
 S

L

T

A

A

C

N

I

D

N

A

H

R

C

D

E
T

Technical Standard

X/Open Curses
Issue 4, Version 2

[This page intentionally left blank]

X/Open CAE Specification

X/Open Curses, Issue 4, Version 2

X/Open Company Ltd.

 July 1996, X/Open Company Limited

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, without the prior permission of the copyright owners.

X/Open CAE Specification

X/Open Curses, Issue 4, Version 2

ISBN: 1-85912-171-3
X/Open Document Number: C610

Published by X/Open Company Ltd., U.K.

Any comments relating to the material contained in this document may be submitted to X/Open
at:

X/Open Company Limited
Apex Plaza
Forbury Road
Reading
Berkshire, RG1 1AX
United Kingdom

or by Electronic Mail to:

XoSpecs@xopen.org

Portions of this document are derived from copyrighted material owned by Hewlett-Packard
Company, International Business Machines Corporation, Novell Inc., The Open Software
Foundation, and Sun Microsystems, Inc.

ii X/Open CAE Specification 1996

Contents

Chapter 1 Introduction... 1
 1.1 This Document .. 1
 1.1.1 Relationship to Issue 3.. 1
 1.1.2 New Features .. 1
 1.1.3 To Be Withdrawn ... 2
 1.1.4 Withdrawn.. 3
 1.2 Conformance ... 3
 1.2.1 Base Curses Conformance ... 3
 1.2.2 Enhanced Curses Conformance.. 3
 1.3 Terminology... 4
 1.3.1 Shaded Text ... 5
 1.4 Format of Entries... 6

Chapter 2 Use and Implementation of Interfaces...................................... 7
 2.1 C Language Definition... 7
 2.2 The Compilation Environment.. 8
 2.2.1 The X/Open Name Space (ENHANCED CURSES) 9
 2.2.2 Interfaces Implemented as Macros (ENHANCED CURSES)......... 11
 2.3 Relationship to the XSH Specification.. 11
 2.3.1 Error Numbers.. 11
 2.4 Data Types.. 12

Chapter 3 Interface Overview.. 13
 3.1 Components... 13
 3.2 Screens, Windows and Terminals ... 14
 3.3 Characters... 16
 3.3.1 Character Storage Size .. 16
 3.3.2 Multi-column Characters ... 16
 3.3.3 Attributes... 16
 3.3.4 Rendition ... 17
 3.3.5 Non-spacing Characters... 17
 3.3.6 Window Properties.. 18
 3.4 Conceptual Operations.. 19
 3.4.1 Screen Addressing... 19
 3.4.2 Basic Character Operations ... 19
 3.4.3 Special Characters.. 21
 3.4.4 Rendition of Characters Placed into a Window................................ 22
 3.5 Input Processing.. 23
 3.5.1 Keypad Processing .. 23
 3.5.2 Input Mode.. 24
 3.5.3 Delay Mode... 25
 3.5.4 Echo Processing.. 25

X/Open Curses, Issue 4, Version 2 iii

Contents

 3.6 The Set of Curses Functions ... 26
 3.6.1 Function Name Conventions .. 26
 3.6.2 Function Families Provided... 27
 3.7 Interfaces Implemented as Macros ... 29
 3.8 Initialised Curses Environment ... 29
 3.9 Synchronous and Networked Asynchronous Terminals 30

Chapter 4 Curses Interfaces .. 31
 addch().. 32
 addchstr() ... 33
 addnstr()... 34
 addnwstr().. 35
 add_wch()... 36
 add_wchnstr().. 37
 attroff() ... 38
 attr_get() .. 39
 baudrate() ... 41
 beep()... 42
 bkgd().. 43
 bkgrnd().. 44
 border() ... 45
 border_set() .. 46
 box().. 47
 box_set() ... 48
 can_change_color ().. 49
 cbreak() ... 52
 chgat()... 53
 clear().. 54
 clearok () .. 55
 clrtobot ()... 57
 clrtoeol () ... 58
 color_content ()... 59
 COLOR_PAIRS ... 60
 COLS ... 61
 copywin() ... 62
 curscr ... 63
 curs_set().. 64
 cur_term .. 65
 def_prog_mode () .. 66
 delay_output () ... 67
 delch() ... 68
 del_curterm() ... 69
 deleteln()... 71
 delscreen() .. 72
 delwin() .. 73
 derwin() .. 74
 doupdate () .. 75
 dupwin()... 76

iv X/Open CAE Specification 1996

Contents

 echo() .. 77
 echochar() ... 78
 echo_wchar() .. 79
 endwin() ... 80
 erase() ... 81
 erasechar() .. 82
 filter().. 83
 flash().. 84
 flushinp().. 85
 getbegyx()... 86
 getbkgd()... 88
 getbkgrnd()... 89
 getcchar().. 90
 getch()... 91
 getmaxyx() ... 93
 getnstr().. 94
 getn_wstr()... 96
 getparyx()... 98
 getstr() .. 99
 get_wch().. 100
 getwin() .. 101
 get_wstr() ... 102
 getyx() .. 103
 halfdelay () .. 104
 has_colors () .. 105
 has_ic() ... 106
 hline() ... 107
 hline_set()... 108
 idcok () ... 109
 idlok () ... 110
 immedok()... 111
 inch() .. 112
 inchnstr().. 113
 init_color () ... 114
 initscr()... 115
 innstr() ... 117
 innwstr() .. 118
 insch()... 119
 insdelln() .. 120
 insertln()... 121
 insnstr().. 122
 ins_nwstr()... 123
 insstr() .. 124
 instr().. 125
 ins_wch().. 126
 ins_wstr() ... 127
 intrflush() ... 128
 in_wch() ... 129

X/Open Curses, Issue 4, Version 2 v

Contents

 in_wchnstr() .. 130
 inwstr()... 131
 isendwin() .. 132
 is_linetouched () ... 133
 keyname() ... 134
 keypad () .. 135
 killchar () ... 136
 leaveok ().. 137
 LINES.. 138
 longname() ... 139
 meta().. 140
 move() ... 141
 mv .. 142
 mvcur()... 144
 mvderwin()... 145
 mvprintw()... 146
 mvscanw() .. 147
 mvwin() .. 148
 napms()... 149
 newpad()... 150
 newterm() ... 152
 newwin() .. 153
 nl() .. 154
 no ... 155
 nodelay ()... 156
 noqiflush() .. 157
 notimeout()... 158
 overlay () ... 159
 pair_content () .. 160
 pechochar () ... 161
 pnoutrefresh() .. 162
 printw() .. 163
 putp().. 164
 putwin() ... 165
 qiflush() .. 166
 raw() ... 167
 redrawwin() ... 168
 refresh() .. 169
 reset_prog_mode() ... 170
 resetty() .. 171
 restartterm()... 172
 ripoffline()... 173
 savetty().. 174
 scanw() ... 175
 scr_dump() ... 176
 scrl().. 177
 scrollok ()... 178
 setcchar() .. 179

vi X/Open CAE Specification 1996

Contents

 set_curterm().. 180
 setscrreg() ... 181
 set_term() ... 182
 setupterm() ... 183
 slk_attroff()... 184
 standend() .. 186
 start_color () ... 187
 stdscr ... 188
 subpad().. 189
 subwin() ... 190
 syncok() .. 191
 termattrs() .. 192
 termname() ... 193
 tgetent() .. 194
 tigetflag().. 196
 timeout()... 198
 touchline() .. 199
 tparm().. 200
 tputs() ... 201
 typeahead () ... 202
 unctrl() ... 203
 ungetch() .. 204
 untouchwin() ... 205
 use_env() .. 206
 vidattr () .. 207
 vline() ... 209
 vline_set()... 210
 vwprintw() ... 211
 vw_printw() ... 212
 vwscanw() .. 213
 vw_scanw() .. 214
 w .. 215
 wunctrl() .. 218

Chapter 5 Headers... 219
 <curses.h> ... 220
 <term.h> .. 235
 <unctrl.h>.. 236

Chapter 6 Terminfo Source Format (ENHANCED CURSES) 237
 6.1 Source File Syntax... 238
 6.1.1 Minimum Guaranteed Limits ... 239
 6.1.2 Formal Grammar ... 239
 6.1.3 Defined Capabilities .. 241
 6.1.4 Sample Entry... 251
 6.1.5 Types of Capabilities in the Sample Entry.. 251

X/Open Curses, Issue 4, Version 2 vii

Contents

Appendix A Application Usage ... 255
 A.1 Device Capabilities... 255
 A.1.1 Basic Capabilities ... 255
 A.1.2 Parameterised Strings ... 256
 A.1.3 Cursor Motions .. 257
 A.1.4 Area Clears .. 258
 A.1.5 Insert/Delete Line.. 258
 A.1.6 Insert/Delete Character.. 259
 A.1.7 Highlighting, Underlining and Visible Bells...................................... 260
 A.1.8 Keypad... 262
 A.1.9 Tabs and Initialisation... 262
 A.1.10 Delays... 263
 A.1.11 Status Lines ... 263
 A.1.12 Line Graphics.. 264
 A.1.13 Colour Manipulation .. 265
 A.1.14 Miscellaneous ... 266
 A.1.15 Special Cases... 267
 A.1.16 Similar Terminals ... 268
 A.2 Printer Capabilities ... 268
 A.2.1 Rounding Values.. 268
 A.2.2 Printer Resolution .. 268
 A.2.3 Specifying Printer Resolution.. 269
 A.2.4 Capabilities that Cause Movement.. 271
 A.2.5 Alternate Character Sets... 275
 A.2.6 Dot-Matrix Graphics ... 276
 A.2.7 Effect of Changing Printing Resolution... 277
 A.2.8 Print Quality.. 278
 A.2.9 Printing Rate and Buffer Size... 278
 A.3 Selecting a Terminal ... 279
 A.4 Application Usage .. 279
 A.4.1 Conventions for Device Aliases.. 279
 A.4.2 Variations of Terminal Definitions ... 280

 Glossary ... 281

 Index... 283

viii X/Open CAE Specification 1996

Preface

X/Open

X/Open is an independent, worldwide, open systems organisation supported by most of the
world’s largest information systems suppliers, user organisations and software companies. Its
mission is to bring to users greater value from computing, through the practical implementation
of open systems.

X/Open’s strategy for achieving this goal is to combine existing and emerging standards into a
comprehensive, integrated, high-value and usable open system environment, called the
Common Applications Environment (CAE). This environment covers the standards, above the
hardware level, that are needed to support open systems. It provides for portability and
interoperability of applications, and so protects investment in existing software while enabling
additions and enhancements. It also allows users to move between systems with a minimum of
retraining.

X/Open defines this CAE in a set of specifications which include an evolving portfolio of
application programming interfaces (APIs) which significantly enhance portability of
application programs at the source code level, along with definitions of and references to
protocols and protocol profiles which significantly enhance the interoperability of applications
and systems.

The X/Open CAE is implemented in real products and recognised by a distinctive trade mark —
the X/Open brand — that is licensed by X/Open and may be used on products which have
demonstrated their conformance.

X/Open Technical Publications

X/Open publishes a wide range of technical literature, the main part of which is focussed on
specification development, but which also includes Guides, Snapshots, Technical Studies,
Branding/Testing documents, industry surveys, and business titles.

There are two types of X/Open specification:

• CAE Specifications

CAE (Common Applications Environment) specifications are the stable specifications that
form the basis for X/Open-branded products. These specifications are intended to be used
widely within the industry for product development and procurement purposes.

Anyone developing products that implement an X/Open CAE specification can enjoy the
benefits of a single, widely supported standard. In addition, they can demonstrate
compliance with the majority of X/Open CAE specifications once these specifications are
referenced in an X/Open component or profile definition and included in the X/Open
branding programme.

CAE specifications are published as soon as they are developed, not published to coincide
with the launch of a particular X/Open brand. By making its specifications available in this
way, X/Open makes it possible for conformant products to be developed as soon as is
practicable, so enhancing the value of the X/Open brand as a procurement aid to users.

X/Open Curses, Issue 4, Version 2 ix

Preface

• Preliminary Specifications

These specifications, which often address an emerging area of technology and consequently
are not yet supported by multiple sources of stable conformant implementations, are
released in a controlled manner for the purpose of validation through implementation of
products. A Preliminary specification is not a draft specification. In fact, it is as stable as
X/Open can make it, and on publication has gone through the same rigorous X/Open
development and review procedures as a CAE specification.

Preliminary specifications are analogous to the trial-use standards issued by formal standards
organisations, and product development teams are encouraged to develop products on the
basis of them. However, because of the nature of the technology that a Preliminary
specification is addressing, it may be untried in multiple independent implementations, and
may therefore change before being published as a CAE specification. There is always the
intent to progress to a corresponding CAE specification, but the ability to do so depends on
consensus among X/Open members. In all cases, any resulting CAE specification is made as
upwards-compatible as possible. However, complete upwards-compatibility from the
Preliminary to the CAE specification cannot be guaranteed.

In addition, X/Open publishes:

• Guides

These provide information that X/Open believes is useful in the evaluation, procurement,
development or management of open systems, particularly those that are X/Open-
compliant. X/Open Guides are advisory, not normative, and should not be referenced for
purposes of specifying or claiming X/Open conformance.

• Technical Studies

X/Open Technical Studies present results of analyses performed by X/Open on subjects of
interest in areas relevant to X/Open’s Technical Programme. They are intended to
communicate the findings to the outside world and, where appropriate, stimulate discussion
and actions by other bodies and the industry in general.

• Snapshots

These provide a mechanism for X/Open to disseminate information on its current direction
and thinking, in advance of possible development of a Specification, Guide or Technical
Study. The intention is to stimulate industry debate and prototyping, and solicit feedback. A
Snapshot represents the interim results of an X/Open technical activity. Although at the time
of its publication, there may be an intention to progress the activity towards publication of a
Specification, Guide or Technical Study, X/Open is a consensus organisation, and makes no
commitment regarding future development and further publication. Similarly, a Snapshot
does not represent any commitment by X/Open members to develop any specific products.

Versions and Issues of Specifications

As with all live documents, CAE Specifications require revision, in this case as the subject
technology develops and to align with emerging associated international standards. X/Open
makes a distinction between revised specifications which are fully backward compatible and
those which are not:

• a new Version indicates that this publication includes all the same (unchanged) definitive
information from the previous publication of that title, but also includes extensions or
additional information. As such, it replaces the previous publication.

x X/Open CAE Specification 1996

Preface

• a new Issue does include changes to the definitive information contained in the previous
publication of that title (and may also include extensions or additional information). As such,
X/Open maintains both the previous and new issue as current publications.

Corrigenda

Most X/Open publications deal with technology at the leading edge of open systems
development. Feedback from implementation experience gained from using these publications
occasionally uncovers errors or inconsistencies. Significant errors or recommended solutions to
reported problems are communicated by means of Corrigenda.

The reader of this document is advised to check periodically if any Corrigenda apply to this
publication. This may be done in any one of the following ways:

• anonymous ftp to ftp.xopen.org

• ftpmail (see below)

• reference to the Corrigenda list in the latest X/Open Publications Price List.

To request Corrigenda information using ftpmail, send a message to ftpmail@xopen.org with the
following four lines in the body of the message:

open
cd pub/Corrigenda
get index
quit

This will return the index of publications for which Corrigenda exist. Use the same email
address to request a copy of the full corrigendum information following the email instructions.

This Document

This specification is a CAE Specification (see above) that defines the X/Open Curses interface
offered to application programs by X/Open Curses conformant systems. Readers are expected
to be experienced C language programmers and to be familiar with the XBD specification. This
specification is structured as follows:

• Chapter 1 introduces Curses, gives an overview of enhancements that have been made to
this version and lists specific interfaces marked TO BE WITHDRAWN. This chapter also
defines the requirements for conformance to this document and shows the generic format
followed by interface definitions in Chapter 4.

• Chapter 2 describes the relationship between Curses and the C language, the compilation
environment, and the X/Open System Interface operating system requirements. It also
defines the effect of the interface on the name space for identifiers and introduces the major
data types that the interfaces use.

• Chapter 3 gives an overview of Curses. It discusses the use of some of the key data types
and gives general rules for important common concepts such as characters, renditions and
window properties. It contains general rules for the common Curses operations and
operating modes. This information is implicitly referenced by the interface definitions in
Chapter 4. The chapter explains the system of naming the Curses functions and presents a
table of function families. Finally, the chapter contains notes regarding use of macros and
restrictions on block-mode terminals.

• Chapter 4 defines the Curses functional interfaces.

X/Open Curses, Issue 4, Version 2 xi

Preface

• Chapter 5 defines the contents of headers which declare constants, macros and data
structures that are needed by programs using the services provided by Chapter 4.

• Chapter 6 on page 237 discusses the terminfo database, which Curses uses to describe
terminals. The chapter specifies the source format of a terminfo entry using a formal
grammar, an informal discussion, and an example. Boolean, numeric and string capabilities
are presented in tabular form.

• Appendix A on page 255 discusses the use of these capabilities by the writer of a terminfo
entry to describe the characteristics of the terminal in use.

The chapters are followed by a glossary, which contains normative definitions of terms used in
the document. Comprehensive references are available in the index.

Typographical Conventions

The following typographical conventions are used throughout this document:

• Bold font is used in text for options to commands, filenames, keywords, type names, data
structures and their members.

• Italic strings are used for emphasis or to identify the first instance of a word requiring
definition. Italics in text also denote:

— command operands, command option-arguments or variable names, for example,
substitutable argument prototypes

— environment variables, which are also shown in capitals

— utility names

— external variables, such as errno

— functions; these are shown as follows: name(); names without parentheses are C external
variables, C function family names, utility names, command operands or command
option-arguments.

• Normal font is used for the names of constants and literals.

• The notation <file.h> indicates a header file.

• Names surrounded by braces, for example, {ARG_MAX}, represent symbolic limits or
configuration values which may be declared in appropriate headers by means of the C
#define construct.

• The notation [EABCD] is used to identify an error value EABCD.

• Syntax, code examples and user input in interactive examples are shown in fixed width
font. Brackets shown in this font, [] , are part of the syntax and do not indicate optional
items. In syntax the | symbol is used to separate alternatives, and ellipses (...) are used to
show that additional arguments are optional.

• Bold fixed width font is used to identify brackets that surround optional items in syntax,
[] , and to identify system output in interactive examples.

• Variables within syntax statements are shown in italic fixed width font .

• Ranges of values are indicated with parentheses or brackets as follows:

— (a,b) means the range of all values from a to b, including neither a nor b

— [a,b] means the range of all values from a to b, including a and b

xii X/Open CAE Specification 1996

Preface

— [a,b) means the range of all values from a to b, including a, but not b

— (a,b] means the range of all values from a to b, including b, but not a

• Shading is used to identify X/Open Enhanced Curses material, relating to interfaces included
to provide enhanced capabilities for applications originally written to be compiled on
systems based on the UNIX operating system. Therefore, the features described may not be
present on systems that conform to XPG4 or to earlier XPG releases. The relevant reference
manual pages may provide additional or more specific portability warnings about use of the
material.

If an entire SYNOPSIS section is shaded and marked with one EC, all the functionality
described in that entry is an extension.

The material on pages labelled ENHANCED CURSES and the material flagged with the EC

margin legend is available only in cases where the _XOPEN_CURSES version test macro is
defined.

Notes:

1. Symbolic limits are used in this document instead of fixed values for portability.
The values of most of these constants are defined in <limits.h> or <unistd.h>.

2. The values of errors are defined in <errno.h>.

X/Open Curses, Issue 4, Version 2 xiii

Preface

xiv X/Open CAE Specification 1996

Trade Marks

AT&T is a registered trade mark of AT&T in the U.S.A. and other countries.

HP is a registered trade mark of Hewlett-Packard.

UNIX is a registered trade mark in the United States and other countries, licensed exclusively
through X/Open Company Limited.

X/Open is a registered trade mark, and the ‘‘X’’ device is a trade mark, of X/Open Company
Limited.

The names of terminals and of terminal manufacturers cited as examples in Chapter 6 and
Appendix A may be trade marks, which are the property of their respective owners.

