCLASS_ORIGIN
A field with the same format as CLASS_ORIGIN above, that identifies the defining
source of the subclass portion of RETURNED_SQLSTATE. The following are the valid
values for diagnostics defined in this specification:

ISO 9075 All diagnostics except as specified below.

ISO/IEC 9579-1 Diagnostics beginning with ’HZ0’, ’HZ1’ and ’HZ2’.

ISO/IEC 9579-2 Diagnostics beginning with ’HZ3’.

ISO 8649 Diagnostics beginning with ’HZ41’, ’HZ42’ and ’HZ43’.

ISO/IEC 10026-2 Diagnostics beginning with ’HZ45’, ’HZ46’, ’HZ47’, ’HZ48’, ’HZ49’
and ’HZ4A’.

X/OPEN SQL All subclasses that begin with ’S’.

If the subclass portion of RETURNED_SQLSTATE is implementation-defined, then
SUBCLASS_ORIGIN is an implementation-defined value that does not begin with
either ’ISO’ or ’X/OPEN’.

TABLE_NAME
A varying-length character string of maximum length 254. In exceptions that pertain to
a table, this is the name of the table.

DIAGNOSTICS
The exception requested by the GET DIAGNOSTICS EXCEPTION form must be one of the
exceptions that exists in the diagnostics area; exception-number must be in the range from 1
through the value of NUMBER (’35000’).

Data Management: Structured Query Language (SQL), Version 2 153

Executable SQL Statements

154 X/Open CAE Specification

Chapter 6

Information Schema

System views are read-only views from which users can retrieve information about any objects
to which they have access. This information also describes the system views themselves.

All system views are part of the schema INFO_SCHEM and are accessible to every database
user. However, in some cases, certain users are not entitled to perceive the complete system
view. These cases are described for each system view in the CONSTRAINTS section.

Normally, a view is based on another (underlying) table or view. However, X/Open does not
define the basis of system views; indeed, X/Open expects the underlying data structures to vary
among implementations. Instead, the following sections define the system views in terms of a
hypothetical CREATE TABLE statement. This illustrates the names and attributes of all
mandatory columns in the system view. Implementations map their system information into
this form as they see fit.

The information schema INFO_SCHEM may contain additional system views. An application
obtains information on the existence and structure of any additional system views by examining
the COLUMNS, TABLES and VIEWS system views.

Any system views may contain additional columns. Therefore, applications should not apply
forms such as SELECT * or SELECT table-name.* to a system view, since the result may vary
among implementations.

Although the maximum length of user-defined names in X/Open SQL is 18 characters, fields in
the system views that contain names are defined as VARCHAR(128) for compatibility with the
International Standard.

Object Names in the System Views

The system views that describe objects (the TABLES, COLUMNS, INDEXES, SCHEMATA,
TABLE_PRIVILEGES, COLUMN_PRIVILEGES, USAGE_PRIVILEGES and VIEWS system
views) contain columns that specify the catalog and schema in which the object resides.

As described in Section 3.1.3 on page 35, some implementations do not support catalog names.
In these cases, columns that specify catalog (whose names end in _CAT) contain a zero-length
string. An application can determine whether the implementation supports catalog names by
examining the CATALOG_NAME attribute in the SERVER_INFO system view (see
SERVER_INFO on page 166).

Deprecated Schema

The previous issue of this specification specified a schema named INFORMATION_SCHEMA
containing system views with column names that differed from those selected by standards
organisations in order to adhere to the 18-character limit. On final adoption, the International
Standard selected different names, some of which exceed 18 characters.

DE A schema is available that contains system views with columns named as they were in the
previous issue. The name of this schema is OLD_INFO_SCHEMA. For the four system views
that were defined in the previous issue, this specification indicates the former names of relevant
columns.

OLD_INFO_SCHEMA is deprecated. X/Open intends to remove it from future issues of this
specification. Application programs should change schema and column names to match the
International Standard.

Data Management: Structured Query Language (SQL), Version 2 155

CHARACTER_SETS Information Schema

NAME
CHARACTER_SETS — Identify the character sets and their default collations that are accessible
for a given user.

CONCEPTUAL DEFINITION
CREATE TABLE CHARACTER_SETS (

CHARSET_CAT VARCHAR(128) NOT NULL,
CHARSET_SCHEM VARCHAR(128) NOT NULL,
CHARSET_NAME VARCHAR(128) NOT NULL,
FORM_OF_USE VARCHAR(128) NOT NULL,
NUM_CHARS INTEGER NOT NULL,
DEF_COLLATE_CAT VARCHAR(254) NOT NULL,
DEF_COLLATE_SCHEM VARCHAR(254) NOT NULL,
DEF_COLLATE_NAME VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The CHARACTER_SETS system view contains a row for each character set. The row contains at
least these columns:

CHARSET_CAT The name of the catalog that contains the character set in question.

CHARSET_SCHEM The name of the schema that contains the character set in question.

CHARSET_NAME The name of the character set in question.

FORM_OF_USE A user-defined name that indicates the form-of-use of the character set.

NUM_CHARS The number of characters in the character set.

DEF_COLLATE_CAT The name of the catalog that contains the default collation for the
character set.

DEF_COLLATE_SCHEM
The name of the schema that contains the default collation for the
character set.

DEF_COLLATE_NAME
The name of the default collation for the character set.

REMARKS May contain descriptive information about the table.

The CHARACTER_SETS system view includes one row describing the character set named
SQL_TEXT.

CONSTRAINTS
The current user’s privileges, at the time the user gains access to this system view, determine the
rows that are visible. The user sees one row describing each character set to which the user has
USAGE privilege, or to which PUBLIC has USAGE privilege.

156 X/Open CAE Specification

Information Schema COLLATIONS

NAME
COLLATIONS — Identify the collations that are accessible for a given user.

CONCEPTUAL DEFINITION
CREATE TABLE COLLATIONS (

COLLATION_CAT VARCHAR(128) NOT NULL,
COLLATION_SCHEM VARCHAR(128) NOT NULL,
COLLATION_NAME VARCHAR(128) NOT NULL,
CHARSET_CAT VARCHAR(128) NOT NULL,
CHARSET_SCHEM VARCHAR(128) NOT NULL,
CHARSET_NAME VARCHAR(128) NOT NULL,
PAD_ATTRIBUTE VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The COLLATIONS system view contains a row for each collation. The row contains at least
these columns:

COLLATION_CAT The name of the catalog that contains the collation in question.

COLLATION_SCHEM
The name of the schema that contains the collation in question.

COLLATION_NAME The name of the collation in question.

CHARSET_CAT The name of the catalog that contains the character set on which the
collation is defined.

CHARSET_SCHEM The name of the schema that contains the character set on which the
collation is defined.

CHARSET_NAME The name of the character set on which the collation is defined.

PAD_ATTRIBUTE One of the following values:

’NO PAD’
The collation being described has the no pad attribute.

’PAD SPACE’
The collation being described has the pad space attribute.

REMARKS May contain descriptive information about the table.

The COLLATIONS system view includes one row describing the collation named SQL_TEXT.
This is defined on the character set named SQL_TEXT and is the default collation for that
character set.

CONSTRAINTS
The current user’s privileges, at the time the user gains access to this system view, determine the
rows that are visible. The user sees one row describing each collation to which the user has
USAGE privilege, or to which PUBLIC has USAGE privilege.

Data Management: Structured Query Language (SQL), Version 2 157

COLUMN_PRIVILEGES Information Schema

NAME
COLUMN_PRIVILEGES — Identify the privileges on columns of tables in terms of the grantor
and grantee.

CONCEPTUAL DEFINITION
CREATE TABLE COLUMN_PRIVILEGES (

GRANTOR VARCHAR(128) NOT NULL,
GRANTEE VARCHAR(128) NOT NULL,
TABLE_CAT VARCHAR(128) NOT NULL,
TABLE_SCHEM VARCHAR(128) NOT NULL,
TABLE_NAME VARCHAR(128) NOT NULL,
COLUMN_NAME VARCHAR(128) NOT NULL,
PRIVILEGE_TYPE VARCHAR(254) NOT NULL,
IS_GRANTABLE VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The COLUMN_PRIVILEGES system view describes each case where a column privilege was
granted.

Within each row, there are the following columns:

GRANTOR The user name of the user that granted the privilege in question. For
rows that describe the implicit privileges that a table’s owner has on each
column of the table, GRANTOR is ’_SYSTEM’.

GRANTEE The user name of the user to whom the privilege in question was granted.
Granting a privilege to PUBLIC results in only one row in the
COLUMN_PRIVILEGES view (per privilege granted) and the GRANTEE
column contains the value PUBLIC.

TABLE_CAT The name of the catalog that contains the table in question.

TABLE_SCHEM The name of the schema that contains the table in question.

TABLE_NAME The name of the table in question.

COLUMN_NAME The name of the column in question.

PRIVILEGE_TYPE The type of column privilege that was granted. Its value is ’INSERT’,
’REFERENCES’, ’SELECT’ or ’UPDATE’.

Granting multiple privileges to a given user results in multiple rows in
the COLUMN_PRIVILEGES view, one row describing each privilege.

IS_GRANTABLE This column contains the value ’YES’ if the grantor specified WITH
GRANT OPTION when granting the privilege, or ’NO’ otherwise.

REMARKS May contain descriptive information about the table.

COLUMN_PRIVILEGES includes one row for each privilege granted to each user or to PUBLIC
on each column (whether or not the specified privilege can be granted or revoked on individual
columns). An exception is that COLUMN_PRIVILEGES does not contain information on the
DELETE privilege, which in no case applies to individual columns.

COLUMN_PRIVILEGES includes rows that represent the implicit privileges that a table’s owner
has on each column of the table.

158 X/Open CAE Specification

Information Schema COLUMN_PRIVILEGES

CONSTRAINTS
Each user sees only rows from the COLUMN_PRIVILEGES view where one of the following is
true:

• The GRANTOR column contains the name of the current user.

• The GRANTEE column contains the name of the current user or PUBLIC.

APPLICATION USAGE
Granting a privilege on an entire table implicitly grants privileges on each column (as well as on
future columns), each of which is visible in the COLUMN_PRIVILEGES system view.

Data Management: Structured Query Language (SQL), Version 2 159

COLUMNS Information Schema

NAME
COLUMNS — Identify the columns that are accessible for a given user.

CONCEPTUAL DEFINITION
CREATE TABLE COLUMNS (

TABLE_CAT VARCHAR(128) NOT NULL,
TABLE_SCHEM VARCHAR(128) NOT NULL,
TABLE_NAME VARCHAR(128) NOT NULL,
COLUMN_NAME VARCHAR(128) NOT NULL,
ORDINAL_POSITION INTEGER NOT NULL,
COLUMN_DEF VARCHAR(254),
IS_NULLABLE VARCHAR(254) NOT NULL,
DATA_TYPE VARCHAR(254) NOT NULL,
CHAR_MAX_LENGTH INTEGER,
CHAR_OCTET_LENGTH INTEGER,
NUM_PREC INTEGER,
NUM_PREC_RADIX INTEGER,
NUM_SCALE INTEGER,
DATETIME_PREC INTEGER
INTERVAL_TYPE VARCHAR(128),
INTERVAL_PREC INTEGER,
CHAR_SET_CAT VARCHAR(128),
CHAR_SET_SCHEM VARCHAR(128),
CHAR_SET_NAME VARCHAR(128),
COLLATION_CAT VARCHAR(128),
COLLATION_SCHEM VARCHAR(128),
COLLATION_NAME VARCHAR(128),
REMARKS VARCHAR(254))

DESCRIPTION
The COLUMNS system view contains a row for each column accessible to the current user. The
row contains at least these columns:

TABLE_CAT The name of the catalog containing TABLE_NAME.

TABLE_SCHEM The name of the schema containing TABLE_NAME.

TABLE_NAME The name of the table or view.

COLUMN_NAME The name of the column of the specified table or view.

ORDINAL_POSITION
The ordinal position of the column in the table. The first column in the
table is number 1.

COLUMN_DEF The column’s default value, using legal syntax for default-value in the
column-definition of the CREATE TABLE or ALTER TABLE statement. If
the default value is a character string, then this column is that string
enclosed in single quotes. If the default value is a numeric literal, then
this column contains the original character representation with no
enclosing single quotes. If the default value is a date-time literal, then
this column contains the appropriate keyword (DATE, TIME or
TIMESTAMP) followed by the date-value and/or time-value enclosed in
single quotes. If the default value is a pseudo-literal , then this column
contains the keyword, such as CURRENT_DATE, with no enclosing
single quotes.

160 X/Open CAE Specification

Information Schema COLUMNS

If NULL was specified as the default value, then this column is the word
NULL, not enclosed in quotes. If the default value cannot be represented
without truncation, then this column contains TRUNCATED with no
enclosing single quotes. If no default value was specified, then its value
is null.

The value of COLUMN_DEF is suitable for use in generating a new
column-definition , except when it contains the value TRUNCATED.

IS_NULLABLE Contains the value ’NO’ if the column is known to be not nullable,
according to the rules in the International Standard; and ’YES’ otherwise.

DATA_TYPE Identifies the type of the column and can contain one of the following
values:

CHARACTER
CHARACTER VARYING
DATE
DECIMAL
DOUBLE PRECISION
FLOAT
INTEGER
INTERVAL
NUMERIC
REAL
SMALLINT
TIME
TIMESTAMP

CHAR_MAX_LENGTH
Contains the maximum length in characters for a character data type
column. For all other data types it is null.

CHAR_OCTET_LENGTH
Contains the maximum length in octets for a character data type column.
For all other data types it is null. (For single-octet character sets, this is
the same as CHAR_MAX_LENGTH.)

NUM_PREC If DATA_TYPE is an approximate numeric data type, this column
contains the number of bits of mantissa precision of the column. For
exact numeric data types, this column contains the total number of
decimal digits allowed in the column. Otherwise, its value is null.
NUM_PREC_RADIX (see below) indicates the units of measurement.

NUM_PREC_RADIX If DATA_TYPE is an approximate numeric data type, this column
contains the value 2 because NUM_PREC specifies a number of bits. For
exact numeric data types, this column contains the value 10 because
NUM_PREC specifies a number of decimal digits. Otherwise, its value is
null. By combining the precision with the radix, an application can
calculate the maximum number that the column can hold.

NUM_SCALE Defines the total number of significant digits to the right of the decimal
point. For the INTEGER and SMALLINT data types, it is 0. For the
CHARACTER, CHARACTER VARYING, DATETIME, FLOAT,
INTERVAL, REAL and DOUBLE PRECISION data types, its value is null.

Data Management: Structured Query Language (SQL), Version 2 161

COLUMNS Information Schema

DATETIME_PREC For date/time and interval data types, this column contains the number
of digits of precision of the fractional seconds component. For other data
types, its value is null.

INTERVAL_TYPE For interval data types, this column contains a character string with text
of an interval-qualifier specifying the interval precision (for example,
’HOUR TO MINUTE’). For other data types, its value is null.

INTERVAL_PREC This column contains the number of significant digits for the leading
precision of interval data types. For all other data types, its value is null.

CHAR_SET_CAT The name of the catalog that contains the character set used by the
column in question.

CHAR_SET_SCHEM The name of the schema that contains the character set used by the
column in question.

CHAR_SET_NAME The name of the character set used by the column in question.

COLLATION_CAT The name of the catalog that contains the collation used by the column in
question.

COLLATION_SCHEM
The name of the schema that contains the collation used by the column in
question.

COLLATION_NAME The name of the collation used by the column in question.

REMARKS May contain descriptive information about the column.

CONSTRAINTS
The current user’s privileges, at the time the user gains access to the COLUMNS system view,
determine the rows that are visible.

• If the user has one or more privileges (INSERT, DELETE or SELECT) on the table, or if
PUBLIC has such privileges, then the user sees one row describing each column in that table.

• If the user or PUBLIC has REFERENCES or UPDATE privilege on one or more columns, then
the user sees one row for each such column.

COLUMN NAMES IN OLD_INFO_SCHEM
DE The COLUMNS system view exists in the schema OLD_INFO_SCHEM for compatibility with

the previous issue of this specification. In this schema:

It is implementation-defined whether the following columns are present: TABLE_CAT,
ORDINAL_POSITION, COLUMN_DEF, CHAR_OCTET_LENGTH, CHAR_SET_CAT,
CHAR_SET_SCHEM, CHAR_SET_NAME, COLLATION_CAT, COLLATION_SCHEM,
COLLATION_NAME, DATETIME_PREC, INTERVAL_TYPE.

TABLE_SCHEM is called TABLE_SCHEMA.
NUM_PREC is called NUMERIC_PRECISION.
NUM_PREC_RADIX is called NUMERIC_PREC_RADIX.
NUM_SCALE is called NUMERIC_SCALE.

All other columns are present with the same names as shown above.

APPLICATION USAGE
The COLUMNS system view describes the data type and type attributes of table columns. It
includes information available in the SQL descriptor of dynamic SQL, but for historical reasons,

162 X/Open CAE Specification

Information Schema COLUMNS

the column names do not match the field names of the SQL descriptor.

Information on various data types is available in the following columns:

Interval
The interval-qualifier is in INTERVAL_TYPE.
The fractional seconds precision is in DATETIME_PREC.
The leading precision is in INTERVAL_PREC.

Date/time
The interval-qualifier is in INTERVAL_TYPE.
The fractional seconds precision is in DATETIME_PREC.

Numeric
The precision is in NUM_PREC.
The radix of the precision is in NUM_PREC_RADIX.
The scale is in NUM_SCALE.

Data Management: Structured Query Language (SQL), Version 2 163

INDEXES Information Schema

NAME
INDEXES — Identify the indexes that are accessible to a given user.

CONCEPTUAL DEFINITION
CREATE TABLE INDEXES (

TABLE_CAT VARCHAR(128) NOT NULL,
TABLE_SCHEM VARCHAR(128) NOT NULL,
TABLE_NAME VARCHAR(128) NOT NULL,
COLUMN_NAME VARCHAR(128) NOT NULL,
INDEX_NAME VARCHAR(128) NOT NULL,
ORDINAL_POSITION INTEGER NOT NULL,
NON_UNIQUE VARCHAR(128) NOT NULL,
ASC_OR_DESC CHAR(1) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The INDEXES system view describes each index accessible to the current user. It contains one
row for each index column. The row contains at least these columns:

TABLE_CAT The name of the catalog containing TABLE_NAME.

TABLE_SCHEM The name of the schema containing TABLE_NAME.

TABLE_NAME The name of the base table.

COLUMN_NAME The name of the column of the specified base table and index.

INDEX_NAME The unique name of the index.

ORDINAL_POSITION
The ordinal number of the column in the index. The ordering is
determined by the order of the columns in the CREATE INDEX statement
(see Section 5.3.5 on page 105). The numbering of the columns of the
index starts from 1 and increases contiguously.

NON_UNIQUE Contains the value ’NO’ if at most one row is allowed in TABLE_NAME
for each combination of values in the specified columns for this index;
and ’YES’ otherwise.

ASC_OR_DESC Contains the value ’A’ if the order of the referenced column is ascending
and ’D’ if the order of the referenced column is descending.

REMARKS May contain descriptive information about the index.

CONSTRAINTS
The current user’s privileges, at the time the user gains access to the INDEXES system view,
determine the rows that are visible. If the user has SELECT privilege on a given table, or if
PUBLIC has SELECT privilege, then the user sees one row describing each index column created
on that table.

164 X/Open CAE Specification

Information Schema SCHEMATA

NAME
SCHEMATA — Describe the schemata of the database.

CONCEPTUAL DEFINITION
CREATE TABLE SCHEMATA (

CAT_NAME VARCHAR(128) NOT NULL,
SCHEM_NAME VARCHAR(128) NOT NULL,
SCHEM_OWNER VARCHAR(128) NOT NULL,
DEF_CHAR_SET_CAT VARCHAR(128),
DEF_CHAR_SET_SCHEM VARCHAR(128),
DEF_CHAR_SET_NAME VARCHAR(128),
REMARKS VARCHAR(254))

DESCRIPTION
The SCHEMATA system view contains one row describing each schema of the database. Within
each row, there are the following columns:

CAT_NAME The name of the catalog that contains the schema in question.

SCHEM_NAME The name of the schema in question.

SCHEM_OWNER A user name indicating the owner of the schema in question.

DEF_CHAR_SET_CAT
The name of the catalog that contains the default character set for the
schema in question.

DEF_CHAR_SET_SCHEM
The name of the schema that contains the default character set for the
schema in question.

DEF_CHAR_SET_NAME
The name of the default character set for the schema in question.

REMARKS May contain descriptive information about the table.

CONSTRAINTS
None; the SCHEMATA system view is always completely visible to all users.

Data Management: Structured Query Language (SQL), Version 2 165

SERVER_INFO Information Schema

NAME
SERVER_INFO — Provide attributes of the current database system or server.

CONCEPTUAL DEFINITION
CREATE TABLE SERVER_INFO (

SERVER_ATTRIBUTE VARCHAR(254) NOT NULL,
ATTRIBUTE_VALUE VARCHAR(254))

DESCRIPTION
The SERVER_INFO system view describes the server the application is currently connected to.
Each row provides information about one attribute. The SERVER_ATTRIBUTE column
identifies an attribute of servers; the ATTRIBUTE_VALUE specifies the value of that attribute as
it applies to the current server.

All X/Open-compliant database systems must provide applications with certain minimum
information about any server. That is, for all the values of SERVER_ATTRIBUTE listed below,
the SERVER_INFO system view must contain one row with that value, describing that attribute
of the current server.

Implementations may define additional attributes and their corresponding values. For these
attributes, the name of the SERVER_ATTRIBUTE, the range of values in ATTRIBUTE_VALUE,
and the resulting interpretation are implementation-defined.

Here are the attributes that SERVER_INFO must always specify:

CATALOG_NAME This attribute is ’YES’ if the server supports catalog names, and ’NO’
otherwise (see Section 3.1.3 on page 35).

COLLATION_SEQ This attribute is the assumed ordering of the character set for this server.
Acceptable values are ’ISO 8859-1’ and ’EBCDIC’.

IDENTIFIER_LENGTH
This attribute is the maximum number of characters for a user-defined
name. The value is the character string representation of the decimal
value.

INTERVAL_FRACTIONAL_PRECISION
This attribute is the default fractional precision for all objects of data type
INTERVAL SECOND, INTERVAL MINUTE TO SECOND, INTERVAL
HOUR TO SECOND or INTERVAL DAY TO SECOND.

INTERVAL_LEADING_PRECISION
This attribute is the default leading precision for all intervals (see Section
7.1 on page 175).

ROW_LENGTH This attribute is the maximum size of a row, using the units defined in
Section 7.1 on page 175. The value is the character string representation
of the decimal value.

TIME_PRECISION This attribute is the default fractional precision for all objects whose data
type is date/time and whose subtype is TIME (see Section 7.1 on page
175).

TIMESTAMP_PRECISION
This attribute is the default fractional precision for all objects whose data
type is date/time and whose subtype is TIMESTAMP (see Section 7.1 on
page 175).

166 X/Open CAE Specification

Information Schema SERVER_INFO

TXN_ISOLATION This attribute is the initial transaction isolation level the server assumes.
The value must be one of the following, corresponding to isolation levels
defined in the International Standard:

READ UNCOMMITTED
READ COMMITTED
REPEATABLE READ
SERIALIZABLE

USERID_LENGTH This attribute is the maximum number of characters of a user name (or
‘‘authorisation identifier’’). The value is the character string
representation of the decimal value.

CONSTRAINTS
None; the SERVER_INFO system view is always completely visible to all users.

COLUMN NAMES IN OLD_INFO_SCHEM
DE The SERVER_INFO system view exists in the schema OLD_INFO_SCHEM for compatibility

with the previous issue of this specification. It is defined exactly as shown above. However, this
issue defines new server attributes, which are accessible only using the INFO_SCHEM schema
name.

Data Management: Structured Query Language (SQL), Version 2 167

SQL_LANGUAGES Information Schema

NAME
SQL_LANGUAGES — List the SQL standards and SQL dialects that are supported.

CONCEPTUAL DEFINITION
CREATE TABLE SQL_LANGUAGES (

SOURCE VARCHAR(254) NOT NULL,
SOURCE_YEAR VARCHAR(254),
CONFORMANCE VARCHAR(254),
INTEGRITY VARCHAR(254),
IMPLEMENTATION VARCHAR(254),
BINDING_STYLE VARCHAR(254),
PROGRAMMING_LANG VARCHAR(254))

DESCRIPTION
The SQL_LANGUAGES system view contains a row for every conformance claim the SQL
product makes (including subsets defined for ISO and vendor-specific versions). Rows defining
ISO standard and vendor-specific languages may exist in the same table. Each row has at least
these columns and, if it makes an X/Open SQL conformance claim, the columns contain these
values:

Column Name Meaning X/Open Values
The organisation that defined this
SQL version.

SOURCE ’X/OPEN SQL’

The year the relevant source
document was approved.

SOURCE_YEAR ’1992’

The conformance level to the
relevant document that the
implementation claims.

CONFORMANCE null

INTEGRITY (Meaning no longer specified.) ’YES’
A character string, defined by the
vendor, that uniquely identifies the
vendor’s SQL product.

IMPLEMENTATION null

A column included to envisage
future adoption of direct, module or
other binding styles.

’EMBEDDED’ or ’CLI’BINDING_STYLE

The host language for which the
binding style is supported.

PROGRAMMING_LANG ’C’ or ’COBOL’

Rows that do not make an X/Open SQL conformance claim may have additional columns, as
specified by the respective vendor or international standard.

CONSTRAINTS
None; the SQL_LANGUAGES system view is always completely visible to all users.

COLUMN NAMES IN OLD_INFO_SCHEM
DE The SQL_LANGUAGES system view exists in the schema OLD_INFO_SCHEM for

compatibility with the previous issue of this specification. It is defined exactly as shown above.

168 X/Open CAE Specification

Information Schema TABLE_PRIVILEGES

NAME
TABLE_PRIVILEGES — Identify the privileges on tables in terms of the grantor and grantee.

CONCEPTUAL DEFINITION
CREATE TABLE TABLE_PRIVILEGES (

GRANTOR VARCHAR(128) NOT NULL,
GRANTEE VARCHAR(128) NOT NULL,
TABLE_CAT VARCHAR(128) NOT NULL,
TABLE_SCHEM VARCHAR(128) NOT NULL,
TABLE_NAME VARCHAR(128) NOT NULL,
PRIVILEGE_TYPE VARCHAR(254) NOT NULL,
IS_GRANTABLE VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The TABLE_PRIVILEGES system view contains one row describing each case where a privilege
was granted on an entire table.

TABLE_PRIVILEGES includes rows that represent the implicit privileges that a table’s owner has
on the table.

Within each row, there are the following columns:

GRANTOR The user name of the user that granted the privilege in question. For
rows that describe the implicit privileges that a table’s owner has on the
table, GRANTOR is ’_SYSTEM’.

GRANTEE The user name of the user to whom the privilege in question was granted.
Granting a privilege to PUBLIC results in only one row in the
TABLE_PRIVILEGES view (per privilege granted) and the GRANTEE
column contains the value PUBLIC.

TABLE_CAT The name of the catalog that contains the table in question.

TABLE_SCHEM The name of the schema that contains the table in question.

TABLE_NAME The name of the table in question.

PRIVILEGE_TYPE The type of privilege that was granted. Its value must be one of the
following:

DELETE
INSERT
REFERENCES
SELECT
UPDATE

Rows where PRIVILEGE_TYPE is REFERENCES or UPDATE describe
only the cases where a user was granted the respective privileges to the
entire table. When the grantor’s GRANT statement granted
REFERENCES or UPDATE privileges to specified columns of a table,
there are no such rows in TABLE_PRIVILEGES but there are rows in
COLUMN_PRIVILEGES.

Granting multiple privileges to a given user results in multiple rows in
the TABLE_PRIVILEGES view, one row describing each privilege.

IS_GRANTABLE This column contains the value ’YES’ if the grantor specified WITH
GRANT OPTION when granting the privilege, or ’NO’ otherwise.

Data Management: Structured Query Language (SQL), Version 2 169

TABLE_PRIVILEGES Information Schema

REMARKS May contain descriptive information about the table.

CONSTRAINTS
Each user sees only rows from the TABLE_PRIVILEGES view where one of the following is true:

• The GRANTOR column contains the name of the current user.

• The GRANTEE column contains the name of the current user or PUBLIC.

APPLICATION USAGE
An entry in TABLE_PRIVILEGES does not assert that the grantee has the privilege on any
specific column of the table, because privileges can be granted on a table and revoked on
individual columns. An application should refer to the COLUMN_PRIVILEGES table for
privileges to specific columns.

170 X/Open CAE Specification

Information Schema TABLES

NAME
TABLES — Identify the tables accessible to the current user.

CONCEPTUAL DEFINITION
CREATE TABLE TABLES (

TABLE_CAT VARCHAR(128) NOT NULL,
TABLE_SCHEM VARCHAR(128) NOT NULL,
TABLE_NAME VARCHAR(128) NOT NULL,
TABLE_TYPE VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The TABLES system view contains exactly one row for each table to which the current user has
access (see Constraints below). The row contains at least these columns:

TABLE_CAT The name of the catalog containing TABLE_NAME.

TABLE_SCHEM The name of the schema containing TABLE_NAME.

TABLE_NAME The name of the table or view.

TABLE_TYPE Identifies the type of the table or view. It can have two possible values:
’BASE TABLE’ or ’VIEW’.

REMARKS May contain descriptive information about the table.

CONSTRAINTS
The current user’s privileges, at the time the user gains access to the TABLES system view,
determine the rows that are visible. If the user has one or more privileges (INSERT, DELETE or
SELECT; or REFERENCES or UPDATE on one or more columns) on a given table, or if PUBLIC
has such privileges, then the user sees one row describing that table.

COLUMN NAMES IN OLD_INFO_SCHEM
DE The TABLES system view exists in the schema OLD_INFO_SCHEM for compatibility with the

previous issue of this specification. In this schema:

It is implementation-defined whether TABLE_CAT is present.
TABLE_SCHEM is called TABLE_SCHEMA.
All other columns are present with the same names as shown above.

Data Management: Structured Query Language (SQL), Version 2 171

TRANSLATIONS Information Schema

NAME
TRANSLATIONS — Identify the translations that are accessible for a given user.

CONCEPTUAL DEFINITION
CREATE TABLE TRANSLATIONS (

TRANSLATION_CAT VARCHAR(128) NOT NULL,
TRANSLATION_SCHEM VARCHAR(128) NOT NULL,
TRANSLATION_NAME VARCHAR(128) NOT NULL,
SRC_CHARSET_CAT VARCHAR(128) NOT NULL,
SRC_CHARSET_SCHEM VARCHAR(128) NOT NULL,
SRC_CHARSET_NAME VARCHAR(128) NOT NULL,
TGT_CHARSET_CAT VARCHAR(128) NOT NULL,
TGT_CHARSET_SCHEM VARCHAR(128) NOT NULL,
TGT_CHARSET_NAME VARCHAR(128) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The TRANSLATIONS system view contains a row for each translation. There are not necessarily
any translations.

Each row identifies a translation and specifies a source and target character sets. The source
character set is the character set to which characters belong that are to be translated by the
translation in question. The target character set is the character set to which characters belong
that are the result of the translation in question.

The row contains at least these columns:

TRANSLATION_CAT The name of the catalog that contains the translation in question.

TRANSLATION_SCHEM The name of the schema that contains the translation in question.

TRANSLATION_NAME The name of the translation in question.

SRC_CHARSET_CAT The name of the catalog that contains the source character set.

SRC_CHARSET_SCHEM The name of the schema that contains the source character set.

SRC_CHARSET_NAME The name of the source character set.

TGT_CHARSET_CAT The name of the catalog that contains the target character set.

TGT_CHARSET_SCHEM The name of the schema that contains the target character set.

TGT_CHARSET_NAME The name of the target character set.

REMARKS May contain descriptive information about the table.

CONSTRAINTS
The current user’s privileges, at the time the user gains access to this system view, determine the
rows that are visible. The user sees one row describing each translation to which the user has
USAGE privilege, or to which PUBLIC has USAGE privilege.

172 X/Open CAE Specification

Information Schema USAGE_PRIVILEGES

NAME
USAGE_PRIVILEGES — Identify the privileges on character sets and collations.

CONCEPTUAL DEFINITION
CREATE TABLE USAGE_PRIVILEGES (

GRANTOR VARCHAR(128) NOT NULL,
GRANTEE VARCHAR(128) NOT NULL,
OBJECT_CAT VARCHAR(128) NOT NULL,
OBJECT_SCHEM VARCHAR(128) NOT NULL,
OBJECT_NAME VARCHAR(128) NOT NULL,
OBJECT_TYPE VARCHAR(254) NOT NULL,
PRIVILEGE_TYPE VARCHAR(254) NOT NULL,
IS_GRANTABLE VARCHAR(254) NOT NULL,
REMARKS VARCHAR(254))

DESCRIPTION
The USAGE_PRIVILEGES system view contains one row describing each case where a privilege
was granted on a character set or a collation. Within each row, there are the following columns:

GRANTOR The user name of the user that granted the privilege in question.

GRANTEE The user name of the user to whom the privilege in question was granted.
Granting a privilege to PUBLIC results in only one row in the
USAGE_PRIVILEGES view (per privilege granted) and the GRANTEE
column contains the value PUBLIC.

OBJECT_CAT The name of the catalog that contains the object in question.

OBJECT_SCHEM The name of the schema that contains the object in question.

OBJECT_NAME The name of the object in question.

OBJECT_TYPE The type of the object. Its value is ’CHARACTER SET’ or ’COLLATION’.

PRIVILEGE_TYPE The type of privilege that was granted. Its value must be ’USAGE’.

IS_GRANTABLE This column contains the value ’YES’ if the grantor specified WITH
GRANT OPTION when granting the privilege, or ’NO’ otherwise.

REMARKS May contain descriptive information about the table.

CONSTRAINTS
Each user sees only rows from the USAGE_PRIVILEGES view where one of the following is
true:

• The GRANTOR column contains the name of the current user.

• The GRANTEE column contains the name of the current user or PUBLIC.

Data Management: Structured Query Language (SQL), Version 2 173

VIEWS Information Schema

NAME
VIEWS — Identify the viewed tables accessible to the current user.

CONCEPTUAL DEFINITION
CREATE TABLE VIEWS (

TABLE_CAT VARCHAR(128) NOT NULL,
TABLE_SCHEM VARCHAR(128) NOT NULL,
TABLE_NAME VARCHAR(128) NOT NULL,
VIEW_DEFINITION VARCHAR(implementation-defined),
CHECK_OPTION VARCHAR(254),
IS_UPDATABLE VARCHAR(254),
REMARKS VARCHAR(254))

DESCRIPTION
The VIEWS system view contains exactly one row for each viewed table to which the current
user has access (see Constraints below). The row contains at least these columns:

TABLE_CAT The name of the catalog containing TABLE_NAME.

TABLE_SCHEM The name of the schema containing TABLE_NAME.

TABLE_NAME The name of the table or view.

VIEW_DEFINITION The definition of the view as it would appear in a CREATE VIEW
statement. If the actual definition would not fit in the implementation-
defined maximum length of this column, then the implementation sets
this column to the null value.

CHECK_OPTION Contains the value ’CASCADED’ if WITH CHECK OPTION was
specified in the CREATE VIEW statement that created the table, and the
value ’NONE’ otherwise.

IS_UPDATABLE Contains the value ’YES’ if the table is updatable and ’NO’ otherwise.

REMARKS May contain descriptive information about the view.

CONSTRAINTS
The current user’s privileges, at the time the user gains access to the VIEWS system view,
determine the rows that are visible. If the user has one or more privileges (INSERT, DELETE or
SELECT; or REFERENCES or UPDATE on one or more columns) on a given view, or if PUBLIC
has such privileges, then the user sees one row describing that view.

APPLICATION USAGE
Views are also listed in the TABLES system view.

174 X/Open CAE Specification

Chapter 7

Implementation-specific Issues

7.1 Limits
Limits vary among implementations. This section defines the maximum values for certain limits
that application developers may safely assume all X/Open-compliant systems support. For
example, X/Open is aware of implementations where the limit on the length of a character string
is as low as 254 or as high as 4096. X/Open specifies (in 7.1.1 (103) below) a portability limit of
254. This asserts that all X/Open-compliant implementations shall set any such limit at 254 or
higher, and asserts that portable applications must conform to a limit of 254.

Implementations are not required to have any of the following limits. X/Open requires only that
any such limits be set to at least the value specified by X/Open.

The tables in the following sections contain columns for X/Open, SPIRIT Issue 2 and SPIRIT
Issue 3. (A full definition of the SPIRIT SQL profiles is provided in Appendix D and Appendix E,
respectively.) Limits that affect only the SPIRIT specifications appear in Section 7.1.5 through
Section 7.1.7.

The guaranteed minimum values are specified for limits on ‘‘attributes’’, a term used in this
section as a generic reference to various aspects of an SQL implementation. The legend N/A
(not applicable) means that the respective SQL specification does not guarantee a minimum
value of any limit on the given attribute.

7.1.1 Supplementary Definitions

The International Standard specifies that a variety of parameters are implementation-defined.
To facilitate portability, X/Open specifies values for some of these parameters:

Guaranteed Minimum Value
Ref. Attribute X/Open SPIRIT 2 SPIRIT 3
101 Length of a user-defined name (SPIRIT: identifier) 18 18 18

102 Length of a national character identifier 18 8 8

103 Length of a character string 254 [1] 254 254

Maximum length of a variable-length character string104 254 [1] 4000 32000

105 Length of a NATIONAL CHARACTER string 254 127 127

Maximum length of a NATIONAL CHARACTER VARYING
string

106 N/A 2000 16000

In the ALLOCATE DESCRIPTOR statement, the maximum
value and the default value for occurrences (in SPIRIT, this is a
derived limit; see Section 7.1.6 on page 179)

107 100 see text see text

Precision of any DECIMAL or NUMERIC data type, in
decimal digits

108 15 [2] 15 15

Data Management: Structured Query Language (SQL), Version 2 175

Limits Implementation-specific Issues

Guaranteed Minimum Value
Ref. Attribute X/Open SPIRIT 2 SPIRIT 3
109 Mantissa precision of any FLOAT data type, in bits 47 [2] 47 47

110 Exponent precision of any FLOAT data type, in bits N/A 7 [3] 7 [3]

111 Precision of a SMALLINT number 5 digits 15 bits 15 bits

112 Precision of an INTEGER number 10 digits 31 bits 31 bits

113 Mantissa precision of a REAL number, in bits 21 21 23 [4]

114 Exponent precision of a REAL number, in bits N/A 7 [3] 7 [3]

115 Mantissa precision of a DOUBLE PRECISION number, in bits 47 47 47

116 Exponent precision of a DOUBLE PRECISION number, in bits N/A 7 [3] 7 [3]

117 Precision of SQLCODE 9 digits 31 bits 31 bits

Fractional precision, in decimal digits, of the seconds
component of:

118 values of type TIME 6 N/A 0
119 values of type TIMESTAMP 6 N/A 6
120 values of type INTERVAL 6 N/A 6

Leading precision for INTERVAL data types, in decimal digits121 7 N/A 7

Fractional precision for INTERVAL data types that have a
SECOND field

122 6 N/A 6

123 Length of an item of type BIT N/A N/A 8000

124 Maximum length of an item of type BIT VARYING N/A N/A 32000

Notes:

[1] Character strings that serve as server names or connection names in
connection statements (see Section 5.7 on page 142) are limited to 128
characters.

[2] X/Open leaves implementation-defined the default precision for these data
types, as does the International Standard. X/Open advises portable
applications to always code a precision explicitly for these data types.

[3] The range of positive values that an implementation must support for REAL is
1.0 × 10−37 to 1.0 × 10+38. The range of negative values for each is −1.0 × 10−37

to −1.0 × 10+38. The range of positive values that an implementation must
support for FLOAT and DOUBLE PRECISION is 1.0 × 10−78 to 1.0 × 10+75. The
range of negative values for each is −1.0 × 10−78 to −1.0 × 10+75.

The value 1.0 × 10−37 cited above deviates from that specified by the X/Open
definition of the C language. X/Open is working with SPIRIT to resolve this.

[4] The difference in this value between SPIRIT 2 and SPIRIT 3 derives from the
publication of FIPS 127-2.

The SERVER_INFO system view provides information on the limits applicable to the current
server (see SERVER_INFO on page 166).

176 X/Open CAE Specification

Implementation-specific Issues Limits

7.1.2 Additional Limits

This section specifies limits that the International Standard does not contemplate.

Guaranteed Minimum Value
Ref. Attribute X/Open SPIRIT 2 SPIRIT 3
201 Number of tables in a catalog N/A 2047 10000

Number of columns in a table (for SPIRIT, other limits are
derived from this limit; see Section 7.1.6 on page 179)

202 100 255 255

203 Number of columns constituting an index 6 N/A N/A

Number of tables a statement references [5]204 10 15 15

Number of tables a FROM clause references [5]205 N/A 15 15

206 Number of cursors simultaneously open 10 N/A N/A

Number of columns that a single INSERT statement can insert207 20 N/A N/A

Number of columns that a single UPDATE statement can update208 20 N/A N/A

209 Number of sub-queries in an SQL statement N/A 14 14

210 Levels of nesting of sub-queries, not counting the outermost level 9 9 9

211 Predicates in a WHERE or HAVING clause N/A 255 750

212 Number of columns in a UNIQUE constraint N/A 16 16

213 Number of columns in a GROUP BY column list N/A 16 16

214 Number of sort items in an ORDER BY clause N/A 16 16

215 Number of referencing-columns in a FOREIGN KEY N/A 16 16

216 Number of columns in a named-column JOIN N/A 16 16

Note:

[5] X/Open specifies ‘‘direct or indirect’’ references. SPIRIT specifies that the
number of table references is the sum of: the number of views and base tables
named in the statement, the number of underlying views and tables (see
Subclause 4.9, "Tables", of the International Standard) for each derived table or
cursor, and the number of <correlation name>s (either given in the SQL
statement or contained in some view named in the SQL statement) not directly
associated with a named table or view.

Data Management: Structured Query Language (SQL), Version 2 177

Limits Implementation-specific Issues

7.1.3 Storage Capacity

Various implementations limit the size and complexity of rows, and of other groupings of
columns, based on their internal storage method. The International Standard does not specify
such limits. As a common basis of measurement, X/Open assumes a storage model in which:

• The existence of a column requires 2 units of storage.

• Each character column requires a number of storage units equal to its maximum length.

• Each exact numeric column requires the following storage units:

— X/Open: A number equal to its decimal precision.

— SPIRIT: A number one greater than its decimal precision.

• Each approximate numeric column requires the following storage units:

— X/Open: A number equal to its precision.

— SPIRIT: A number one greater than one-fourth of its binary precision.

• Each date/time column requires a number of storage units equal to the number of characters
in its visible representation. This is defined in Table 3-4 on page 43.

• Each interval column requires the following storage units:

— X/Open: A number equal to the number of characters in its visible representation. This is
defined in Length of an Interval on page 46.

— SPIRIT: 20 storage units. In addition, if the interval has a non-zero fractional seconds
precision, then add that precision plus 1.

An implementation may use other storage models, but it shall permit at least the following
complexity as measured by the X/Open storage model:

Guaranteed Minimum Value
Ref. Attribute X/Open SPIRIT 2 SPIRIT 3
301 Total length of a row 2000 4000 32000

302 Total length of an index key 120 N/A N/A

303 Length of columns specified in a GROUP BY clause 120 250 250

304 Length of columns specified in an ORDER BY clause 120 250 250

305 Length of columns specified in a FOREIGN KEY column list N/A 250 250

Length of columns specified in a JOIN column list306 N/A 250 250

Length of columns in a UNIQUE constraint307 N/A 250 250

Implementations with limited storage capacities may limit the total size or complexity of the
database in ways that X/Open cannot characterise.

178 X/Open CAE Specification

Implementation-specific Issues Limits

7.1.4 Statement Complexity

Certain implementation capabilities are guaranteed regarding the length of an SQL statement.
SPIRIT defines this length to be the result of applying the OCTET_LENGTH function (see
Section 3.9.3 on page 59) to the SQL statement with the SQL statement considered to be an
instance of a CHARACTER VARYING data type.

Any limits on the following attributes imposed by compliant implementations shall be at least as
follows:

Guaranteed Minimum Value
Ref. Attribute X/Open SPIRIT 2 SPIRIT 3
401 Length of an SQL <schema definition> 4000 32000 32000

402 Length of an <SQL data statement> 4000 32000 32000

403 Length of an <SQL statement variable> 4000 32000 32000

7.1.5 Embedded Aspects (SPIRIT Only)

Any limits on the following attributes imposed by SPIRIT-compliant implementations shall be at
least as follows:

Guaranteed Minimum Value
Ref. Attribute X/Open SPIRIT 2 SPIRIT 3
501 Number of host variables in an SQL declare section N/A 1024 1024

Number of executable SQL statements in a
program (compilation unit)

502 N/A 512 1000

Number of WHENEVER statements in a program
(compilation unit)

503 N/A 128 128

Number of cursors in a program (compilation unit)504 N/A 255 255

7.1.6 Derived Limits (SPIRIT Only)

Section 7.1 on page 177 guarantees a minimum value for any limit on the number of columns in
a table. SPIRIT guarantees the same minimum value as the limit of each of the following:

• the number of columns in a view

• the number of values in an INSERT statement

• the number of SET clauses in an UPDATE statement

• the number of items in a SELECT list

• the maximum value of occurrences in an ALLOCATE DESCRIPTOR statement

• the number of item descriptor areas allocated to an SQL descriptor area if occurrences is
omitted from the ALLOCATE DESCRIPTOR statement.

In addition, any implementation-defined limit on the number of host variables in an SQL
statement shall be at least twice the limit of the number of columns in a table.

Data Management: Structured Query Language (SQL), Version 2 179

Limits Implementation-specific Issues

7.1.7 Language-specific Limits (SPIRIT Only)

In C, any limit on the length of a host identifier is at least 6 if the identifier is an extern, and at
least 18 otherwise.

In COBOL, any limit on the length of a host identifier is at least 18.

In Fortran, any limit on the length of a host identifier is at least 6.

180 X/Open CAE Specification

Implementation-specific Issues Vendor-specific SQL

7.2 Vendor-specific SQL
Implementations often provide SQL functions beyond those documented herein. Many useful
functions are not yet standardised.

An escape clause is a syntactic mechanism for vendor-specific SQL extensions to be
implemented in the framework of standardised SQL. Using escape clauses, an application can
request a vendor-specific function in a way that does not keep it from compiling or executing in
an environment that does not support the function.

However, any application whose correct operation depends on vendor-specific SQL functions is
necessarily restricted in its portability, since an X/Open-compliant SQL implementation need
not provide any vendor-specific functions.

7.2.1 Vendor Escape Clause

FUNCTION
Delimit and identify uses of vendor-specific extensions to X/Open SQL.

SYNOPSIS
An vendor-escape-clause is defined as:

--(* dialect , extended-SQL-text *)--

where dialect is defined as:

ISO-dialect | vendor-dialect

and ISO-dialect is defined as:

YEAR(ISO-year), CONFORMANCE(ISO-conformance)

and vendor-dialect is defined as:

VENDOR(vendor-name), PRODUCT(product-name)

DESCRIPTION
The escape clause introduces SQL syntax not defined in this X/Open specification. This
non-standard syntax is the extended-SQL-text. The escape clause includes a description of
the SQL dialect that the extended-SQL-text uses, to allow coherent interpretation even if
several dialects should define the same syntax differently.

ISO-based Dialects

The ISO-dialect form introduces SQL syntax that a specified dialect that the International
Standard defines and that X/Open may not yet support. The ISO-year element is the
publication year of the standard. Currently, the application must specify YEAR(1992). The
ISO-conformance element is the conformance level. The application must also specify
CONFORMANCE(1) for Entry level conformance, CONFORMANCE(2) for Intermediate
level conformance, or CONFORMANCE(3) for Full level conformance.

Data Management: Structured Query Language (SQL), Version 2 181

Vendor-specific SQL Implementation-specific Issues

Vendor Dialects

The vendor-dialect form introduces vendor-specific SQL syntax. The vendor-name element is
a vendor identification that is consistent across all that vendor’s SQL implementations. The
product-name element identifies the SQL version in an implementation-defined way.

Processing

In either type of clause, the extended-SQL-text contains all or part of a valid SQL statement in
the SQL dialect that the escape clause specifies. The text must be such that the processing
specified below produces valid SQL syntax in the applicable SQL dialect. The text must not
contain an sql-prefix, an sql-terminator, a dynamic-parameter, or an embedded-variable-name.

Processing of an SQL statement that contains a vendor-escape-clause is done as follows:

1. If the database system supports dialect, then it conceptually replaces the entire vendor-
escape-clause with the text provided in extended-SQL-text of the escape clause. (The
result, in context, must be valid SQL syntax in that dialect.)

2. If the database system does not support dialect, then it conceptually deletes the entire
vendor-escape-clause. (The result, in context, must be valid X/Open SQL syntax.)

3. This edited SQL statement is processed in the usual way.30

Escape clauses are allowed only in SQL statement text processed by PREPARE and
EXECUTE IMMEDIATE.

30. If the entire prepared SQL statement text is a vendor escape clause, then its execution will fail (’42000’) in implementations that
do not support the specified dialect, since null SQL statements are not valid.

182 X/Open CAE Specification

Implementation-specific Issues Restrictions on Names

7.3 Restrictions on Names
a. Most implementations have reserved words in addition to those listed in this specification

(see Section 3.1.6 on page 37). To ensure portability, applications should avoid using
identifiers that might be reserved. For example, include underscore characters or digits in
the identifiers.

b. To avoid name conflicts between system-defined and user-defined objects, applications
should not use procedure, function or variable names starting with sql or SQL or SYS.

c. Some implementations have keyword-oriented parsers. To ensure portability, the names
of embedded host variables should be distinct from SQL keywords (including the
additional reserved words referred to in a) above).

d. In some implementations, user-name can be longer than 18 characters. A program
retrieving certain pseudo-literals into a host variable (see Authorisation Pseudo-literals on
page 50) may have to allow an implementation-defined amount of additional space.

e. The user-defined names that are valid user-names are implementation-defined.