X/Open Curses, Issue 4, Version 2 xv

Acknowledgements

X/Open gratefully acknowledges:

• Novell, Inc. for permission to reproduce portions of its copyrighted System V Interface
Definition (SVID) and material from the UNIX System V Release 4.2 documentation.

• Hewlett-Packard Company, International Business Machines Corporation, Novell Inc., The
Open Software Foundation, and Sun Microsystems, Inc., for their work in developing the
X/Open UNIX Extension and sponsoring it through the X/Open Direct Review (Fast-track)
process.

xvi X/Open CAE Specification 1996

Referenced Documents

The following documents are referenced in this specification:

ANSI C
American National Standard for Information Systems: Standard X3.159-1989, Programming
Language C. TO BE COMPLETED.

ISO 8859-1
ISO 8859-1: 1987, Information Processing — 8-bit Single-byte Coded Graphic Character Sets
— Part 1: Latin Alphabet No. 1.

ISO/IEC 646
ISO/IEC 646: 1991, Information Processing — ISO 7-bit Coded Character Set for Information
Interchange.

ISO C
ISO/IEC 9899: 1990: Programming Languages — C, including:
Technical Corrigendum 1: 1994.
Amendment 1: 1994, Multibyte Support Extensions (MSE) for ISO C.
Amendment 1: 1995, C Integrity.

SVID Issue 2
System V Interface Definition (Spring 1986 - Issue 2).

SVID 3rd Edition
System Interface Definitions (1989 - 3rd Edition).

System V Release 2.0

— UNIX System V Release 2.0 Programmer’s Reference Manual (April 1984 - Issue 2).

— UNIX System V Release 2.0 Programming Guide (April 1984 - Issue 2).

System V Release 4.2
Operating System API Reference, UNIX SVR4.2 (1992) (ISBN: 0-13-017658-3).

The following X/Open documents are referenced in this specification.

Curses Interface, Issue 3
X/Open Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapters 9 to 14 inclusive, Curses Interface; this specification
was formerly X/Open Portability Guide, Issue 3, Volume 3, January 1989, XSI
Supplementary Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

Curses Interface, Issue 4
X/Open CAE Specification, December 1994, X/Open Curses, Issue 4 (ISBN: 1-85912-077-6,
C437).

Curses Interface, Issue 4, Version 2
X/Open CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2
(ISBN: 1-85912-171-3, C610). (This document.)

Headers Interface
X/Open Specification, February 1992, Supplementary Definitions, Issue 3
(ISBN: 1-872630-38-3, C213), Chapter 19, Cpio and Tar Headers; this specification was
formerly X/Open Portability Guide Issue 3, Volume 3, January 1989, XSI Supplementary

X/Open Curses, Issue 4, Version 2 xvii

Referenced Documents

Definitions (ISBN: 0-13-685850-3, XO/XPG/89/004).

XBD, Issue 4, Version 2
X/Open CAE Specification, August 1994, System Interface Definitions, Issue 4, Version 2
(ISBN: 1-85912-036-9, C434).

XCU, Issue 4, Version 2
X/Open CAE Specification, August 1994, Commands and Utilities, Issue 4, Version 2 (ISBN:
1-85912-034-2, C436).

XSH, Issue 3
X/Open Specification, February 1992, System Interfaces and Headers, Issue 3
(ISBN: 1-872630-37-5, C212); this specification was formerly X/Open Portability Guide,
Issue 3, Volume 2, January 1989, XSI System Interface and Headers (ISBN: 0-13-685843-0,
XO/XPG/89/003).

XSH, Issue 4
X/Open CAE Specification, July 1992, System Interfaces and Headers, Issue 4
(ISBN: 1-872630-47-2, C202).

XSH, Issue 4, Version 2
X/Open CAE Specification, August 1994, System Interfaces and Headers, Issue 4, Version 2
(ISBN: 1-85912-037-7, C435).

xviii X/Open CAE Specification 1996

Chapter 1

Introduction

The Curses interface provides a terminal-independent method of updating character screens.

The functions in this document are oriented towards locally-connected asynchronous terminals
that recognise the code set of the current locale. For such terminals, applications conforming to
this interface are portable. The Curses interface may also be used with synchronous and
networked asynchronous terminals, provided the restrictions described in Section 3.9 on page 30
are considered.

1.1 This Document
Is Issue 4, Version 2.

1.1.1 Relationship to Issue 3

The unshaded material in this specification preserves syntactic compatibility with the Curses
specification, Issue 3, although existing interfaces from the Curses specification, Issue 3 have
been clarified as a result of industry feedback.

Relationship to Issue 4, Version 1

Version 2 contains corrections and clarifications which have been suggested by industry
feedback. In particular, many of the function prototypes have been corrected, and colour
handling has been further clarified. The CHANGE HISTORY section of the manpages gives
specific detail on when changes were made.

1.1.2 New Features

These are the features first introduced for issue 4.

Internationalisation

This version of the Curses specification has been enhanced to support a wide range of
internationalised capabilities. Traditional single-byte character operations are preserved, and
multi-byte and wide-character interfaces are included to allow use of the Curses features with a
wide range of character code sets. The actual code sets supported are implementation-defined.

Enhanced Character Sets

Emerging character-set standards specify characters with a constant width greater than an octet
(such as ISO/IEC 10646-1:1993), or multi-byte code sets (such as the ISO 2022:1986 EUC
encoding used to encode the Japanese and Chinese language characters).

The previous version of the Curses specification was capable of supporting ISO 8859-1. Many
traditional implementations only supported ISO 646:1991 and preceding code set specifications,
in which the length of a character was an octet.

The primary standardisation issue with the increasing size of a character is that neither the ANS
X3.159-1989 or ISO/IEC 9899:1990 C language definition requires the existence of an integral
data type greater than 32-bits. Although such data types are commonly defined, X/Open cannot
require support for them at this time. The opaque data type cchar_t and associated routines
address this issue.

X/Open Curses, Issue 4, Version 2 1

This Document Introduction

Writing Direction

The references to writing direction have been generalised to permit both right-to-left and left-to-
right writing. This specification does not specify whether the implementation supports more
than one direction of writing. The behaviour of the interfaces in this volume is unspecified if the
writing direction is vertical, or if the writing direction is horizontal with row height greater than
one.

Wide and Non-spacing Characters

New interfaces are introduced for use with wide characters and wide character strings. The
traditional single-byte character string interfaces have been made more general for use with
multi-byte character strings. The traditional chtype interfaces note that they are usable only in
restricted environments and do not support extensible attributes. The behaviour of the chtype
interfaces in this volume is unspecified if the char data type is greater than 8 bits, or if any single
byte character takes more than one display column, or if the application or implementation
stores a multi-byte or wide-character value into a chtype object.

A new, extensible attribute model has been provided for wide-character interfaces. The display
model has been generalised to support both multi-column characters and non-spacing
characters. The concept of a complex character is introduced.

Other Enhancements

New interfaces and capabilities are introduced to support colour terminals, printers, modems
and mice.

1.1.3 To Be Withdrawn

Some of the interfaces and headers in this issue are marked TO BE WITHDRAWN. Various
factors may have contributed to the decision to withdraw an interface. In all cases, the reasons
for withdrawal of an interface are documented on the relevant pages.

If a migration path exists, advice is given to application developers regarding alternative means
of obtaining similar functionality. This information may be found in the APPLICATION
USAGE sections on the relevant pages in Chapter 4.

Interfaces marked TO BE WITHDRAWN shall still exist on conformant implementations.
However, they will be marked WITHDRAWN in a future issue of this document. Interfaces
marked WITHDRAWN may still exist on conformant implementations.

Application writers should not use functionality marked TO BE WITHDRAWN.

2 X/Open CAE Specification 1996

Introduction This Document

The following interfaces are marked TO BE WITHDRAWN in this document:

Headers and Interfaces To Be Withdrawn
tgetent() tgetnum() tgoto () vwscanw()
tgetflag() tgetstr() vwprintw()

1.1.4 Withdrawn

No interfaces or headers in this issue are marked WITHDRAWN.

1.2 Conformance
An implementation conforming to this document shall meet the requirements specified by Base
Curses conformance (see Section 1.2.1) or by Enhanced Curses conformance (see Section 1.2.2).

1.2.1 Base Curses Conformance

An implementation that claims Base Curses conformance shall meet the following criteria:

• The system shall support all the interfaces and headers defined within this specification
except that it need not support those occurring on pages labelled ENHANCED CURSES and
in shaded areas of this specification marked with the EC margin legend.

• The chtype data type shall support at least octet-based code sets, such as ISO 8859-1.

• The system may provide additional or enhanced interfaces, headers and facilities not
required by this specification, provided that such additions or enhancements do not affect the
behaviour of an application that requires only the facilities described in this document.

1.2.2 Enhanced Curses Conformance

An implementation that claims Enhanced Curses conformance shall meet the following criteria:

• The system shall support Base Curses conformance as defined above.

• The system shall support the requirements in this specification occurring on pages labelled
ENHANCED CURSES and in shaded areas of this specification marked with the EC margin
legend.

• The system may provide additional or enhanced interfaces, headers and facilities not
required by this specification, provided that such additions or enhancements do not affect the
behaviour of an application that requires only the facilities described in this document.

X/Open Curses, Issue 4, Version 2 3

Terminology Introduction

1.3 Terminology
The following terms are used in this specification:

can
This describes a permissible optional feature or behaviour available to the user or application; all
systems support such features or behaviour as mandatory requirements.

implementation-dependent
The value or behaviour is not consistent across all implementations. The provider of an
implementation normally documents the requirements for correct program construction and
correct data in the use of that value or behaviour. When the value or behaviour in the
implementation is designed to be variable or customisable on each instantiation of the system,
the provider of the implementation normally documents the nature and permissible ranges of
this variation. Applications that are intended to be portable must not rely on implementation-
dependent values or behaviour.

may
With respect to implementations, the feature or behaviour is optional. Applications should not
rely on the existence of the feature. To avoid ambiguity, the reverse sense of may is expressed as
need not , instead of may not .

must
This describes a requirement on the application or user.

obsolescent
Certain features are obsolescent , which means that they may be considered for withdrawal in
future revisions of this document. They are retained in this version because of their widespread
use. Their use in new applications is discouraged.

should
With respect to implementations, the feature is recommended, but it is not mandatory.
Applications should not rely on the existence of the feature.

With respect to users or applications, the word means recommended programming practice that
is necessary for maximum portability.

undefined
A value or behaviour is undefined if this document imposes no portability requirements on
applications for erroneous program constructs or erroneous data. Implementations may specify
the result of using that value or causing that behaviour, but such specifications are not
guaranteed to be consistent across all implementations. An application using such behaviour is
not fully portable to all systems.

unspecified
A value or behaviour is unspecified if this document imposes no portability requirements on
applications for correct program construct or correct data. Implementations may specify the
result of using that value or causing that behaviour, but such specifications are not guaranteed
to be consistent across all implementations. An application requiring a specific behaviour,
rather than tolerating any behaviour when using that functionality, is not fully portable to all
systems.

will
This means that the behaviour described is a requirement on the implementation and
applications can rely on its existence.

4 X/Open CAE Specification 1996

Introduction Terminology

1.3.1 Shaded Text

Shaded text in this document is qualified by a code in the left margin. The code and its meaning
is as follows:

EC X/Open Enhanced Curses
The material relates to interfaces included to provide enhanced capabilities for applications
originally written to be compiled on systems based on the UNIX operating system. Therefore,
the features described may not be present on systems that conform to XPG4 or to earlier XPG
releases. The relevant reference manual pages may provide additional or more specific
portability warnings about use of the material.

If an entire SYNOPSIS section is shaded and marked with one EC, all the functionality described
in that entry is an extension.

The material on pages labelled ENHANCED CURSES and the material flagged with the EC

margin legend is available only in cases where the _XOPEN_CURSES version test macro is
defined.

X/Open Curses, Issue 4, Version 2 5

Format of Entries Introduction

1.4 Format of Entries
The entries in Chapter 4 and Chapter 5 are based on a common format.

NAME
This section gives the name or names of the entry and briefly states its purpose.

SYNOPSIS
This section summarises the use of the entry being described. If it is necessary to
include a header to use this interface, the names of such headers are shown, for
example:

#include <stdio.h>

DESCRIPTION
This section describes the functionality of the interface or header.

RETURN VALUE
This section indicates the possible return values, if any.

If the implementation can detect errors, ‘‘successful completion’’ means that no error
has been detected during execution of the function. If the implementation does detect
an error, the error will be indicated.

For functions where no errors are defined, ‘‘successful completion’’ means that if the
implementation checks for errors, no error has been detected. If the implementation
can detect errors, and an error is detected, the indicated return value will be returned
and errno may be set.

ERRORS
This section gives the symbolic names of the values returned in errno if an error occurs.

‘‘No errors are defined’’ means that values and usage of errno, if any, depend on the
implementation.

EXAMPLES
This section gives examples of usage, where appropriate.

APPLICATION USAGE
This section gives warnings and advice to application writers about the entry.

FUTURE DIRECTIONS
This section provides comments which should be used as a guide to current thinking;
there is not necessarily a commitment to adopt these future directions.

SEE ALSO
This section gives references to related information.

CHANGE HISTORY
This section shows the derivation of the entry and any significant changes that have
been made to it.

The only sections relating to conformance are the SYNOPSIS, DESCRIPTION, RETURN
VALUE and ERRORS sections.

6 X/Open CAE Specification 1996

Chapter 2

Use and Implementation of Interfaces

Each of the following statements applies unless explicitly stated otherwise in the detailed
descriptions that follow. If an argument to a function has an invalid value (such as a value
outside the domain of the function, or a pointer outside the address space of the program, or a
null pointer), the behaviour is undefined. Any function declared in a header may also be
implemented as a macro defined in the header, so a library function should not be declared
explicitly if its header is included. Any macro definition of a function can be suppressed locally
by enclosing the name of the function in parentheses, because the name is then not followed by
the left parenthesis that indicates expansion of a macro function name. For the same syntactic
reason, it is permitted to take the address of a library function even if it is also defined as a
macro. The use of the C-language #undef construct to remove any such macro definition will
also ensure that an actual function is referred to. Any invocation of a library function that is
implemented as a macro will expand to code that evaluates each of its arguments exactly once,
fully protected by parentheses where necessary, so it is generally safe to use arbitrary
expressions as arguments. Likewise, those function-like macros described in the following
sections may be invoked in an expression anywhere a function with a compatible return type
could be called.

Provided that a library function can be declared without reference to any type defined in a
header, it is also permissible to declare the function, either explicitly or implicitly, and use it
without including its associated header. If a function that accepts a variable number of
arguments is not declared (explicitly or by including its associated header), the behaviour is
undefined.

As a result of changes introduced in this version of the Curses specification, application writers
are only required to include the minimum number of headers. Implementations of XSI-
conformant systems will make all necessary symbols visible as described in the Headers section
of this document.

2.1 C Language Definition
The C language that is the basis for the synopses and code examples in this document is ISO C,
as specified in the referenced ISO C standard. Common Usage C, which refers to the C language
before standardisation, was the basis for previous editions of this specification.

X/Open Curses, Issue 4, Version 2 7

The Compilation Environment Use and Implementation of Interfaces

2.2 The Compilation Environment
Applications should ensure that the feature test macro _XOPEN_SOURCE is defined before
inclusion of any header. This is needed to enable the functionality described in this document,
and possibly to enable functionality defined elsewhere in the Common Applications
Environment.

The _XOPEN_SOURCE macro may be defined automatically by the compilation process, but to
ensure maximum portability, applications should make sure that _XOPEN_SOURCE is defined
by using either compiler options or #define directives in the source files, before any #include
directives. Identifiers in this document may only be undefined using the #undef directive as
described in Chapter 2 on page 7 or Section 2.2.1 on page 9. These #undef directives must follow
all #include directives of any XSI headers.

Most strictly conforming POSIX and ISO C applications will compile on systems compliant to
this specification. However, an application which uses any of the items marked as an extension
to POSIX and ISO C, for any purpose other than that shown here, may not compile. In such
cases, it may be necessary to alter those applications to use alternative identifiers.

Since this document is aligned with the ISO C standard, and since all functionality enabled by
the _POSIX_C_SOURCE set equal to 2 should be enabled by _XOPEN_SOURCE, there should be
no need to define either _POSIX_SOURCE or _POSIX_C_SOURCE if _XOPEN_SOURCE is
defined. Therefore if _XOPEN_SOURCE is defined and _POSIX_SOURCE is defined, or
_POSIX_C_SOURCE is set equal to 1 or 2, the behaviour is the same as if only
_XOPEN_SOURCE is defined. However should _POSIX_C_SOURCE be set to a value greater
than 2, the behaviour is undefined.

The c89 and cc utilities recognise the additional −l operand for standard libraries:

−l curses This operand makes visible all library functions referenced in this specification,
(except for those labelled ENHANCED CURSES and except for portions marked
with the EC margin legend).

EC If the implementation defines _XOPEN_CURSES and if the application defines the
_XOPEN_SOURCE_EXTENDED feature test macro, then -l curses also makes
visible all library functions referenced in this specification and labelled
ENHANCED CURSES and portions marked with the EC margin legend.

It is unspecified whether the library libcurses.a exists as a regular file.

EC An application that uses any API specified as ENHANCED CURSES or relies on any portion of
this specification marked with the EC margin legend must define
_XOPEN_SOURCE_EXTENDED = 1 in each source file or as part of its compilation
environment. When _XOPEN_SOURCE_EXTENDED = 1 is defined in a source file, it must
appear before any header is included.

If the implementation supports the utilities marked DEVELOPMENT in the XCU specification,
the lint utility recognises the additional −l curses operand for standard libraries:

−l curses Names the library llib-lcurses.ln, which will contain functions specified in this
document.

It is unspecified whether the library llib-lcurses.ln exists as a regular file.

8 X/Open CAE Specification 1996

Use and Implementation of Interfaces The Compilation Environment

2.2.1 The X/Open Name Space (ENHANCED CURSES)

EC The requirements in this section are in effect only for implementations that claim Enhanced
Curses compliance.

All identifiers in this document are defined in at least one of the headers, as shown in Chapter 5.
When _XOPEN_SOURCE is defined, each header defines or declares some identifiers,
potentially conflicting with identifiers used by the application. The set of identifiers visible to
the application consists of precisely those identifiers from the header pages of the included
headers, as well as additional identifiers reserved for the implementation. In addition, some
headers may make visible identifiers from other headers as indicated on the relevant header
pages.

The identifiers reserved for use by the implementation are described below.

1. Each identifier with external linkage described in the header section is reserved for use as
an identifier with external linkage if the header is included.

2. Each macro name described in the header section is reserved for any use if the header is
included.

3. Each identifier with file scope described in the header section is reserved for use as an
identifier with file scope in the same name space if the header is included.

4. All identifiers consisting of exactly 2 upper-case letters.

X/Open Curses, Issue 4, Version 2 9

The Compilation Environment Use and Implementation of Interfaces

If any header is included, identifiers with the _t suffix are reserved for any use by the
implementation.

If any header in the following table is included, macros with the prefixes shown may be defined.
After the last inclusion of a given header, an application may use identifiers with the
corresponding prefixes for its own purpose, provided their use is preceded by an #undef of the
corresponding macro.

Header Prefix
<curses.h> A_, ACS_, ALL_, BUTTON, COLOR_, KEY_, MOUSE, REPORT_, WA_, WACS_
<term.h> ext_

The following identifiers are reserved regardless of the inclusion of headers:

1. All identifiers that begin with an underscore and either an upper-case letter or another
underscore are always reserved for any use by the implementation.

2. All identifiers that begin with an underscore are always reserved for use as identifiers with
file scope in both the ordinary identifier and tag name spaces.

3. All identifiers listed as reserved in the XSH specification are reserved for use as identifiers
with external linkage.

All the identifiers defined in this document that have external linkage are always reserved for
use as identifiers with external linkage.

No other identifiers are reserved.

Applications must not declare or define identifiers with the same name as an identifier reserved
in the same context. Since macro names are replaced whenever found, independent of scope and
name space, macro names matching any of the reserved identifier names must not be defined if
any associated header is included.

Headers may be included in any order, and each may be included more than once in a given
scope, with no difference in effect from that of being included only once.

If used, a header must be included outside of any external declaration or definition, and it must
be first included before the first reference to any type or macro it defines, or to any function or
object it declares. However, if an identifier is declared or defined in more than one header, the
second and subsequent associated headers may be included after the initial reference to the
identifier. Prior to the inclusion of a header, the program must not define any macros with
names lexically identical to symbols defined by that header.

10 X/Open CAE Specification 1996

Use and Implementation of Interfaces The Compilation Environment

2.2.2 Interfaces Implemented as Macros (ENHANCED CURSES)

EC The requirements in this section are in effect only for implementations that claim Enhanced
Curses compliance.

The following interfaces with arguments must be implemented as macros. The relevance to the
application programmer is that the ‘&’ character cannot be used before the arguments.

Macros Chapter 4 Entry
COLOR_PAIR(), PAIR_NUMBER() can_change_color()
getbegyx(), getmaxyx(), getparyx(), getyx() getbegyx()

The descriptions of headers in Chapter 5 list other macros, like COLOR_BLACK, that do not take
arguments.

2.3 Relationship to the XSH Specification

2.3.1 Error Numbers

Most functions provide an error number in errno, which is either a variable or macro defined in
<errno.h>; the macro expands to a modifiable lvalue of type int.

A list of valid values for errno and advice to application writers on the use of errno appears in the
XSH specification.

X/Open Curses, Issue 4, Version 2 11

Data Types Use and Implementation of Interfaces

2.4 Data Types
All of the data types used by Curses functions are defined by the implementation. The following
list describes these types:

EC attr_t An integral type that can contain at least an unsigned short. The type attr_t is
used to hold an OR-ed set of attributes defined in <curses.h> that begin with the
prefix WA_.

bool Boolean data type

chtype An integral type that can contain at least an unsigned char and attributes. Values
of type chtype are formed by OR-ing together an unsigned char value and zero or
more of the base attribute flags defined in <curses.h> on page 220 that have the A_
prefix. The application can extract these components of a chtype value using the
base masks defined in <curses.h> for this purpose.

EC The chtype data type also contains a colour-pair. Values of type chtype are formed
by OR-ing together an unsigned char value, a colour pair, and zero or more of the
attributes defined in <curses.h> that begin with the prefix A_. The application can
extract these components of a chtype value using the masks defined in <curses.h>
for this purpose.

SCREEN An opaque terminal representation.

EC wchar_t As described in <stddef.h>.

EC cchar_t A type that can reference a string of wide characters of up to an implementation-
dependent length, a colour-pair, and zero or more attributes from the set of all
attributes defined in this document. A null cchar_t object is an object that
references a empty wide-character string. Arrays of cchar_t objects are terminated
by a null cchar_t object.

WINDOW An opaque window representation.

12 X/Open CAE Specification 1996

Chapter 3

Interface Overview

3.1 Components
A Curses initialisation function, usually initscr(), determines the terminal model in use, by
reference to either an argument or an environment variable. If that model is defined in terminfo,
then the same terminfo entry tells Curses exactly how to operate the terminal.

In this case, a comprehensive API lets the application perform terminal operations. The Curses
run-time system receives each terminal request and sends appropriate commands to the
terminal to achieve the desired effect.

Relationship to the XBD Specification

Applications using Curses should not also control the terminal using capabilities of the general
terminal interface defined in the XBD specification, Chapter 9, General Terminal Interface.

There is no requirement that the paradigms that exist while in Curses mode be carried over
outside the Curses environment (see def_prog_mode () on page 66).

Relationship to Signals

Curses implementations may provide for special handling of the SIGINT, SIGQUIT and
SIGTSTP signals if their disposition is SIGDFL at the time initscr() is called (see initscr() on page
115).

Any special handling for these signals may remain in effect for the life of the process or until the
process changes the disposition of the signal.

None of the Curses functions are required to be safe with respect to signals (see sigaction () in the
XSH specification).

The behaviour of Curses with respect to signals not defined by the XSH specification is
unspecified.

X/Open Curses, Issue 4, Version 2 13

Screens, Windows and Terminals Interface Overview

3.2 Screens, Windows and Terminals

Screen

A screen is the physical output device of the terminal. In Curses, a SCREEN data type is an
opaque data type associated with a terminal. Each window (see below) is associated with a
SCREEN.

Windows

The Curses functions permit manipulation of window objects, which can be thought of as two-
dimensional arrays of characters and their renditions. A default window called stdscr, which is
the size of the terminal screen, is supplied. Others may be created with newwin().

Variables declared as WINDOW * refer to windows (and to subwindows, derived windows, and
pads, as described below). These data structures are manipulated with functions described on
the reference manual pages in Chapter 6. Among the most basic functions are move() and
addch(). More general versions of these functions are included that allow a process to specify a
window.

After using functions to manipulate a window, refresh() is called, telling Curses to make the CRT
screen look like stdscr.

Line drawing characters may be specified to be output. On input, Curses is also able to translate
arrow and function keys that transmit escape sequences into single values. The line drawing
characters and input values use names defined in <curses.h>.

Each window has a flag that indicates that the information in the window could differ from the
information displayed on the terminal device. Making any change to the contents of the
window, moving or modifying the window, or setting the window’s cursor position, sets this
flag (touches the window). Refreshing the window clears this flag. (For further information, see
is_linetouched () on page 133.)

Subwindows

A subwindow is a window, created within another window (called the parent window), and
positioned relative to the parent window. A subwindow can be created by calling derwin(),
newpad() or subwin().

Subwindows can be created from a parent window by calling subwin(). The position and size of
subwindows on the screen must be identical to or totally within the parent window. Changes to
either the parent window or the subwindow affect both. Window clipping is not a property of
subwindows.

Ancestors

The term ancestor refers to a window’s parent, or its parent, and so on.

14 X/Open CAE Specification 1996

Interface Overview Screens, Windows and Terminals

Derived Windows

Derived windows are subwindows whose position is defined by reference to the parent window
rather than in absolute screen coordinates. Derived windows are otherwise no different from
subwindows.

Pads

A pad is a specialised case of subwindow that is not necessarily associated with a viewable part
of a screen. Functions that deal with pads are all discussed in newpad() on page 150.

Terminal

A terminal is the logical input and output device through which character-based applications
interact with the user. TERMINAL is an opaque data type associated with a terminal. A
TERMINAL data structure primarily contains information about the capabilities of the terminal,
as defined by terminfo. A TERMINAL also contains information about the terminal modes and
current state for input and output operations. Each screen (see above) is associated with a
TERMINAL.

X/Open Curses, Issue 4, Version 2 15

Characters Interface Overview

3.3 Characters

3.3.1 Character Storage Size

Historically, a position on the screen has corresponded to a single stored byte. This
correspondence is no longer true for several reasons:

• Some characters may occupy several columns when displayed on the screen (see Section
3.3.2).

• Some characters may be non-spacing characters, defined only in association with a spacing
character (see Section 3.3.5 on page 17).

• The number of bytes to hold a character from the extended character sets depends on the
LC_CTYPE locale category.

The internal storage format of characters and renditions is unspecified. There is no implied
correspondence between the internal storage format and the external representation of
characters and renditions in objects of type chtype and cchar_t.

3.3.2 Multi-column Characters

EC Some character sets define multi-column characters that occupy more than one column position
when displayed on the screen.

Writing a character whose width is greater than the width of the destination window is an error.

3.3.3 Attributes

Each character can be displayed with attributes such as underlining, reverse video or colour on
terminals that support such display enhancements. Current attributes of a window are applied
to all characters that are written into the window with waddch(), wadd_wch(), waddstr(),
waddchstr(), waddwstr(), waddwchstr() and wprintw(). Attributes can be combined.

Attributes can be specified using constants with the A_ prefix specified in <curses.h>. The A_
EC constants manipulate attributes in objects of type chtype. Additional attributes can be specified

using constants with the WA_ prefix. The WA_ constants manipulate attributes in objects of
type attr_t.

Two constants that begin with A_ and WA_ and that represent the same terminal capability refer
to the same attribute in the terminfo database and in the window data structure. The effect on a
window does not differ depending on whether the application specifies A_ or WA_ constants.
For example, when an application updates window attributes using the interfaces that support
the A_ values, a query of the window attribute using the function that returns WA_ values
reflects this update. When it updates window attributes using the interfaces that support the
WA_ values, for which corresponding A_ values exist, a query of the window attribute using the
function that returns A_ values reflects this update.

16 X/Open CAE Specification 1996

Interface Overview Characters

3.3.4 Rendition

EC The rendition of a character displayed on the screen is its attributes and a colour pair.

The rendition of a character written to the screen becomes a property of the character and moves
with the character through any scrolling and insert/delete line/character operations. To the
extent possible on a particular terminal, a character’s rendition corresponds to the graphic
rendition of the character put on the screen.

If a given terminal does not support a rendition that an application program is trying to use,
Curses may substitute a different rendition for it.

EC Colours are always used in pairs (referred to as colour-pairs). A colour-pair consists of a
foreground colour (for characters) and a background colour (for the field on which the characters
are displayed).

3.3.5 Non-spacing Characters

EC The requirements in this section are in effect only for implementations that claim Enhanced
Curses compliance.

Some character sets may contain non-spacing characters. (Non-spacing characters are those,
other than the ’\0’ character, for which wcwidth() returns a width of zero.) The application may
write non-spacing characters to a window. Every non-spacing character in a window is
associated with a spacing character and modifies the spacing character. Non-spacing characters
in a window cannot be addressed separately. A non-spacing character is implicitly addressed
whenever a Curses operation affects the spacing character with which the non-spacing character
is associated.

Non-spacing characters do not support attributes. For interfaces that use wide characters and
attributes, the attributes are ignored if the wide character is a non-spacing character. Multi-
column characters have a single set of attributes for all columns. The association of non-spacing
characters with spacing characters can be controlled by the application using the wide character
interfaces. The wide character string functions provide codeset-dependent association.

Two typical effects of a non-spacing character associated with a spacing character called c, are as
follows:

• The non-spacing character may modify the appearance of c. (For instance, there may be
non-spacing characters that add diacritical marks to characters. However, there may also be
spacing characters with built-in diacritical marks.)

• The non-spacing character may bridge c to the character following c. (Examples of this usage
are the formation of ligatures and the conversion of characters into compound display forms,
words, or ideograms.)

Implementations may limit the number of non-spacing characters that can be associated with a
spacing character, provided any limit is at least 5.

Complex Characters

A complex character is a set of associated characters, which may include a spacing character and
may include any non-spacing characters associated with it. A spacing complex character is a
spacing character followed by any non-spacing characters associated with it. That is, a spacing
complex character is a complex character that includes one spacing character. An example of a
code set that has complex characters is ISO/IEC 10646-1:1993.

A complex character can be written to the screen; if it does not include a spacing character, any
non-spacing characters are associated with the spacing complex character that exists at the

X/Open Curses, Issue 4, Version 2 17

Characters Interface Overview

specified screen position. When the application reads information back from the screen, it
obtains spacing complex characters.

The cchar_t data type represents a complex character and its rendition. When a cchar_t
represents a non-spacing complex character (that is, when there is no spacing character within
the complex character), then its rendition is not used; when it is written to the screen, it uses the
rendition specified by the spacing character already displayed.

An object of type cchar_t can be initialised using setcchar() and its contents can be extracted
using getcchar(). The behaviour of functions that take a cchar_t input argument is undefined if
the application provides a cchar_t value that was not initialised in this way or obtained from a
Curses function that has a cchar_t output argument.

3.3.6 Window Properties

Associated with each window are the following properties that affect the placing of characters
into the window (see Section 3.4.4 on page 22).

Window Rendition

Each window has a rendition, which is combined with the rendition component of the window’s
background property described below.

Window Background

Each window has a background property. The background property specifies:

• A spacing complex character (the background character) that will be used in a variety of
situations where visible information is deleted from the screen.

• A rendition to use in displaying the background character in those situations, and in other
situations specified in Section 3.4.4 on page 22.

18 X/Open CAE Specification 1996

Interface Overview Conceptual Operations

3.4 Conceptual Operations

3.4.1 Screen Addressing

Many Curses functions use a coordinate pair. In the DESCRIPTION, coordinate locations are
represented as (y, x) since the y argument always precedes the x argument in the function call.
These coordinates denote a line/column position, not a character position.

The coordinate y always refers to the row (of the window), and x always refers to the column.
The first row and the first column is number 0, not 1. The position (0, 0) is the window’s origin .

For example, for terminals that display the ISO 8859-1 character set (with left-to-right writing),
(0, 0) represents the upper left-hand corner of the screen.

Functions that start with mv take arguments that specify a (y, x) position and move the cursor (as
though move() were called) before performing the requested action. As part of the requested
action, further cursor movement may occur, specified on the respective reference manual page.

3.4.2 Basic Character Operations

Adding (Overwriting)

The Curses functions that contain the word add, such as addch(), actually specify one or more
EC characters to replace (overwrite) characters already in the window. If these functions specify

only non-spacing characters, they are appended to a spacing character already in the window;
see also Section 3.3.5 on page 17.

When replacing a multi-column character with a character that requires fewer columns, the new
character is added starting at the specified or implied column position. All columns that the
former multi-column character occupied that the new character does not require are orphaned
columns, which are filled using the background character and rendition.

Replacing a character with a character that requires more columns also replaces one or more
subsequent characters on the line. This process may also produce orphaned columns.

Truncation, Wrapping and Scrolling

If the application specifies a character or a string of characters such that writing them to a
EC window would extend beyond the end of the line(for example, if the application tries to deposit

any multi-column character at the last column in a line), the behaviour depends on whether the
function supports line wrapping:

• If the function does not wrap, it fails.

• If the function wraps, then it places one or more characters in the window at the start of the
next line, beginning with the first character that would not completely fit on the original line.

EC If the final character on the line is a multi-column character that does not completely fit on
the line, the entire character wraps to the next line and columns at the end of the original line
may be orphaned.

If the original line was the last line in the window, the wrap may cause a scroll to occur:

— If scrolling is enabled, a scroll occurs. The contents of the first line of the window are lost.
The contents of each remaining line in the window move to the previous line. The last
line of the window is filled with any characters that wrapped. Any remaining space on
the last line is filled with the background character and rendition.

X/Open Curses, Issue 4, Version 2 19

Conceptual Operations Interface Overview

— If scrolling is disabled, any characters that would extend beyond the last column of the
last line are truncated.

The scrollok () function enables and disables scrolling.

Some add functions move the cursor just beyond the end of the last character added. If this
position is beyond the end of a line, it causes wrapping and scrolling under the conditions
specified in the second bullet above.

Insertion

Insertion functions (such as insch()) insert characters immediately before the character at the
specified or implied cursor position.

The insertion shifts all characters that were formerly at or beyond the cursor position on the
cursor line toward the end of that line. The disposition of the characters that would thus extend
beyond the end of the line depends on whether the function supports wrapping:

• If the function does not wrap, those characters are removed from the window. This may
produce orphaned columns.

• If the function supports wrapping, the effect is as described above in Truncation, Wrapping
and Scrolling on page 19 (except that the overwriting discussed in the final dash is an
insertion).

EC If multi-column characters are displayed, some cursor positions are within a multi-column
character but not at the beginning of a character. Any request to insert data at a position that is
not the beginning of a multi-column character will be adjusted so that the actual cursor position
is at the beginning of the multi-column character in which the requested position occurs.

There are no warning indications relative to cursor relocation. The application should not
maintain an image of the cursor position, since this constitutes placing terminal-specific
information in the application and defeats the purpose of using Curses.

Portable applications cannot assume that a cursor position specified in an insert function is a
reusable indication of the actual cursor position.

Deletion

EC Deletion functions (such as delch()) delete the simple or complex character at the specified or
EC implied cursor position, no matter which column of the character this is. All column positions

are replaced by the background character and rendition and the cursor is not relocated. If a
character-deletion operation would cause a previous wrapping operation to be undone, then the
results are unspecified.

Window Operations

Overlapping a window (that is, placing one window on top of another) and overwriting a
window (that is, copying the contents of one window into another) follows the operation of

EC overwriting multi-column glyphs around its edge. Any orphaned columns are handled as in the
character operations.

20 X/Open CAE Specification 1996

Interface Overview Conceptual Operations

Characters that Straddle the Subwindow Border

EC A subwindow can be defined such that multi-column characters straddle the subwindow border.
The character operations deal with these straddling characters as follows:

• Reading the subwindow with a function such as in_wch() reads the entire straddling
character.

• Adding, inserting or deleting in the subwindow deletes the entire straddling character before
the requested operation begins and does not relocate the cursor.

• Scrolling lines in the subwindow has the following effects:

— A straddling character at the start of the line is completely erased before the scroll
operation begins.

— A straddling character at the end of the line moves in the direction of the scroll and
continues to straddle the subwindow border. Column positions outside the subwindow
at the straddling character’s former position are orphaned unless another straddling
character scrolls into those positions.

If the application calls a function such as border(), the above situations do not occur because
writing the border on the subwindow deletes any straddling characters.

In the above cases involving multi-column characters, operations confined to a subwindow can
modify the screen outside the subwindow. Therefore, saving a subwindow, performing
operations within the subwindow, and then restoring the subwindow may disturb the
appearance of the screen. To overcome these effects (for example, for pop-up windows), the
application should refresh the entire screen.

3.4.3 Special Characters

Some functions process special characters as specified below.

In functions that do not move the cursor based on the information placed in the window, these
special characters would only be used within a string in order to affect the placement of
subsequent characters; the cursor movement specified below does not persist in the visible
cursor beyond the end of the operation. In functions that do move the cursor, these special
characters can be used to affect the placement of subsequent characters and to achieve
movement of the visible cursor.

<backspace> Unless the cursor was already in column 0, <backspace> moves the cursor one
column toward the start of the current line and any characters after the
<backspace> are added or inserted starting there.

<carriage return>
Unless the cursor was already in column 0, <carriage return> moves the cursor to
the start of the current line. Any characters after the <carriage return> are added
or inserted starting there.

<newline> In an add operation, Curses adds the background character into successive
columns until reaching the end of the line. Scrolling occurs as described in
Truncation, Wrapping and Scrolling on page 19. Any characters after the
<newline> character are added, starting at the start of the new line.

In an insert operation, <newline> erases the remainder of the current line with the
background character, effectively a wclrtoeol (), and moves the cursor to the start of
a new line. When scrolling is enabled, advancing the cursor to a new line may
cause scrolling as described in Truncation, Wrapping and Scrolling on page 19.

X/Open Curses, Issue 4, Version 2 21

Conceptual Operations Interface Overview

Any characters after the <newline> character are inserted at the start of the new
line.

The filter() function may inhibit this processing.

<tab> Tab characters in text move subsequent characters to the next horizontal tab stop.
By default, tab stops are in column 0, 8, 16, and so on.

In an insert or add operation, Curses inserts or adds, respectively, the background
character into successive columns until reaching the next tab stop. If there are no
more tab stops in the current line, wrapping and scrolling occur as described in
Truncation, Wrapping and Scrolling on page 19.

Control Characters

The Curses functions that perform special-character processing conceptually convert control
characters to the caret (’ˆ ’) character followed by a second character (which is an upper-case
letter if it is alphabetic) and write this string to the window in place of the control character. The
functions that retrieve text from the window will not retrieve the original control character.

3.4.4 Rendition of Characters Placed into a Window

When the application adds or inserts characters into a window, the effect is as follows:

If the character is not the space character, then the window receives:

• the character that the application specifies

• the colour that the application specifies; or the window colour, if the application does not
specify a colour

• the attributes specified, OR-ed with the window attributes.

If the character is the space character, then the window receives:

• the background character

• the colour that the application specifies; or the window colour, if the application does not
specify a colour

• the attributes specified, OR-ed with the window attributes.