7.4 Data Definition Statements in Transactions
Several products currently implement transaction semantics differently:

• In some cases, each data definition statement is a separate transaction that is immediately
committed.

• In some cases, executing a data definition statement also commits all previously-executed
data manipulation statements.

• In some implementations, data definition statements are fully controlled by transaction
control statements, as X/Open specifies. But even in this case, transactions containing
several statements, including one data definition statement, can produce interactions that
X/Open does not define.

To portably produce the same effects, applications must obey these restrictions:

• The non-dynamic or dynamic execution of a data manipulation statement should not occur
within the same transaction as the non-dynamic or dynamic execution of a data definition
statement.

• Every data definition statement should immediately be followed by a COMMIT statement.

• Applications should not assume that a ROLLBACK statement reverses the effects of any data
definition statement.

• If the program is assumed to be restartable after a crash, it must analyse its previous progress
and must be prepared to clean up any intermediate state of data definition operations.

In effect, this means that there are currently only two portable classes of transactions:

• data manipulation transactions, which follow the defined rules for transactions and may
either be committed or aborted

• data definition transactions, which consist of a single statement only, followed by a COMMIT
statement.

If an implementation does not allow mixing of data definition and data manipulation statements
in transactions, any statement executed that violates this rule sets SQLSTATE to ’25000’.

Data Management: Structured Query Language (SQL), Version 2 183

Commitment of Transactions Implementation-specific Issues

7.5 Commitment of Transactions
Some distributed implementations currently may not correctly notify the application of the
outcome of COMMIT in cases where communication errors occur. In these cases:

• The transaction may still be active.

• The transaction may have been committed successfully.

• The transaction may have been partially or totally rolled back.

The application should carefully check the status of the database before doing any further work.

7.6 Error Treatment

SQLCODE

Positive SQLCODE values other than +100 are handled in various ways; some implementations
treat them as errors and trap them via SQLERROR and some treat them as warnings and trap
them via SQLWARNING. Applications should therefore use the WHENEVER statement to
determine the result class of an exception condition rather than test SQLCODE explicitly.

Indicator Variables

Section 3.8 on page 56 says that the value −1 in an indicator variable means that the
accompanying host variable is null, and says that X/Open reserves other negative values for
future definition.

Some implementations currently use negative values other than −1 in an indicator variable to
indicate a null value.

Applications must use the value −1 in the indicator variable to convey to the implementation
that the associated host variable is null. However, on output, applications must accept any
negative number in the indicator variable and must not make inferences based on the particular
negative number the implementation returns.

7.7 Textual Sequencing
There are two notable cases in which a specific sequence of execution is necessary:

• The PREPARE statement must precede the EXECUTE statement that executes the prepared
statement.

• The PREPARE statement must precede any DESCRIBE statement that references the
prepared statement.

On some implementations, some of the computation is performed by a preprocessor at compile
time. The sequencing rules above would then apply to the textual sequence of the relevant
statements in the source program. The International Standard does not specify textual
precedence rules, but some implementations impose rules in the above cases on the order of
execution, textual order, or both.

Portable applications should be written so that the statement pairs listed above both appear in
the proper sequence and are executed in the proper sequence.

184 X/Open CAE Specification

Implementation-specific Issues Textual Sequencing

In three other cases, sequence rules always apply to the textual order in the program:

• The DECLARE CURSOR statement must precede any statement that references the defined
cursor.

• The declaration of host variables and indicator variables must textually precede any
references to the variables.

• The WHENEVER statement must textually precede any executable SQL statements that it is
to affect.

It is implementation-defined whether multiple dynamic DECLARE CURSOR statements can
reference the same statement-name.

7.8 SELECT
The definition of a query-specification (see Section 3.11.1 on page 71, Step 6) allows the use of two
forms containing * to specify a sequence of expressions. However, it is implementation-defined
whether the sequence is established at compile or run time. Therefore, the result of evaluating
these query-specifications (for example, the number of columns retrieved by a SELECT statement)
can differ among implementations. Portable applications should not use these * forms, except in
CREATE VIEW, in which * is expanded when the view definition is originally executed.

Data Management: Structured Query Language (SQL), Version 2 185

Implementation-specific Issues

186 X/Open CAE Specification

Appendix A

Syntax Summary

This summary uses the notation defined in Section 3.1.1 on page 31. In addition, the symbol
::= indicates that the syntactic element on its left is defined in the terms described on its right.
Footnotes appear when they are more helpful than a mathematical description. The main text
contains additional syntactic and semantic rules that are essential to the definitions.

In the following syntax summary, spaces are used for clarity. The actual rules for when
separators must appear in an embedded SQL program are given in Section 3.1.2 on page 32.

A.1 Common Elements
approximate-numeric-literal ::= mantissa Eexponent

mantissa ::= exact-numeric-literal

exponent ::= [+|-] unsigned-integer

approximate-numeric-type ::= FLOAT[(precision)] | DOUBLE PRECISION | REAL

base-table-name ::= [object-qualifier .] unqualified-base-table-name

between-predicate ::= expression [NOT] BETWEEN expression AND expression

cast-expression ::= CAST({ expression | NULL}) AS data-type)

character ::= Any character in the implementor’s character set except the newline indication.

character-set-name ::= [object-qualifier .] unqualified-character-set-name

character-string-literal ::= ’{ character }. ..’

character-string-type ::=
CHARACTER[(length)]
| CHAR[(length)]
| CHARACTER VARYING(length)
| VARCHAR(length)

length ::= unsigned-integer

collation-name ::= [object-qualifier .] unqualified-collation-name

column-definition ::=
unqualified-column-name data-type
[DEFAULT default-value]
[column-constraint-definition

[, column-constraint-definition]. ..]
[COLLATE collation-name]

column-constraint-definition ::=
CHECK (search-condition)
| NOT NULL
| PRIMARY KEY
| REFERENCES base-table-name-2 [(unqualified-column-name)]
| UNIQUE

default-value ::= literal | NULL

column-name ::=
[{ table-name | correlation-name }.] unqualified-column-name

comparison-operator ::= < | > | <= | >= | = | <>

Data Management: Structured Query Language (SQL), Version 2 187

Common Elements Syntax Summary

comparison-predicate ::=
expression comparison-operator { expression | (sub-query)}

conversion-name ::= [object-qualifier .] unqualified-conversion-name

correlation-name ::= user-defined-name

cursor-name ::= user-defined-name

data-type ::=
character-string-type [CHARACTER SET character-set-name]
| national-character-string-type
| exact-numeric-type
| approximate-numeric-type
| date-time-type
| interval-type

date-time-literal ::= •
DATE ’date-value ’
| TIME ’ time-value ’
| TIMESTAMP ’ date-value space time-value ’

date-value ::=
year-value minus month-value minus day-value

time-value ::=
hour-value colon minute-value colon second-value

year-value ::= unsigned-integer
month-value ::= unsigned-integer
day-value ::= unsigned-integer
hour-value ::= unsigned-integer
minute-value ::= unsigned-integer
second-value ::= unsigned-integer [. unsigned-integer]

date-time-type ::=
DATE
| TIME[(precision)]
| TIMESTAMP[(precision)]

digit ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

dynamic-parameter ::= ? [interval-qualifier]

exact-numeric-literal ::=
[+|-]{ unsigned-integer [. unsigned-integer]

| unsigned-integer .
| . unsigned-integer }

exact-numeric-type ::=
DECIMAL[(precision [, scale])]
| DEC[(precision [, scale])]
| INTEGER
| INT
| SMALLINT
| NUMERIC[(precision [, scale])]

exists-predicate ::= EXISTS(sub-query)

• In this section, the syntactic elements colon , minus and space each denote a single character as determined by the character set in use.

188 X/Open CAE Specification

Syntax Summary Common Elements

expression ::=
string-expression [COLLATE collation-name]
| arithmetic-expression

string-expression ::=
primary | string-expression concat primary

concat ::= The concatenation operator, a double vertical bar

arithmetic-expression ::=
term | arithmetic-expression {+|-} term

term ::= factor | term {*|/} factor

factor ::= [+|-] primary

primary ::=
cast-expression
| column-name
| dynamic-parameter
| host-variable-reference
| literal
| scalar-function-reference
| set-function-reference
| (expression)

host-variable-reference ::=
embedded-variable-name [indicator-variable]

embedded-variable-name ::= : host-identifier
indicator-variable ::= : host-identifier

host-identifier ‡

index-name ::= [object-qualifier .] unqualified-index-name

in-predicate ::=
expression [NOT] IN {(value {, value }...) | (sub-query)}

value ::=
host-variable-reference | literal | dynamic-parameter

keyword †

like-predicate ::=
column-name [NOT] LIKE pattern-value [ESCAPE escape-character]

pattern-value ::=
character-string-literal
| dynamic-parameter
| host-variable-reference
| CURRENT_USER
| SESSION_USER
| SYSTEM_USER
| USER

‡ For COBOL, any valid data name; for C, any valid variable name. See also Section 4.1.2 on page 80.

† For the complete list of keywords, see Section 3.1.6 on page 37.

Data Management: Structured Query Language (SQL), Version 2 189

Common Elements Syntax Summary

escape-character ::=
character-string-literal
| dynamic-parameter
| host-variable-reference
| CURRENT_USER
| SESSION_USER
| SYSTEM_USER
| USER

interval-literal ::= INTERVAL [+ | -]
{ year-value minus month-value
| year-value
| month-value
| day-value space hour-value colon minute-value colon second-value
| day-value space hour-value colon minute-value
| day-value space hour-value
| day-value
| hour-value colon minute-value colon second-value
| hour-value colon minute-value
| hour-value
| minute-value colon second-value
| minute-value
| second-value }
interval-qualifier

The component syntactic elements above are defined as for date-time-literal.

interval-type ::= INTERVAL interval-qualifier

interval-qualifier ::=
{YEAR[(leading-precision)] TO MONTH
| YEAR[(leading-precision)]
| MONTH[(leading-precision)]
| DAY[(leading-precision)] TO SECOND[(fractional-precision)]
| DAY[(leading-precision)] TO MINUTE
| DAY[(leading-precision)] TO HOUR
| DAY[(leading-precision)]
| HOUR[(leading-precision)] TO SECOND[(fractional-precision)]
| HOUR[(leading-precision)] TO MINUTE
| HOUR[(leading-precision)]
| MINUTE[(leading-precision)] TO SECOND[(fractional-precision)]
| MINUTE[(leading-precision)]
| SECOND[(leading-precision [, fractional-precision)]]

fractional-precision ::= unsigned-integer
leading-precision ::= unsigned-integer

literal ::=
character-string-literal
| date-time-literal
| interval-literal
| national-character-string-literal
| numeric-literal
| pseudo-literal

national-character-string-literal ::= N’{ character }. ..’

190 X/Open CAE Specification

Syntax Summary Common Elements

national-character-string-type ::=
NATIONAL CHAR[(length)]
| NATIONAL CHARACTER[(length)]
| NATIONAL CHARACTER VARYING(length)
| NATIONAL CHAR VARYING(length)
| NCHAR[(length)]
| NCHAR VARYING(length)

length ::= unsigned-integer

null-predicate ::= column-name IS [NOT] NULL

numeric-literal ::=
exact-numeric-literal
| approximate-numeric-literal

object-qualifier ::=
catalog-name . schema-name
| schema-name •

catalog-name ::= user-defined-name
schema-name ::= user-defined-name

overlaps-predicate ::=
row-value-constructor-1 OVERLAPSrow-value-constructor-2

precision ::= unsigned-integer

predicate ::=
between-predicate
| comparison-predicate
| exists-predicate
| in-predicate
| like-predicate
| null-predicate
| overlaps-predicate
| quantified-predicate

privilege-object ::=
[TABLE] table-name
| CHARACTER SETcharacter-set-name
| COLLATION collation-name
| TRANSLATION translation-name

pseudo-literal ::=
CURRENT_DATE
| CURRENT_TIME[(precision)]
| CURRENT_TIMESTAMP[(precision)]
| CURRENT_USER
| SESSION_USER
| SYSTEM_USER
| USER

quantified-predicate ::=
expression comparison-operator {ALL | ANY | SOME} (sub-query)

• Other, implementation-defined object qualification schemes are also allowed.

Data Management: Structured Query Language (SQL), Version 2 191

Common Elements Syntax Summary

query-expression ::=
query-expression UNION [ALL] query-expression
| (query-expression)
| query-specification

query-specification ::=
SELECT [ALL | DISTINCT] select-list
FROMtable-reference [, table-reference]. ..
[WHERE search-condition]
[GROUP BY column-clause [, column-clause]. ..]
[HAVING search-condition]

column-clause ::= column-name [COLLATE collation-name]

restricted-name ::= namechar [namechar | digit | _]...

namechar ::= Any ‘‘letter’’ in the character set — see User-defined Names on page 33

row-value-constructor ::=
(column-spec [, column-spec]. ..)

column-spec ::= expression
| CURRENT_USER
| DEFAULT
| NULL
| SESSION_USER
| SYSTEM_USER
| USER

scalar-function-reference ::=
CHAR_LENGTH(string-expression)
| CHARACTER_LENGTH(string-expression)
| CONVERSION(string-expression USING conversion-name)
| LOWER(string-expression)
| OCTET_LENGTH(string-expression)
| POSITION(search-string IN source-string)
| SUBSTRING(source-string FROMstart-position [FOR string-length])
| TRANSLATION(string-expression USING translation-name)
| TRIM([[LEADING | TRAILING | BOTH] [trim-character] FROM]

source-string)
| UPPER(string-expression)

source-string ::= string-expression

search-string ::= string-expression

start-position ::= arithmetic-expression

string-length ::= arithmetic-expression

trim-character ::= string-expression

scale ::= unsigned-integer

search-condition ::=
boolean-term [OR search-condition]

boolean-term ::= boolean-factor [AND boolean-term]

boolean-factor ::= [NOT] boolean-primary

boolean-primary ::= predicate | (search-condition)

select-list ::= * | select-sublist [, select-sublist]. ..

192 X/Open CAE Specification

Syntax Summary Common Elements

select-sublist ::=
expression [[AS] unqualified-column-name]
| { table-name | correlation-name }.*

separator ::= The blank character, the newline indication, or an SQL comment.

set-function-reference ::= COUNT(*) | distinct-function | all-function

distinct-function ::=
{AVG | COUNT | MAX | MIN | SUM} (DISTINCT column-name)

all-function ::= {AVG | MAX | MIN | SUM} ([ALL] expression)

vendor-escape-clause ::=

--(* dialect , extended-SQL-text *)--

dialect ::= ISO-dialect | vendor-dialect

ISO-dialect ::= YEAR(ISO-year), CONFORMANCE(ISO-conformance)

vendor-dialect ::= VENDOR(vendor-name), PRODUCT(product-name)

statement-name ::= user-defined-name

sub-query ::=
SELECT [ALL | DISTINCT] select-list
FROMtable-reference [, table-reference]. ..
[WHERE search-condition]
[GROUP BY column-name [, column-name]. ..]
[HAVING search-condition]

table-name ::= base-table-name | viewed-table-name

table-reference ::=
table-name [[AS] correlation-name]
| joined-table

joined-table ::=
qualified-join | (joined-table)

qualified-join ::= table-reference-1
[NATURAL]
[INNER | LEFT [OUTER] | RIGHT [OUTER]]
JOIN table-reference-2
{ON search-condition | USING (column-name [, column-name . ..])}

token ::= delimiter-token | non-delimiter-token

delimiter-token ::=
character-string-literal
| , | (|) | < | > | . | :
| = | * | + | - | / | <> | >= | <= | ? | concat

non-delimiter-token ::=
keyword | numeric-literal | user-defined-name | host-identifier

translation-name ::= [object-qualifier .] unqualified-translation-name

unqualified-base-table-name ::= user-defined-name

unqualified-character-set-name ::= restricted-name

unqualified-collation-name ::= user-defined-name

unqualified-column-name ::= user-defined-name

unqualified-conversion-name ::= user-defined-name

unqualified-index-name ::= user-defined-name

unqualified-translation-name ::= user-defined-name

Data Management: Structured Query Language (SQL), Version 2 193

Common Elements Syntax Summary

unqualified-viewed-table-name ::= user-defined-name

unsigned-integer ::= { digit }. ..

user-defined-name ::= [_ character-set-name] restricted-name

user-name ::= user-defined-name

viewed-table-name ::= [object-qualifier .] unqualified-viewed-table-name

194 X/Open CAE Specification

Syntax Summary Embedded Aspects

A.2 Embedded Aspects
association-management-statement ::=

connect-statement
| disconnect-statement
| set-connection-statement

data-definition-statement ::=
alter-table-statement
| create-character-set-statement
| create-collation-statement
| create-index-statement
| create-schema-statement
| create-table-statement
| create-translation-statement
| create-view-statement
| drop-character-set-statement
| drop-collation-statement
| drop-index-statement
| drop-schema-statement
| drop-table-statement
| drop-translation-statement
| drop-view-statement
| grant-statement
| revoke-statement

data-manipulation-statement ::=
close-statement
| delete-statement-positioned
| delete-statement-searched
| fetch-statement
| insert-statement
| open-statement
| select-statement
| update-statement-positioned
| update-statement-searched

declare-authorisation ::=
DECLARE AUTHORIZATIONcharacter-string-literal [FOR STATIC ONLY]

declare-cursor ::= DECLARE cursor-name CURSOR FORcursor-specification

cursor-specification ::=
query-expression
[ORDER BY sort-specification [, sort-specification]. ..]
[FOR {READ ONLY

| UPDATE [OF unqualified-column-name [, unqualified-column-name]. ..]}]

sort-specification ::=
{ unqualified-column-name | unsigned-integer } [ASC | DESC]

Data Management: Structured Query Language (SQL), Version 2 195

Embedded Aspects Syntax Summary

dynamic-declare-cursor ::=
DECLARE cursor-name CURSOR FORstatement-name

dynamic-sql-statement ::=
allocate-descriptor-statement
| deallocate-descriptor-statement
| describe-statement
| dynamic-close-statement
| dynamic-delete-statement-positioned
| dynamic-fetch-statement
| dynamic-open-statement
| dynamic-update-statement-positioned
| execute-statement
| execute-immediate-statement
| get-descriptor-statement
| prepare-statement
| set-descriptor-statement

embedded-exception-declaration ::=
WHENEVER {SQLERROR | SQLWARNING | NOT FOUND}
{CONTINUE | {GOTO | GO TO} host-label }

embedded-sql-construct ::=
embedded-sql-declarative | embedded-sql-statement

embedded-sql-declarative ::=
embedded-sql-declare-section

embedded-sql-declare-section ::=
sql-prefix BEGIN DECLARE SECTIONsql-terminator
[host-variable-definition]. ..
sql-prefix END DECLARE SECTIONsql-terminator

embedded-sql-statement ::=
sql-prefix
{ declare-authorisation
| declare-cursor
| dynamic-declare-cursor
| embedded-exception-declaration
| executable-sql-statement }
sql-terminator

executable-sql-statement ::=
data-definition-statement
| data-manipulation-statement
| transaction-control-statement
| dynamic-sql-statement
| association-management-statement
| get-diagnostics-statement
| session-statement

host-label †

host-variable-definition ‡

sql-prefix ::= EXEC SQL

† For COBOL, a section name or an unqualified paragraph name. For C, a label defined in the same program block or in a block of a higher scope.
(See also Section 4.6 on page 94.)

‡ Any valid variable definition following the rules in Section 4.2 on page 84.

196 X/Open CAE Specification

Syntax Summary Embedded Aspects

sql-terminator •

transaction-control-statement ::=
commit-statement
| rollback-statement
| set-transaction-statement

• For COBOL, END-EXEC. For C, a semicolon (‘‘;’’).

Data Management: Structured Query Language (SQL), Version 2 197

Executable SQL Statements Syntax Summary

A.3 Executable SQL Statements
allocate-descriptor-statement ::=

ALLOCATE DESCRIPTORdescriptor-name [WITH MAX occurrences]

occurrences ::= unsigned-integer | embedded-variable-name

alter-table-statement ::=
ALTER TABLE base-table-name
ADD [COLUMN] column-definition
| DROP [COLUMN] unqualified-column-name {CASCADE | RESTRICT}

close-statement ::= CLOSE cursor-name

commit-statement ::= COMMIT [WORK]

connect-statement ::=
CONNECT TOserver [AS connection]
[USER user [USING authentication]]

server ::=
character-string-literal | embedded-variable-name | DEFAULT

connection ::= character-string-literal | embedded-variable-name

user ::= character-string-literal | embedded-variable-name

authentication ::= embedded-variable-name

create-character-set-statement ::=
CREATE CHARACTER SETnew-char-set [AS]
GET [character-set-name
[COLLATE collation-name
| COLLATION FROM collation-source]

create-collation-statement ::=
CREATE COLLATIONnew-collation FOR character-set-name
FROMcollation-source
[PAD SPACE | NO PAD]

collation-source ::= collation-name
| DEFAULT
| DESC(collation-name)
| EXTERNAL(character-string-literal)
| TRANSLATION translation-name [THEN COLLATION collation-name]

create-index-statement ::=
CREATE [UNIQUE] INDEX index-name ON base-table-name
(unqualified-column-name [ASC | DESC][, unqualified-column-name [ASC | DESC]]...)

create-schema-statement ::=
CREATE SCHEMA [object-qualifier] [AUTHORIZATION auth-id]
[DEFAULT CHARACTER SETcharacter-set-name]
[schema-element [schema-element]. ..]

schema-element ::=
create-index-statement
| create-table-statement
| create-view-statement
| grant-statement

198 X/Open CAE Specification

Syntax Summary Executable SQL Statements

create-table-statement ::=
CREATE TABLEbase-table-name-1 (column-element [, column-element]. ..)

column-element ::= column-definition | table-constraint-definition

table-constraint-definition ::=
UNIQUE (unqualified-column-name [, unqualified-column-name]. ..)
| PRIMARY KEY (unqualified-column-name [, unqualified-column-name]. ..)
| CHECK (search-condition)
| FOREIGN KEY referencing-columns

REFERENCESbase-table-name-2 referenced-columns
[ON DELETE {NO ACTION | CASCADE | SET NULL | SET DEFAULT}]

create-translation-statement ::=
CREATE TRANSLATIONnew-translation
FOR source-char-set TO target-char-set FROM

{ IDENTITY
| translation-name
| EXTERNAL(character-string-literal)

create-view-statement ::=
CREATE VIEWviewed-table-name
[(unqualified-column-name [, unqualified-column-name]. ..)]
AS query-expression

deallocate-descriptor-statement ::=
DEALLOCATE DESCRIPTORdescriptor-name

delete-statement-positioned ::=
DELETE FROMtable-name WHERE CURRENT OFcursor-name

delete-statement-searched ::=
DELETE FROMtable-name [WHERE search-condition]

describe-statement ::=
DESCRIBE [INPUT | OUTPUT] statement-name
USING SQL DESCRIPTORdescriptor-name

descriptor-name ::= character-string-literal | embedded-variable-name

disconnect-statement ::= DISCONNECT [connection | ALL | CURRENT]

drop-character-set-statement ::= DROP CHARACTER SETcharacter-set-name

drop-collation-statement ::= DROP COLLATION collation-name

drop-index-statement ::= DROP INDEX index-name

drop-schema-statement ::= object-qualifier {CASCADE | RESTRICT}

drop-table-statement ::= DROP TABLE base-table-name {CASCADE | RESTRICT}

drop-translation ::= DROP TRANSLATION translation-name

drop-view-statement ::= DROP VIEW viewed-table-name {CASCADE | RESTRICT}

dynamic-close-statement ::= close-statement

dynamic-delete-statement-positioned ::= delete-statement-positioned

dynamic-fetch-statement ::= FETCH [FROM] cursor-name using-clause

dynamic-open-statement ::= OPEN cursor-name [using-clause]

dynamic-update-statement-positioned ::= update-statement-positioned

execute-statement ::= EXECUTE statement-name [using-clause]

execute-immediate-statement ::= EXECUTE IMMEDIATE embedded-variable-name

Data Management: Structured Query Language (SQL), Version 2 199

Executable SQL Statements Syntax Summary

fetch-statement ::=
FETCH [FROM] cursor-name INTO host-variable-reference
[, host-variable-reference]. ..

field-name ::=
TYPE | LENGTH | PRECISION | SCALE
| DATETIME_INTERVAL_CODE | DATETIME_INTERVAL_PRECISION
| INDICATOR | DATA

get-descriptor-statement ::=
GET DESCRIPTORdescriptor-name get-descriptor-information

get-descriptor-information ::=
embedded-variable-name-1 = COUNT
| VALUE item-number get-item-info [, get-item-info]. ..

get-item-info ::=
embedded-variable-name-2 =
field-name | NAME | NULLABLE | UNNAMED | RETURNED_LENGTH

get-diagnostics-statement ::=
GET DIAGNOSTICS {statement-information | exception-information }

statement-information ::=
statement-information-item [, statement-information-item]. ..

statement-information-item ::=
embedded-variable-name-1 = field-name-1

exception-information ::=
EXCEPTION exception-number
exception-information-item [, exception-information-item]. ..

exception-information-item ::=
embedded-variable-name-2 = field-name-2

exception-number ::=
unsigned-integer | embedded-variable-name-3

field-name-1 ::= NUMBER | MORE | DYNAMIC_FUNCTION
| DYNAMIC_FUNCTION_CODE | ROW_COUNT

field-name-2 †

grant-statement ::=
GRANT {ALL PRIVILEGES | privilege [, privilege]. ..}
ON privilege-object
TO {PUBLIC | user-name [, user-name]. ..}
[WITH GRANT OPTION]

† Specifies a field name associated with a specific diagnostic. For the complete list of valid values, see Section 5.10 on page 150.