22 X/Open CAE Specification 1996

Interface Overview Input Processing

3.5 Input Processing
The Curses input model provides a variety of ways to obtain input from the keyboard.

3.5.1 Keypad Processing

The application can enable or disable keypad translation by calling keypad (). When translation is
enabled, Curses attempts to translate a sequence of terminal input that represents the pressing of
a function key into a single key code. When translation is disabled, Curses passes terminal input
to the application without such translation, and any interpretation of the input as representing
the pressing of a keypad key must be done by the application.

The complete set of key codes for keypad keys that Curses can process is specified by the
constants defined in <curses.h> whose names begin with ‘‘KEY_’’.

EC Each terminal type described in the terminfo database may support some or all of these key
codes. The terminfo database specifies the sequence of input characters from the terminal type
that correspond to each key code (see Section A.1.8 on page 262).

The Curses implementation cannot translate keypad keys on terminals where pressing the keys
does not transmit a unique sequence.

When translation is enabled and a character that could be the beginning of a function key (such
as escape) is received, Curses notes the time and begins accumulating characters. If Curses
receives additional characters that represent the pressing of a keypad key, within an unspecified
interval from the time the first character was received, then Curses converts this input to a key
code for presentation to the application. If such characters are not received during this interval,
translation of this input does not occur and the individual characters are presented to the
application separately. (Because Curses waits for this interval to accumulate a key code, many
terminals experience a delay between the time a user presses the escape key and the time the
escape is returned to the application.)

EC In addition, No Timeout Mode provides that in any case where Curses has received part of a
function key sequence, it waits indefinitely for the complete key sequence. The ‘‘unspecified
interval’’ in the previous paragraph becomes infinite in No Timeout Mode. No Timeout Mode
allows the use of function keys over slow communication lines. No Timeout Mode lets the user
type the individual characters of a function key sequence, but also delays application response
when the user types a character (not a function key) that begins a function key sequence. For
this reason, in No Timeout Mode many terminals will appear to hang between the time a user
presses the escape key and the time another key is pressed. No Timeout Mode is switchable by
calling notimeout().

If any special characters (see Section 3.4.3 on page 21) are defined or redefined to be characters
that are members of a function key sequence, then Curses will be unable to recognise and
translate those function keys.

Several of the modes discussed below are described in terms of availability of input. If keypad
translation is enabled, then input is not available once Curses has begun receiving a keypad
sequence until the sequence is completely received or the interval has elapsed.

X/Open Curses, Issue 4, Version 2 23

Input Processing Interface Overview

3.5.2 Input Mode

The XBD specification (Special Characters) defines flow-control characters, the interrupt
character, the erase character, and the kill character. Four mutually-exclusive Curses modes let
the application control the effect of these input characters:

Input Mode Effect
This achieves normal line-at-a-time processing with all special
characters handled outside the application. This achieves the same
effect as canonical-mode input processing as specified in the XBD
specification. The state of the ISIG and IXON flags are not changed
upon entering this mode by calling nocbreak(), and are set upon
entering this mode by calling noraw().

Cooked Mode

EC The implementation supports erase and kill characters from any
supported locale, no matter what the width of the character is.

Characters typed by the user are immediately available to the
application and Curses does not perform special processing on either
the erase character or the kill character. An application can select cbreak
mode to do its own line editing but to let the abort character be used to
abort the task. This mode achieves the same effect as non-canonical-
mode, Case B input processing (with MIN set to 1 and ICRNL cleared)
as specified in the XBD specification. The state of the ISIG and IXON
flags are not changed upon entering this mode.

cbreak Mode

The effect is the same as cbreak, except that input functions wait until a
character is available or an interval defined by the application elapses,
whichever comes first. This mode achieves the same effect as non-
canonical-mode, Case C input processing (with TIME set to the value
specified by the application) as specified in the XBD specification. The
state of the ISIG and IXON flags are not changed upon entering this
mode.

Half-Delay Mode

Raw mode gives the application maximum control over terminal input.
The application sees each character as it is typed. This achieves the
same effect as non-canonical mode, Case D input processing as
specified in the XBD specification. The ISIG and IXON flags are cleared
upon entering this mode.

Raw Mode

The terminal interface settings are recorded when the process calls initscr() or newterm() to
initialise Curses and restores these settings when endwin() is called. The initial input mode for

EC Curses operations is unspecified unless the implementation supports Enhanced Curses
compliance, in which the initial input mode is cbreak mode.

The behaviour of the BREAK key depends on other bits in the display driver that are not set by
Curses.

24 X/Open CAE Specification 1996

Interface Overview Input Processing

3.5.3 Delay Mode

Two mutually-exclusive delay modes specify how quickly certain Curses functions return to the
application when there is no terminal input waiting when the function is called:

No Delay The function fails.

Delay The application waits until the implementation passes text through to the
application. If cbreak or Raw Mode is set, this is after one character. Otherwise,
this is after the first <newline> character, end-of-line character, or end-of-file
character.

The effect of No Delay Mode on function key processing is unspecified.

3.5.4 Echo Processing

Echo mode determines whether Curses echoes typed characters to the screen. The effect of Echo
mode is analogous to the effect of the ECHO flag in the local mode field of the termios structure
associated with the terminal device connected to the window. However, Curses always clears
the ECHO flag when invoked, to inhibit the operating system from performing echoing. The
method of echoing characters is not identical to the operating system’s method of echoing
characters, because Curses performs additional processing of terminal input.

If in Echo mode, Curses performs its own echoing: Any visible input character is stored in the
current or specified window by the input function that the application called, at that window’s
cursor position, as though addch() were called, with all consequent effects such as cursor
movement and wrapping.

If not in Echo mode, any echoing of input must be performed by the application. Applications
often perform their own echoing in a controlled area of the screen, or do not echo at all, so they
disable Echo mode.

It may not be possible to turn off echo processing for synchronous and networked asynchronous
terminals because echo processing is done directly by the terminals. Applications running on
such terminals should be aware that any characters typed will appear on the screen at wherever
the cursor is positioned.

X/Open Curses, Issue 4, Version 2 25

The Set of Curses Functions Interface Overview

3.6 The Set of Curses Functions
The Curses functions allow: overall screen, window and pad manipulation; output to windows
and pads; reading terminal input; control over terminal and Curses input and output options;
environment query functions; colour manipulation; use of soft label keys; access to the terminfo
database of terminal capabilities; and access to low-level functions.

3.6.1 Function Name Conventions

The reference manual pages in Chapter 4 present families of multiple Curses functions. Most
function families have different functions that give the programmer the following options:

• A function with the basic name operates on the window stdscr. A function with the same
name plus the w prefix operates on a window specified by the win argument.

When the reference manual page for a function family refers to the current or specified window ,
it means stdscr for the basic functions and the window specified by win for any w function.

Functions whose names have the p prefix require an argument that is a pad instead of a
window.

• A function with the basic name operates based on the current cursor position (of the current
or specified window, as described above). A function with the same name plus the mv prefix
moves the cursor to a position specified by the y and x arguments before performing the
specified operation.

When the reference manual page for a function family refers to the current or specified position ,
it means the cursor position for the basic functions and the position (y, x) for any mv function.

The mvw prefix exists and combines the mv semantics discussed here with the w semantics
discussed above. The window argument is always specified before the coordinates.

• A function with the basic name is often provided for historical compatibility and operates
only on single-byte characters. A function with the same name plus the w infix operates on
wide (multi-byte) characters. A function with the same name plus the _w infix operates on
complex characters and their renditions.

• When a function with the basic name operates on a single character, there is sometimes a
function with the same name plus the n infix that operates on multiple characters. An n
argument specifies the number of characters to process. The respective manual page
specifies the outcome if the value of n is inappropriate.

26 X/Open CAE Specification 1996

Interface Overview The Set of Curses Functions

3.6.2 Function Families Provided

Function Names Description s w c Refer to
Add (Overwrite)

[mv][w]addch () add a character Y Y Y addch()
[mv][w]addch[n]str() add a character string N N N addchstr()
[mv][w]add[n]str() add a string Y Y Y addnstr()
[mv][w]add[n]wstr() add a wide character string Y Y Y addnwstr()
[mv][w]add_wch () add a wide character and rendition Y Y Y add_wch()
[mv][w]add_wch[n]str() add an array of wide characters and renditions ? N N add_wchnstr()

Change Renditions
[mv][w]chgat () change renditions of characters in a window - N N chgat()

Delete
[mv][w]delch() delete a character - - N delch()

Get (Input from Keyboard to Window)
[mv][w]getch() get a character Y Y Y getch()
[mv][w]get[n]str() get a character string Y Y Y getnstr()
[mv][w]get_wch() get a wide character Y Y Y get_wch()
[mv][w]get[n]_wstr() get an array of wide characters and key codes Y Y Y get_wstr()

Explicit Cursor Movement
[w]move() move the cursor - - - move()

Input (Read Back from Window)
[mv][w]inch() input a character - - - inch()
[mv][w]inch[n]str() input an array of characters and attributes - - - inchnstr()
[mv][w]in[n]str() input a string - - - innstr()
[mv][w]in[n]wstr() input a string of wide characters - - - innwstr()
[mv][w]in_wch() input a wide character and rendition - - - in_wch()
[mv][w]in_wch[n]str() input an array of wide characters and renditions - - - inwchnstr()

Insert
[mv][w]insch() insert a character Y N N insch()
[mv][w]ins[n]str() insert a character string Y N N insnstr()
[mv][w]ins_[n]wstr() insert a wide-character string Y N N ins_nwstr()
[mv][w]ins_wch() insert a wide character Y N N ins_wch()

Print and Scan
[mv][w]printw() print formatted output - - - mvprintw()
[mv][w]scanw() convert formatted output - - - mvscanw()

Legend

The following notation indicates the effect when characters are moved to the screen. (For the
Get functions, this applies only when echoing is enabled.)

s Y means these functions perform special-character processing (see Section 3.4.3 on page 21).
N means they do not. ? means the results are unspecified when these functions are applied
to special characters.

w Y means these functions perform wrapping (see Truncation, Wrapping and Scrolling on
page 19). N means they do not.

c Y means these functions advance the cursor (see Truncation, Wrapping and Scrolling on
page 19). N means they do not.

X/Open Curses, Issue 4, Version 2 27

The Set of Curses Functions Interface Overview

- The attribute specified by this column does not apply to these functions.

28 X/Open CAE Specification 1996

Interface Overview Interfaces Implemented as Macros

3.7 Interfaces Implemented as Macros
The following interfaces with arguments must be implemented as macros. The relevance to the
application programmer is that the ‘&’ character cannot be used before the arguments.

Macros Chapter 4 Entry
getbegyx(), getmaxyx(), getparyx(), getyx() getbegyx()

The header file reference manual pages list other macros, like COLOR_BLACK, that do not take
arguments.

3.8 Initialised Curses Environment
Before executing an application that uses Curses, the terminal must be prepared as follows:

• If the terminal has hardware tab stops, they should be set.

• Any initialisation strings defined for the terminal must be output to the terminal.

EC The resulting state of the terminal must be compatible with the model of the terminal that
Curses has, as reflected in the terminal’s entry in the terminfo database (see Chapter 6).

To initialise Curses, the application must call initscr() or newterm() before calling any of the
other functions that deal with windows and screens, and it must call endwin() before exiting. To
get character-at-a-time input without echoing (most interactive, screen-oriented programs want
this), the following sequence should be used:

initscr()
cbreak()
noecho()

Most programs would additionally use the sequence:

nonl()
intrflush(stdscr, FALSE)
keypad(stdscr, TRUE)

X/Open Curses, Issue 4, Version 2 29

Synchronous and Networked Asynchronous Terminals Interface Overview

3.9 Synchronous and Networked Asynchronous Terminals
This section indicates to the application writer some considerations to be borne in mind when
driving synchronous, networked asynchronous (NWA) or non-standard directly-connected
asynchronous terminals.

Such terminals are often used in a mainframe environment and communicate to the host in
block mode. That is, the user types characters at the terminal then presses a special key to
initiate transmission of the characters to the host.

Frequently, although it may be possible to send arbitrary sized blocks to the host, it is not
possible or desirable to cause a character to be transmitted with only a single keystroke.

This can cause severe problems to an application wishing to make use of single-character input;
see Section 3.5 on page 23.

Output

The Curses interface can be used in the normal way for all operations pertaining to output to the
terminal, with the possible exception that on some terminals the refresh() routine may have to
redraw the entire screen contents in order to perform any update.

If it is additionally necessary to clear the screen before each such operation, the result could be
undesirable.

Input

Because of the nature of operation of synchronous (block-mode) and NWA terminals, it might
not be possible to support all or any of the Curses input functions. In particular, the following
points should be noted:

• Single-character input might not be possible. It may be necessary to press a special key to
cause all characters typed at the terminal to be transmitted to the host.

• It is sometimes not possible to disable echo. Character echo may be performed directly by
the terminal. On terminals that behave in this way, any Curses application that performs
input should be aware that any characters typed will appear on the screen at wherever the
cursor is positioned. This does not necessarily correspond to the position of the cursor in the
window.

30 X/Open CAE Specification 1996

Chapter 4

Curses Interfaces

This chapter describes the Curses functions, macros and external variables to support
application portability at the C-language source level.

The display model defined in Section 3.4 on page 19 contains important information, not
repeated for individual interface definitions, regarding cursor movement, relocation of the
cursor in the case of multi-column characters, wrapping of characters to subsequent lines of the
screen, truncation of characters, and other important concepts. The reference manual pages
must be read in conjunction with this overview information.

The interface definitions are collated as though any underscore characters were not present.

X/Open Curses, Issue 4, Version 2 31

addch() CURSES Curses Interfaces

NAME
addch, mvaddch, mvwaddch, waddch — add a single-byte character and rendition to a window
and advance the cursor

SYNOPSIS
#include <curses.h>

int addch(const chtype ch);

int mvaddch(int y, int x, const chtype ch);

int mvwaddch(WINDOW * win , int y, int x, const chtype ch);

int waddch(WINDOW * win , const chtype ch);

DESCRIPTION
The addch(), mvaddch(), mvwaddch() and waddch() functions place ch into the current or specified
window at the current or specified position, and then advance the window’s cursor position.
These functions perform wrapping. These functions perform special-character processing.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
Section 3.4.4 on page 22, add_wch(), attroff(), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. Also the type of argument ch is changed from chtype to const
chtype.

32 X/Open CAE Specification 1996

Curses Interfaces CURSES addchstr()

NAME
addchstr, addchnstr, mvaddchstr, mvaddchnstr, mvwaddchstr, mvwaddchnstr waddchstr,
waddchnstr — add string of single-byte characters and renditions to a window

SYNOPSIS
#include <curses.h>

int addchstr(const chtype * chstr);

EC int addchnstr(const chtype * chstr , int n);

int mvaddchstr(int y, int x, const chtype * chstr);

EC int mvaddchnstr(int y, int x, const chtype * chstr , int n);

int mvwaddchstr(WINDOW * win , int y, int x, const chtype * chstr);

EC int mvwaddchnstr(WINDOW * win , int y, int x, const chtype * chstr ,
int n);

int waddchstr(WINDOW * win , const chtype * chstr);

EC int waddchnstr(WINDOW * win , const chtype * chstr , int n);

DESCRIPTION
These functions overlay the contents of the current or specified window, starting at the current
or specified position, with the contents of the array pointed to by chstr until a null chtype is
encountered in the array pointed to by chstr.

These functions do not change the cursor position. These functions do not perform special-
character processing. These functions do not perform wrapping.

EC The addchnstr(), mvaddchnstr(), mvwaddchnstr() and waddchnstr() functions copy at most n
items, but no more than will fit on the current or specified line. If n is −1 then the whole string is
copied, to the maximum number that fit on the current or specified line.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
addch(), add_wch(), add_wchstr(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 33

addnstr() ENHANCED CURSES Curses Interfaces

NAME
addnstr, addstr, mvaddnstr, mvaddstr, mvwaddnstr, mvwaddstr waddnstr, waddstr — add a
string of multi-byte characters without rendition to a window and advance cursor

SYNOPSIS
EC #include <curses.h>

int addnstr(const char * str , int n);

int addstr(const char * str);

int mvaddnstr(int y, int x, const char * str , int n);

int mvaddstr(int y, int x, const char * str);

int mvwaddnstr(WINDOW * win , int y, int x, const char * str , int n);

int mvwaddstr(WINDOW * win , int y, int x, const char * str);

int waddnstr(WINDOW * win , const char * str , int n);

int waddstr(WINDOW * win , const char * str);

DESCRIPTION
These functions write the characters of the string str on the current or specified window starting
at the current or specified position using the background rendition.

These functions advance the cursor position. These functions perform special character
processing. These functions perform wrapping.

The addstr(), mvaddstr(), mvwaddstr() and waddstr() functions are similar to calling mbstowcs()
on str, and then calling addwstr(), mvaddwstr(), mvwaddwstr() and waddwstr(), respectively.

The addnstr(), mvaddnstr(), mvwaddnstr() and waddnstr() functions use at most n bytes from str.
These functions add the entire string when n is −1. These functions are similar to calling
mbstowcs() on the first n bytes of str, and then calling addwstr(), mvaddwstr(), mvwaddwstr() and
waddwstr(), respectively.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
addnwstr(), mbstowcs() (in the XSH specification), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

In Issue 3, the addstr(), mvaddstr(), mvwaddstr() and waddstr() functions were described in the
addstr() entry. In Issue 4, the type of the str argument defined for these functions is changed
from char * to const char *, and the DESCRIPTION is changed to indicate that the functions will
handle multi-byte sequences correctly.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

34 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES addnwstr()

NAME
addnwstr, addwstr, mvaddnwstr, mvaddwstr, mvwaddnwstr, mvwaddwstr, waddnwstr,
waddwstr — add a wide-character string to a window and advance the cursor

SYNOPSIS
EC #include <curses.h>

int addnwstr(const wchar_t * wstr , int n);

int addwstr(const wchar_t * wstr);

int mvaddnwstr(int y, int x, const wchar_t * wstr , int n);

int mvaddwstr(int y, int x, const wchar_t * wstr);

int mvwaddnwstr(WINDOW * win , int y, int x, const wchar_t * wstr , int n);

int mvwaddwstr(WINDOW * win , int y, int x, const wchar_t * wstr);

int waddnwstr(WINDOW * win , const wchar_t * wstr , int n);

int waddwstr(WINDOW * win , const wchar_t * wstr);

DESCRIPTION
These functions write the characters of the wide character string wstr on the current or specified
window at that window’s current or specified cursor position.

These functions advance the cursor position. These functions perform special character
processing. These functions perform wrapping.

The effect is similar to building a cchar_t from the wchar_t and the background rendition and
calling wadd_wch(), once for each wchar_t character in the string. The cursor movement
specified by the mv functions occurs only once at the start of the operation.

The addnwstr(), mvaddnwstr(), mvwaddnwstr() and waddnwstr() functions write at most n wide
characters. If n is −1, then the entire string will be added.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
add_wch(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 35

add_wch() ENHANCED CURSES Curses Interfaces

NAME
add_wch, mvadd_wch, mvwadd_wch, wadd_wch — add a complex character and rendition to
a window

SYNOPSIS
EC #include <curses.h>

int add_wch(const cchar_t * wch);

int wadd_wch(WINDOW * win , const cchar_t * wch);

int mvadd_wch(int y, int x, const cchar_t * wch);

int mvwadd_wch(WINDOW * win , int y, int x, const cchar_t * wch);

DESCRIPTION
These functions add information to the current or specified window at the current or specified
position, and then advance the cursor. These functions perform wrapping. These functions
perform special-character processing.

• If wch refers to a spacing character, then any previous character at that location is removed, a
new character specified by wch is placed at that location with rendition specified by wch; then
the cursor advances to the next spacing character on the screen.

• If wch refers to a non-spacing character, all previous characters at that location are preserved,
the non-spacing characters of wch are added to the spacing complex character, and the
rendition specified by wch is ignored.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.4.4 on page 22, addch(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

36 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES add_wchnstr()

NAME
add_wchnstr, add_wchstr, mvadd_wchnstr, mvadd_wchstr, mvwadd_wchnstr,
mvwadd_wchstr, wadd_wchnstr, wadd_wchstr — add an array of complex characters and
renditions to a window

SYNOPSIS
EC #include <curses.h>

int add_wchnstr(const cchar_t * wchstr , int n);

int add_wchstr(const cchar_t * wchstr);

int wadd_wchnstr(WINDOW * win , const cchar_t * wchstr , int n);

int wadd_wchstr(WINDOW * win , const cchar_t * wchstr);

int mvadd_wchnstr(int y, int x, const cchar_t * wchstr , int n);

int mvadd_wchstr(int y, int x, const cchar_t * wchstr);

int mvwadd_wchnstr(WINDOW * win , int y, int x, const cchar_t * wchstr ,
int n);

int mvwadd_wchstr(WINDOW * win , int y, int x, const cchar_t * wchstr);

DESCRIPTION
These functions write the array of cchar_t specified by wchstr into the current or specified
window starting at the current or specified cursor position.

These functions do not advance the cursor. The results are unspecified if wchstr contains any
special characters.

The functions end successfully on encountering a null cchar_t. The functions also end
successfully when they fill the current line. If a character cannot completely fit at the end of the
current line, those columns are filled with the background character and rendition.

The add_wchnstr(), mvadd_wchnstr(), mvwadd_wchnstr() and wadd_wchnstr() functions end
successfully after writing n cchar_ts (or the entire array of cchar_ts, if n is −1).

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 37

attroff() CURSES Curses Interfaces

NAME
attroff, attron, attrset, wattroff, wattron, wattrset — restricted window attribute control
functions

SYNOPSIS
#include <curses.h>

int attroff(int attrs);

int attron(int attrs);

int attrset(int attrs);

int wattroff(WINDOW * win , int attrs);

int wattron(WINDOW * win , int attrs);

int wattrset(WINDOW * win , int attrs);

DESCRIPTION
These functions manipulate the window attributes of the current or specified window.

The attroff() and wattroff() functions turn off attrs in the current or specified window without
affecting any others.

The attron() and wattron() functions turn on attrs in the current or specified window without
affecting any others.

The attrset() and wattrset() functions set the background attributes of the current or specified
window to attrs.

It is unspecified whether these functions can be used to manipulate attributes other than
A_BLINK, A_BOLD, A_DIM, A_REVERSE, A_STANDOUT and A_UNDERLINE.

RETURN VALUE
These functions always return either OK or 1.

ERRORS
No errors are defined.

SEE ALSO
attr_get(), standend(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
This entry is rewritten for clarity. The DESCRIPTION is updated to specify that it is undefined
whether these functions can be used to manipulate attributes beyond those defined in Issue 3.
The standend(), standout(), wstandend() and wstandout() functions are moved to the standend()
entry.

38 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES attr_get()

NAME
attr_get, attr_off, attr_on, attr_set, color_set, wattr_get, wattr_off, wattr_on, wattr_set,
wcolor_set — window attribute control functions

SYNOPSIS
EC #include <curses.h>

int attr_get(attr_t *attrs , short *color_pair_number , void *opts);

int attr_off(attr_t attrs , void *opts);

int attr_on(attr_t attrs , void *opts);

int attr_set(attr_t attrs , short color_pair_number , void *opts);

int color_set(short color_pair_number , void * opts);

int wattr_get(WINDOW *win , attr_t *attrs , short *color_pair_number ,
void *opts);

int wattr_off(WINDOW *win , attr_t attrs , void *opts);

int wattr_on(WINDOW *win , attr_t attrs , void *opts);

int wattr_set(WINDOW *win , attr_t attrs , short color_pair_number ,
void *opts);

int wcolor_set(WINDOW *win , short color_pair_number , void *opts);

DESCRIPTION
These functions manipulate the attributes and colour of the window rendition of the current or
specified window.

The attr_get() and wattr_get() functions obtain the current rendition of a window. If attrs or
color_pair_number is a null pointer, no information will be obtained on the corresponding
rendition information and this is not an error.

The attr_off() and wattr_off() functions turn off attrs in the current or specified window without
affecting any others.

The attr_on() and wattr_on() functions turn on attrs in the current or specified window without
affecting any others.

The attr_set() and wattr_set() functions set the window rendition of the current or specified
window to attrs and color_pair_number.

The color_set() and wcolor_set() functions set the window colour of the current or specified
window to color_pair_number.

RETURN VALUE
These functions always return OK.

ERRORS
No errors are defined.

SEE ALSO
attroff(), <curses.h>.

CHANGE HISTORY
First released in Issue 4

X/Open Curses, Issue 4, Version 2 39

attr_get() ENHANCED CURSES Curses Interfaces

Issue 4, Version 2
This entry is rewritten to include the colour handling functions wcolor_set() and color_set().

40 X/Open CAE Specification 1996

Curses Interfaces CURSES baudrate()

NAME
baudrate — get terminal baud rate

SYNOPSIS
#include <curses.h>

int baudrate(void);

DESCRIPTION
The baudrate() function extracts the output speed of the terminal in bits per second.

RETURN VALUE
The baudrate() function returns the output speed of the terminal.

ERRORS
No errors are defined.

SEE ALSO
tcgetattr() (in the XSH specification), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The argument list is explicitly declared as void.

X/Open Curses, Issue 4, Version 2 41

beep() CURSES Curses Interfaces

NAME
beep — audible signal

SYNOPSIS
#include <curses.h>

int beep(void);

DESCRIPTION
The beep() function alerts the user. It sounds the audible alarm on the terminal, or if that is not
possible, it flashes the screen (visible bell). If neither signal is possible, nothing happens.

RETURN VALUE
The beep() function always returns OK.

ERRORS
No errors are defined.

APPLICATION USAGE
Nearly all terminals have an audible alarm, but only some can flash the screen.

SEE ALSO
flash(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The argument list is explicitly declared as void. The RETURN VALUE section is changed to
indicate that the function always returns OK. The flash() function is moved to its own entry.

42 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES bkgd()

NAME
bkgd, bkgdset, getbkgd, wbkgd, wbkgdset — turn off the previous background attributes,
logical OR the requested attributes into the window rendition, and set or get background
character and rendition using a single-byte character

SYNOPSIS
EC #include <curses.h>

int bkgd(chtype ch);

void bkgdset(chtype ch);

chtype getbkgd(WINDOW * win);

int wbkgd(WINDOW * win , chtype ch);

void wbkgdset(WINDOW * win , chtype ch);

DESCRIPTION
The bkgdset() and wbkgdset() functions turn off the previous background attributes, logical OR
the requested attributes into the window rendition, and set the background property of the
current or specified window based on the information in ch. If ch refers to a multi-column
character, the results are undefined.

The bkgd() and wbkgd() functions turn off the previous background attributes, logical OR the
requested attributes into the window rendition, and set the background property of the current
or specified window and then apply this setting to every character position in that window:

• The rendition of every character on the screen is changed to the new window rendition.

• Wherever the former background character appears, it is changed to the new background
character.

The getbkgd() function extracts the specified window’s background character and rendition.

RETURN VALUE
Upon successful completion, bkgd() and wbkgd() return OK. Otherwise, they return ERR.

The bkgdset() and wbkgdset() functions do not return a value.

Upon successful completion, getbkgd() returns the specified window’s background character and
rendition. Otherwise, it returns (chtype)ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
Section 3.3.4 on page 17, <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
Rewritten for clarity.

X/Open Curses, Issue 4, Version 2 43

bkgrnd() ENHANCED CURSES Curses Interfaces

NAME
bkgrnd, bkgrndset, getbkgrnd, wbkgrnd, wbkgrndset, wgetbkgrnd — turn off the previous
background attributes, OR the requested attributes into the window rendition, and set or get
background character and rendition using a complex character

SYNOPSIS
EC #include <curses.h>

int bkgrnd(const cchar_t * wch);

void bkgrndset(const cchar_t * wch);

int getbkgrnd(cchar_t * wch);

int wbkgrnd(WINDOW * win , const cchar_t * wch);

void wbkgrndset(WINDOW * win , const cchar_t * wch);

int wgetbkgrnd(WINDOW * win , cchar_t * wch);

DESCRIPTION
The bkgrndset() and wbkgrndset() functions turn off the previous background attributes, OR the
requested attributes into the window rendition, and set the background property of the current
or specified window based on the information in wch.

The bkgrnd() and wbkgrnd() functions turn off the previous background attributes, OR the
requested attributes into the window rendition, and set the background property of the current
or specified window and then apply this setting to every character position in that window:

• The rendition of every character on the screen is changed to the new window rendition.

• Wherever the former background character appears, it is changed to the new background
character.

If wch refers to a non-spacing complex character for bkgrnd(), bkgrndset(), wbkgrnd() and
wbkgrndset(), then wch is added to the existing spacing complex character that is the background
character. If wch refers to a multi-column character, the results are unspecified.

The getbkgrnd() and wgetbkgrnd() functions store, into the area pointed to by wch, the value of
the window’s background character and rendition.

RETURN VALUE
The bkgrndset() and wbkgrndset() functions do not return a value.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.3.4 on page 17, <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made, Issue 4, Version 2.

44 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES border()

NAME
border, wborder — draw borders from single-byte characters and renditions

SYNOPSIS
EC #include <curses.h>

int border(chtype ls , chtype rs , chtype ts , chtype bs , chtype tl ,
chtype tr , chtype bl , chtype br);

int wborder(WINDOW * win , chtype ls , chtype rs , chtype ts , chtype bs ,
chtype tl , chtype tr , chtype bl , chtype br);

DESCRIPTION
The border() and wborder() functions draw a border around the edges of the current or specified
window. These functions do not advance the cursor position. These functions do not perform
special character processing. These functions do not perform wrapping.

The arguments in the left-hand column of the following table contain single-byte characters with
renditions, which have the following uses in drawing the border:

Argument Default
Name Usage Value

ls Starting-column side ACS_VLINE
rs Ending-column side ACS_VLINE
ts First-line side ACS_HLINE
bs Last-line side ACS_HLINE
tl Corner of the first line and the starting column ACS_ULCORNER
tr Corner of the first line and the ending column ACS_URCORNER
bl Corner of the last line and the starting column ACS_BLCORNER
br Corner of the last line and the ending column ACS_BRCORNER

If the value of any argument in the left-hand column is 0, then the default value in the right-hand
column is used. If the value of any argument in the left-hand column is a multi-column
character, the results are undefined.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
border_set(), box(), hline(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 45

border_set() ENHANCED CURSES Curses Interfaces

NAME
border_set, wborder_set, — draw borders from complex characters and renditions

SYNOPSIS
EC #include <curses.h>

int border_set(const cchar_t * ls , const cchar_t * rs , const cchar_t * ts ,
const cchar_t * bs , const cchar_t * tl , const cchar_t * tr ,
const cchar_t * bl , const cchar_t * br);

int wborder_set(WINDOW * win , const cchar_t * ls , const cchar_t * rs ,
const cchar_t * ts , const cchar_t * bs ,
const cchar_t * tl , const cchar_t * tr ,
const cchar_t * bl , const cchar_t * br);

DESCRIPTION
The border_set() and wborder_set() functions draw a border around the edges of the current or
specified window. These functions do not advance the cursor position. These functions do not
perform special character processing. These functions do not perform wrapping.

The arguments in the left-hand column of the following table contain spacing complex
characters with renditions, which have the following uses in drawing the border:

Argument Default
Name Usage Value

ls Starting-column side WACS_VLINE
rs Ending-column side WACS_VLINE
ts First-line side WACS_HLINE
bs Last-line side WACS_HLINE
tl Corner of the first line and the starting column WACS_ULCORNER
tr Corner of the first line and the ending column WACS_URCORNER
bl Corner of the last line and the starting column WACS_BLCORNER
br Corner of the last line and the ending column WACS_BRCORNER

If the value of any argument in the left-hand column is a null pointer, then the default value in
the right-hand column is used. If the value of any argument in the left-hand column is a multi-
column character, the results are undefined.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
box_set(), hline_set(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

46 X/Open CAE Specification 1996

Curses Interfaces CURSES box()

NAME
box — draw borders from single-byte characters and renditions

SYNOPSIS
#include <curses.h>

int box(WINDOW * win , chtype verch , chtype horch);

DESCRIPTION
The box() function draws a border around the edges of the specified window. This function
does not advance the cursor position. This function does not perform special character
processing. This function does not perform wrapping.

The function box(win, verch, horch) has an effect equivalent to:

wborder(win , verch , verch , horch , horch , 0, 0, 0, 0);

RETURN VALUE
Upon successful completion, box() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
border(), box_set(), hline(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The DESCRIPTION is changed to describe this function in terms of a call to the wborder()
function.

X/Open Curses, Issue 4, Version 2 47

box_set() ENHANCED CURSES Curses Interfaces

NAME
box_set — draw borders from complex characters and renditions

SYNOPSIS
EC #include <curses.h>

int box_set(WINDOW * win , const cchar_t * verch , const cchar_t * horch);

DESCRIPTION
The box_set() function draws a border around the edges of the specified window. This function
does not advance the cursor position. This function does not perform special character
processing. This function does not perform wrapping.

The function box_set(win, verch, horch) has an effect equivalent to:

wborder_set(win , verch , verch , horch , horch ,
NULL, NULL, NULL, NULL);

RETURN VALUE
Upon successful completion, this function returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
border_set(), hline_set(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

48 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES can_change_color()

NAME
can_change_color, color_content, has_colors, init_color, init_pair, start_color, pair_content —
colour manipulation functions

SYNOPSIS
EC #include <curses.h>

bool can_change_color(void);

int color_content(short color , short * red , short * green , short * blue);

int COLOR_PAIR(int n);

bool has_colors(void);

int init_color(short color , short red , short green , short blue);

int init_pair(short pair , short f , short b);

int pair_content(short pair , short * f , short * b);

int PAIR_NUMBER(int value);

int start_color(void);

extern int COLOR_PAIRS;

extern int COLORS;

DESCRIPTION
These functions manipulate colour on terminals that support colour.

Querying Capabilities

The has_colors () function indicates whether the terminal is a colour terminal. The
can_change_color () function indicates whether the terminal is a colour terminal on which colours
can be redefined.

Initialisation

The start_color () function must be called in order to enable use of colours and before any colour
manipulation function is called. The function initialises eight basic colours (black, blue, green,
cyan, red, magenta, yellow, and white) that can be specified by the colour macros (such as
COLOR_BLACK) defined in <curses.h>. (See Colour-related Macros on page 223.) The initial
appearance of these eight colours is not specified.

The function also initialises two global external variables:

• COLORS defines the number of colours that the terminal supports. (See Colour
Identification below.) If COLORS is 0, the terminal does not support redefinition of colours
(and can_change_colour () will return FALSE).

• COLOR_PAIRS defines the maximum number of colour-pairs that the terminal supports.
(See User-defined Colour Pairs below.)

The start_color () function also restores the colours on the terminal to terminal-specific initial
values. The initial background colour is assumed to be black for all terminals.

X/Open Curses, Issue 4, Version 2 49

can_change_color() ENHANCED CURSES Curses Interfaces

Colour Identification

The init_color () function redefines colour number color, on terminals that support the
redefinition of colours, to have the red, green, and blue intensity components specified by red,
green, and blue, respectively. Calling init_color () also changes all occurrences of the specified
colour on the screen to the new definition.

The color_content () function identifies the intensity components of colour number color. It stores
the red, green, and blue intensity components of this colour in the addresses pointed to by red,
green, and blue, respectively.

For both functions, the color argument must be in the range from 0 to and including COLORS − 1.
Valid intensity values range from 0 (no intensity component) up to and including 1000
(maximum intensity in that component).

User-Defined Colour Pairs

Calling init_pair () defines or redefines colour-pair number pair to have foreground colour f and
background colour b. Calling init_pair () changes any characters that were displayed in the
colour pair’s old definition to the new definition and refreshes the screen.

After defining the colour pair, the macro COLOR_PAIR(n) returns the value of colour pair n.
This value is the colour attribute as it would be extracted from a chtype. Conversely, the macro
PAIR_NUMBER(value) returns the colour pair number associated with the colour attribute value.

The pair_content () function retrieves the component colours of a colour-pair number pair. It
stores the foreground and background colour numbers in the variables pointed to by f and b,
respectively.

With init_pair () and pair_content (), the value of pair must be in a range from 0 to and including
COLOR_PAIRS − 1. (There may be an implementation-specific upper limit on the valid value of
pair, but any such limit is at least 63.) Valid values for f and b are the range from 0 to and
including COLORS − 1.

RETURN VALUE
The has_colors () function returns TRUE if the terminal can manipulate colors; otherwise, it
returns FALSE.

The can_change_color () function returns TRUE if the terminal supports colors and can change
their definitions; otherwise, it returns FALSE.

Upon successful completion, the other functions return OK; otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
To use these functions, start_color () must be called, usually right after initscr().

The can_change_color () and has_colors () functions facilitate writing terminal-independent
programs. For example, a programmer can use them to decide whether to use colour or some
other video attribute.

On colour terminals, a typical value of COLORS is 8 and the macros such as COLOR_BLACK
return a value within the range from 0 to and including 7. However, applications cannot rely on
this to be true.

SEE ALSO
attroff(), delscreen(), <curses.h>.

50 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES can_change_color()

CHANGE HISTORY
First released in Issue 4.

Corrections made in section "NAME" and section "APPLICATION USAGE", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 51

cbreak() CURSES Curses Interfaces

NAME
cbreak, nocbreak, noraw, raw — input mode control functions

SYNOPSIS
#include <curses.h>

int cbreak(void);

int nocbreak(void);

int noraw(void);

int raw(void);

DESCRIPTION
The cbreak() function sets the input mode for the current terminal to cbreak mode and overrides a
call to raw().

The nocbreak() function sets the input mode for the current terminal to Cooked Mode without
changing the state of ISIG and IXON.

The noraw() function sets the input mode for the current terminal to Cooked Mode and sets the
ISIG and IXON flags.

The raw() function sets the input mode for the current terminal to Raw Mode.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
If the application is not certain what the input mode of the process was at the time it called
initscr(), it should use these functions to specify the desired input mode.

SEE ALSO
Section 3.5.2 on page 24, <curses.h>, XBD specification, Chapter 9, General Terminal Interface.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The raw() and noraw() functions are merged with this entry. In previous issues, they appeared
in entries of their own.

The entry is rewritten for clarity. The argument list for all these functions is explicitly declared
as void.

52 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES chgat()

NAME
chgat, mvchgat, mvwchgat, wchgat — change renditions of characters in a window

SYNOPSIS
EC #include <curses.h>

int chgat(int n, attr_t attr , short color , const void * opts);

int mvchgat(int y, int x, int n, attr_t attr , short color ,
const void * opts);

int mvwchgat(WINDOW * win , int y, int x, int n, attr_t attr ,
short color , const void * opts);

int wchgat(WINDOW * win , int n, attr_t attr , short color ,
const void * opts);

DESCRIPTION
These functions change the renditions of the next n characters in the current or specified window
(or of the remaining characters on the current or specified line, if n is −1), starting at the current
or specified cursor position. The attributes and colors are specified by attr and color as for
setcchar().

These functions do not update the cursor. These functions do not perform wrapping.

A value of n that is greater than the remaining characters on a line is not an error.

The opts argument is reserved for definition in a future edition of this document. Currently, the
application must provide a null pointer as opts.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
setcchar(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 53

clear() CURSES Curses Interfaces

NAME
clear, erase, wclear, werase — clear a window

SYNOPSIS
#include <curses.h>

int clear(void);

int erase(void);

int wclear(WINDOW * win);

int werase(WINDOW * win);

DESCRIPTION
The clear(), erase(), wclear() and werase() functions clear every position in the current or
specified window.

The clear() and wclear() functions also achieve the same effect as calling clearok (), so that the
window is cleared completely on the next call to wrefresh() for the window and is redrawn in its
entirety.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
clearok (), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The erase() and werase() functions are merged with this entry. In previous issues, they appeared
in entries of their own.