200 X/Open CAE Specification

Syntax Summary Executable SQL Statements

insert-statement ::=
INSERT INTO table-name
{ insert-source | DEFAULT VALUES }

insert-source ::=
[(unqualified-column-name [, unqualified-column-name]. ..)]
{ query-specification
| VALUES row-value-constructor }

item-number ::= unsigned-integer | embedded-variable-name

open-statement ::= OPEN cursor-name

prepare-statement ::=
PREPAREstatement-name FROMembedded-variable-name

privilege ::=
DELETE
| INSERT
| REFERENCES [(unqualified-column-name [, unqualified-column-name]. ..)]
| SELECT
| UPDATE [(unqualified-column-name [, unqualified-column-name]. ..)]
| USAGE

revoke-statement ::=
REVOKE {ALL PRIVILEGES | privilege [, privilege]. ..}
ON privilege-object
FROM {PUBLIC | user-name [, user-name]. ..}
{CASCADE | RESTRICT}

rollback-statement ::= ROLLBACK [WORK]

select-statement ::=
SELECT [ALL | DISTINCT] select-list
INTO host-variable-reference [, host-variable-reference]. ..
FROMtable-reference [, table-reference]. ..
[WHERE search-condition]

session-statement ::=
SET [CATALOG | SCHEMA | SESSION AUTHORIZATION]

{ character-string-literal | embedded-variable-name }
| SET NAMES character-set-name

set-connection-statement ::= SET CONNECTION server

set-descriptor-statement ::=
SET DESCRIPTORdescriptor-name set-descriptor-information

set-descriptor-information ::=
COUNT =embedded-variable-name-1 | unsigned-integer
| VALUE item-number set-item-info [, set-item-info]. ..

set-item-info ::=
field-name = embedded-variable-name-2 | literal

set-transaction-statement ::=
SET TRANSACTIONtransaction-mode [, transaction-mode]. ..

transaction-mode ::=
DIAGNOSTICS SIZE number
| ISOLATION LEVEL READ UNCOMMITTED
| ISOLATION LEVEL READ COMMITTED
| ISOLATION LEVEL REPEATABLE READ
| ISOLATION LEVEL SERIALIZABLE
| READ ONLY
| READ WRITE

Data Management: Structured Query Language (SQL), Version 2 201

Executable SQL Statements Syntax Summary

update-statement-positioned ::=
UPDATE table-name
SET unqualified-column-name = { expression | NULL | DEFAULT VALUE}
[, unqualified-column-name = { expression | NULL | DEFAULT VALUE}]. ..
WHERE CURRENT OFcursor-name

update-statement-searched ::=
UPDATE table-name
SET unqualified-column-name = { expression | NULL | DEFAULT VALUE}
[, unqualified-column-name = { expression | NULL | DEFAULT VALUE}]. ..
[WHERE search-condition]

using-clause ::= using-arguments | using-descriptor

using-arguments ::=
{USING | INTO} host-variable-reference
[, host-variable-reference]. ..

using-descriptor ::=
{USING | INTO} SQL DESCRIPTOR descriptor-name

202 X/Open CAE Specification

Appendix B

SQLSTATE Values

SQLSTATE is a 5-character string that an SQL statement returns to indicate status. The following
tables define all the SQLSTATE values that apply to X/Open SQL. Where these tables give more
than one SQLSTATE value that may pertain to a statement, the text of this specification indicates
which value is the primary error.

The Meaning column is not normative or visible to the application. Its contents are generally
based on the International Standard but sometimes have been adapted to use X/Open
terminology. A change in wording should not be construed as defining a different diagnostic
from the International Standard.

Data Management: Structured Query Language (SQL), Version 2 203

SQLSTATE Values

SQLSTATE Meaning Section
’00000 Success 4.5.1
’01000’ Success with warning 4.5.1
’01002’ — Disconnect error. 5.7.7
’01003’ — Null value eliminated in set function. 3.9.4
’01004’ — String data, right truncation. 3.5, 3.8
’01005’ — Insufficient item descriptor areas. 5.5.5
’01006’ — Privilege not revoked. 5.3.18
’01007’ — Privilege not granted. 5.3.17
’0100B’ — Default value too long for system view. 5.3.2,7
’02000’ No data 4.5.1, 5.4, 5.5
’07000’ Dynamic SQL error
’07001’ — using-clause does not match dynamic parameters. 5.5.6,10
’07002’ — using-clause does not match target specifications. 5.5.8
’07003’ — Cursor specification cannot be executed. 5.5.6
’07004’ — using-clause is required for dynamic parameters. 5.5.6,10
’07005’ — Prepared statement is not a cursor specification. 5.5.11
’07006’ — Restricted data type attribute violation. 5.5.2
’07008’ — Invalid descriptor count. 5.5.6,8,10
’07009’ — Invalid descriptor index. 5.5.3,9,12
’08000’ Connection exception
’08001’ — Client unable to establish connection 5.7.6
’08002’ — Connection name in use. 5.7.3,6
’08003’ — Connection does not exist. 5.2.6, 5.7.3,5,7,8
’08004’ — Server rejected the connection. 5.7.6
’08006’ — Connection failure. 5.7.5,8
’08007’ — Transaction resolution unknown. 5.6.2, 5.7.5
’0A000’ Feature not supported
’0A001’ — Multiple-server transaction. 5.7.5
’21000’ Cardinality violation 3.10.1, 3.11.4, 5.4.7
’21S01’ — Insert value list does not match column list.* 5.2.1, 5.4.5
’21S02’ — Degree of derived table does not match column list.* 5.2.1, 5.3.9
’22000’ Data exception
’22001’ — String data, right truncation. 3.5, 3.9.3,6
’22002’ — Null value, no indicator parameter. 3.7, 5.5.9
’22003’ — Numeric value out of range. 3.5, 3.9.1,4,6
’22005’ — Error in assignment. 5.5.9,12
’22006’ — Invalid interval format. 3.9.6
’22007’ — Invalid date/time format. 3.4, 3.5, 3.9.6
’22008’ — Date/time field overflow. 3.5, 3.9.2
’22011’ — Substring error 3.9.3
’22012’ — Division by zero. 3.9.1,2
’22015’ — Interval field overflow. 3.5, 3.9.2,6
’22018’ — Invalid character value for CAST 3.9.6
’22019’ — Invalid escape character. 3.10.5
’22021’ — Translation result not in target repertoire 3.9.3
’22024’ — Unterminated string. 3.5
’22025’ — Invalid escape sequence. 3.10.5
’22027’ — Trim error. 3.9.3

204 X/Open CAE Specification

SQLSTATE Values

SQLSTATE Meaning Section
’23000’ Integrity constraint violation 5.2.4, 5.3.2,7
’24000’ Invalid cursor state 5
’25000’ Invalid transaction state 5.2.5, 5.6.4, 5.7.5,7,

5.9, 7.4
’26000’ Invalid SQL statement identifier 5.5.5,6,10
’28000’ Invalid authorisation specification 5.7.6, 5.9
’2C000’ Invalid character set name 5.8.2
’2D000’ Invalid transaction termination 5.6.1
’2E000’ Invalid connection name 5.7.6
’33000’ Invalid SQL descriptor name 5.5.2,3,4,9,12
’35000’ Invalid exception number 5.6.4, 5.9.1
’3D000’ Invalid catalog name. 5.8.1
’3F000’ Invalid schema name. 5.8.3
’40000’ Transaction rollback
’40003’ — Statement completion unknown 5.7.5
’42000’ Syntax error or access violation (see below). 3.1.1, 3.9.3,

5, 5.2.1, 7.2.1
’42S01’ — Base table or viewed table already exists.* 5.3.7,9
’42S02’ — Base table not found.* 5.2.1, 5.3.5,14,16
’42S11’ — Index already exists.* 5.3.5
’42S12’ — Index not found.* 5.3.12
’42S21’ — Column already exists.* 5.3.2
’42S22’ — Column not found.* 5.3.5,7,17
’42S31’ — Schema already exists.* 5.3.6
’42S32’ — Schema not found.* 5.2.1, 5.3.13
’42S42’ — Catalog not found.* 5.2.1
’42S51’ — Character set already exists.* 5.3.3
’42S52’ — Character set not found.* 5.2.1, 5.3.10
’42S61’ — Collation already exists.* 5.3.4
’42S62’ — Collation not found.* 5.2.1, 5.3.11
’42S72’ — Conversion not found.* 5.2.1
’42S81’ — Translation already exists.* 5.3.8
’42S82’ — Translation not found.* 5.2.1, 5.3.15
’44000’ WITH CHECK OPTION violation 5.3.9, 5.4.5,8,9

* This code does not appear in SQLSTATE but may appear in the diagnostics area. Implementations may raise ’42000’ instead of
this code if, for example, the application is not entitled to obtain this schema information. See Section 5.2.1 on page 99.

Data Management: Structured Query Language (SQL), Version 2 205

SQLSTATE Values

The following codes originate at a remote SQL server and are based on RDA service errors. See
the referenced X/Open RDA Specification.

SQLSTATE Meaning
’HZ000’ RDA error
’HZ010’ — AccessControlViolation
’HZ020’ — BadRepetitionCount
’HZ030’ — CommandHandleUnknown
’HZ040’ — ControlAuthenticationFailure
’HZ050’ — DataResourceHandleNotSpecified
’HZ060’ — DataResourceHandleUnknown
’HZ070’ — DataResourceNameNotSpecified
’HZ080’ — DataResourceNotAvailable
’HZ081’ (transient error)
’HZ090’ — DataResourceAlreadyOpen
’HZ100’ — DataResourceUnknown
’HZ110’ — DialogueIDUnknown
’HZ120’ — DuplicateCommandHandle
’HZ130’ — DuplicateDataResourceHandle
’HZ140’ — DuplicateDialogueID
’HZ150’ — DuplicateOperationID
’HZ160’ — InvalidSequence
’HZ161’ (dialogue already active)
’HZ162’ (dialogue initialising)
’HZ163’ (dialogue not active)
’HZ164’ (dialogue terminating)
’HZ165’ (transaction not open)
’HZ166’ (transaction open)
’HZ167’ (transaction terminating)
’HZ170’ — NoDataResourceAvailable
’HZ180’ — OperationAborted
’HZ181’ (transient error)
’HZ190’ — OperationCancelled
’HZ200’ — ServiceNotNegotiated
’HZ210’ — TransactionRolledBack
’HZ220’ — UserAuthenticationFailure
’HZ230’ — ControlServicesNotAllowed

RDA SQL Specialisation Condition
’HZ300’ — HostIdentifierError
’HZ310’ — InvalidSQLConformanceLevel
’HZ320’ — RDATransactionNotOpen
’HZ325’ — RDATransactionOpen
’HZ330’ — SQLAccessControlViolation
’HZ340’ — SQLDatabaseResourceAlreadyOpenError
’HZ350’ — SQLDBLArgumentCountMismatch
’HZ360’ — SQLDBLArgumentTypeMismatch
’HZ365’ — SQLNoCharSet
’HZ370’ — SQLDBLTransactionStatementNotAllowed

206 X/Open CAE Specification

SQLSTATE Values

SQLSTATE Meaning
’HZ380’ — SQLUsageModeViolation

Association Control Service Element Condition
’HZ410’ — Abort failure, service provider
’HZ411’ — Abort failure, service user
’HZ420’ — Association failure, permanent
’HZ421’ — Association failure, transient
’HZ430’ — Release failure

Distributed Transaction Processing Condition
’HZ450’ — Begin dialogue rejected, provider
’HZ451’ — Begin dialogue rejected, user
’HZ460’ — Heuristic hazard
’HZ461’ — Heuristic mix
’HZ470’ — PAbort rollback false
’HZ471’ — PAbort rollback true
’HZ480’ — Rollback
’HZ490’ — UAbort rollback false
’HZ491’ — UAbort rollback true
’HZ4A0’ — UError

Data Management: Structured Query Language (SQL), Version 2 207

SQLSTATE Values

208 X/Open CAE Specification

Appendix C

ISO Database Language SQL

This X/Open SQL specification is based on the referenced International Standard. X/Open
intends that implementations be able to comply with both this document and with the
International Standard. Any discrepancies between the two documents are inadvertent and are
to be resolved in favour of the International Standard.

Compliance with Respect to the International Standard

An X/Open-compliant implementation provides all the Entry level facilities of the International
Standard. It also provides features, from the Intermediate and Full levels of the International
Standard, listed in Section C.1, and the other features listed in Section C.2 on page 212. It must
support bindings to an X/Open-compliant host language (see the start of Chapter 4). It must
also support all deprecated features (see Deprecated features on page 2).

If an X/Open-compliant SQL embedded source program uses deprecated features, it might not
continue to be portable to implementations that comply with future X/Open specifications. If
the source program uses features specified as optional, implementation-defined or undefined, it
will typically not be portable even to some existing X/Open-compliant implementations.

Data Management: Structured Query Language (SQL), Version 2 209

Included Features from Intermediate and Full SQL ISO Database Language SQL

C.1 Included Features from Intermediate and Full SQL
The following tables list the features that X/Open SQL includes from the Intermediate and Full
conformance levels of the International Standard.

The features are presented in the order of their appearance in FIPS 127-2. (FIPS item numbers of
the form Tn are from the definition of the Transitional level; those of the form In are from the
Intermediate level; and those of the form Fn are from the Full level.)

In the right-hand column, the SPIRIT feature number is provided. SPIRIT SQL is defined in
appendices of this specification. For summaries of features with SPIRIT numbers from 1 up to
and including 26, see the Feature List on page 215. For summaries of features with SPIRIT
numbers from 27 up to and including 43, see the list in Section E.1 on page 233. For summaries
of features with SPIRIT numbers from 44 up to and including 46, see the list in Section E.4 on
page 239.

FIPS Transitional Feature SPIRIT
Number Description Number
T1 Dynamic SQL 1

T2 Basic information schema 2

T3 Basic schema manipulation 3, 37

T4 Joined table 14, 40

T5 DATETIME data type 27

T6 VARCHAR data type 4

T7 TRIM function 28

T8 UNION in views 29

T9 Implicit numeric casting 5

T10 Implicit character casting 6

T11 Transaction isolation 17, 30

T12 Get diagnostics 7

T13 Grouped operations 16

T14 Qualified * in select list 8

T15 Lowercase identifiers 9

T16 PRIMARY KEY enhancement 31

T17 Multiple schemas per user 15

T18 Multiple module support 10

T19 Referential delete actions 21

T20 CAST functions 32

T21 INSERT expressions 33

T22 Explicit defaults 34

T23 Privilege tables 35

T24 Keyword relaxations 36

210 X/Open CAE Specification

ISO Database Language SQL Included Features from Intermediate and Full SQL

FIPS Intermediate Feature SPIRIT
Number Description Number
I31 Schema definition statement 41

I42 National character 11

I46 Named character sets 44

OP I54 Full Dynamic SQL (part of) —
— support of DESCRIBE INPUT from
clause 17 of the International Standard

I58 Full character functions 42

FIPS Full Feature SPIRIT
Number Description Number

OP F65 Catalog name qualifiers 38

F69 Collation and translation 45

F76 Session management 12, 39

F77 Connection management 13

Feature Not In FIPS SPIRIT
Number Description Number
— Additional internationalization 46

Data Management: Structured Query Language (SQL), Version 2 211

Extensions to the International Standard ISO Database Language SQL

C.2 Extensions to the International Standard
An extension is a stand-alone facility that is in X/Open SQL but not in the International
Standard at any conformance level. The X/Open specification of these features does not inhibit
an implementation from conforming to the International Standard.

X/Open includes the following extensions:

• the requirement that implementations permit multiple servers to be included in a single
transaction

• the CREATE [UNIQUE] INDEX statement

• the DROP INDEX statement

• WHENEVER SQLWARNING

• embedded COBOL host variables, with the following usages:

— COMP, corresponding to DECIMAL and NUMERIC (and to INTEGER and SMALLINT,
except in the case of SQLCODE)

— COMP-3, corresponding to DECIMAL, NUMERIC, INTEGER and SMALLINT

— no usage (just DISPLAY), corresponding to INTEGER and SMALLINT

• the INDEXES and SERVER_INFO system view

• the REMARKS column on the COLUMN_PRIVILEGES, COLUMNS, INDEXES, SCHEMATA,
TABLE_PRIVILEGES, TABLES, USAGE_PRIVILEGES and VIEWS system views (on
implementations that do not provide remarks, this column is null)

• the vendor escape clause

• the DECLARE AUTHORIZATION statement.

212 X/Open CAE Specification

Appendix D

SPIRIT SQL, Issue 2

This Appendix is technically identical to Issue 2 of the SPIRIT SQL specification. (SPIRIT Issue 3
mandates additional features from the implementation. See Appendix E.)

A detailed comparison between SPIRIT SQL and X/Open embedded SQL appears in Section D.7
on page 231.

D.1 Introduction to SPIRIT
The Service Providers’ Integrated Requirements for Information Technology (SPIRIT) is
constituted as a team within the Network Management Forum.

SPIRIT is a collaborative effort of international telecommunications Service Providers (SP),
Information Technology (IT) suppliers, and Independent Software Vendors (ISVs). Its intent is to
construct a common set of software specifications for a general purpose computing platform,
driven from the requirements of the telecommunications industry.

This platform defines software that supports a wide variety of application types. The platform
facilitates application portability, interoperability, and modularity. Agreement among Service
Providers, IT suppliers, and ISVs on such a platform is required to meet Service Providers’ needs
for integrated systems and technology independence in a multivendor software environment.

The objective of these SPIRIT documents is to provide a core set of specifications for use in each
company’s purchasing of software components for general purpose computing platforms. The
SPIRIT specifications are based predominantly on widely-accepted industry standards. The
SPIRIT specifications are expected to be used by participating companies as a basis for their own
software procurement starting within 1 to 2 years of publication.

The intent of SPIRIT is to adopt and adapt specifications from other sources, including both
standards bodies and industry consortia. Adaptation is performed only as necessary to:

• ensure consistency among specifications from diverse sources

• harmonise the use of certain specifications within specific usage scenarios

• remove ambiguities and/or inconsistencies within chosen specifications

• limit features and options for reasons of availability within specific time frames

• limit features and options for technical and/or business reasons.

SPIRIT profiles are created to help in meeting the SPIRIT goals of portability, interoperability,
and modularity. SPIRIT profiles can be characterised as having no invention, only selection. The
features of SPIRIT profiles are selected based on user requirements.

Objectives

The primary objective of the SPIRIT SQL profile is to provide a clear definition of an SQL
language that is available for procurement in the SPIRIT Issue 2 timeframe. This objective
includes a requirement that service providers be able to readily write meaningful applications
that are portable, without any recoding, among conforming implementations of this profile.
Other objectives include alignment with X/Open SQL specifications and de jure standards for
SQL, as well as character internationalisation support required by applications written by service
providers in North America, Europe, and Japan. Vendors are always free to provide facilities

Data Management: Structured Query Language (SQL), Version 2 213

Introduction to SPIRIT SPIRIT SQL, Issue 2

beyond those required by this document, including minimum limits on the size of various items,
but applications should not use any facilities not required by this document in order to
maximize portability.

This document comprises a profile of the International Standard using the format of the
referenced NIST FIPS for SQL. The structure of this document is primarily identification of
features in the International Standard, but it also identifies features in X/Open SQL. Finally,
some internationalisation features — a subset of internationalisation features of the International
Standard, with minor extensions to the host language bindings — are derived from the MIA SQL
specification. (These features are specified in this appendix because the MIA specification is not
widely available.) These internationalisation features now depend on the SPIRIT Character Set
Profile defined in Volume 1 (Core Specifications), Part 1 (Overview) of SPIRIT Issue 2.0.

Applicability

This profile will be used for procurements by SPIRIT service providers to specify characteristics
of SQL database management systems beginning in Summer, 1995.

Relation to the International Standard

SPIRIT SQL adopts provisions of the International Standard as described below:

SPIRIT SQL requires conformance to Entry SQL and to additional aspects of the language as
specified below. Conformance is further constrained by the limits specified in Section 7.1 on
page 175 and the definition of various items in Section D.5 on page 228 that the International
Standard leaves implementation-defined. SPIRIT Issue 2 approximates the X/Open SQL
specification.

All present and future Technical Corrigenda to the International Standard that affect specific
items in SPIRIT SQL are implicitly included as part of these profiles, as they are implicitly part of
the International Standard. Conformance to these corrections is required in a reasonable
timeframe following their publication.

214 X/Open CAE Specification

SPIRIT SQL, Issue 2 Conformance Requirements

D.2 Conformance Requirements
Conformance to SPIRIT Issue 2 SQL requires the implementation of all the capabilities of Entry
level of the International Standard. Conformance also requires the implementation of additional
capabilities beyond Entry level, which are listed below.

Citations of the International Standard

All terms delimited by <angle brackets> refer to syntactic productions specified in the
International Standard. All cross-references to clauses and subclauses signify the International
Standard.

FIPS 127-2 Citations

Most of the features listed below are accompanied by a cross-reference to a numbered feature of
FIPS 127-2. The cross-reference is in one of the following forms:

[FIPS Tn] Transitional SQL level of FIPS 127-2
[FIPS In] Intermediate SQL level of FIPS 127-2
[FIPS Fn] Full SQL level of FIPS 127-2

The value of n is the identifying number of the respective feature in FIPS 127-2.

FIPS 127-2 contains a list of features from Entry level of the International Standard. (These
features are numbered in the form En.) Since SPIRIT conformance requires implementation of all
features of Entry level, none of the En features are specified separately in the following list.

X/Open Citations

Other entries are accompanied by a notation of the form "[No FIPS component; X/Open SQL]".
This notation means that the entry is a feature of X/Open SQL specified in this document.

All cross-references to chapters and sections signify this document.

MIA Citations

Other entries are accompanied by a notation of the form "[No FIPS component; MIA SQL]",
meaning that MIA SQL is the source of the feature.

Feature List

1. Dynamic SQL. [FIPS T1]

a. All provisions of Clause 17, "Dynamic SQL", with restrictions identified in the
Leveling Rules for Intermediate SQL.

b. Removal of all Entry SQL Leveling Rules in Clause 17.

c. Removal of the Entry SQL restriction requiring that a <module contents> not be a
<dynamic declare cursor>, as specified in Leveling Rule 2b of Subclause 12.1,
"<module>".

d. Removal of Leveling Rule 2a of Subclause 6.2 that prohibits reference to a dynamic
parameter in a <general value specification>.

e. A <preparable statement> shall include all <preparable SQL data statement>s that
are otherwise supported for Entry SQL, as well as any other <preparable statement>
for which non-preparable support is claimed by that implementation.

Data Management: Structured Query Language (SQL), Version 2 215

Conformance Requirements SPIRIT SQL, Issue 2

2. Basic information schema. [FIPS T2]

Requires existence of an accessible INFORMATION_SCHEMA consisting of the following
views defined in Subclause 21.2, "Information Schema": TABLES, VIEWS, and COLUMNS,
all with any restrictions identified in the Leveling Rules for Intermediate SQL.

3. Basic schema manipulation. [FIPS T3, part 1]

a. Support for the following schema definition and schema manipulation statements as
<SQL statement>s in an explicit or implicit <procedure>:

i. Subclauses 11.3 through 11.9, "<table definition>"

ii. Subclause 11.10, "<alter table statement>", containing Subclause 11.11, "<add
column definition>"

iii. Subclause 11.18, "<drop table statement>"

iv. Subclause 11.19, "<view definition>"

v. Subclause 11.20, "<drop view statement>"

vi. Subclause 11.36, "<grant statement>"

vii. Subclause 11.37, "<revoke statement>"; all with any other restrictions identified
in the Leveling Rules for Entry SQL, and all with any enhancements derived
from other features claimed to be supported by the implementation.

b. Removal of Leveling Rules 2a in Subclauses 11.11, 11.15, 11.18, 11.20, and 11.37.