The entry is rewritten for clarity. The argument list for the clear() and erase() functions is
explicitly declared as void.

54 X/Open CAE Specification 1996

Curses Interfaces CURSES clearok()

NAME
clearok, idlok, leaveok, scrollok, setscrreg, wsetscrreg — terminal output control functions

SYNOPSIS
#include <curses.h>

int clearok(WINDOW * win , bool bf);

int idlok(WINDOW * win , bool bf);

int leaveok(WINDOW * win , bool bf);

int scrollok(WINDOW * win , bool bf);

int setscrreg(int top , int bot);

int wsetscrreg(WINDOW * win , int top , int bot);

DESCRIPTION
These functions set options that deal with output within Curses.

The clearok () function assigns the value of bf to an internal flag in the specified window that
governs clearing of the screen during a refresh. If, during a refresh operation on the specified
window, the flag in curscr is TRUE or the flag in the specified window is TRUE, then the
implementation clears the screen, redraws it in its entirety, and sets the flag to FALSE in curscr
and in the specified window. The initial state is unspecified.

The idlok () function specifies whether the implementation may use the hardware insert-line,
delete-line, and scroll features of terminals so equipped. If bf is TRUE, use of these features is
enabled. If bf is FALSE, use of these features is disabled and lines are instead redrawn as
required. The initial state is FALSE.

The leaveok () function controls the cursor position after a refresh operation. If bf is TRUE, refresh
operations on the specified window may leave the terminal’s cursor at an arbitrary position. If bf
is FALSE, then at the end of any refresh operation, the terminal’s cursor is positioned at the
cursor position contained in the specified window. The initial state is FALSE.

The scrollok () function controls the use of scrolling. If bf is TRUE, then scrolling is enabled for
the specified window, with the consequences discussed in Truncation, Wrapping and Scrolling
on page 19. If bf is FALSE, scrolling is disabled for the specified window. The initial state is
FALSE.

The setscrreg() and wsetscrreg() functions define a software scrolling region in the current or
specified window. The top and bot arguments are the line numbers of the first and last line
defining the scrolling region. (Line 0 is the top line of the window.) If this option and scrollok ()
are enabled, an attempt to move off the last line of the margin causes all lines in the scrolling
region to scroll one line in the direction of the first line. Only characters in the window are
scrolled. If a software scrolling region is set and scrollok () is not enabled, an attempt to move off
the last line of the margin does not reposition any lines in the scrolling region.

RETURN VALUE
Upon successful completion, setscrreg() and wsetscrreg() return OK. Otherwise, they return ERR.

The other functions always return OK.

ERRORS
No errors are defined.

APPLICATION USAGE
The only reason to enable the idlok () feature is to use scrolling to achieve the visual effect of
motion of a partial window, such as for a screen editor. In other cases, the feature can be

X/Open Curses, Issue 4, Version 2 55

clearok() CURSES Curses Interfaces

visually annoying.

The leaveok () option provides greater efficiency for applications that do not use the cursor.

SEE ALSO
clear(), delscreen(), doupdate (), scrl(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The idlok (), leaveok (), scrollok (), setscrreg() and wsetscrreg() functions are merged with this entry.
In previous issues, they appeared in entries of their own.

The entry is rewritten for clarity. The DESCRIPTION of clearok () is updated to indicate that
clearing of a screen applies if the flag is TRUE in either curscr or the specified window.

The RETURN VALUE is changed to indicate that the clearok (), leaveok () and scrollok () functions
always return OK.

56 X/Open CAE Specification 1996

Curses Interfaces CURSES clrtobot()

NAME
clrtobot, wclrtobot — clear from cursor to end of window

SYNOPSIS
#include <curses.h>

int clrtobot(void);

int wclrtobot(WINDOW * win);

DESCRIPTION
The clrtobot () and wclrtobot() functions erase all lines following the cursor in the current or
specified window, and erase the current line from the cursor to the end of the line, inclusive.
These functions do not update the cursor.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the clrtobot () function is explicitly
declared as void.

X/Open Curses, Issue 4, Version 2 57

clrtoeol() CURSES Curses Interfaces

NAME
clrtoeol, wclrtoeol — clear from cursor to end of line

SYNOPSIS
#include <curses.h>

int clrtoeol(void);

int wclrtoeol(WINDOW * win);

DESCRIPTION
The clrtoeol () and wclrtoeol () functions erase the current line from the cursor to the end of the
line, inclusive, in the current or specified window. These functions do not update the cursor.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the clrtoeol () function is explicitly
declared as void.

58 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES color_content()

NAME
color_content — identify red, green and blue intensity of a colour

SYNOPSIS
EC #include <curses.h>

int color_content(short color , short * red , short * green , short * blue);

DESCRIPTION
Refer to can_change_color ().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 59

COLOR_PAIRS ENHANCED CURSES Curses Interfaces

NAME
COLOR_PAIRS, COLORS — external variables for colour support

SYNOPSIS
EC #include <curses.h>

extern int COLOR_PAIRS;

extern int COLORS;

DESCRIPTION
Refer to can_change_color ().

CHANGE HISTORY
First released in Issue 4.

60 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES COLS

NAME
COLS — number of columns on terminal screen

SYNOPSIS
EC #include <curses.h>

extern int COLS;

DESCRIPTION
The external variable COLS indicates the number of columns on the terminal screen.

SEE ALSO
initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 61

copywin() CURSES Curses Interfaces

NAME
copywin — copy a region of a window

SYNOPSIS
EC #include <curses.h>

int copywin(const WINDOW * srcwin , WINDOW *dstwin , int sminrow ,
int smincol , int dminrow , int dmincol , int dmaxrow ,
int dmaxcol , int overlay);

DESCRIPTION
The copywin() function provides a finer granularity of control over the overlay () and overwrite()
functions. As in the prefresh() function, a rectangle is specified in the destination window,
(dminrow, dmincol) and (dmaxrow, dmaxcol), and the upper-left-corner coordinates of the source
window, (sminrow, smincol). If overlay is TRUE, then copying is non-destructive, as in overlay ().
If overlay is FALSE, then copying is destructive, as in overwrite().

RETURN VALUE
Upon successful completion, copywin() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
newpad(), overlay (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

62 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES curscr

NAME
curscr — current window

SYNOPSIS
EC #include <curses.h>

extern WINDOW *curscr;

DESCRIPTION
The external variable curscr points to an internal data structure. It can be specified as an
argument to certain functions, such as clearok (), where permitted in this specification.

SEE ALSO
clearok (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 63

curs_set() ENHANCED CURSES Curses Interfaces

NAME
curs_set — set the cursor mode

SYNOPSIS
EC #include <curses.h>

int curs_set(int visibility);

DESCRIPTION
The curs_set() function sets the appearance of the cursor based on the value of visibility:

Value of visibility Appearance of Cursor
0 Invisible
1 Terminal-specific normal mode
2 Terminal-specific high visibility mode

The terminal does not necessarily support all the above values.

RETURN VALUE
If the terminal supports the cursor mode specified by visibility , then curs_set() returns the
previous cursor state. Otherwise, the function returns ERR.

ERRORS
No errors are defined.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

64 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES cur_term

NAME
cur_term — current terminal information

SYNOPSIS
EC #include <term.h>

extern TERMINAL *cur_term;

DESCRIPTION
The external variable cur_term identifies the record in the terminfo database associated with the
terminal currently in use.

SEE ALSO
set_curterm(), tigetflag(), <term.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 65

def_prog_mode() CURSES Curses Interfaces

NAME
def_prog_mode, def_shell_mode, reset_prog_mode, reset_shell_mode — save/restore program
or shell terminal modes

SYNOPSIS
#include <curses.h>

int def_prog_mode(void);

int def_shell_mode(void);

int reset_prog_mode(void);

int reset_shell_mode(void);

DESCRIPTION
The def_prog_mode () function saves the current terminal modes as the ‘‘program’’ (in Curses)
state for use by reset_prog_mode().

The def_shell_mode () function saves the current terminal modes as the ‘‘shell’’ (not in Curses)
state for use by reset_shell_mode().

The reset_prog_mode() function restores the terminal to the ‘‘program’’ (in Curses) state.

The reset_shell_mode() function restores the terminal to the ‘‘shell’’ (not in Curses) state.

These functions affect the mode of the terminal associated with the current screen.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The initscr() function achieves the effect of calling def_shell_mode () to save the prior terminal
settings so they can be restored during the call to endwin(), and of calling def_prog_mode () to
specify an initial definition of the program terminal mode.

Applications normally do not need to refer to the shell terminal mode. Applications may find it
useful to save and restore the program terminal mode.

SEE ALSO
doupdate (), endwin(), initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The reset_prog_mode() and reset_shell_mode() functions are merged with this entry. In previous
issues, they appeared in entries of their own.

The entry is rewritten for clarity. The argument list for all these functions is explicitly declared
as void.

66 X/Open CAE Specification 1996

Curses Interfaces CURSES delay_output()

NAME
delay_output — delay output

SYNOPSIS
#include <curses.h>

int delay_output(int ms);

DESCRIPTION
On terminals that support pad characters, delay_output () pauses the output for at least ms
milliseconds. Otherwise, the length of the delay is unspecified.

RETURN VALUE
Upon successful completion, delay_output () returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Whether or not the terminal supports pad characters, the delay_output () function is not a precise
method of timekeeping.

SEE ALSO
Section 6.1.3 on page 241, napms(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 4, Version 2 67

delch() CURSES Curses Interfaces

NAME
delch, mvdelch, mvwdelch, wdelch — delete a character from a window.

SYNOPSIS
#include <curses.h>

int delch(void);

int mvdelch(int y, int x);

int mvwdelch(WINDOW * win , int y, int x);

int wdelch(WINDOW * win);

DESCRIPTION
These functions delete the character at the current or specified position in the current or
specified window. This function does not change the cursor position.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the delch() function is explicitly declared
as void.

68 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES del_curterm()

NAME
del_curterm, restartterm, set_curterm, setupterm — interfaces to the terminfo database

SYNOPSIS
EC #include <term.h>

int del_curterm(TERMINAL * oterm);

int restartterm(char * term , int fildes , int * errret);

TERMINAL *set_curterm(TERMINAL * nterm);

int setupterm(char * term , int fildes , int * errret);

DESCRIPTION
These functions retrieve information from the terminfo database.

To gain access to the terminfo database, setupterm() must be called first. It is automatically
called by initscr() and newterm(). The setupterm() function initialises the other functions to use
the terminfo record for a specified terminal (which depends on whether use_env() was called).
It sets the cur_term external variable to a TERMINAL structure that contains the record from the
terminfo database for the specified terminal.

The terminal type is the character string term; if term is a null pointer, the environment variable
TERM is used. If TERM is not set or if its value is an empty string, then "unknown" is used as
the terminal type. The application must set fildes to a file descriptor, open for output, to the
terminal device, before calling setupterm(). If errret is not null, the integer it points to is set to one
of the following values to report the function outcome:

−1 The terminfo database was not found (function fails).
0 The entry for the terminal was not found in terminfo (function fails).
1 Success.

If setupterm() detects an error and errret is a null pointer, setupterm() writes a diagnostic message
and exits.

A simple call to setupterm() that uses all the defaults and sends the output to stdout is:

setupterm((char *)0, fileno(stdout), (int *)0);

The set_curterm() function sets the variable cur_term to nterm, and makes all of the terminfo
boolean, numeric, and string variables use the values from nterm.

The del_curterm() function frees the space pointed to by oterm and makes it available for further
use. If oterm is the same as cur_term, references to any of the terminfo boolean, numeric, and
string variables thereafter may refer to invalid memory locations until setupterm() is called
again.

The restartterm() function assumes a previous call to setupterm() (perhaps from initscr() or
newterm()). It lets the application specify a different terminal type in term and updates the
information returned by baudrate() based on fildes, but does not destroy other information
created by initscr(), newterm() or setupterm().

RETURN VALUE
Upon successful completion, set_curterm() returns the previous value of cur_term. Otherwise, it
returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

X/Open Curses, Issue 4, Version 2 69

del_curterm() ENHANCED CURSES Curses Interfaces

ERRORS
No errors are defined.

APPLICATION USAGE
An application would call setupterm() if it required access to the terminfo database but did not
otherwise need to use Curses.

SEE ALSO
Section A.3 on page 279, baudrate(), erasechar(), has_ic(), longname(), putc(), termattrs(),
termname(), tgetent(), tigetflag(), use_env(), <term.h>.

CHANGE HISTORY
First released in Issue 4.

70 X/Open CAE Specification 1996

Curses Interfaces CURSES deleteln()

NAME
deleteln, wdeleteln — delete lines in a window

SYNOPSIS
#include <curses.h>

int deleteln(void);

int wdeleteln(WINDOW * win);

DESCRIPTION
The deleteln() and wdeleteln() functions delete the line containing the cursor in the current or
specified window and move all lines following the current line one line toward the cursor. The
last line of the window is cleared. The cursor position does not change.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
insdelln(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the deleteln() function is explicitly
declared as void.

X/Open Curses, Issue 4, Version 2 71

delscreen() CURSES Curses Interfaces

NAME
delscreen — free storage associated with a screen

SYNOPSIS
EC #include <curses.h>

void delscreen(SCREEN * sp);

DESCRIPTION
The delscreen() function frees storage associated with the SCREEN pointed to by sp.

RETURN VALUE
The delscreen() function does not return a value.

ERRORS
No errors are defined.

SEE ALSO
endwin(), initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

72 X/Open CAE Specification 1996

Curses Interfaces CURSES delwin()

NAME
delwin — delete a window

SYNOPSIS
#include <curses.h>

int delwin(WINDOW * win);

DESCRIPTION
The delwin() function deletes win, freeing all memory associated with it. The application must
delete subwindows before deleting the main window.

RETURN VALUE
Upon successful completion, delwin() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
derwin(), dupwin(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 4, Version 2 73

derwin() CURSES Curses Interfaces

NAME
derwin, newwin, subwin — window creation functions

SYNOPSIS
#include <curses.h>

EC WINDOW *derwin(WINDOW *orig , int nlines , int ncols , int begin_y ,
int begin_x);

WINDOW *newwin(int nlines , int ncols , int begin_y , int begin_x);

WINDOW *subwin(WINDOW *orig , int nlines , int ncols , int begin_y ,
int begin_x);

DESCRIPTION
EC The derwin() function is the same as subwin(), except that begin_y and begin_x are relative to the

origin of the window orig rather than absolute screen positions.

The newwin() function creates a new window with nlines lines and ncols columns, positioned so
that the origin is (begin_y, begin_x). If nlines is zero, it defaults to LINES − begin_y; if ncols is zero,
it defaults to COLS − begin_x.

The subwin() function creates a new window with nlines lines and ncols columns, positioned so
that the origin is at (begin_y, begin_x). (This position is an absolute screen position, not a position
relative to the window orig.) If any part of the new window is outside orig, the function fails and
the window is not created.

RETURN VALUE
Upon successful completion, these functions return a pointer to the new window. Otherwise,
they return a null pointer.

ERRORS
No errors are defined.

APPLICATION USAGE
Before performing the first refresh of a subwindow, portable applications should call touchwin()
or touchline() on the parent window.

Each window maintains internal descriptions of the screen image and status. The screen image
is shared among all windows in the window hierarchy. Refresh operations rely on information
on what has changed within a window, which is private to each window. Refreshing a window,
when updates were made to a different window, may fail to perform needed updates because
the windows do not share this information.

A new full-screen window is created by calling:

newwin(0, 0, 0, 0);

SEE ALSO
delwin(), is_linetouched (), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

74 X/Open CAE Specification 1996

Curses Interfaces CURSES doupdate()

NAME
doupdate, refresh, wnoutrefresh, wrefresh — refresh windows and lines

SYNOPSIS
#include <curses.h>

int doupdate(void);

int refresh(void);

int wnoutrefresh(WINDOW * win);

int wrefresh(WINDOW * win);

DESCRIPTION
The refresh() and wrefresh() functions refresh the current or specified window. The functions
position the terminal’s cursor at the cursor position of the window, except that if the leaveok ()
mode has been enabled, they may leave the cursor at an arbitrary position.

The wnoutrefresh() function determines which parts of the terminal may need updating. The
doupdate () function sends to the terminal the commands to perform any required changes.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Refreshing an entire window is typically more efficient than refreshing several subwindows
separately. An efficient sequence is to call wnoutrefresh() on each subwindow that has changed,
followed by a call to doupdate (), which updates the terminal.

The refresh() or wrefresh() function (or wnoutrefresh() followed by doupdate ()) must be called to
send output to the terminal, as other Curses functions merely manipulate data structures.

SEE ALSO
clearok (), redrawwin(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

This entry is a merger of the Issue 3 entries refresh() and wnoutrefresh(). The DESCRIPTION is
rewritten for clarity and the argument list for the doupdate () and refresh() functions is explicitly
declared as void. Otherwise the functionality is identical to that defined in Issue 3.

X/Open Curses, Issue 4, Version 2 75

dupwin() ENHANCED CURSES Curses Interfaces

NAME
dupwin — duplicate a window

SYNOPSIS
EC #include <curses.h>

WINDOW *dupwin(WINDOW *win);

DESCRIPTION
The dupwin() function creates a duplicate of the window win.

RETURN VALUE
Upon successful completion, dupwin() returns a pointer to the new window. Otherwise, it
returns a null pointer.

ERRORS
No errors are defined.

SEE ALSO
derwin(), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

76 X/Open CAE Specification 1996

Curses Interfaces CURSES echo()

NAME
echo, noecho — enable/disable terminal echo

SYNOPSIS
#include <curses.h>

int echo(void);

int noecho(void);

DESCRIPTION
The echo() function enables Echo mode for the current screen. The noecho() function disables
Echo mode for the current screen. Initially, curses software echo mode is enabled and hardware
echo mode of the tty driver is disabled. echo() and noecho() control software echo only.
Hardware echo must remain disabled for the duration of the application, else the behaviour is
undefined.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.5 on page 23, getch(), <curses.h>, XBD specification, Section 9.2, Parameters That Can
Be Set.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the echo() and noecho() functions is
explicitly declared as void.

Issue 4, Version 2
Further clarification of the state of the echo modes.

X/Open Curses, Issue 4, Version 2 77

echochar() ENHANCED CURSES Curses Interfaces

NAME
echochar, wechochar — echo single-byte character and rendition to a window and refresh

SYNOPSIS
EC #include <curses.h>

int echochar(const chtype ch);

int wechochar(WINDOW * win , const chtype ch);

DESCRIPTION
The echochar() function is equivalent to a call to addch() followed by a call to refresh().

The wechochar() function is equivalent to a call to waddch() followed by a call to wrefresh().

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
addch(), doupdate (), echo_wchar(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

78 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES echo_wchar()

NAME
echo_wchar, wecho_wchar — write a complex character and immediately refresh the window

SYNOPSIS
EC #include <curses.h>

int echo_wchar(const cchar_t * wch);

int wecho_wchar(WINDOW * win , const cchar_t * wch);

DESCRIPTION

The echo_wchar() function is equivalent to calling add_wch() and then calling refresh().

The wecho_wchar() function is equivalent to calling wadd_wch() and then calling wrefresh().

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
addch(), add_wch(), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 79

endwin() CURSES Curses Interfaces

NAME
endwin — suspend Curses session

SYNOPSIS
#include <curses.h>

int endwin(void);

DESCRIPTION
The endwin() function restores the terminal after Curses activity by at least restoring the saved
shell terminal mode, flushing any output to the terminal and moving the cursor to the first
column of the last line of the screen. Refreshing a window resumes program mode. The
application must call endwin() for each terminal being used before exiting. If newterm() is called
more than once for the same terminal, the first screen created must be the last one for which
endwin() is called.

RETURN VALUE
Upon successful completion, endwin() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The endwin() function does not free storage associated with a screen, so delscreen() should be
called after endwin() if a particular screen is no longer needed.

To leave Curses mode temporarily, portable applications should call endwin(). Subsequently, to
return to Curses mode, they should call doupdate (), refresh() or wrefresh().

SEE ALSO
delscreen(), doupdate (), initscr(), isendwin(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list is explicitly declared as void.

80 X/Open CAE Specification 1996

Curses Interfaces CURSES erase()

NAME
erase, werase — clear a window

SYNOPSIS
#include <curses.h>

int erase(void);

int werase(WINDOW * win);

DESCRIPTION
Refer to clear().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for clear().

X/Open Curses, Issue 4, Version 2 81

erasechar() CURSES Curses Interfaces

NAME
erasechar, erasewchar, killchar, killwchar — terminal environment query functions

SYNOPSIS
#include <curses.h>

char erasechar(void);

EC int erasewchar(wchar_t * ch);

char killchar(void);

EC int killwchar(wchar_t * ch);

DESCRIPTION
EC The erasechar() function returns the current erase character. The erasewchar() function stores the

current erase character in the object pointed to by ch. If no erase character has been defined, the
function will fail and the object pointed to by ch will not be changed.

EC The killchar () function returns the current line kill character. The killwchar () function stores the
current line kill character in the object pointed to by ch. If no line kill character has been defined,
the function will fail and the object pointed to by ch will not be changed.

RETURN VALUE
The erasechar() function returns the erase character and killchar () returns the line kill character.
The return value is unspecified when these characters are multi-byte characters.

EC Upon successful completion, erasewchar() and killwchar () return OK. Otherwise, they return
ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The erasechar() and killchar () functions are only guaranteed to operate reliably on character sets
in which each character fits into a single byte, whose attributes can be expressed using only
constants with the A_ prefix. Moreover, they do not reliably indicate cases in which when the
erase or line kill character, respectively, has not been defined. The erasewchar() and killwchar ()
functions overcome these limitations.

SEE ALSO
Section 3.3.3 on page 16, clearok (), delscreen(), tcgetattr() (in the XSH specification) , <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The killchar () function is merged with this entry. In previous issues, it appeared in an entry of
its own.

The entry is rewritten for clarity. The argument list for the erasechar() and killchar () functions is
explicitly declared as void. The functions erasewchar() and killwchar () are added and marked as
an X/Open UNIX Extension.

82 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES filter()

NAME
filter — disable use of certain terminal capabilities

SYNOPSIS
EC #include <curses.h>

void filter(void);

DESCRIPTION
The filter() function changes the algorithm for initialising terminal capabilities that assume that
the terminal has more than one line. A subsequent call to initscr() or newterm() performs the
following additional actions:

• Disable use of clear, cud, cud1, cup, cuu1 and vpa.

• Set the value of the home string to the value of the cr. string

• Set lines equal to 1.

Any call to filter() must precede the call to initscr() or newterm().

RETURN VALUE
The filter() function does not return a value.

ERRORS
No errors are defined.

SEE ALSO
Section 6.1.3 on page 241, initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 83

flash() CURSES Curses Interfaces

NAME
flash — flash the screen

SYNOPSIS
#include <curses.h>

int flash(void);

DESCRIPTION
The flash() function alerts the user. It flashes the screen, or if that is not possible, it sounds the
audible alarm on the terminal. If neither signal is possible, nothing happens.

RETURN VALUE
The flash() function always returns OK.

ERRORS
No errors are defined.

APPLICATION USAGE
Nearly all terminals have an audible alarm, but only some can flash the screen.

SEE ALSO
beep(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

In previous issues, this function was included in the entry for beep(). It is moved to its own
entry in Issue 4, the argument list is explicitly declared as void, and the RETURN VALUE
section is changed to indicate that the function always returns OK.

84 X/Open CAE Specification 1996

Curses Interfaces CURSES flushinp()

NAME
flushinp — discard input

SYNOPSIS
#include <curses.h>

int flushinp(void);

DESCRIPTION
The flushinp() function discards (flushes) any characters in the input buffer associated with the
current screen.

RETURN VALUE
The flushinp() function always returns OK.

ERRORS
No errors are defined.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the flushinp() function is explicitly
declared as void.

X/Open Curses, Issue 4, Version 2 85

getbegyx() CURSES Curses Interfaces

NAME
getbegyx, getmaxyx, getparyx, getyx — get cursor and window coordinates

SYNOPSIS
#include <curses.h>

EC void getbegyx(WINDOW * win , int y, int x);

void getmaxyx(WINDOW * win , int y, int x);

void getparyx(WINDOW * win , int y, int x);

void getyx(WINDOW * win , int y, int x);

DESCRIPTION
The getyx() macro stores the cursor position of the specified window in y and x.

EC The getparyx() macro, if the specified window is a subwindow, stores in y and x the coordinates
of the window’s origin relative to its parent window. Otherwise, −1 is stored in y and x.

The getbegyx() macro stores the absolute screen coordinates of the specified window’s origin in y
and x.

The getmaxyx() macro stores the number of rows of the specified window in y and stores the
window’s number of columns in x.

RETURN VALUE
No return values are defined.

ERRORS
No errors are defined.

APPLICATION USAGE
These interfaces are macros and ‘&’ cannot be used before the y and x arguments.
Traditional implementations have often defined the following macros:

void getbegx(WINDOW * win , int x);
void getbegy(WINDOW * win , int y);
void getmaxx(WINDOW * win , int x);
void getmaxy(WINDOW * win , int y);
void getparx(WINDOW * win , int x);
void getpary(WINDOW * win , int y);

Although getbegyx(), getmaxyx() and getparyx() provide the required functionality, this does not
preclude applications from defining these macros for their own use. For example, to implement
void getbegx(WINDOW * win , int x);
the macro would be

#define getbegx(_win,_x) \
{ \

int _y; \
\

getbegyx(_win,_y,_x); \
}

SEE ALSO
<curses.h>.

86 X/Open CAE Specification 1996

Curses Interfaces CURSES getbegyx()

CHANGE HISTORY
First released in Issue 4.

Corrections made to "APPLICATION USAGE" section, Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 87

getbkgd() ENHANCED CURSES Curses Interfaces

NAME
getbkgd — get background character and rendition using a single-byte character

SYNOPSIS
EC #include <curses.h>

chtype getbkgd(WINDOW * win);

DESCRIPTION
Refer to bkgd().

CHANGE HISTORY
First released in Issue 4.

88 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES getbkgrnd()

NAME
getbkgrnd — get background character and rendition

SYNOPSIS
EC #include <curses.h>

int getbkgrnd(cchar_t * ch);

DESCRIPTION
Refer to bkgrnd().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 89

getcchar() ENHANCED CURSES Curses Interfaces

NAME
getcchar — get a wide character string and rendition from a cchar_t

SYNOPSIS
EC #include <curses.h>

int getcchar(const cchar_t * wcval , wchar_t * wch, attr_t * attrs ,
short * color_pair , void * opts);

DESCRIPTION
When wch is not a null pointer, the getcchar() function extracts information from a cchar_t
defined by wcval, stores the character attributes in the object pointed to by attrs, stores the colour
pair in the object pointed to by color_pair, and stores the wide character string referenced by
wcval into the array pointed to by wch.

When wch is a null pointer, getcchar() obtains the number of wide characters in the object
pointed to by wcval and does not change the objects pointed to by attrs or color_pair.

The opts argument is reserved for definition in a future edition of this document. Currently, the
application must provide a null pointer as opts.

RETURN VALUE
When wch is a null pointer, getcchar() returns the number of wide characters referenced by wcval,
including the null terminator.

When wch is not a null pointer, getcchar() returns OK upon successful completion, and ERR
otherwise.

ERRORS
No errors are defined.

APPLICATION USAGE
The wcval argument may be a value generated by a call to setcchar() or by a function that has a
cchar_t output argument. If wcval is constructed by any other means, the effect is unspecified.

SEE ALSO
attroff(), can_change_color (), setcchar(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

90 X/Open CAE Specification 1996

Curses Interfaces CURSES getch()

NAME
getch, wgetch, mvgetch, mvwgetch — get a single-byte character from the terminal

SYNOPSIS
#include <curses.h>

int getch(void);

int mvgetch(int y, int x);

int mvwgetch(WINDOW * win , int y, int x);

int wgetch(WINDOW * win);

DESCRIPTION
These functions read a single-byte character from the terminal associated with the current or
specified window. The results are unspecified if the input is not a single-byte character. If
keypad () is enabled, these functions respond to the pressing of a function key by returning the
corresponding KEY_ value defined in <curses.h>.

Processing of terminal input is subject to the general rules described in Section 3.5 on page 23.

If echoing is enabled, then the character is echoed as though it were provided as an input
argument to addch(), except for the following characters:

<backspace>, <left-arrow>
and the current erase
character:

The input is interpreted as specified in Section 3.4.3 on page 21
and then the character at the resulting cursor position is deleted
as though delch() were called, except that if the cursor was
originally in the first column of the line, then the user is alerted
as though beep() were called.

The user is alerted as though beep() were called. Information
concerning the function keys is not returned to the caller.

Function keys

If the current or specified window is not a pad, and it has been moved or modified since the last
refresh operation, then it will be refreshed before another character is read.

RETURN VALUE
Upon successful completion getch(), mvgetch(), mvwgetch() and wgetch() return the single-byte
character, KEY_ value, or ERR. When in the nodelay mode and no data is available, ERR is
returned.

ERRORS
No errors are defined.

APPLICATION USAGE
Applications should not define the escape key by itself as a single-character function.

When using these functions, nocbreak mode (nocbreak()) and echo mode (echo()) should not be
used at the same time. Depending on the state of the terminal when each character is typed, the
program may produce undesirable results.

SEE ALSO
Section 3.5 on page 23, cbreak(), doupdate (), insch(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the getch() function is explicitly declared

X/Open Curses, Issue 4, Version 2 91

getch() CURSES Curses Interfaces

as void.

Issue 4, Version 2
The Return Value section is expanded.

92 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES getmaxyx()

NAME
getmaxyx — get size of a window

SYNOPSIS
EC #include <curses.h>

void getmaxyx(WINDOW * win , int y, int x);

DESCRIPTION
Refer to getbegyx().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 93

getnstr() CURSES Curses Interfaces

NAME
getnstr, getstr, mvgetnstr, mvgetstr, mvwgetnstr, mvwgetstr, wgetstr, wgetnstr — get a multi-
byte character string from the terminal

SYNOPSIS
#include <curses.h>

EC int getnstr(char * str , int n);

int getstr(char * str);

EC int mvgetnstr(int y, int x, char * str , int n);

int mvgetstr(int y, int x, char * str);

EC int mvwgetnstr(WINDOW * win , int y, int x, char * str , int n);

int mvwgetstr(WINDOW * win , int y, int x, char * str);

EC int wgetnstr(WINDOW * win , char * str , int n);

int wgetstr(WINDOW * win , char * str);

DESCRIPTION
The effect of getstr() is as though a series of calls to getch() were made, until a newline, carriage
return or end-of-file is received. The resulting value is placed in the area pointed to by str. The

EC string is then terminated with a null byte. The getnstr(), mvgetnstr(), mvwgetnstr() and
wgetnstr() functions read at most n bytes, thus preventing a possible overflow of the input
buffer. The user’s erase and kill characters are interpreted, as well as any special keys (such as
function keys, home key, clear key, and so on).

The mvgetstr() function is identical to getstr() except that it is as though it is a call to move() and
then a series of calls to getch(). The mvwgetstr() function is identical to getstr() except it is as

EC though a call to wmove() is made and then a series of calls to wgetch(). The mvgetnstr() function
is identical to getnstr() except that it is as though it is a call to move() and then a series of calls to
getch(). The mvwgetnstr() function is identical to getnstr() except it is as though a call to
wmove() is made and then a series of calls to wgetch().

The getnstr(), wgetnstr(), mvgetnstr() and mvwgetnstr() functions will only return the entire
multi-byte sequence associated with a character. If the array is large enough to contain at least
one character, the functions fill the array with complete characters. If the array is not large
enough to contain any complete characters, the function fails.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Reading a line that overflows the array pointed to by str with getstr(), mvgetstr(), mvwgetstr() or
wgetstr() causes undefined results. The use of getnstr(), mvgetnstr(), mvwgetnstr() or wgetnstr(),
respectively, is recommended.

SEE ALSO
Section 3.5 on page 23, beep(), getch(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

94 X/Open CAE Specification 1996

Curses Interfaces CURSES getnstr()

In Issue 3, the getstr(), mvgetstr(), mvwgetstr() and wgetstr() functions were described in the
addstr() entry. In Issue 4, the DESCRIPTION of these functions is rewritten for clarity and is
updated to indicate that they will handle multi-byte sequences correctly.

Corrections made to first sentence of "DESCRIPTION", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 95

getn_wstr() ENHANCED CURSES Curses Interfaces

NAME
getn_wstr, get_wstr, mvgetn_wstr, mvget_wstr, mvwgetn_wstr, mvwget_wstr, wgetn_wstr,
wget_wstr — get an array of wide characters and function key codes from a terminal

SYNOPSIS
EC #include <curses.h>

int getn_wstr(wchar_t * wstr , int n);

int get_wstr(wchar_t * wstr);

int mvgetn_wstr(int y, int x, wchar_t * wstr , int n);

int mvget_wstr(int y, int x, wchar_t * wstr);

int mvwgetn_wstr(WINDOW * win , int y, int x, wchar_t * wstr , int n);

int mvwget_wstr(WINDOW * win , int y, int x, wchar_t * wstr);

int wgetn_wstr(WINDOW * win , wchar_t * wstr , int n);

int wget_wstr(WINDOW * win , wchar_t * wstr);

DESCRIPTION
The effect of get_wstr() is as though a series of calls to get_wch() were made, until a newline
character, end-of-line character, or end-of-file character is processed. An end-of-file character is
represented by WEOF, as defined in <wchar.h>. A newline or end-of-line is represented as its
wchar_t value. In all instances, the end of the string is terminated by a null wchar_t. The
resulting values are placed in the area pointed to by wstr.

The user’s erase and kill characters are interpreted and affect the sequence of characters
returned.

The effect of wget_wstr() is as though a series of calls to wget_wch() were made.

The effect of mvget_wstr() is as though a call to move() and then a series of calls to get_wch()
were made. The effect of mvwget_wstr() is as though a call to wmove() and then a series of calls
to wget_wch() were made. The effect of mvget_nwstr() is as though a call to move() and then a
series of calls to get_wch() were made. The effect of mvwget_nwstr() is as though a call to
wmove() and then a series of calls to wget_wch() were made.

The getn_wstr(), mvgetn_wstr(), mvwgetn_wstr() and wgetn_wstr() functions read at most n
characters, letting the application prevent overflow of the input buffer.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Reading a line that overflows the array pointed to by wstr with get_wstr(), mvget_wstr(),
mvwget_wstr() or wget_wstr() causes undefined results. The use of getn_wstr(), mvgetn_wstr(),
mvwgetn_wstr() or wgetn_wstr(), respectively, is recommended.

These functions cannot return KEY_ values as there is no way to distinguish a KEY_ value from
a valid wchar_t value.

SEE ALSO
get_wch(), getstr(), <curses.h>, <wchar.h> (in the XSH specification), XBD specification,
Chapter 9, General Terminal Interface.

96 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES getn_wstr()

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 97

getparyx() ENHANCED CURSES Curses Interfaces

NAME
getparyx — get subwindow origin coordinates

SYNOPSIS
EC #include <curses.h>

void getparyx(WINDOW * win , int y, int x);

DESCRIPTION
Refer to getbegyx().

CHANGE HISTORY
First released in Issue 4.

98 X/Open CAE Specification 1996

Curses Interfaces CURSES getstr()

NAME
getstr — get a multi-byte character string from the terminal

SYNOPSIS
#include <curses.h>

int getstr(char * str);

DESCRIPTION
Refer to getnstr().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for getnstr().

X/Open Curses, Issue 4, Version 2 99

get_wch() ENHANCED CURSES Curses Interfaces

NAME
get_wch, mvget_wch, mvwget_wch, wget_wch — get a wide character from a terminal

SYNOPSIS
EC #include <curses.h>

int get_wch(wint_t * ch);

int mvget_wch(int y, int x, wint_t * ch);

int mvwget_wch(WINDOW * win , int y, int x, wint_t * ch);

int wget_wch(WINDOW * win , wint_t * ch);

DESCRIPTION
These functions read a character from the terminal associated with the current or specified
window. If keypad () is enabled, these functions respond to the pressing of a function key by
setting the object pointed to by ch to the corresponding KEY_ value defined in <curses.h> and
returning KEY_CODE_YES.

Processing of terminal input is subject to the general rules described in Section 3.5 on page 23.

If echoing is enabled, then the character is echoed as though it were provided as an input
argument to add_wch(), except for the following characters:

<backspace>, <left-arrow>
and the current erase
character:

The input is interpreted as specified in Section 3.4.3 on page 21
and then the character at the resulting cursor position is deleted
as though delch() were called, except that if the cursor was
originally in the first column of the line, then the user is alerted
as though beep() were called.

The user is alerted as though beep() were called. Information
concerning the function keys is not returned to the caller.

Function keys

If the current or specified window is not a pad, and it has been moved or modified since the last
refresh operation, then it will be refreshed before another character is read.

RETURN VALUE
When these functions successfully report the pressing of a function key, they return
KEY_CODE_YES. When they successfully report a wide character, they return OK. Otherwise,
they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Applications should not define the escape key by itself as a single-character function.

When using these functions, nocbreak() mode and echo() mode should not be used at the same
time. Depending on the state of the terminal when each character is typed, the application may
produce undesirable results.

SEE ALSO
Section 3.5 on page 23, beep(), cbreak(), ins_wch(), keypad (), move(), <curses.h>, <wchar.h> (in
the XSH specification).

CHANGE HISTORY
First released in Issue 4.

100 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES getwin()

NAME
getwin, putwin — dump window to, and reload window from, a file

SYNOPSIS
EC #include <curses.h>

WINDOW *getwin(FILE * filep);

int putwin(WINDOW * win , FILE * filep);

DESCRIPTION
The getwin() function reads window-related data stored in the file by putwin(). The function
then creates and initialises a new window using that data.

The putwin() function writes all data associated with win into the stdio stream to which filep
points, using an unspecified format. This information can be retrieved later using getwin().

RETURN VALUE
Upon successful completion, getwin() returns a pointer to the window it created. Otherwise, it
returns a null pointer.

Upon successful completion, putwin() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
scr_dump(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 101

get_wstr() ENHANCED CURSES Curses Interfaces

NAME
get_wstr — get an array of wide characters and function key codes from a terminal

SYNOPSIS
EC #include <curses.h>

int get_wstr(wint_t * wstr);

DESCRIPTION
Refer to getn_wstr().

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

102 X/Open CAE Specification 1996

Curses Interfaces CURSES getyx()

NAME
getyx — get cursor coordinates

SYNOPSIS
#include <curses.h>

void getyx(WINDOW * win , int y, int x);

DESCRIPTION
Refer to getbegyx().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for getbegyx().

X/Open Curses, Issue 4, Version 2 103

halfdelay() ENHANCED CURSES Curses Interfaces

NAME
halfdelay — control input character delay mode

SYNOPSIS
EC #include <curses.h>

int halfdelay(int tenths);

DESCRIPTION
The halfdelay () function sets the input mode for the current window to Half-Delay Mode and
specifies tenths tenths of seconds as the half-delay interval. The tenths argument must be in a
range from 1 up to and including 255.

RETURN VALUE
Upon successful completion, halfdelay () returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The application can call nocbreak() to leave Half-Delay mode.

SEE ALSO
Section 3.5.2 on page 24, cbreak(), <curses.h> XBD specification, Chapter 9, General Terminal
Interface.

CHANGE HISTORY
First released in Issue 4.

104 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES has_colors()

NAME
has_colors — indicate whether terminal supports colours

SYNOPSIS
EC #include <curses.h>

bool has_colors(void);

DESCRIPTION
Refer to can_change_color ().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 105

has_ic() CURSES Curses Interfaces

NAME
has_ic, has_il — query functions for terminal insert and delete capability

SYNOPSIS
#include <curses.h>

bool has_ic(void);

bool has_il(void);

DESCRIPTION
The has_ic() function indicates whether the terminal has insert- and delete-character capabilities.