4. VARCHAR data type. [FIPS T6]

a. Support for CHARACTER VARYING, and its syntactic shorthands VARCHAR and
CHAR VARYING, as defined in Subclause 6.1, "<data type>".

b. Support for the following character operations:

i. <length expression> defined in Subclause 6.6, "<numeric value function>"

ii. <character substring function> defined in Subclause 6.7, "<string value
function>"

iii. <concatenation> and <character value expression> defined in Subclause 6.13,
"<string value expression>".

c. Support for comparison of fixed and variable length character strings as defined in
Subclause 8.2, "<comparison predicate>".

d. Support for CHARACTER VARYING in any <embedded SQL host program>
supported by the implementation; all with any restrictions identified in the Leveling
Rules for Intermediate SQL.

e. Removal of the Entry SQL requirement that at least one <character representation>
be present in a <character string literal>, as specified in Leveling Rule 2c of Subclause
5.3, "<literal>".

f. Removal of Leveling Rule 2a of Subclause 6.1, "<data type>".

g. Removal of the Entry SQL requirement that a <numeric value function> not be a
<length expression>, as specified in Leveling Rule 2a of Subclause 6.6, "<numeric
value function>".

h. Removal of the Entry SQL restriction against using the SUBSTRING function, as
specified in Leveling Rule 2a of Subclause 6.7, "<string value function>".

216 X/Open CAE Specification

SPIRIT SQL, Issue 2 Conformance Requirements

i. Removal of Leveling Rule 2a of Subclause 6.13, "<string value expression>", that
prohibits concatenation in Entry SQL.

j. Removal of Leveling Rule 2a of Subclause 12.3, "<procedure>", that prohibits
specification of CHARACTER VARYING in an Entry SQL <procedure>.

k. Removal of Leveling Rule 2a of Subclause 19.4, "<embedded SQL C program>".

5. Implicit numeric casting. [FIPS T9]

Removal of all Entry SQL restrictions for operations involving the assignment of
approximate numeric values to exact numeric types, including:

a. Leveling Rule 2c of Subclause 13.3, "<fetch statement>"

b. Leveling Rule 2a of Subclause 13.5, "<select statement: single row>"

c. Leveling Rule 2b of Subclause 13.8, "<insert statement>"

d. Leveling Rule 2a of Subclause 13.9, "<update statement: positioned>"

e. Leveling Rule 2a of Subclause 13.10, "<update statement: searched>".

6. Implicit character casting. [FIPS T10]

Removal of all Entry SQL restrictions for operations involving the assignment of character
string values to character string types, including:

a. Leveling Rule 2c of Subclause 13.8, "<insert statement>"

b. Leveling Rule 2b of Subclause 13.9, "<update statement: positioned>"

c. Leveling Rule 2b of Subclause 13.10, "<update statement: searched>".

7. Get diagnostics. [FIPS T12]

a. Support for the <get diagnostics statement>, specified in Subclause 18.1, as an <SQL
statement> in an explicit or implicit <procedure>, with any restrictions identified in
the Leveling Rules for Intermediate SQL.

b. Removal of Leveling Rule 2a of Subclause 18.1.

8. Qualified * in select list. [FIPS T14]

Removal of the Entry SQL restriction for specifying <qualifier>.* in a <select sublist>, as
specified in Leveling Rule 2b of Subclause 7.9, "<query specification>".

9. Lowercase identifiers. [FIPS T15]

Removal of the Entry SQL restriction requiring that identifiers not contain any lower-case
letters, as specified in Leveling Rule 2b of Subclause 5.2, "<token> and <separator>"; with
restrictions identified in the Leveling Rules for Intermediate SQL.

10. Multiple module support. [FIPS T18]

Removal of the Entry SQL restriction that a <module> be associated with an SQL-agent
during its execution, and that an SQL-agent be associated with at most one <module>, as
specified in Leveling Rule 2a of Subclause 12.1, "<module>".31

31. This sentence uses the term ‘‘<module>’’ because FIPS 127-2 uses that term; however, for the purposes of the SPIRIT SQL profile,
which does not include the notion of <module>s, the appropriate analogous concept is ‘‘<embedded SQL statement>s contained
in an <embedded SQL host program>’’.)

Data Management: Structured Query Language (SQL), Version 2 217

Conformance Requirements SPIRIT SQL, Issue 2

With the removal of this restriction, authors can compile <embedded SQL host program>s
separately and rely on the implementation to link them properly at execution time.
Portable applications should adhere to the following conventions:

a. Avoid linking modules having cursors with the same <cursor name>.

b. Avoid linking modules that prepare statements with the same <SQL statement
name>.

c. Avoid linking modules that allocate descriptors with the same <descriptor name>.

d. Treat the scope of an <embedded exception declaration> as a single compilation unit.

e. Reference an <embedded variable name> only within the compilation unit that
declares it.

11. National character. [FIPS I42]

a. Support for NATIONAL CHARACTER, and its syntactic shorthands NATIONAL
CHAR and NCHAR, as defined in Subclause 6.1, "<data type>".

b. Support for <national character string literal> as defined in Subclause 5.3, "<literal>".

c. Removal of the Entry SQL restriction requiring that a <delimiter token> shall not be a
<national character string literal>, as specified in Leveling Rule 2a of Subclause 5.3,
"<literal>".

d. Removal of <national character string type> from Leveling Rule 2c of Subclause 6.1,
"<data type>".

e. Support for NATIONAL CHARACTER VARYING, and its syntactic shorthands
NATIONAL CHAR VARYING and NCHAR VARYING, as specified in Subclause 6.1,
"<data type>".

12. Session management. [FIPS F76, part 1]

a. Partial support for "Session management", as specified in Subclause 16.2, "<set
schema statement>".

b. Removal of all Intermediate SQL Leveling Rules in Subclauses 16.2.

13. Connection management. [FIPS F77]

a. Support for all provisions of Clause 15, "Connection management", including:
CONNECT, SET CONNECTION, and DISCONNECT. Those <simple value
specification>s that are valid <connection target>s and <user name>s are
implementation-defined, so long as Syntax Rule 1 of Subclause 15.1, "<connect
statement>", is satisfied. The communication protocols used to implement the
connection management statements are implementation-defined.

b. Removal of all Intermediate SQL Leveling Rules in Subclauses 15.1, 15.2, and 15.3.

c. Removal of the Intermediate SQL restriction against reference to <connection name>,
as specified in Leveling Rule 1b of Subclause 5.4, "Names and identifiers".

14. Joined table. [FIPS T4, part 1]

a. All provisions for INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER JOIN, <join
condition>, and <named columns join> from Subclause 7.5, "<joined table>", with
restrictions identified in the Leveling Rules for Intermediate SQL.

b. Removal of Entry SQL Leveling Rule 2a of Subclause 6.3, "<table reference>", that
prohibits <joined table> in a table reference.

218 X/Open CAE Specification

SPIRIT SQL, Issue 2 Conformance Requirements

c. Removal of Entry SQL Leveling Rule 2c of Subclause 7.10, "<query expression>", that
prohibits <joined table> in a <query expression>.

This feature does not include support for CROSS JOIN, UNION JOIN, or FULL OUTER
JOIN. Support for NATURAL JOIN is included in SPIRIT Issue 3.

15. Multiple schemas per user. [FIPS T17]

a. Support for separation of <schema name> and <authorization identifier> in a
<schema definition>. The <schema definition> itself need be processed only as
required for Entry SQL (that is, it need not be supported as an SQL statement in an
explicit or implicit <procedure>), and a <schema element> need only be as required
by Entry SQL. See below (feature [FIPS I31], "Schema definition statement") for more
restrictive syntactic requirements.

b. Implementation of Subclause 21.2.4, "SCHEMATA view", in the
INFORMATION_SCHEMA.

16. Grouped operations. [FIPS T13]

Removal of all Entry SQL restrictions for operations involving grouped views and other
grouping operations, including:

a. Leveling Rule 2a of Subclause 7.3, "<table expression>"

b. Leveling Rule 2a of Subclause 7.4, "<from clause>"

c. Leveling Rule 2c of Subclause 7.9, "<query specification>"

d. Leveling Rule 2a of Subclause 7.11, "<scalar subquery>, <row subquery> and <table
subquery>"

e. Leveling Rule 2b of Subclause 13.5, "<select statement: single row>".

17. Transaction isolation. [FIPS T11, part 2]

Removal of the Entry SQL restriction against inclusion of an <updatability clause> in a
<declare cursor>, as specified by Leveling Rule 2b of Subclause 13.1, "<declare cursor>".

18. SQLCA status area. [No FIPS component; formerly in X/Open SQL]

The SQL Communications Area (SQLCA) allows an application to test the outcome of the
most recently executed SQL statement. SQLCA is specified in Section D.3 on page 225.

19. Table indexes. [No FIPS component; X/Open SQL]

The CREATE INDEX and DROP INDEX statements permit an application to define and
destroy indexes on base tables. The feature is not part of the International Standard
because the International Standard does not address this subject. It is included here
because it is part of X/Open SQL and is widely implemented by vendors. The CREATE
INDEX statement is specified in Section 5.3.5 on page 105 and the DROP INDEX statement
is specified in Section 5.3.12 on page 113.

20. SQLWARNING. [No FIPS component; X/Open SQL]

The WHENEVER declaration in embedded SQL controls program behaviour based on
statement results (success, error, and so forth); the SQLWARNING option gives additional
flexibility for application programs. The International Standard does not include this
feature. It is included here because it is part of X/Open SQL and is expected to be part of
the next generation of the SQL standard. SQLWARNING is defined in Section 4.6 on page
94.

Data Management: Structured Query Language (SQL), Version 2 219

Conformance Requirements SPIRIT SQL, Issue 2

21. Referential delete actions. [FIPS T19]

a. Remove Leveling Rule 2a of Subclause 11.8, "<referential constraint definition>",
thereby providing support for a <referential triggered action> that contains a <delete
rule>, with restrictions identified in the Leveling Rules for Intermediate SQL.

b. Remove Leveling Rule 2b of Subclause 11.4, "<column definition>", thereby allowing
an ON DELETE trigger.

22. Additional internationalisation: Character Set Issues. [No FIPS component; MIA SQL]

a. Replace Subclause 11.1, "<schema definition>", Syntax Rule 5 with:

"If <schema character set specification> is not specified, then a <schema character
set specification> containing a <character set specification> CSP is implicit. CSP
shall identify a character set provided by the SPIRIT Character Set Profile. The
mechanism by which such implicit specification is determined is
implementation-defined."

b. Replace Subclause 12.2, "<module name clause>", Syntax Rule 4 with:

"If <module character set specification> is not specified, then a <module character
set specification> containing a <character set specification> CSP is implicit. CSP
shall identify a character set provided by the SPIRIT Character Set Profile. The
mechanism by which such implicit specification is determined is
implementation-defined."

c. Replace Subclause 19.1, "<embedded SQL host program>", Syntax Rule 6 with:

"If <embedded character set declaration> is not specified, then an <embedded
character set declaration> containing a <character set specification> CSP is
implicit. CSP shall identify a character set provided by the SPIRIT Character Set
Profile and that contains at least every character that is in <SQL language
character>."

Although the preceding items are written as though explicit named character sets are
required, it is the intent in SPIRIT Issue 2 that the same effect be accomplished by using the
implementation-defined national character set instead, without requiring the use of the
name of that character set.

23. Additional internationalisation: C Bindings. [No FIPS component; MIA SQL]

a. Replace Subclause 19.4, "<embedded SQL C program>", Format for <C variable
definition> with:

<C variable definition> ::=
[<C storage class>]
{ [<C class modifier>] <C variable specification>

| <C VARCHAR structure> }

b. Insert into Subclause 19.4, "<embedded SQL C program>", Format, the following BNF
production:

<C VARCHAR structure> ::=
struct <left brace>

short <length identifier> <semicolon>
char <character field identifier>

<C array specification> <semicolon>
<right brace> <C host identifier>

220 X/Open CAE Specification

SPIRIT SQL, Issue 2 Conformance Requirements

c. Replace Subclause 19.4, "<embedded SQL C program>", Syntax Rule 9 with:

"In a <C character variable> or a <C VARCHAR variable>, if a <character set
specification> is specified, then the equivalent SQL data type is CHARACTER or
CHARACTER VARYING whose character repertoire is the same as the character
repertoire specified by the <character set specification>. If <character set
specification> is not specified, then a <character set specification> CSP is implicit;
CSP shall identify a character set in the SPIRIT Character Set Profile. The
mechanism by which a specific character set is chosen is implementation-
defined."

d. Insert into Subclause 19.4, "<embedded SQL C program>", the following new Syntax
Rule:

"Each <C host identifier> specified in a <C VARCHAR structure> describes a
variable-length character string and its length. The field identified by the
<character field identifier> in the host variable describes the variable- length
character string and the field identified by the <length identifier> in the host
variable describes the length of the variable-length character string. The
equivalent SQL data type is CHARACTER VARYING whose maximum length is
the <length> of the <C array specification> and whose character set is implicitly
specified by a <character set specification> CSP. <length> shall be greater than 1.
CSP shall identify a character set provided by the SPIRIT Character Set Profile.
The mechanism by which a specific character set is chosen is implementation-
defined."

24. Additional internationalisation: COBOL Bindings. [No FIPS component; MIA SQL]

a. Replace Subclause 19.5, "<embedded SQL COBOL program>", Format for <COBOL
variable definition> with:

<COBOL variable definition> ::=
{ { 01 | 77 } <COBOL host identifier>

<COBOL type specification>
[<character representation>...] <period> }

| <COBOL variable length type specification>

b. Replace Subclause 19.5, "<embedded SQL COBOL program>", Format for <COBOL
type specification> with:

<COBOL type specification> ::=
<COBOL character type>

| <COBOL bit type>
| <COBOL numeric type>
| <COBOL integer type>
| <COBOL fixed length national character type>

c. Insert into Subclause 19.5, "<embedded SQL COBOL program>", Format, the
following BNF productions:

<COBOL fixed length national character type> ::=
PIC [IS] N <left paren> <length> <right paren>

<COBOL variable length type specification> ::=
<COBOL variable length character type>

| <COBOL variable length national character type>

Data Management: Structured Query Language (SQL), Version 2 221

Conformance Requirements SPIRIT SQL, Issue 2

<COBOL variable length character type> ::=
01 <data name-1>

49 <data name-2>
PIC [IS]

S9 <left paren> 4 <right paren>
[USAGE [I S]] <integer declaration>

49 <data name-3>
PIC [IS] X <left paren> <length> <right paren>

<COBOL variable length national character type> ::=
01 <data name-1>

49 <data name-2>
PIC [IS]

S9 <left paren> 4 <right paren>
[USAGE [I S]] <integer declaration>

49 <data name-3>
PIC [IS] N <left paren> <length> <right paren>

<data name-1> ::= <COBOL host identifier>

<data name-2> ::= <COBOL host identifier>

<data name-3> ::= <COBOL host identifier>

d. Replace Subclause 19.5, "<embedded SQL COBOL program>", Format for <COBOL
numeric type> with:

<COBOL numeric type> ::=
{ PIC | PICTUR E } [IS]

S <COBOL nines specification>
[USAGE [IS]]
{ DISPLAY SIGN LEADING SEPARATE | PACKED-DECIMAL }

e. Replace Subclause 19.5, "<embedded SQL COBOL program>", Syntax Rule 7 with:

"A <COBOL character type> describes a character string variable whose
equivalent SQL data type is CHARACTER with the same length and character set
specified by the <character set specification>. If <character set specification> is
not specified, then a <character set specification> CSP is implicit. CSP shall
identify a character set provided by the SPIRIT Character Set Profile. The
mechanism by which a specific character set is chosen is implementation-
defined."

f. Replace Subclause 19.5, "<embedded SQL COBOL program>", Syntax Rule 9 with:

"A <COBOL numeric type> describes an exact numeric variable. The equivalent
SQL data type for DISPLAY SIGN LEADING SEPARATE is NUMERIC and for
PACKED-DECIMAL is DECIMAL, of the same precision and scale."

222 X/Open CAE Specification

SPIRIT SQL, Issue 2 Conformance Requirements

g. Insert into Subclause 19.5, "<embedded SQL COBOL program>", the following new
Syntax Rule:

"A <COBOL fixed length national character type> describes a character string
variable whose equivalent SQL data type is CHARACTER with the same length
and whose character set is implicitly specified by a <character set specification>
CSP. CSP shall identify a character set provided by the SPIRIT Character Set
Profile. The mechanism by which a specific character set is chosen is
implementation-defined."

h. Insert into Subclause 19.5, "<embedded SQL COBOL program>", the following new
Syntax Rule:

"Each <COBOL host identifier> specified in a <COBOL variable length character
type> describes a variable-length character string and its length. The field <data
name-2> in the host variable describes the length of the variable-length character
string. The field <data name-3> describes the variable-length character string.
The maximum length is specified by <length>. The equivalent SQL data type is
CHARACTER VARYING whose maximum length is <length> and whose
character set is implicitly specified by a <character set specification> CSP.
<length> shall be greater than 1. CSP shall identify a character set provided by
the SPIRIT Character Set Profile. The mechanism by which a specific character set
is chosen is implementation-defined."

i. Insert into Subclause 19.5, "<embedded SQL COBOL program>", the following new
Syntax Rule:

"Each <COBOL host identifier> specified in a <COBOL variable length national
character type> describes a variable-length national character string and its
length. The field <data name-2> in the host variable describes the length of the
variable-length character string. The field <data name-3> describes the variable-
length character string. The maximum length is specified by <length>. The
equivalent SQL data type is NATIONAL CHARACTER VARYING whose
maximum length is <length>. <length> shall be greater than 1."

25. Additional internationalisation: Fortran Bindings. [No FIPS component; new to SPIRIT,
based on MIA SQL]

Replace Subclause 19.6, "<embedded SQL Fortran program>", Syntax Rule 7 with:

"CHARACTER describes a character string variable whose equivalent SQL data type is
CHARACTER with the same length and character set specified by the <character set
specification>. If <character set specification> is not specified, then a <character set
specification> CSP is implicit. CSP shall identify a character set provided by the SPIRIT
Character Set Profile. The mechanism by which a specific character set is chosen is
implementation-defined."

Data Management: Structured Query Language (SQL), Version 2 223

Conformance Requirements SPIRIT SQL, Issue 2

26. Additional Information Schema views. [related to FIPS I35, part 2; also X/Open]

The SERVER_INFO view described in SERVER_INFO on page 166 provides attributes of a
database system or server. Each row provides information about one attribute of the
database or server.

The SQL_LANGUAGES view described in SQL_LANGUAGES on page 168 provides one
row for each dialect of SQL that is supported by the server. (This is closely related to
Subclause 21.2.26, "SQL_LANGUAGES view", in the International Standard.)

For SPIRIT SQL, the contents of the row or rows are specified in Section D.8 on page 231.

224 X/Open CAE Specification

SPIRIT SQL, Issue 2 INCLUDE SQLCA

D.3 INCLUDE SQLCA
The SQL Communication Area (SQLCA) is a deprecated feature from the previous issue of this
X/Open specification. SQLCA is not present in the current definition of X/Open SQL, but is
specified by SPIRIT (see item 18 in Section D.2 on page 215) because it is required by MIA and
because a large number of existing applications use it.

The definition of SQLCA below is identical to the definition in the previous issue of this X/Open
specification. X/Open deprecated SQLCA in that issue; therefore, the description below
contains recommendations by which applications can avoid use of SQLCA.

FUNCTION
Include the SQLCA declaration in the compilation unit.

SYNOPSIS
INCLUDE SQLCA

DESCRIPTION
Using the deprecated INCLUDE SQLCA declaration in the compilation unit causes the
inclusion of source statements that define the SQL Communication Area.

Special Rules for COBOL

• The INCLUDE SQLCA declarative must be placed in the Working Storage or Linkage section
of the Data Division.

• The SQLCA is defined by a record description (that is, a non-elementary, 01-level data item).
The name of the record is SQLCA and all components have upper-case names.

• If the INCLUDE SQLCA declarative is placed in the Linkage Section, the Procedure Division
header must contain a USING phrase that includes a parameter named SQLCA.

• For additional placement rules, see Section 4.7 on page 95.

Special Rules for C

• The INCLUDE SQLCA declarative must be placed outside all functions of the C program and
must textually precede all SQL statements.

• The SQLCA is defined by a structure. The name of the structure is sqlca and all components
have lower-case names.

D.3.1 Contents of the SQLCA

The SQLCA has at least the following fields:

SQLCODE The SQLCODE field adheres to the description of the SQLCODE status variable in
Section 4.5.4 on page 92, except that it need only be capable of holding a
SMALLINT, and the C and COBOL constraints in Section 4.5.4, do not apply.

SQLERRD This is an array of six 4-byte integers that provide additional information about the
execution of the statement. X/Open only specifies the third byte (SQLERRD(3) in
COBOL, or sqlerrd[2] in C). This byte contains the same value as the
ROW_COUNT field in the diagnostics area (see Section 5.10 on page 150).

SQLWARN This is a sequence of at least eight single-character variables that give specific
information when the Success with warning outcome occurs. Each variable’s
value is either ’W’ to denote a warning or blank to denote no warning. X/Open
only specifies the use of the first four:

Data Management: Structured Query Language (SQL), Version 2 225

INCLUDE SQLCA SPIRIT SQL, Issue 2

SQLWARN0 SQLWARN0 indicates whether any warning occurred. If blank, no
warning occurred; all other SQLWARNn are also blank. If set to ’W’,
at least one of the other SQLWARNn variables is also ’W’.

SQLWARN1 If ’W’, at least one character-string value was truncated when it was
stored into a host variable (’01004’).

SQLWARN2 If ’W’, at least one null value was eliminated from the argument set
of a function (’01003’).

SQLWARN3 If ’W’, either (a) the number of host variables in a FETCH or SELECT
statement is unequal to the number of columns in the table the
statement operates on (’42000’), or (b) the number of host variables in
a dynamic FETCH statement is unequal to the number of columns in
the table the statement operates on (’07002’), or (c) the value of
COUNT in the SQL descriptor area that is referenced in a dynamic
FETCH statement is less than that number of columns (’07002’).

Programs should check SQLSTATE for the values given above instead of checking
the SQLWARNn variables.

226 X/Open CAE Specification

SPIRIT SQL, Issue 2 Sizing for Database Constructs

D.4 Sizing for Database Constructs
SPIRIT SQL specifies minimum guaranteed values for certain limits, so as to mandate greater
implementation capabilities than does X/Open embedded SQL. Moreover, SPIRIT specifies
minimum guaranteed limits for features that neither X/Open nor the International Standard
specify.

The tables in Section 7.1 on page 175 indicate the minimum guaranteed values for these limits in
both X/Open embedded SQL and in SPIRIT SQL.

Data Management: Structured Query Language (SQL), Version 2 227

Resolution of Implementation-defined Items SPIRIT SQL, Issue 2

D.5 Resolution of Implementation-defined Items
The International Standard leaves a number of items implementation-defined (meaning that any
conforming implementation must specify and document the values or behaviours for those
items). SPIRIT, as a profile of the International Standard, defines many of those
implementation-defined items and leaves implementation-defined only those that are irrelevant
for SPIRIT (or for SPIRIT Issue 2) or for which a more specific definition would serve no use in
writing portable applications.

The implementation-defined items are numbered below using the numbers in Annex B of the
International Standard. In all cases in which a numbered item does not appear in the list below,
it means SPIRIT has not provided a definition and the feature remains implementation-defined.

Certain items are relevant only to SPIRIT Issue 3 and are defined in Section E.3 on page 238.

2. Truncation is performed when trailing digits are removed from a numeric value.

6. Truncation is performed when least significant values are lost while converting between
data types.

19. SPIRIT reserves the right to require support of statements that are not defined in the
International Standard; an example of such a statement is X/Open’s CREATE INDEX.

20. SPIRIT reserves the right to reserve name space segments for all SQL name spaces, although
it does not currently make any such reservation; X/Open advises against the use of names
starting with ’sql’, ’SQL’, or ’SYS’.

36. SPIRIT specifies a list of the national character set(s) that must be provided for each country
in which SPIRIT will be used for procurement purposes.

44. SPIRIT specifies a list of the national character set(s) that must be provided for each country
in which SPIRIT will be used for procurement purposes.

52. SPIRIT specifies the minimum acceptable value for the maximum limits on each data type;
see Section 7.1 on page 175.

53. SPIRIT specifies the minimum acceptable value for the maximum limit on the length of each
sort of string data type; see Section 7.1 on page 175.

56. SPIRIT specifies the minimum acceptable value for the maximum precision and scale for
exact numeric data types; see Section 7.1 on page 175.

57. SPIRIT specifies the minimum acceptable value for the maximum precision for the FLOAT
data type; see Section 7.1 on page 175.

58. SPIRIT specifies the minimum acceptable range for the exponents of the FLOAT, REAL, and
DOUBLE PRECISION approximate numeric data types; see Section 7.1 on page 175.

63. The data type of indicator variables is the programming-language equivalent of the SQL
INTEGER type.32

64. The data type of the result of the COUNT function is INTEGER.

65. The data type of the result of SUM is INTEGER when applied to either INTEGER or
SMALLINT; and DECIMAL or NUMERIC with maximum precision when applied to

32. The International Standard does not address the case in which a string longer than 32,767 characters is truncated on retrieval. A
proposal for the next edition of the International Standard is to set the indicator variable to 1 in this case.

228 X/Open CAE Specification

SPIRIT SQL, Issue 2 Resolution of Implementation-defined Items

DECIMAL or NUMERIC, respectively.

66. The data type of the result of AVG is INTEGER when applied to either INTEGER or
SMALLINT; and DECIMAL or NUMERIC with maximum precision when applied to
DECIMAL or NUMERIC, respectively.

67. The data type of the result of both AVG and SUM is DOUBLE PRECISION when applied to
any approximate numeric operand.

68-70.
Not relevant to SPIRIT Issue 2. Defined for SPIRIT Issue 3 in Section E.3 on page 238.

72. Truncation is performed if necessary when casting to exact or approximate numeric data
types.

76. Truncation is performed if necessary when determining the result of a division operation.

77. Not relevant to SPIRIT Issue 2. Defined for SPIRIT Issue 3 in Section E.3 on page 238.

78. Truncation is performed if necessary when retrieving an approximate numeric value into an
exact numeric target.

79. Truncation is performed if necessary when storing an approximate numeric value into an
exact numeric target.

82. The maximum value of an interval leading field precision in an interval qualifier must not
be less than 3.

84. Not relevant to SPIRIT Issue 2. Defined for SPIRIT Issue 3 in Section E.3 on page 238.

92. The implementation must provide a mechanism by which the application can specify the
default character set to be used if such a default is not specified for a module. The
implementation itself remains implementation-defined.

97. The null character that defines the end of a character string in the C language is a character
that has the maximum number of octets supported for the character set and for which the
value of every octet in the character’s encoding is zero.

98. The size of a character (char) in the C language is eight bits.

99. The precision of a COBOL variable corresponding to the SQLCODE status parameter is 31
bits; in COBOL, this is specified as PIC S9(9) USAGE BINARY.

101. The precision of a COBOL variable corresponding to SMALLINT is 15 bits; implementations
shall interpret COBOL variable declarations of PIC S9(n) USAGE BINARY, where n is 4
or less, to correspond to the SMALLINT data type.

The precision of a COBOL variable corresponding to INTEGER is 31 bits; implementations
shall interpret COBOL variable declarations of PIC S9(n) USAGE BINARY, where n is
between 5 and 9, to correspond to the INTEGER data type.

104. The precision of a COBOL variable corresponding to the SQLCODE status parameter is
FIXED BINARY (31) .

106. Null values are considered greater than all non-null values in determining the order of rows
in a table associated with a cursor having an ORDER BY clause.

109. Not relevant to SPIRIT Issue 2. Defined for SPIRIT Issue 3 in Section E.3 on page 238.

115. SPIRIT specifies a minimum value for the default number of dynamic descriptor areas; see
Section 7.1 on page 175.

Data Management: Structured Query Language (SQL), Version 2 229

Resolution of Implementation-defined Items SPIRIT SQL, Issue 2

116. SPIRIT specifies a minimum value for the number of item descriptor areas in a dynamic
descriptor area; see Section 7.1 on page 175.

128. The precision of a COBOL variable corresponding to SMALLINT is 15 bits; implementations
shall interpret COBOL variable declarations of PIC S9(n) USAGE BINARY, where n is 4
or less, to correspond to the SMALLINT data type. The precision of a COBOL variable
corresponding to INTEGER is 31 bits; implementations shall interpret COBOL variable
declarations of PIC S9(n) USAGE BINARY, where n is between 5 and 9, to correspond to
the INTEGER data type.

147. This item is not specified by SPIRIT, but X/Open has reserved some of the implementation-
defined space related to this item; see Appendix B on page 203.

230 X/Open CAE Specification

SPIRIT SQL, Issue 2 Interpretation of the International Standard

D.6 Interpretation of the International Standard
In the following case where the International Standard is unclear or incomplete, SPIRIT SQL
adds this interpretation as a mandatory requirement on implementations:

Character string literals in embedded SQL COBOL programs may be continued from one line to
another. The continuation lines are indicated in the COBOL manner by placing a hyphen in the
Indicator Area and by using an apostrophe (<quote>) as the first non-blank character in Area B
of the COBOL continuation line.

D.7 Differences from X/Open SQL
X/Open SQL has the following feature, which SPIRIT SQL has not adopted:

• Natural join, as described in Section 3.11.2 on page 73.

D.8 Conformance Claim in SQL_LANGUAGES
SQL_LANGUAGES on page 168 presents the SQL_LANGUAGES system view. The table there
defines the format of each row of the view and gives valid values for rows that constitute an
X/Open conformance claim.

The following table gives valid values of a row that constitutes a claim of conformance to SPIRIT
SQL Issue 2:

Column Name SPIRIT Issue 2 Values
SOURCE ’SPIRIT SQL’
SOURCE_YEAR ’1995’
CONFORMANCE null
INTEGRITY ’YES’
IMPLEMENTATION null
BINDING_STYLE ’EMBEDDED’
PROGRAMMING_LANG ’C’, ’COBOL’ or ’FORTRAN’

The only difference from the valid values for a row that claims conformance to SPIRIT SQL Issue
3 (see Section E.6 on page 242) is the value of SOURCE_YEAR.

Data Management: Structured Query Language (SQL), Version 2 231

SPIRIT SQL, Issue 2

232 X/Open CAE Specification

Appendix E

SPIRIT SQL, Issue 3

Appendix D is technically equivalent to SPIRIT SQL Issue 2.

The present appendix, when read in conjunction with the information in Appendix D, contains
the technical content of SPIRIT SQL Issue 3.

Section D.1 on page 213 contains an introduction to the Service Providers Integrated
Requirements for Information Technology (SPIRIT) and its objectives. That introduction also
applies to Appendix E with the following exception:

Applicability

This profile will be used for procurements by SPIRIT service providers to specify characteristics
of SQL database management systems beginning in Summer, 1996. (A separate effective date is
specified for enhanced internationalisation features in Section E.4 on page 239.)

E.1 Conformance Requirements
SPIRIT Issue 3 is a superset of SPIRIT Issue 2 (which is specified in Appendix D). Conformance
to SPIRIT Issue 3 requires the implementation of all the features specified for Issue 2, and of all
the features listed below:

27. DATETIME data types. [FIPS T5]

a. Support for DATE, TIME, TIMESTAMP, and INTERVAL data types as defined in
Subclause 6.1, "<data type>", with the exception of support for time zones and time
zone management.

b. Support for <datetime literal> and <interval literal> as defined in Subclause 5.3,
"<literal>".

c. Support for the following datetime operations:

i. <datetime field> in an <extract expression> as defined in Subclause 6.6

ii. "<numeric value function>", <datetime value function> defined in Subclause 6.8

iii. <datetime value expression> defined in Subclause 6.14

iv. <interval value expression> defined in Subclause 6.15

v. <overlaps predicate> defined in Subclause 8.11 (Note: with support for <row
value constructor>s here).

d. Support for datetime comparison defined in Subclause 8.2, "<comparison predicate>".

e. Support for <interval qualifier> as specified in Subclause 10.1.

f. Support for <datetime value function> in a <default clause> as specified in Subclause
11.5, "<default clause>"; all with restrictions identified in the Leveling Rules for
Intermediate SQL.

g. The Syntax Rules require, by default from Syntax Rule 26 of Subclause 6.1, "<data
type>", a <timestamp precision> greater than or equal to 6 decimal digits. This feature
does not include support for time zones, including: <time zone interval>, <time zone
field>, <time zone>, <time zone specifier>, and <set local time zone statement> (see

Data Management: Structured Query Language (SQL), Version 2 233

Conformance Requirements SPIRIT SQL, Issue 3

feature [FIPS I41]).

h. Removal of the Entry SQL restriction on datetime data types as specified in Leveling
Rule 2b of Subclause 6.1, "<data type>", and on datetime functions as specified in
Leveling Rule 2a of Subclause 6.8, "<datetime value function>".

i. Removal of the Entry SQL restrictions:

i. on datetime literals as specified in Leveling Rule 2b of Subclause 5.3

ii. on datetime value expressions as specified in Leveling Rules 2a and 2b of
Subclause 6.11, Leveling Rule 2a of Subclause 6.14, and Leveling Rule 2a of
Subclause 6.15

iii. on the overlaps predicate as specified in Leveling Rules 2a of Subclause 8.1 and
Subclause 8.11

iv. for specifying the field precision of an INTERVAL data type or literal as specified
in Leveling Rule 2a of Subclause 10.1, "<interval qualifier>".

All with the exception of retaining the restrictions on time zone support.

28. TRIM function. [FIPS T7]

Removal of the Entry SQL restriction against specifying a <trim function> as an alternative
in a <character value function>, as specified in Leveling Rule 2b of Subclause 6.7, "<string
value function>".

29. UNION in views. [FIPS T8]

a. Removal of the Entry SQL restriction against specification of UNION in a <view
definition>, as specified by the Entry SQL Leveling Rule 2a of Subclause 11.19, "<view
definition>".

b. Support <query expression> in a <view definition>, provided that the <query
expression> abides by the other restrictions for Entry SQL, as specified in Leveling
Rule 2 of Subclause 7.10, "<query expression>".

30. Transaction isolation. [FIPS T11, part 1]

a. All provisions of Subclause 14.1, "<set transaction statement>", in particular: READ
ONLY, READ WRITE, and ISOLATION LEVEL, and support for the <set transaction
statement> as an <SQL statement> in an explicit or implicit <procedure>, with any
restrictions identified in the Leveling Rules for Intermediate SQL.

b. Removal of Leveling Rule 2a of Subclause 14.1.

c. Removal of the Entry SQL limitation on updatable tables, as specified by Leveling
Rule 2a of Subclause 7.9, "<query specification>".

31. PRIMARY KEY enhancement. [FIPS T16]

Removal of the Entry SQL restriction requiring that NOT NULL always be declared with
any UNIQUE or PRIMARY KEY, as specified in Leveling Rule 2a of Subclause 11.7,
"<unique constraint definition>".

32. CAST functions. [FIPS T20]

a. All provisions of Subclause 6.10, "<cast specification>", with restrictions identified in
the Leveling Rules for Intermediate SQL. The resulting data type of the <cast
operand> and of the <cast target> of a <cast specification> shall include all data types
required for Entry SQL, as well as any other SQL standard data type whose support is

234 X/Open CAE Specification

SPIRIT SQL, Issue 3 Conformance Requirements

claimed by the implementation. In particular, <cast specification>s for casting DATE,
TIME, TIMESTAMP, and INTERVAL to and from character strings.

b. Removal of the Entry SQL restrictions against use of CAST, as specified in Leveling
Rule 2a of Subclause 6.10, "<cast specification>", and Leveling Rule 2d of Subclause
6.11, "<value expression>".

33. INSERT expressions. [FIPS T21]

Removal of the Entry SQL restriction against specifying a <value expression> in an <insert
statement>, as specified in the second part of Leveling Rule 2a of Subclause 13.8, "<insert
statement>".

34. Explicit defaults. [FIPS T22]

a. Removal of the Entry SQL restriction against use of DEFAULT VALUES in an <insert
statement>, as specified in Leveling Rule 2d of Subclause 13.8, "<insert statement>".

b. Removal of the Entry SQL restriction against use of DEFAULT in a <row value
constructor>, as specified in Leveling Rule 2a of Subclause 7.1, "<row value
constructor>".

c. Removal of the Entry SQL restriction against use of datetime and certain USER
defaults, as specified in Leveling Rule 2a of Subclause 11.5, "<default clause>".

d. Removal of the Entry SQL restriction against use of DEFAULT in an <update source>
of an <update statement: positioned> or an <update statement: searched>, as
specified in Leveling Rule 2c of Subclause 13.9, "<update statement: positioned>".

35. Privilege tables. [FIPS T23]

Support for feature [FIPS T2], "Basic information schema", defined above, plus inclusion of
the following views as defined in Subclause 21.2, "Information Schema":
TABLE_PRIVILEGES, COLUMN_PRIVILEGES, and USAGE_PRIVILEGES, all with any
restrictions identified in the Leveling Rules for Intermediate SQL.

36. Keyword relaxations. [FIPS T24]

a. Removal of the Entry SQL restriction against using AS before a <correlation name>, as
specified in Leveling Rule 2b of Subclause 6.3, "<table reference>".

b. Removal of the Entry SQL restriction against using the optional keyword TABLE in a
GRANT statement, as specified in Leveling Rule 2a of Subclause 11.36, "<grant
statement>".

c. Removal of the Entry SQL restriction for specifying FROM in a FETCH statement, as
specified in Leveling Rule 2b of Subclause 13.3, "<fetch statement>".

d. Removal of the Entry SQL requirement to include the keyword WORK in COMMIT
and ROLLBACK statements, as specified in Leveling Rules 2a of Subclause 14.3,
"<commit statement>" and Subclause 14.4, "<rollback statement>".

37. Schema manipulation language enhancements. [FIPS T3, part 2]

In addition to those features listed for Issue 2, the following are included in Issue 3:
Subclause 11.10, "<alter table statement>", containing Subclause 11.15, "<drop column
definition>".

38. Catalog name qualifiers. [FIPS F65]

Removal of the Intermediate SQL restriction against reference to catalog names, as specified
in part of Leveling Rule 1b of Subclause 5.4, "Names and identifiers".

Data Management: Structured Query Language (SQL), Version 2 235

Conformance Requirements SPIRIT SQL, Issue 3

39. Session management. [FIPS F76, part 2]

a. Support for the remainder of "Session management", as specified in Subclause 16.1,
"<set catalog statement> and Subclause 16.3, "<set names statement>.

b. Removal of all Intermediate SQL Leveling Rules in Subclauses 16.1 and 16.3.

40. Joined table. [FIPS T4, part 2]

All provisions for NATURAL JOIN from Subclause 7.5, "<joined table>", with restrictions
identified in the Leveling Rules for Intermediate SQL.

41. Schema definition statement. [FIPS I31]

Support for <schema definition>, Subclause 11.1, as an <SQL statement> in an explicit or
implicit <procedure>, by removal of Leveling Rule 2a of Subclause 12.5, "<SQL procedure
statement>", with any restrictions identified in the Leveling Rules for Intermediate SQL.

A <schema element> shall be an element required by Entry SQL, or an element defined in
another feature whose support is claimed by the implementation.

Support for feature [FIPS T17], "Multiple schemas per user", defined above and removal of
the Entry SQL restriction that prohibits definition of a <schema name> in a <schema
definition>, as specified in Leveling Rule 2b of Subclause 11.1. A <schema definition> may
contain any circular references that are permitted for Intermediate SQL; in particular,
<constraint definition>s in two different <table definition>s that reference columns in the
other table.

42. Full character functions. [FIPS F58]

Removal of the Intermediate SQL restriction against use of a POSITION expression, as
specified in Leveling Rule 1a of Subclause 6.6, "<numeric value function>". Removal of the
Intermediate SQL restrictions against use of UPPER and LOWER functions, as specified in
Leveling Rule 1a of Subclause 6.7, "<string value function>".

43. Additional Information Schema views. [This item is also Item 26 defined in Section D.2 on
page 215. However, the values of a row in the SQL_LANGUAGES view for SPIRIT Issue 3
are set out in Section E.6 on page 242.]

236 X/Open CAE Specification

SPIRIT SQL, Issue 3 Sizing for Database Constructs

E.2 Sizing for Database Constructs
SPIRIT SQL specifies guaranteed minimum values for certain limits, so as to mandate greater
implementation capabilities than does X/Open embedded SQL. Moreover, SPIRIT specifies
minimum guaranteed limits for features that neither X/Open nor the International Standard
specify.

The tables in Section 7.1 on page 175 indicate the minimum guaranteed values for these limits in
both X/Open embedded SQL and in SPIRIT SQL.

Data Management: Structured Query Language (SQL), Version 2 237

Resolution of Additional Implementation-defined Items SPIRIT SQL, Issue 3

E.3 Resolution of Additional Implementation-defined Items
The International Standard leaves a number of items implementation-defined (meaning that any
conforming implementation must specify and document the values or behaviours for those
items). SPIRIT, as a profile of the International Standard, defines many of those
implementation-defined items and leaves implementation-defined only those that are irrelevant
for SPIRIT or for which a more specific definition would serve no use in writing portable
applications.

The implementation-defined items are numbered below using the numbers in Annex B of the
International Standard. In all cases in which a numbered item does not appear in the list below,
it means SPIRIT has not provided a definition and the feature remains implementation-defined.

The items defined for SPIRIT Issue 2 in Section D.5 on page 228 are operative for SPIRIT Issue 3
in addition to the items defined below.

68. The precision of a <position expression> is at least the guaranteed minimum precision for
the INTEGER data type as defined in Section 7.1 on page 175.

69. The precision of a <exact expression> is at least the guaranteed minimum precision for the
INTEGER data type as defined in Section 7.1 on page 175.

70. The precision of a <length expression> is at least the guaranteed minimum precision for the
INTEGER data type as defined in Section 7.1 on page 175.

77. Truncation is performed when necessary during the production of an interval as the
difference between two date/times.

84. SPIRIT publishes lists of character repertoire and form-of-use names that must be provided
for each country in which SPIRIT is used for procurement.

109. A commit or rollback must be applied consistently across all servers that participate in such
a transaction. (This does not in any way imply that a single SQL statement, other than
COMMIT or ROLLBACK, will be required to access or affect database objects, including
data, under control of more than one server.)

238 X/Open CAE Specification

SPIRIT SQL, Issue 3 Enhanced Internationalisation

E.4 Enhanced Internationalisation
The following items comprise a set of enhanced internationalization capabilities that are optional
in SPIRIT Issue 3 until the summer of 1997, after which they become mandatory.

44. Named character sets. [FIPS I46]

a. Support for the named character sets: SQL_CHARACTER, ASCII_GRAPHIC, LATIN1,
ASCII_FULL, and SQL_TEXT.

b. Implementation of the CHARACTER_SETS view in the INFORMATION_SCHEMA.

c. Support for SQL_TEXT is required by ISO SQL Syntax Rule 3 of Subclause 10.4,
"<character set specification>"; the other character sets are defined in Section 16.7 of
this standard. Removal of Leveling Rule 2e of Subclause 5.3, "<literal>".

d. Removal of Leveling Rule 2b of Subclause 5.4, "Names and identifiers".

e. Removal of CHARACTER SET from Leveling Rule 2c of Subclause 6.1, "<data type>".

f. Removal of the Entry SQL restriction against referencing these character sets in
Embedded SQL, as specified by Leveling Rule 2a of Subclause 19.1, "<embedded SQL
host program>", and by the Leveling Rule of each <embedded SQL host program>
that prohibits use of a <character set specification>.

g. Support for all other references to these named character sets in any <character set
specification> in any SQL statement supported in Entry SQL, and in any other SQL
statement whose support is claimed by the implementation.

45. Collation and translation. [FIPS F69]

a. Support for the following as <SQL statement>s in an explicit or implicit <procedure>:

i. Subclause 11.30, "<collation definition>"

ii. Subclause 11.31, "<drop collation statement>"

iii. Subclause 11.32, "<translation definition>"

iv. Subclause 11.33, "<drop translation statement>".

b. Removal of Leveling Rules 1a in Subclauses 11.30 through 11.33.

c. Support for granting and revoking USAGE privileges on any defined collations or
translations, as specified in Subclause 10.3, "<privileges>", by removal of Leveling
Rule 1a in Subclause 11.36, "<grant statement>".

d. Implementation of Subclause 21.2.19, "COLLATIONS view", and Subclause 21.2.20,
"TRANSLATIONS view", in the INFORMATION_SCHEMA..

e. Removal of the Intermediate SQL restriction against reference to collation, translation,
or conversion names, as specified in:

i. Leveling Rule 1b of Subclause 5.4, "Names and identifiers"

ii. Leveling Rule 1a of Subclause 6.13, "<string value expression>"

iii. Leveling Rules 1b and 1c of Subclause 11.1, "<schema definition>".

f. Removal of the Intermediate SQL restriction against use of the <collate clause>, as
specified in:

i. Leveling Rule 1a of Subclause 10.5, "<collate clause>"

Data Management: Structured Query Language (SQL), Version 2 239

Enhanced Internationalisation SPIRIT SQL, Issue 3

ii. Leveling Rule 1a of Subclause 11.4, "<column definition>"

iii. Leveling Rule 1a of Subclause 7.7, "<group by clause>"

iv. Leveling Rule 1a of Subclause 11.21, "<domain definition>"

v. Leveling Rule 1a of Subclause 11.28, "<character set definition>".

g. Removal of the Intermediate SQL restrictions against use of character translations or
form-of-use conversions, as specified in Leveling Rules 1b and 1c of Subclause 6.7,
"<string value function>".

46. Additional internationalization. [No numbered FIPS component; see Section 16.7 of FIPS
127-2]

a. Replace Subclause 6.1, "<data type>", Syntax Rule 2) with:

"NATIONAL CHARACTER" is equivalent to the corresponding <character string
type> with a specification of "CHARACTER SET CSN", where CSN is a <character
set name>. Every character set provided by the SPIRIT Character Set Profile can be
specified by CSN. The mechanism by which this specification is made is
implementation-defined."

b. Replace Subclause 6.1, "<data type>", Syntax Rule 10) with:

"If <character set type> is not contained in a <domain definition> or a <column
definition> and CHARACTER SET is not specified, then a <character set
specification> that identifies some character set provided by the SPIRIT Character
Set Profile is implicit. The mechanism by which this specification is made is
implementation-defined."

c. Remove Subclause 6.10, "<cast specification>", Leveling Rule 2a.

d. Remove Subclause 6.11, "<value expression>", Leveling Rule 2d.

e. Remove Subclause 10.4, "<character set specification>", Leveling Rule 2a and add a
Note saying "The repertoires provided by the SPIRIT Character Set Profile are the
<standard character repertoire name>s."

f. Remove Subclause 11.1, "<schema definition>", Leveling Rules 2c and 2d.

g. Remove Subclause 11.28, "<character set definition>", Leveling Rule 2a.

h. Remove Subclause 11.29, "<drop character set statement>", Leveling Rule 2a.

i. Remove Subclause 12.2, "<module name clause>", Leveling Rule 2a.

j. Remove Subclause 16.3, "<set names statement>", Leveling Rule 1a.

k. Remove Subclause 19.1, "<embedded SQL host program>", Leveling Rule 2a.

l. Remove Subclause 19.4, "<embedded SQL C program>", Leveling Rule 2b.

m. Remove Subclause 19.5, "<embedded SQL COBOL program>", Leveling Rule 2a.

n. Remove Subclause 19.6, "<embedded SQL Fortran program>", Leveling Rule 2a.

o. Remove Subclause 19.9, "<embedded SQL PL/I program>", Leveling Rule 2b.

240 X/Open CAE Specification

SPIRIT SQL, Issue 3 Differences from X/Open SQL

E.5 Differences from X/Open SQL
The transition from Issue 2 to Issue 3 results in no additional feature differences from X/Open
SQL. However, guaranteed minimum values for certain limits that the International Standard
leaves implementation-dependent are increased in Issue 3. This has the effect of mandating
greater capabilities on implementations. See Section 7.1 on page 175.

Data Management: Structured Query Language (SQL), Version 2 241

Conformance Claim in SQL_LANGUAGES SPIRIT SQL, Issue 3

E.6 Conformance Claim in SQL_LANGUAGES
SQL_LANGUAGES on page 168 presents the SQL_LANGUAGES system view. The table there
defines the format of each row of the view and gives valid values for rows that constitute an
X/Open conformance claim.

The following table gives valid values of a row that constitutes a claim of conformance to SPIRIT
SQL Issue 3:

Column Name SPIRIT Issue 3 Values
SOURCE ’SPIRIT SQL’
SOURCE_YEAR ’1996’
CONFORMANCE null
INTEGRITY ’YES’
IMPLEMENTATION null
BINDING_STYLE ’EMBEDDED’
PROGRAMMING_LANG ’C’, ’COBOL’ or ’FORTRAN’

The only difference from the valid values for a row that claims conformance to SPIRIT SQL Issue
2 (see Section D.8 on page 231) is the value of SOURCE_YEAR.

242 X/Open CAE Specification

Appendix F

Future Extensions

X/Open may extend this definition of portable SQL in the following respects:

F.1 Security
X/Open should augment this document in order to assess potential threats to integrity,
availability and confidentiality, such as the threats to database data and to the availability of
service. Such a change might add text to describe security provisions that are inherent in
X/Open SQL, security provisions that are not mandatory in X/Open SQL but could be specified
as additional vendor features or as wise programming practise, and security provisions that can
only be provided by the underlying operating system or database server.

F.2 Adoption of Additional Material from SQL Standards
X/Open should specify time zone as an inherent attribute of values of type TIME and
TIMESTAMP.

The previous issue specified a schema named INFORMATION_SCHEMA containing the system
views (see Chapter 6). The current issue supports it under the name OLD_INFO_SCHEM, and
supports under the name INFO_SCHEM the schema defined by FIPS 127-2. When the limit of 18
characters on the maximum length of a user-defined name in X/Open SQL is eventually
removed, X/Open should specify the schema named INFORMATION_SCHEMA in the current
International Standard.

F.3 Host Language Issues
X/Open should address the following aspects of ISO 1989: 1985 COBOL Standard:

• SQL mappings for data items with usage PACKED-DECIMAL should be included.

• Host variable definitions should support the following:

— lower-case letters

— blank lines preceding continuation lines.

• X/Open should remove the current restrictions on the specification of SQL statements within
the scope of a WHENEVER statement with action GOTO (see Section 4.6 on page 94).

Data Management: Structured Query Language (SQL), Version 2 243

Future Extensions

244 X/Open CAE Specification

Glossary

This Glossary is intended to assist understanding and is not a substantive part of this
specification.

active connection
A current or dormant connection on which any SQL statement has been successfully
executed during the current transaction.

application
The end-user program written to operate on a database. This term is used to distinguish that
program from the implementation (the database client or server) when discussing the
calling interface.

authentication string
A string that is used to validate the user identifier.

base table
A table that is not a view. See also View.

byte
An octet. This specification avoids the term byte. It uses octet to refer to an amount of
storage, and character to refer to a component of character-string data independent of the
amount of storage.

cardinality
The cardinality of a collection is the number of objects in the collection. The cardinality of a
table is its number of rows, which is the cardinality of each column.

character
A component of character-string data, which requires one or more octets of storage.

client
The component of a database application that requests data for processing.

column
A sequence of values in a table.

column attribute
An item of information about a column, such as the column length.

compilation
The process of converting a program to its executable form. This may include pre-
compilation; see Chapter 2 on page 15.

concurrent
Transactions begun by different programs are concurrent if they gain access to the same
metadata or data and overlap in time.

connection
An association between a client and a server.

current connection
The connection on which a function operates.

current user
The user on behalf of whom the current program is executed.

Data Management: Structured Query Language (SQL), Version 2 245

Glossary

cursor
A movable pointer into a result set, by which a program gains access to its rows, one at a
time.

cursor-specification
Throughout this specification, cursor-specification refers to the entire syntax of the cursor-
specification (SELECT statement) defined in the International Standard. This does not
include the SELECT...INTO syntax of the dynamic FETCH statement of embedded SQL.

data
The data in a database is every value in every active table, as opposed to the metadata .

database
The set of information contained at a server, organised into metadata and data .

data type
A set of possible values.

deadlock
A condition under which an activity may not proceed because it is dependent on exclusive
resources that are owned by some other activity, which in turn is dependent on exclusive
resources in use by the original activity.

default value
The value to be given to a column when a program inserts a new row into a table without
specifying a value for that column.

degree
The degree of a table is its number of columns, which is the cardinality of each row.

delimited identifier
A double-quoted string that identifies an object within a database. All text within the double
quotes is assumed to be part of the identifier and is interpreted literally.

deprecated feature
A term used in discussing X/Open-compliance; see the full discussion of compliance in
Section 1.3 on page 5.

descriptor
A data structure inside the implementation that contains information about one or more
columns.

dormant connection
A connection to a database that the application has established previously and has not
disconnected, but is not using in the current database activity.

dynamic SQL
An execution model in which the actual SQL statement is not known until run time.

dynamic parameter
A position in an SQL statement that represents a literal value the application must define
before executing the statement.

dynamic argument
The value that is bound to a dynamic parameter of an SQL statement.

embedded host variable
A variable in the host language that an embedded SQL statement uses to either obtain a
value from, or convey a value to, the program.

246 X/Open CAE Specification

Glossary

embedded SQL
An execution model in which SQL statements are included as part of the compilable source
code of a program.

error condition
A condition in the execution of a function that indicates failure to perform the requested
operation. Contrast warning condition .

error status
A return code from a function that reports an error condition .

expression
A combination of values on which database queries can be based.

foreign key
Columns in one table that specify the valid values for one or more columns in another table.

generic data type
A general category of data types, within which are defined several named data types with
specific attributes.

grantable
A privilege is grantable if a user who holds that privilege on a table can grant it to, or revoke
it from, any user.

identifier
A text string, whose content is subject to certain rules, that identifies an object in a database,
such as a cursor, table or user.

implementation
The X/Open-compliant database product. This term is used to distinguish it product from
the application (the end-user program) when discussing the calling interface.

implementation-defined
A term used in discussing X/Open-compliance; see the full discussion of compliance in
Section 1.3 on page 5.

index
A data structure that behaves like an ordered list of pointers to the rows of a table.

indicator variable
An integer host-language variable that indicates whether an associated variable is the null
value and whether it contains a truncated character string.

integrity constraint
One of several techniques that constrain the values in a base table. An overview is provided
in Section 2.3.5 on page 18.

isolation
A transaction attribute that specifies the degree to which the operations on metadata or data
interact with the effects of concurrent transactions.

literal
A specific syntactical form in SQL that represents a value.

logical representation
The display form of a value in the syntax of SQL.

metadata
The definitions of all active base tables, viewed tables, indexes, privileges and user names in

Data Management: Structured Query Language (SQL), Version 2 247

Glossary

a database.

multi-set
An unordered collection of objects that are not necessarily distinct.

named data type
A data type, identified by name, with specific attributes.

null value
A value, distinct from all non-null values, representing a case where an actual value is not
known or not applicable.

octet
A discrete unit of memory accommodating at least 8 bits. An octet is the unit this
specification uses to measure the memory requirements of a character.

open connection
A connection that is either active or dormant.

optional feature
A term used in discussing X/Open-compliance; see the full discussion of compliance in
Section 1.3 on page 5.

parameter number
The ordinal position of a dynamic parameter.

pending transaction
A transaction that has not been completed.

phantom
A row that a program retrieves, that it did not retrieve before using the same search
condition, caused by action of a concurrent transaction.

positioned update
An UPDATE statement in SQL that operates on data identified by a cursor.

positioned delete
A DELETE statement in SQL that operates on data identified by a cursor.

precision
The number of bits or digits representing a number.

predicate
A syntactic element of SQL that represents an assertion that is true or false.

privilege
Authorisation of a user to perform a given category of action on a specified object.

program
The host application program that uses SQL to access data.

pseudo-column
A column in a table other than those specified by an application using the CREATE TABLE
or ALTER TABLE statements of embedded SQL. Pseudo-columns are undefined by this
document. An example of a pseudo-column is a row identifier.

qualification
An application’s optional use of a schema name and, on some implementations, a catalog
name, to make unique the reference to a database object. See Three-part Naming on page
20.

248 X/Open CAE Specification

Glossary

RDA
(Remote Database Access) A mechanism by which clients and servers communicate to carry
out application database requests; specified in the X/Open RDA Specification.

read-only
A table or a query-specification that is not updatable ; or a transaction that is not read-write .

read-write
A transaction access mode that indicates that the transaction is allowed to perform updates
to data and metadata.

result set
A derived table produced as the result of SQL statement or CLI function execution. It is this
table from which rows are fetched.

row
A non-empty sequence of values in a table.

scale
The number of bits or digits representing the fractional part of a number.

schema
A collection of related objects in a database. If a schema contains base tables, it also
contains any indexes that are defined on the base tables.

SELECT statement
See cursor-specification .

sequence
An ordered collection of objects that are not necessarily distinct.

serialisable
An attribute of concurrent transactions in X/Open-compliant SQL implementations, which
provides that the overall result is the same as some serial sequence of the same transactions.

server
The component of a database application that provides data on request.

set
An unordered collection of distinct objects. Contrast multi-set .

SQL
(Structured Query Language) A standard language for codifying database queries and
updates as text, specified in this document.

status record
A record of some error or warning event maintained by the implementation. The
application can retrieve elements of the status record using GetDiagRec() or GetDiagField().

stored routine
A routine (procedure or function) that resides on the server, which the client can invoke.

system view
A predefined read-only view, defined in Chapter 6 on page 155, that provides schema
information.

table
A named collection of values, arranged into rows and columns.

Data Management: Structured Query Language (SQL), Version 2 249

Glossary

transaction
An action or series of actions that are atomic with respect to recovery and concurrency.
Atomicity means that either all actions take permanent effect or none do. Transactions are
defined more precisely, and their effects are discussed, in Section 2.7.2 on page 29.

Transitional SQL
A set of SQL features defined by FIPS 127-2.

two-phase commit
A protocol for ensuring that a transaction is atomic (see transaction) among all sites (for
example, servers) where the actions take place. For more information, see Section 2.7.2 on
page 29.

type convertible
Data types whose values may be assigned to objects of another data type.

unbound column
A column value whose associated descriptor record is not bound.

undefined
A term used in discussing X/Open-compliance; see the full discussion of compliance in
Section 1.3 on page 5.

unknown
One of the three logical truth values (along with true and false).

updatable

1. An updatable table is a table that can be modified.

2. An updatable query-specification is one that contains valid syntax to be used in the
modification of a table.

user
An entity, distinguished from other users for security purposes, that is entitled to use the
database.

user identifier
The string that represents the security identity under whose auspices the connection is
established.

value
A data item in the database.

view
A derived table with a name that is defined in terms of other tables. Conceptually, a base
table is a table that is stored; a view is a table that is computed.

viewed table
A view .

warning condition
A condition in the execution of a function that does not imply a failure to perform the
requested operation but provides the application with additional information. Contrast error
condition .

warning status
A return code from a function that reports a warning condition .

250 X/Open CAE Specification

Index

#define (C)
not allowed in declare section84
SQL not allowed within80

#include (C)
not allowed in declare section84
SQL not allowed within80

*, different interpretations.....................................185
_SYSTEM..27
24-hour clock ...42
37000

replaced by 42000 in this issue11
access control...26
access mode ...28
access violation ...99
accessibility

system view...155
accessible columns, identify.................................160
accessible tables, identify......................................171
active connection..142, 245
active table ...20
active transaction..28

after communication failure184
ADD COLUMN ..102

constraint violation ..103
additional columns in system view....................155
adjacent character...23
alignment with SPIRIT SQL9
ALL

default for set function..64
following UNION ..75
in quantified predicate ..68
in set function..64

ALL (COBOL)..85
ALLOCATE DESCRIPTOR130

maximum number of occurrences..................175
maximum occurrences179

ALTER TABLE...102
constraint violation ..103
expanded in this issue ...8
multi-column form removed from this issue .11

ambiguity
in date/time...42

ANSI standard...1
ANY...68

in quantified predicate ..68
application ...15, 245

implication of deprecated features3
approximate numeric value.............................41, 48
arithmetic

data type of result...47
error...57
on date/time..57
operator ..57

array of char (C) ..51
AS

keyword optional in this issue.............................8
ASC (ascending)

in CREATE INDEX...105
in DECLARE CURSOR89

ASCII
required for compliance ..6

assignment ...51
and CAST function...65
effect of error on SQL statement100
numeric...51
of null value...54
within generic data type39

assumed ordering of character set166
atomicity...28

additional guarantee..30
attribute

of column ...17
of server..166
of SQL language, limits on175
of transaction...20, 28

authentication
information is connection context143
not required after dormancy............................142

authentication string..245
authorisation..26-27

pseudo-literals describing50
authorisation check ..99
auto (C) ...85
AVG ...63
base table..17, 245

create ...107
format of qualification...35
must exist ...100
part of a schema..20

base-table-name ..35
BEGIN DECLARE SECTION.................................79
BETWEEN..68

Data Management: Structured Query Language (SQL), Version 2 251

Index

BINARY (COBOL)..82
proposal to support ...243

binding style
specifying via SQL_LANGUAGES168

BIT
limit of length (SPIRIT)176

BIT VARYING
maximum length (SPIRIT)176

blank
in SQL character set ...32
valid in delimited name33

blank padding
during string assignment....................................51

block (C) ...80
body of user-defined name.....................................33
branding

information on host language support5
byte ..245
C

data type correspondence...................................82
specifying via SQL_LANGUAGES168
string storage...51
syntax of host identifier80

calendar ..42
discontinuity..58

capacity limit ...178
capitalisation

implicit..33
in delimited name...33

capitalisation, implicit ...33
cardinality..15, 17, 245
cartesian product ..71
CASCADE

IN ALTER TABLE...103
in DROP SCHEMA ..113
IN DROP TABLE..114
in DROP VIEW ...115
in REVOKE ..117
now required...11

case sensitivity ..33
in delimited name...33

CAST ...65
and generic data type ..39
new in this issue..7

catalog
list of schemata within165
must exist ...100
new in this issue ...10
number of tables in ..177

catalog name ...20, 166
part of connection context20

CATALOG_NAME...152
changes from previous issue....................................7
CHAR, synonym for CHARACTER40, 42
character ...32
CHARACTER..40
character ...245

casting from...65
casting to ..65

CHARACTER
correspondence to C ..82
correspondence to COBOL.................................82

character
internal coding undefined32

character set ...21
assumed ordering...166
class of schema object..20
create ...103
drop...112
must exist ...100
newly defined in this issue9
of character-string variables...............................40
required support...6
specifying ...36

CHARACTER SET IS
in C ..85
in COBOL...85

character set, SQL...21
character string..40

assignment of ..51
limit on length...175
literal ...48
splitting across lines...79
truncation...226

CHARACTER VARYING40
C coding ...85
no COBOL equivalent ...82

character-set-name ...35
CHARACTER_SETS ..156

new in this issue..9
CHAR_LENGTH..60

new in this issue..7
check constraint ..18
CHECK constraint

on column ..109
on table ...108

class of value..16
classification of SQL statements............................97
CLASS_ORIGIN ...152
client..19, 245
clock...42
CLOSE...118

252 X/Open CAE Specification

Index

close
implicit after error ..93

closed cursor..87
COBOL

data type correspondence...................................82
definition of separate compilation unit95
intend to address aspects of IS 1989:1985243
new standard: some features unsupported5
restrictions on conditionals94
specifying via SQL_LANGUAGES168
syntax of host identifier80
unsupported extensions......................................85

code generation from DECLARE CURSOR........89
code, character

undefined ...32
COLLATE...57

in CREATE TABLE...108
in query specification...72

collating sequence ..53, 166
collation ..23

class of schema object..20
create ...104
drop...113
implicit modification via CASCADE117
in query specification...72
must exist ...100
pad attribute ..23
syntax for specifying..66

collation-name...35
COLLATIONS ...157

new in this issue..9
collection of values...17
colon

preceding host variable.......................................80
preceding indicator ..81

column..17, 245
adding...102
assignment general diagnostic100
constraints in CREATE TABLE........................109
dropping...103
limit on number of ...177
maximum in GROUP BY/ORDER BY...........178
maximum number in GROUP BY177
maximum number in named-column JOIN .177
maximum number in UNIQUE.......................177
number of, in a view..179

column attribute ...245
column definition

maximum length from SERVER_INFO.........166
column identifier

duplicates in CREATE TABLE.........................108

column name
as argument of set function................................64
resulting from UNION..75
specifying in CREATE TABLE.........................107

column privilege...27
COLUMNS...160
COLUMN_DEF

default value too long103, 110
COLUMN_NAME..152
COLUMN_PRIVILEGES.......................................158

new in this issue..8
comment

SQL..32
comment, SQL

valid location...79
commercial implementations1
COMMIT..28, 139

after data definition statement183
immediate ..183
implementation-defined behaviour184
incorrect notification..93

COMMITTED..29
communication area (SQLCA)

removed from this issue11
communication error...101

effect on COMMIT ...184
COMP-3 variables

extension to ISO SQL...212
comparability ..16
comparison ..53

and collation ..23
involving null value...54
use of sub-query ...76
within generic data type39

comparison predicate ..67
quantified ...68

compatibility
of data types, flagging ...5

compatible data type
for UNION...75

compilation..15, 245
compilation unit..5

limits on component objects179
multiple ..95
one diagnostic area for all...................................91

compile-time authorisation check.........................99
compile-time syntax error99
completing transaction..139
Compliance ..3
compliance

policy...5

Data Management: Structured Query Language (SQL), Version 2 253

Index

compliance requirement
changes in this issue ..10

computation
reducing with index...18
with null value ..54

concatenation ...59-60
concepts ..15
conceptual CREATE TABLE for system view ..155
concurrency

versus isolation level ...29
concurrent ..245
concurrent connections ...142
concurrent transaction...29
CONDITION_NUMBER152
conformance ..3

specifying via SQL_LANGUAGES168
CONNECT...145

authorization identifier26
former optionality deleted..................................10
overview...19

connection ..245
context ..19, 143
default...142
limit on length of name.....................................176
name..145
one diagnostic area for all...................................91
overview of statements19
state table ...142

connection error..101
connection statement ...24

client/server role in..19
does not begin transaction139
not processed by server.......................................19

CONNECTION, SET ...146
CONNECTION_NAME152
consecutive double quotes33
const (C)..85
constraint

checked at end of statement.............................100
checked atomically...30
NOT NULL..54
referential ...18
violation by ALTER TABLE..............................103

CONSTRAINT_CATALOG..................................152
CONSTRAINT_NAME...152
CONSTRAINT_SCHEMA....................................152
constructor, row value...78
context...19

of connection ...143
continuation facility ...79

control of transaction
new features in this issue......................................8

conversion..21, 60
must exist ...100

conversion-name ..35
CONVERT..60

new in this issue..9
converting data type ..65
COPY statement (COBOL)...............................80, 84
correlation ..76

implication for set function................................64
corrigendum

ISO SQL ..10
X/Open...11

COUNT...63
forms supported ...63
in SQL descriptor area.......................................125
result for empty set ..64
treatment of null value..54

count of rows...151
crash recovery ...183
CREATE

new forms in this issue..9
CREATE CHARACTER SET................................103
CREATE COLLATION ..104
CREATE INDEX..105

extension to ISO SQL...212
CREATE SCHEMA...106

new in this issue ...10
CREATE TABLE..107

conceptual, for system view155
redundant clauses now prohibited...................11
syntax now applies to ALTER TABLE8

CREATE TRANSLATION.....................................110
CREATE VIEW..111

query-expression now valid.................................7
criteria, view ..112
current connection ...142, 245
current implementations...1
current row ..87
current user..26, 245

must own schema ..102
specified by CONNECT....................................145

CURRENT_DATE et al ..50
as column DEFAULT value..............................110
prohibited from CHECK clause110

CURRENT_USER...26, 50
cursor ..24, 87, 246

across compilation unit boundaries95
close...118
implicit close after error......................................93

254 X/Open CAE Specification

Index

limit on number open..95
maximum number ...179
maximum number simultaneously open......177
open/closed...87
opening...120
position...87
position after deletion ...87
position as connection context143
scope of declaration ...95

cursor-specification..246
CURSOR_NAME..152
data..20, 246
data definition statement................................24, 102

follow by COMMIT ...183
implicit commitment ...183

data division (COBOL)..84
data manipulation statement.........................24, 118
data retrieval

by query specification..71
data statement

maximum length ..179
data transfer error

general diagnostic ..100
data type ..16, 39, 246

comparison ..53
compatibility for UNION75
compatibility in predicate...................................67
flagging compatibility ...5
implementation-defined125
inherent type of column of view.......................47
of column in COLUMNS view........................161
of column in UNION...75
of expression..47
specifying in CREATE TABLE.........................107
use of host variable ..82

database ..19-20, 246
checking status after error................................184

DATE ...43
literal ...49

date/time ...42
arithmetic ...57
assignment ...52
casting from...65
comparison ..53
default precision...166
invalid intermediate value44
limit on precision..176
literal ...49
new in this issue..7
no COBOL equivalent ...82
value function ...50

DDL...24, 102
DE ..3, 155

in COLUMNS..162
in SERVER_INFO...167
in SQL_LANGUAGES.......................................168
in TABLES..171

deadlock ...246
DEALLOCATE DESCRIPTOR.............................130
debugging line (COBOL) ..80
DEC, synonym for DECIMAL.........................40, 42
DECIMAL...41

correspondence to COBOL.................................82
limit on precision..175
no C equivalent...82

decimal digit (precision) ...41
declarative..79
DECLARE AUTHORIZATION.......................26, 86

extension to ISO SQL...212
overview...24

DECLARE CURSOR ..24, 88
code generated for..184
code generation...89

DECLARE SECTION ...84
header and trailer ...79

declare section
new syntax in this issue ..9

DECLARE SECTION
special rules for C...84
special rules for COBOL84

DEFAULT ...109
default character set ...22

part of connection context20
default collation

in CREATE CHARACTER SET103
default connection..142
default fractional precision...................................166
default precision ...41, 43

limit ...175
default qualification ...35
default scale ...41
default server...153
default value..17, 246

of column added by ALTER TABLE...............102
warning regarding length103, 110

deference to ISO SQL...209
definer rights..26
degree..246

of row value constructor.....................................78
degree of table ...17
DELETE ..118

cursor must be updatable88-89

Data Management: Structured Query Language (SQL), Version 2 255

Index

cursor position after...87
DELETE privilege...27

granting ..115
on viewed table...111
revoking ...116

delimitation of transaction6
delimited identifier...246
delimited user-defined name33
delimiter token ..33
deprecated feature..246

flagging...5
removed in this issue...11

Deprecated features ...2
derived table..17, 24
DESC (descending)

in CREATE INDEX...105
in DECLARE CURSOR89

DESCRIBE..131
overview...25

DESCRIBE INPUT
new in this issue ...10

descriptor ...246
contents after error...100
maximum number of occurrences..................175

DESCRIPTOR, ALLOCATE130
DESCRIPTOR, DEALLOCATE............................130
DESCRIPTOR, GET..134
DESCRIPTOR, SET...137
detecting disconnection ..143
diagnostic

changes in this issue ..11
diagnostic information

passed from server to client19
retrieving..150

diagnostic statement..24, 150
diagnostics area...91

size ...91
diagnostics statement

does not begin transaction139
executed by client...19

dialect of SQL
contained in escape clause181
determine which are supported......................168

difference between date/times..............................58
digit

in keyword...183
in user-defined name...33

digit, decimal (precision) ..41
dirty read..29
disclosure of access violation.................................99
DISCONNECT ..146

overview...19
disconnection

error of subsequent statement101
discontinuity in calendar ..58
discrepancies with ISO SQL.................................209
DISTINCT ..63

effect on updatability...73
in query specification...73
in set function..63
multiple use of ..76
treatment of null value..54
when distinct strings compare equal53

distinct object...15
distributed transaction delimitation.......................6
distributed transaction processing139
division by zero ...57-58
DML ..24, 118
dormant connection.......................................142, 246
DOUBLE PRECISION ...41

correspondence to C ..82
limit on precision..176
no COBOL equivalent ...82

double quote..33
DROP

new forms in this issue..9
DROP CHARACTER SET112
DROP COLLATION ..113
DROP COLUMN..103

new in this issue..8
DROP INDEX..113

extension to ISO SQL...212
DROP SCHEMA...113
DROP TABLE ..114

CASCADE/RESTRICT now required11
DROP TRANSLATION...114
DROP VIEW ..114

CASCADE/RESTRICT now required11
DTP..139
duplicate column identifier108
duplicate rows

in UNION...75
duplicate value

counted by set function.......................................63
dynamic argument ...246
dynamic DECLARE CURSOR89
dynamic execution ...183
dynamic FETCH ...133
dynamic OPEN ...135
dynamic parameter..64, 246

assumed data type in PREPARE.....................136
not allowed in escape clause............................182

256 X/Open CAE Specification

Index

dynamic SQL...124, 246
flagging...5
overview...25

DYNAMIC_FUNCTION
fields of diagnostics area...................................151

EBCDIC collation..166
embedded aspects ..5, 79
embedded host variable24, 80, 246

not allowed in escape clause............................182
embedded SQL ...5, 24, 247
empty collection..15
empty set

cursor position ..87
set function result...64

encoding ...21
END DECLARE SECTION.....................................79
END-EXEC...80
END-IF..94
English

basis of SQL character set21
equality of distinct strings53
equivalence

of upper and lower case......................................33
error

arithmetic ...57
communication/connection.............................143
effect on cursor position......................................87

error condition ..247
error correction..10-11
error status ...247
escape character ..69
escape clause ...181
evaluation of DEFAULT..110
exact numeric value...41, 48
excluding duplicate values.....................................63
exclusion

eliminated in this issue..10
EXEC SQL ..79

preceded by label or paragraph name80
executable SQL statement24

number in compilation unit179
table ...97

executable statement
new in this issue..9

EXECUTE...132
overview...25

EXECUTE IMMEDIATE..133
former optionality deleted..................................10
overview...25

execute-time authorisation check99
existence of object...100

EXISTS...70
use of sub-query ...76

exponent ...41
limit on precision..176

expression ..57, 247
expression error

general diagnostic ..100
expression, query..75
extension

flagging implementation extensions5
future, to X/Open SQL243
to ISO SQL ...212

extern (C)..85
EXTERNAL (COBOL) ...85
EXTRACT...58
extracting substring ...61
failure of application

outcome of transaction..28
failure of connection ..143
FETCH ..119

dynamic..133
success with warning ..226

fictitious user _SYSTEM..27
field

of date/time...42
retrieving length ...161

FIPS 127-2 ...1, 7
first record of diagnostics area...............................91
flagger..5

new in this issue ...12
FLOAT...41

limit on precision..175
no C equivalent...82
no COBOL equivalent ...82

FOR READ ONLY ..88
cursor must be updatable88

FOR UPDATE..88
cursor must be updatable88
prerequisite to DELETE/UPDATE89

foreign key ...18, 247
FOREIGN KEY

implicit dropping via CASCADE117
length of columns...178
number of referencing-columns......................177
table constraint ...108
treatment of null value..54

form-of-use ..21
and CONVERT function.....................................60

format
qualification ...35

Data Management: Structured Query Language (SQL), Version 2 257

Index

fractional precision
limit ...176

fractional seconds ...42
limit on precision..176

FROM
effect on updatability...73
in query specification...71
keyword optional in this issue.............................8
number of tables referenced.............................177

Full ISO, features included from210
function

string ...59
vendor-specific..181

future extensions ..243
general diagnostics

for connection statements143
for data definition...102
for SQL statements...99
for transaction statements139

generic data type ..39, 247
GET DESCRIPTOR...134
GET DIAGNOSTICS..150

does not begin transaction139
enhancements in this issue...................................8
executed by client...19
not processed by server.......................................19

GLOBAL (COBOL)...85
global transaction ...139
GOTO or GO TO...94
GRANT...115

changes in this issue...9
grant option ...27
grantable...247
grantable privilege ...27
granting privilege on viewed table.....................116
grantor...27
Gregorian calendar...42
group

in query specification...72
GROUP BY

effect on updatability...73
in CREATE VIEW...111
in query specification...72
maximum number of columns........................178
number of columns..177
treatment of null value..54

grouped table...17
grouped view ..17, 111
grouping

when distinct strings compare equal53

guarantee
isolation ..29
minimum value of any limits175

harmony with previous issues...............................10
HAVING

effect on updatability...73
in query specification...72
number of predicates...177

header
of DECLARE SECTION84

host application program15
host language

required support for...5
specifying via SQL_LANGUAGES168

host variable ..80
assignment general diagnostic100
contents after error...100
features in new COBOL standard.......................5
input versus output ...81
limit ...179
naming..183
number in SQL declare section........................179
scope..95
use of lower case...243

hyphen
used in SQL comment ...32

identification of user ..26
identifier ...247

connection name...145
limit on length...175
maximum length ..167

identifier length
maximum from SERVER_INFO166

identifier, authorisation...26
ideogram...33
IEF now mandatory ...10
IMMEDIATE, EXECUTE.......................................133
implementation...247

implication of deprecated features3
implementation note

unique constraint..109
implementation of system view..........................155
implementation, vendor-specific

specifying via SQL_LANGUAGES168
Implementation-defined ...3
implementation-defined247

data type...125
implementation-specific issue175
implementation-specific SQL181
IN ...68

use of sub-query ...76

258 X/Open CAE Specification

Index

INCLUDE SQLCA..225
index..18, 247

class of schema object..20
create ...105
drop...113
format of qualification...35
limit on columns in ..177
maximum length of key....................................178
part of a schema..20

index-name ..35
INDEXES..164

new in this issue..8
indicator variable25, 81, 247

declaration of...84
general discussion ..56
implementation-defined uses of184
indicating null value..54
may be set in numeric assignment51
optionality of ...81

information schema ...155
INFORMATION_SCHEMA.........................155, 243
INFO_SCHEM ..155
inherent data type of column of view47
inherited data type ...47
initial isolation level...167
initial state

connection..142
initial value

of column added by ALTER TABLE...............102
INSERT ...119

enhanced in this issue..9
limit on columns inserted.................................177
number of values..179

INSERT privilege..27
granting ..115
on viewed table...111
revoking ...116

int (C)
portable...83

INT, synonym for INTEGER............................40, 42
INTEGER..41
integer

as column number..89
INTEGER

correspondence to C ..82
correspondence to COBOL.................................82
limit on precision..176

integrity (IEF) now mandatory..............................10
integrity constraint...18, 247
Intermediate ISO, features included from.........210
international standard ...1

internationalisation
new in this issue..9

interpretation
prevented in delimited name.............................33

interval ..44
INTERVAL...45
interval

arithmetic ...57
assignment ...52
by subtracting date/time....................................58
casting from...66
comparison ..53

INTERVAL
limit on precision..176

interval
limit on precision..176
literal ...49
new in this issue..7

interval precision ..44-45
interval qualifier..44

following dynamic parameter marker.............64
INTO clause...129
invalid characters

valid in delimited name33
invoker rights ..26
invoking other SQL programs95
IS [NOT] NULL...69
ISO 1989..85
ISO 8859-1 ..32
ISO SQL ..1

deference to ...209
ISO standard

specifying via SQL_LANGUAGES168
isolation ..247

number of levels ...29
isolation level, initial..167
IS_NULLABLE attribute, retrieving...................161
item descriptor area ...125

default number allocated..................................179
specifying number of...130

JOIN...73
length of columns...178
number of columns..177

joined table
new in this issue..7

key
maximum length of ...178

key, foreign ..18
keyword..37

additional reserved words..................................10
case-sensitivity..33

Data Management: Structured Query Language (SQL), Version 2 259

Index

implementation-defined183
valid in delimited name33

keyword-oriented parser183
label preceding EXEC SQL80
language embedding..5
language extension

flagging...5
language structure..32
language support..5

specifying via SQL_LANGUAGES168
LATIN1

required for compliance ..6
leading precision

optional...45
LEFT OUTER JOIN ..74
legal time ..42
length...40
LENGTH

in item descriptor area125
length

limit ...175
of CAST result...65
of concatenation result ..60
of delimited name ..33
of field, retrieving...161
of user-name, variations183
optional for CHARACTER40-41

letter...33
in user-defined name...33

LIKE...69
limit ...175

derived..179
server-specific, from SERVER_INFO.............166

line of source code..79
DECLARE SECTION header/trailer................84

linkage section (COBOL) ..84
literal ...16, 48, 247

and pseudo-literal ..50
date/time ...49
interval..49
national character ...48
splitting across lines...79

location transparency ..19
logical operator ...67

precedence ...67
logical representation16, 247
loss of significant digit...47
LOWER...60

new in this issue..9
lower case...33

in COBOL...85

in delimited name...33
in SQL keywords and names79
proposal for host variables...............................243

magnitude
of mantissa...41

mantissa..41
limit on precision..175

mapping
to physical database...145

margin notation
DE ..3
OP ..2

MAX ..63
when distinct strings compare equal53

maximum value..175
for server, from SERVER_INFO......................166

MESSAGE_LENGTH...152
MESSAGE_OCTET_LENGTH153
MESSAGE_TEXT..152
metadata...20, 247

capitalisation of names in...................................33
modification by data definition statement....102
read atomically ...30

MIN ...63
when distinct strings compare equal53

minimum privilege level...27
minimum value...175
minus 1 in indicator ...184
module

one diagnostic area for all...................................91
MORE

field of diagnostics area150
multi-set ...15, 248
multiple compilation units95
multiple connections..19
multiple errors...91
multiple grantors of privilege................................27
multiple references to the same table...................77
multiple schemata per user10
multiple servers ..19, 142
multiple sort specifications89
name

avoid common prefixes.....................................183
delimited ..33
limit on length...175
of object in system views..................................155
of UNION column ...75
of user ...26
user-defined...33

named data type...39, 248
named object, schema..20

260 X/Open CAE Specification

Index

named-column JOIN
number of columns..177

namespace
of objects in schema ...20

naming ..20
of ..80

NATIONAL CHARACTER....................................40
limit on length (SPIRIT)175
new in this issue..9

national character set ...21
national character string literal..............................48
NATIONAL CHARACTER VARYING40

limit on length (SPIRIT)175
NATURAL JOIN ...74

not in SPIRIT SQL ..231
natural language, aspect of.....................................23
NCHAR ..40
nested

sub-query ...76
sub-query, maximum number.........................177

newline indication
in SQL character set ...32
use as separator ..32

no data
in DELETE..119
in dynamic FETCH ..134
in FETCH ...119
in INSERT ..120
in SELECT INTO ..121
in UPDATE...123

no pad ...23
non-delimiter token..32
NOT FOUND ..94
NOT NULL..18

violation by ALTER TABLE..............................103
not nullable ..161
notation...31
null byte (C) ...51, 83
NULL predicate ..69
null termination ..85
null value ...16, 54, 248

allowed in UNION column................................75
apply CAST to...65
as default value...17
assigning...54
elimination...226
implementation-dependency...........................184
in comparison..54
in computation..54
in embedded host variables82
in grouping column ...72

in implicit comparisons.......................................54
invalid for date/time fields................................42
no literal representation......................................16
test for ...69

NULLABLE
UNION column ..75

number
comparing ..53

NUMBER
field of diagnostics area150

number
of diagnostic areas..91
of servers ..19

NUMERIC..41
numeric...41

casting from...65
NUMERIC

correspondence to COBOL.................................82
limit on precision..175

numeric
literal ...48

NUMERIC
no C equivalent...82

object name ..20
in system views ..155

object reference ...100
object, schema ...20
occurrences

number in ALLOCATE DESCRIPTOR175
octet ...248
OCTET_LENGTH ..60
OLD_INFO_SCHEM ...243

deprecation of..3
OLD_INFO_SCHEMA ..155
ON DELETE...108

new in this issue..7
ON UPDATE..108

not specified...7
OP.....................................2, 10, 20, 106, 131, 151, 211
OPEN ..120

application of variable scope rule.....................81
dynamic..135

open connection..248
open cursor ..87

limit on number..177
operating system

identification of user..26
operator

arithmetic ...57
logical..67
string ...59

Data Management: Structured Query Language (SQL), Version 2 261

Index

optional feature...248
flagging...5

Optional features ..2
optionality of CASCADE/RESTRICT

removed from this issue11
optionality of PRIVILEGES

removed from this issue11
order

of arithmetic evaluation......................................57
of executing UNION..76
of logical evaluation...67
of rows of result set..87, 89

ORDER BY
in DECLARE CURSOR89
maximum number of columns........................178
number of sort items..177
result set not updatable.......................................88
treatment of null value..54

ordering of character set166
organisation defining SQL....................................168
outcome

primary...91
OUTER JOIN ...74
overflow

arithmetic ...57
date/time ...58
interval..58

OVERLAPS ..70
owner ..26

of schema ...20
of table ..102, 107
privileges on table ..27

PACKED-DECIMAL (COBOL)
proposal to support ...243
unsupported..82

pad attribute ..23
defining...105
use in comparison ..53

pad space..23
padding

during CAST..65
paradigm, single ...19
paragraph name (COBOL)

preceding EXEC SQL...80
parameter number..248
parenthesis

in arithmetic expression......................................57
in DECLARE CURSOR75
in logical expression ..67
with UNION..76

partial rollback ..184

pending transaction ...248
percent character

special meaning in LIKE69
performance

enhancing with index ..18
phantom ...29, 248
phrasing

not meant as substantive change12
physical representation of a value16
PIC (COBOL)

continuation...85
equivalent SQL data types82

pointer (C) ..85
portability

compiler warning ...5
restricted by use of escape clause181

portability report (flagging)......................................5
portable character set...32
portable int (C) ..83
portion of string, extracting....................................61
POSITION ..61

new in this issue..9
position of cursor..87

as connection context ..143
position of DECLARE CURSOR184
positioned DELETE..118
positioned delete ..248
positioned DELETE

implementation-defined row count151
positioned UPDATE...121
positioned update...248
positioned UPDATE

implementation-defined row count151
pre-compilation...15
precedence

of arithmetic operator..57
of logical operator ..67

precision ...41, 248
of field, retrieving...161
optional for date/time types..............................43
optional for numeric types41

predicate...67, 248
BETWEEN..68
comparison ..67
EXISTS ..70
IN ...68
involving null value...54
LIKE...69
maximum number ...177
NULL ..69
OVERLAPS..70

262 X/Open CAE Specification

Index

quantified comparison ..68
PREPARE ...136

overview...25
prepared statement

executing ..132
preserving context ..19
primary key

enhancement in this issue.....................................8
PRIMARY KEY

redundancy now prohibited11
treatment of null value..54

PRIMARY KEY constraint
on table ...108

primary outcome ..91
criteria changed in this issue..............................11

privilege..27, 248
column ..27
grant ..115
grantable...27
implicit revocation via CASCADE.................117
of table owner ...107
revoke ...116

PRIVILEGES
now required...11

Procedure Division (COBOL)80
procurement, U.S. Government...............................1
product name

specifying via SQL_LANGUAGES168
program..15, 248

limits on component objects179
programming language

other than C and COBOL......................................5
prompt reporting of communication error.......101
pseudo-column ...248
pseudo-literal...50

as column DEFAULT value..............................110
prohibited from CHECK clause110

pseudo-user _SYSTEM..27
PUBLIC

granting rights to..116
overview...27

qualification ...248
default catalog/schema.......................................35
of table name ...35

qualified JOIN ...73
qualifier, interval...44
qualifying row/group..67
quantified predicate ...68

use of sub-query ...76
query expression...75

now valid in views ...7

updatable ...88
query specification ...71
quote..33

representation in literal48
radix

retrieving..161
RDA...249
READ ONLY..88

cursor must be updatable88
diagnostic for violation101

READ [UN]COMMITTED......................................29
read, dirty...29
read, repeatable...29
read-only ..249

result set ...88
table ...18
transaction ...28

read-write...249
transaction ...28

REAL ...41
correspondence to C ..82
limit on precision..176
no COBOL equivalent ...82

recovery ..28
after crash...183

recursive grant ..27
redundant unique clause

removed from this issue11
references

to object ..100
REFERENCES constraint109
REFERENCES privilege ..27

granting ..115
revoking ...116

referencing a connection145
referential action

executed atomically ...30
referential constraint..18

met if null value present54
remote database ..19

communication error...101
REPEATABLE READ ...29
repeatable read..29
repertoire..21
REPLACE statement (COBOL)80, 84
representation of a value...16
required feature

changes in this issue ..10
reserved word ...37

flagger ...5
implementation-defined183

Data Management: Structured Query Language (SQL), Version 2 263

Index

valid in delimited name33
resource manager (RM)...6
restarting after crash ..183
restoring context ...143
RESTRICT

IN ALTER TABLE...103
in DROP SCHEMA ..113
IN DROP TABLE..114
in DROP VIEW ...115
in REVOKE ..117
now required...11

restricting database access......................................26
restriction

removal of previous...8
result data type

UNION ...75
result set ...87, 249
resulting value

if assignment error occurs100
retrievability

of inserted row (WITH CHECK OPTION)...112
retrieving diagnostic information.......................150
RETURNED_SQLSTATE.......................................153
REVOKE...116

CASCADE/RESTRICT now required11
changes in this issue...9
ineffective if independent grants exist27

rewritten specification ...12
RIGHT OUTER JOIN...74
rights, definer vs. invoker26
RM (resource manager)...6
ROLLBACK...28, 140

after communication failure184
effect on data definition statement183
implicit after error ..93

row...17, 249
count ...151
deleting...118
maximum length ..166
maximum length of ...178
phantom ...29
smallest insertable unit17

row value constructor..78
new in this issue..9

ROW_COUNT
field of diagnostics area151

run-time authorisation check.................................99
saving connection context143
scale ...41, 249

of field, in COLUMNS view.............................161
optional for numeric types41

schema..20, 155, 249
create ...106
drop...113
list of names...165
must exist ...100
name..20
owner of ...102

schema definition
new in this issue ...10

schema name
part of connection context20

SCHEMATA...165
new in this issue..8

SCHEMA_NAME...153
scope

among multiple compilation units95
of host variable..81
of table name ...77

search-condition ...67
in query specification...71

searched DELETE...118
searched UPDATE..122
seconds precision..44

optional...45
security

future extension..243
SELECT

different interpretations....................................185
number of items..179
success with warning ..226

SELECT DISTINCT
treatment of null value..54

SELECT INTO ...121
SELECT privilege..27

granting ..115
revoking ...116

SELECT statement..249
semicolon

SQL terminator in C...80
separator...32

COBOL interchangeability85
sequence ...15, 249

in serialisable transaction29
of characters...40
of rows of result set..87
of UNION ..76

serialisable ...29, 249
SERIALIZABLE...29

alternatives in this issue..8
server...19, 249

attributes, from SERVER_INFO......................166

264 X/Open CAE Specification

Index

default...142
implementation-defined mapping145
limit on length of name.....................................176
number per transaction.......................................28

SERVER_INFO..166
use to determine naming system35

SERVER_NAME...153
session ...19
session statement..147

does not begin transaction139
SESSION_USER..26, 50
set...15, 249
SET

number of, in UPDATE179
SET CATALOG..147

does not begin transaction139
new in this issue..8

SET CONNECTION ..146
overview...19

SET DESCRIPTOR..137
set function...63

valid location...64
SET NAMES...147

does not begin transaction139
SET SCHEMA..148

does not begin transaction139
new in this issue..8

SET SESSION AUTHORIZATION149
overview...26

SET TRANSACTION...140
and length of diagnostics....................................91
new in this issue..8

signed numeric literal
not following unary operator57

significance
of date/time fields..42

simultaneous transaction..29
single paradigm ..19
size of diagnostics area..91
SMALLINT ..41

correspondence to C ..82
correspondence to COBOL.................................82
limit on precision..176

SOME
in quantified predicate ..68

sort
eliminating implicit sort......................................18

sort item
maximum number in ORDER BY...................177

sort order ..23
sort order of index..105

sort specification
precedence when more than one89

space
as pad character ..23
use as separator ..32

specification
of table ..17

SPIRIT
alignment in this issue...9
derived limit ..179
Issue 2 ...213
Issue 3 ...233

split token across lines...79
SQL ..249
SQL character set..21, 32

and default if no SQL NAMES84
SQL comment..32

valid location...79
SQL declare section

new syntax in this issue ..9
number of host variables179
overview...24

SQL descriptor area..124
as connection context ..143

SQL NAMES..84
SQL prefix, reserved ..183
SQL session ..19
SQL standard...1
sql-prefix...79

not allowed in escape clause............................182
sql-terminator..79

not allowed in escape clause............................182
SQLCA..225

removed from this issue11
special rules for C...225
special rules for COBOL225

SQLCODE ..225
implementation support...................................184
precision of ..176

SQLERROR..94
trapping SQLCODE=+100................................184

SQLSTATE
need to declare ..84
notation in this document31

SQLWARN...225
SQLWARNING...94

trapping SQLCODE=+100................................184
SQL_CHARACTER

required ..6
SQL_LANGUAGES ...168
SQL_TEXT..21

Data Management: Structured Query Language (SQL), Version 2 265

Index

described in CHARACTER_SETS156
described in COLLATIONS157
required for compliance ..6
use in USER ...50

standard time...42
standard, SQL..1

contained in escape clause181
determine which are supported......................168

state information
in connection context...143

state table, connection ...142
statement

executable ..24
maximum number of tables referenced177
maximum text length ..179
number in compilation unit179
number of sub-queries177
versus declarative...79

static (C)..85
status of database

check after error..184
status record ..249
storage-based limit...178
stored routine ..249
string..40

assignment of ..51
comparing ..53
length of CAST result ..65
limit on length...175
new functions in this issue7
null termination ..85
operation ..59

string truncation ...51
structure (C)...85
sub-query ...71, 76

effect on updatability...73
limit in statement ...177
nesting limit...177

SUBCLASS_ORIGIN ...153
substring...59
SUBSTRING...61

new in this issue..7
substring

new in this issue..7
subtracting date/time..58
SUM...63
switch between connections19
syllable ..33
synonym for data type40, 42
synopsis

general rules for ..79

syntax checking...99
sys prefix, reserved...183
system view...18, 155, 249

CHARACTER_SETS..156
COLLATIONS...157
COLUMNS ..160
COLUMN_PRIVILEGES158
INDEXES..164
new in this issue..8
new views in this issue..9
SCHEMATA...165
SERVER_INFO..166
SQL_LANGUAGES...168
TABLES...171
TABLE_PRIVILEGES...169
TRANSLATIONS ...172
USAGE_PRIVILEGES..173
VIEWS...174
visibility depends on privileges27

system, database ...19
SYSTEM_USER...26, 50
table ...17, 249

alter..102
class of schema object..20
create ...107
DDL restricted to owner of schema................102
drop...114
format of qualification...35

TABLE
keyword optional in this issue.............................8

table
maximum number referenced.........................177
multiple references to ..77
must exist ...100
name, scope of...77
number per catalog ..177
retrieving information about155
types of ...17

table of executable SQL statements97
table-name..35
TABLES...171
TABLE_NAME..153
TABLE_PRIVILEGES...169

new in this issue..8
Technical Corrigendum 1, ISO SQL......................10
terminator...79
terms..15
THEN COLLATION ..105
this issue ...7
three-part naming...20

new in this issue ...10

266 X/Open CAE Specification

Index

TIME..43
limit on precision..176
literal ...49
no C equivalent...82
no COBOL equivalent ...82
should include time zone243

time zone ..42
future work item...243
not specified in this issue......................................7

TIMESTAMP..43
timestamp

default precision...166
TIMESTAMP

limit on precision..176
literal ...49

timezone
not specified...7

token..32
trailer

of DECLARE SECTION84
transaction ...28, 250

across compilation unit boundaries95
active after communication failure184
attribute part of connection context20
concurrent ..29
explicit completion ..139
portable...183
READ ONLY violation101
visibility of change within..................................87

transaction control..24
new features in this issue......................................8

transaction control statement139
transaction delimitation ..6
transaction demarcation API139
transaction isolation...29

in SERVER_INFO...167
transaction semantics

implementation-defined183
TRANSACTION, SET..140
Transitional SQL...7, 250
Transitional SQL, features included from210
TRANSLATE..62

new in this issue..9
translation ..21, 62

class of schema object..20
create ...110
drop...114
in CREATE COLLATION104
must exist ...100

translation-name...35
TRANSLATIONS..172

new in this issue..9
treatment of null value ..54
TRIM..62

new in this issue..7
trim

new in this issue..7
truncation...226

of concatenation result ..60
truth table ...67
two-part naming...20
two-phase commit..250
TYPE

implementation-defined value........................125
in item descriptor area125

type conversion...65
type convertible ..250
types of table..17
U.S. Government procurement................................1
unary operator

not followed by signed literal57
unbound column ..250
UNCOMMITTED ...29
Undefined...4
undefined ...250
underlying table/view of system view..............155
underscore

in keyword...183
in user-defined name...33
special meaning in LIKE69
to specify character set ..36

UNION
result set updatable..88
when distinct strings compare equal53

union (C)...85
UNION in CREATE VIEW

new in this issue..7
UNIQUE

in CREATE INDEX...105
length of columns...178
number of columns..177
redundancy now prohibited11
removal of previous restriction8

UNIQUE column
treatment of null value..54

unique constraint..18
UNIQUE constraint

on column ..109
on table ...108
violation by ALTER TABLE..............................103

UNIQUE INDEX
treatment of null value..54

Data Management: Structured Query Language (SQL), Version 2 267

Index

uniqueness of table name77
uniqueness of user-name ..34
unit of measuring database capacity..................178
unknown ..67, 250
updatability

of cursor..88
of query specification ..73
of table ..18

updatable..250
UPDATE ...88, 121-122

cursor must be updatable88-89
limit on columns updated177
number of SET clauses179

UPDATE privilege..27
granting ..116
revoking ...117

UPPER...60
new in this issue..9

upper case ..33
implicit conversion ..33
in delimited name...33

USAGE privilege...27
granting ..116
revoking ...117

USAGE_PRIVILEGES..173
new in this issue..8

USER..26
user ..26
USER..50
user ..250

granting privilege to ..27
pseudo-literals describing50

user identifier ..250
maximum length ..167

user name...143
specified by CONNECT....................................145

user-defined name..33
delimited ..33
limit on length...175

user-name
length in some implementations.....................183

USING clause ..129
valid state of database

constraining ...18
value..16, 250

number of, in INSERT179
of delimited name ..33
smallest selectable/updatable unit of data.....17

VALUE (COBOL)
symbolic character in...85

value function, date/time.......................................50

VARCHAR ...41
C coding ...85
limit on length...175

variable
assignment general diagnostic100
embedded...24
limit on length...179
naming..80

vendor escape clause ...181
vendor-specific SQL...181
view ...250

create ...111
drop...114
grouped, in CREATE VIEW111
implicit dropping via CASCADE117
inherent data type of column.............................47
must exist ...100
number of columns..179
system view...155

view criteria ...112
viewed table ..17, 250

format of qualification...35
grantable privilege ...27
granting privilege on ...116
privileges of owner ..27
privileges on ..111

viewed-table-name...35
VIEWS...174

new in this issue..8
visibility of system view.................................27, 155
volatile (C)..85
warning condition ..250
warning status...250
warning to not use deprecated feature11
warning, non-portability...5
WHENEVER..94

maximum number ...179
proposal to remove restrictions243
SQLWARNING extension to ISO SQL212
trapping SQLCODE=+100................................184

WHERE
in query specification...71
number of predicates...177
referencing column derived from set function64

WITH CHECK OPTION.......................................112
WITH GRANT OPTION

overview...27
WORK

keyword optional in this issue.............................8
working storage (COBOL)......................................84

268 X/Open CAE Specification

Index

X/Open standard
specifying via SQL_LANGUAGES168

XA interface ...6
new reference in this issue..................................12

year of standard
specifying via SQL_LANGUAGES168

zero, division by
1 ..57-58

zero-length string ...40
in system views ..155

Data Management: Structured Query Language (SQL), Version 2 269

Index

270 X/Open CAE Specification

	c449cov.pdf
	Page 1

	blank.pdf
	Page 1