The has_il () function indicates whether the terminal has insert- and delete-line capabilities, or
can simulate them using scrolling regions.

RETURN VALUE
The has_ic() function returns TRUE if the terminal has insert- and delete-character capabilities.
Otherwise, it returns FALSE.

The has_il () function returns TRUE if the terminal has insert- and delete-line capabilities.
Otherwise, it returns FALSE.

ERRORS
No errors are defined.

APPLICATION USAGE
The has_il () function may be used to determine if it would be appropriate to turn on physical
scrolling using scrollok ().

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The has_il () function is merged with this entry. In previous issues, it appeared in an entry of its
own.

The entry is rewritten for clarity. The argument list for the has_ic() and has_il () functions is
explicitly declared as void.

106 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES hline()

NAME
hline, mvhline, mvvline, mvwhline, mvwvline, vline, whline, wvline — draw lines from single-
byte characters and renditions

SYNOPSIS
EC #include <curses.h>

int hline(chtype ch , int n);

int mvhline(int y, int x, chtype ch , int n);

int mvvline(int y, int x, chtype ch , int n);

int mvwhline(WINDOW * win , int y, int x, chtype ch , int n);

int mvwvline(WINDOW * win , int y, int x, chtype ch , int n);

int vline(chtype ch , int n);

int whline(WINDOW * win , chtype ch , int n);

int wvline(WINDOW * win , chtype ch , int n);

DESCRIPTION
These functions draw a line in the current or specified window starting at the current or
specified position, using ch. The line is at most n positions long, or as many as fit into the
window.

These functions do not advance the cursor position. These functions do not perform special
character processing. These functions do not perform wrapping.

The hline(), mvhline(), mvwhline() and whline() functions draw a line proceeding toward the last
column of the same line.

The vline(), mvvline(), mvwvline() and wvline() functions draw a line proceeding toward the last
line of the window.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
border(), box(), hline_set(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 107

hline_set() ENHANCED CURSES Curses Interfaces

NAME
hline_set, mvhline_set, mvvline_set, mvwhline_set, mvwvline_set, vline_set, whline_set,
wvline_set — draw lines from complex characters and renditions

SYNOPSIS
EC #include <curses.h>

int hline_set(const cchar_t * wch, int n);

int mvhline_set(int y, int x, const cchar_t * wch, int n);

int mvvline_set(int y, int x, const cchar_t * wch, int n);

int mvwhline_set(WINDOW * win , int y, int x, const cchar_t * wch, int n);

int mvwvline_set(WINDOW * win , int y, int x, const cchar_t * wch, int n);

int vline_set(const cchar_t * wch, int n);

int whline_set(WINDOW * win , const cchar_t * wch, int n);

int wvline_set(WINDOW * win , const cchar_t * wch, int n);

DESCRIPTION
These functions draw a line in the current or specified window starting at the current or
specified position, using ch. The line is at most n positions long, or as many as fit into the
window.

These functions do not advance the cursor position. These functions do not perform special
character processing. These functions do not perform wrapping.

The hline_set(), mvhline_set(), mvwhline_set() and whline_set() functions draw a line proceeding
toward the last column of the same line.

The vline_set(), mvvline_set(), mvwvline_set() and wvline_set() functions draw a line proceeding
toward the last line of the window.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
border_set(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

108 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES idcok()

NAME
idcok — enable or disable use of hardware insert- and delete-character features

SYNOPSIS
EC #include <curses.h>

void idcok(WINDOW * win , bool bf);

DESCRIPTION
The idcok () function specifies whether the implementation may use hardware insert- and
delete-character features in win if the terminal is so equipped. If bf is TRUE, use of these features
in win is enabled. If bf is FALSE, use of these features in win is disabled. The initial state is
TRUE.

RETURN VALUE
The idcok () function does not return a value.

ERRORS
No errors are defined.

SEE ALSO
clearok (), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 109

idlok() CURSES Curses Interfaces

NAME
idlok — enable or disable use of terminal insert- and delete-line features

SYNOPSIS
#include <curses.h>

int idlok(WINDOW * win , bool bf);

DESCRIPTION
Refer to clearok ().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for clearok ().

110 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES immedok()

NAME
immedok — enable or disable immediate terminal refresh

SYNOPSIS
EC #include <curses.h>

void immedok(WINDOW * win , bool bf);

DESCRIPTION
The immedok() function specifies whether the screen is refreshed whenever the window pointed
to by win is changed. If bf is TRUE, the window is implicitly refreshed on each such change. If bf
is FALSE, the window is not implicitly refreshed. The initial state is FALSE.

RETURN VALUE
The immedok() function does not return a value.

ERRORS
No errors are defined.

APPLICATION USAGE
The immedok() function is useful for windows that are used as terminal emulators.

SEE ALSO
clearok (), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 111

inch() CURSES Curses Interfaces

NAME
inch, mvinch, mvwinch, winch — input a single-byte character and rendition from a window

SYNOPSIS
#include <curses.h>

chtype inch(void);

chtype mvinch(int y, int x);

chtype mvwinch(WINDOW * win , int y, int x);

chtype winch(WINDOW * win);

DESCRIPTION
These functions return the character and rendition, of type chtype, at the current or specified
position in the current or specified window.

RETURN VALUE
Upon successful completion, the functions return the specified character and rendition.
Otherwise, they return (chtype)ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the inch() function is explicitly declared
as void.

112 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES inchnstr()

NAME
inchnstr, inchstr, mvinchnstr, mvinchstr, mvwinchnstr, mvwinchstr, winchnstr, winchstr —
input an array of single-byte characters and renditions from a window

SYNOPSIS
EC #include <curses.h>

int inchnstr(chtype * chstr , int n);

int inchstr(chtype * chstr);

int mvinchnstr(int y, int x, chtype * chstr , int n);

int mvinchstr(int y, int x, chtype * chstr);

int mvwinchnstr(WINDOW * win , int y, int x, chtype * chstr , int n);

int mvwinchstr(WINDOW * win , int y, int x, chtype * chstr);

int winchnstr(WINDOW * win , chtype * chstr , int n);

int winchstr(WINDOW * win , chtype * chstr);

DESCRIPTION
These functions place characters and renditions from the current or specified window into the
array pointed to by chstr, starting at the current or specified position and ending at the end of the
line.

The inchnstr(), mvinchnstr(), mvwinchnstr() and winchnstr() functions store at most n elements
from the current or specified window into the array pointed to by chstr.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Reading a line that overflows the array pointed to by chstr with inchstr(), mvinchstr(),
mvwinchstr() or winchstr() causes undefined results. The use of inchnstr(), mvinchnstr(),
mvwinchnstr() or winchnstr(), respectively, is recommended.

SEE ALSO
inch(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 113

init_color() ENHANCED CURSES Curses Interfaces

NAME
init_color, init_pair — redefine specified colour or colour pair

SYNOPSIS
EC #include <curses.h>

int init_color(short color , short red , short green , short blue);

int init_pair(short pair , short f , short b);

DESCRIPTION
Refer to can_change_color ().

CHANGE HISTORY
First released in Issue 4.

114 X/Open CAE Specification 1996

Curses Interfaces CURSES initscr()

NAME
initscr, newterm — screen initialisation functions

SYNOPSIS
#include <curses.h>

WINDOW *initscr(void);

SCREEN *newterm(char * type , FILE * outfile , FILE * infile);

DESCRIPTION
The initscr() function determines the terminal type and initialises all implementation data
structures. The TERM environment variable specifies the terminal type. The initscr() function
also causes the first refresh operation to clear the screen. If errors occur, initscr() writes an
appropriate error message to standard error and exits. The only functions that can be called
before initscr() or newterm() are filter(), ripoffline(), slk_init (), use_env() and the functions whose
prototypes are defined in <term.h>. Portable applications must not call initscr() twice.

The newterm() function can be called as many times as desired to attach a terminal device. The
type argument points to a string specifying the terminal type, except that if type is a null pointer,
the TERM environment variable is used. The outfile and infile arguments are file pointers for
output to the terminal and input from the terminal, respectively. It is unspecified whether
Curses modifies the buffering mode of these file pointers. The newterm() function should be
called once for each terminal.

The initscr() function is equivalent to:

newterm(getenv("TERM"), stdout, stdin);
return stdscr;

If the current disposition for the signals SIGINT, SIGQUIT or SIGTSTP is SIGDFL, then initscr()
may also install a handler for the signal, which may remain in effect for the life of the process or
until the process changes the disposition of the signal.

The initscr() and newterm() functions initialise the cur_term external variable.

RETURN VALUE
Upon successful completion, initscr() returns a pointer to stdscr. Otherwise, it does not return.

Upon successful completion, newterm() returns a pointer to the specified terminal. Otherwise, it
returns a null pointer.

ERRORS
No errors are defined.

APPLICATION USAGE
A program that outputs to more than one terminal should use newterm() for each terminal
instead of initscr(). A program that needs an indication of error conditions, so it can continue to
run in a line-oriented mode if the terminal cannot support a screen-oriented program, would
also use this function.

Applications should perform any required handling of the SIGINT, SIGQUIT or SIGTSTP signals
before calling initscr().

SEE ALSO
Section A.3 on page 279, delscreen(), doupdate (), del_curterm(), filter(), slk_attroff(), use_env(),
<curses.h>.

CHANGE HISTORY
First released in Issue 2.

X/Open Curses, Issue 4, Version 2 115

initscr() CURSES Curses Interfaces

Issue 4
The newterm() function is merged with this entry. In previous issues, it appeared in an entry of
its own.

The entry is rewritten for clarity. The argument list for the initscr() function is explicitly
declared as void.

116 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES innstr()

NAME
innstr, instr, mvinnstr, mvinstr, mvwinnstr, mvwinstr, winnstr, winstr — input a multi-byte
character string from a window

SYNOPSIS
EC #include <curses.h>

int innstr(char * str , int n);

int instr(char * str);

int mvinnstr(int y, int x, char * str , int n);

int mvinstr(int y, int x, char * str);

int mvwinnstr(WINDOW * win , int y, int x, char * str , int n);

int mvwinstr(WINDOW * win , int y, int x, char * str);

int winnstr(WINDOW * win , char * str , int n);

int winstr(WINDOW * win , char * str);

DESCRIPTION
These functions place a string of characters from the current or specified window into the array
pointed to by str, starting at the current or specified position and ending at the end of the line.

The innstr(), mvinnstr(), mvwinnstr() and winnstr() functions store at most n bytes in the string
pointed to by str.

The innstr(), mvinnstr(), mvwinnstr() and winnstr() functions will only store the entire multi-
byte sequence associated with a character. If the array is large enough to contain at least one
character the array is filled with complete characters. If the array is not large enough to contain
any complete characters, the function fails.

RETURN VALUE
Upon successful completion, instr(), mvinstr(), mvwinstr() and winstr() return OK.

Upon successful completion, innstr(), mvinnstr(), mvwinnstr() and winnstr() return the number
of characters actually read into the string.

Otherwise, all these functions return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Since multi-byte characters may be processed, there might not be a one-to-one correspondence
between the number of column positions on the screen and the number of bytes returned.

These functions do not return rendition information.

Reading a line that overflows the array pointed to by str with instr(), mvinstr(), mvwinstr() or
winstr() causes undefined results. The use of innstr(), mvinnstr(), mvwinnstr() or winnstr(),
respectively, is recommended.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 117

innwstr() ENHANCED CURSES Curses Interfaces

NAME
innwstr, inwstr, mvinnwstr, mvinwstr, mvwinnwstr, mvwinwstr, winnwstr, winwstr — input a
string of wide characters from a window

SYNOPSIS
EC #include <curses.h>

int innwstr(wchar_t * wstr , int n);

int inwstr(wchar_t * wstr);

int mvinnwstr(int y, int x, wchar_t * wstr , int n);

int mvinwstr(int y, int x, wchar_t * wstr);

int mvwinnwstr(WINDOW * win , int y, int x, wchar_t * wstr , int n);

int mvwinwstr(WINDOW * win , int y, int x, wchar_t * wstr);

int winnwstr(WINDOW * win , wchar_t * wstr , int n);

int winwstr(WINDOW * win , wchar_t * wstr);

DESCRIPTION
These functions place a string of wchar_t characters from the current or specified window into
the array pointed to by wstr starting at the current or specified cursor position and ending at the
end of the line.

These functions will only store the entire wide character sequence associated with a spacing
complex character. If the array is large enough to contain at least one complete spacing complex
character, the array is filled with complete characters. If the array is not large enough to contain
any complete characters this is an error.

The innwstr(), mvinnwstr(), mvwinnwstr() and winnwstr() functions store at most n characters in
the array pointed to by wstr.

RETURN VALUE
Upon successful completion, inwstr(), mvinwstr(), mvwinwstr() and winwstr() return OK.

Upon successful completion, innwstr(), mvinnwstr(), mvwinnwstr() and winnwstr() return the
number of characters actually read into the string.

Otherwise, all these functions return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Reading a line that overflows the array pointed to by wstr with inwstr(), mvinwstr(),
mvwinwstr() or winwstr() causes undefined results. The use of innwstr(), mvinnwstr(),
mvwinnwstr() or winnwstr(), respectively, is recommended.

These functions do not return rendition information.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

118 X/Open CAE Specification 1996

Curses Interfaces CURSES insch()

NAME
insch, mvinsch, mvwinsch, winsch — insert a single-byte character and rendition into a window

SYNOPSIS
#include <curses.h>

int insch(chtype ch);

int mvinsch(int y, int x, chtype ch);

int mvwinsch(WINDOW * win , int y, int x, chtype ch);

int winsch(WINDOW * win , chtype ch);

DESCRIPTION
These functions insert the character and rendition from ch into the current or specified window
at the current or specified position.

These functions do not perform wrapping. These functions do not advance the cursor position.
These functions perform special-character processing, with the exception that if a newline is
inserted into the last line of a window and scrolling is not enabled, the behavior is unspecified.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

SEE ALSO
ins_wch(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

Further clarification in the "DESCRIPTION" section, Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 119

insdelln() ENHANCED CURSES Curses Interfaces

NAME
insdelln, winsdelln — delete or insert lines into a window

SYNOPSIS
EC #include <curses.h>

int insdelln(int n);

int winsdelln(WINDOW * win , int n);

DESCRIPTION
The insdelln() and winsdelln() functions perform the following actions:

• If n is positive, these functions insert n lines into the current or specified window before the
current line. The n last lines are no longer displayed.

• If n is negative, these functions delete n lines from the current or specified window starting
with the current line, and move the remaining lines toward the cursor. The last n lines are
cleared.

The current cursor position remains the same.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
deleteln(), insertln(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

120 X/Open CAE Specification 1996

Curses Interfaces CURSES insertln()

NAME
insertln, winsertln — insert lines into a window

SYNOPSIS
#include <curses.h>

int insertln(void);

int winsertln(WINDOW * win);

DESCRIPTION
The insertln() and winsertln() functions insert a blank line before the current line in the current
or specified window. The bottom line is no longer displayed. The cursor position does not
change.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
insdelln(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the insertln() function is explicitly
declared as void.

X/Open Curses, Issue 4, Version 2 121

insnstr() ENHANCED CURSES Curses Interfaces

NAME
insnstr, insstr, mvinsnstr, mvinsstr, mvwinsnstr, mvwinsstr, winsnstr, winsstr — insert a multi-
byte character string into a window

SYNOPSIS
EC #include <curses.h>

int insnstr(const char * str , int n);

int insstr(const char * str);

int mvinsnstr(int y, int x, const char * str , int n);

int mvinsstr(int y, int x, const char * str);

int mvwinsnstr(WINDOW * win , int y, int x, const char * str , int n);

int mvwinsstr(WINDOW * win , int y, int x, const char * str);

int winsnstr(WINDOW * win , const char * str , int n);

int winsstr(WINDOW * win , const char * str);

DESCRIPTION
These functions insert a character string (as many characters as will fit on the line) before the
current or specified position in the current or specified window.

These functions do not advance the cursor position. These functions perform special-character
processing. The insnstr() and winsnstr() functions perform wrapping. The insstr() and winsstr()
functions do not perform wrapping.

The insnstr(), mvinsnstr(), mvwinsnstr() and winsnstr() functions insert at most n bytes. If n is
less than 1, the entire string is inserted.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Since the string may contain multi-byte characters, there might not be a one-to-one
correspondence between the number of column positions occupied by the characters and the
number of bytes in the string.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

122 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES ins_nwstr()

NAME
ins_nwstr, ins_wstr, mvins_nwstr, mvins_wstr, mvwins_nwstr, mvwins_wstr, wins_nwstr,
wins_wstr — insert a wide-character string into a window

SYNOPSIS
EC #include <curses.h>

int ins_nwstr(const wchar_t * wstr , int n);

int ins_wstr(const wchar_t * wstr);

int mvins_nwstr(int y, int x, const wchar_t * wstr , int n);

int mvins_wstr(int y, int x, const wchar_t * wstr);

int mvwins_nwstr(WINDOW * win , int y, int x, const wchar_t * wstr , int n);

int mvwins_wstr(WINDOW * win , int y, int x, const wchar_t * wstr);

int wins_nwstr(WINDOW * win , const wchar_t * wstr , int n);

int wins_wstr(WINDOW * win , const wchar_t * wstr);

DESCRIPTION
These functions insert a wchar_t character string (as many wchar_t characters as will fit on the
line) in the current or specified window immediately before the current or specified position.

Any non-spacing characters in the string are associated with the first spacing character in the
string that precedes the non-spacing characters. If the first character in the string is a non-
spacing character, these functions will fail.

These functions do not perform wrapping. These functions do not advance the cursor position.
These functions perform special-character processing.

The ins_nwstr(), mvins_nwstr(), mvwins_nwstr() and wins_nwstr() functions insert at most n
wchar_t characters. If n is less than 1, then the entire string is inserted.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 123

insstr() ENHANCED CURSES Curses Interfaces

NAME
insstr — insert a multi-byte character string into the current window

SYNOPSIS
EC #include <curses.h>

int insstr(const char * str);

DESCRIPTION
Refer to insnstr().

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

124 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES instr()

NAME
instr — input a multi-byte character string from the current window

SYNOPSIS
EC #include <curses.h>

int instr(char * str);

DESCRIPTION
Refer to innstr().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 125

ins_wch() ENHANCED CURSES Curses Interfaces

NAME
ins_wch, mvins_wch, mvwins_wch, wins_wch — insert a complex character and rendition into
a window

SYNOPSIS
EC #include <curses.h>

int ins_wch(const cchar_t * wch);

int wins_wch(WINDOW * win , const cchar_t * wch);

int mvins_wch(int y, int x, const cchar_t * wch);

int mvwins_wch(WINDOW * win , int y, int x, const cchar_t * wch);

DESCRIPTION
These functions insert the complex character wch with its rendition in the current or specified
window at the current or specified cursor position.

These functions do not perform wrapping. These functions do not advance the cursor position.
These functions perform special-character processing, with the exception that if a newline is
inserted into the last line of a window and scrolling is not enabled, the behavior is unspecified.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
For non-spacing characters, add_wch() can be used to add the non-spacing characters to a
spacing complex character already in the window.

SEE ALSO
add_wch(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

126 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES ins_wstr()

NAME
ins_wstr — insert a wide-character string into the current window

SYNOPSIS
EC #include <curses.h>

int ins_wstr(const wchar_t * wstr);

DESCRIPTION
Refer to ins_nwstr().

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 127

intrflush() CURSES Curses Interfaces

NAME
intrflush — enable or disable flush on interrupt

SYNOPSIS
#include <curses.h>

int intrflush(WINDOW * win , bool bf);

DESCRIPTION
The intrflush() function specifies whether pressing an interrupt key (interrupt, suspend or quit)
will flush the input buffer associated with the current screen. If the value of bf is TRUE, then
flushing of the output buffer associated with the current screen will occur when an interrupt key
(interrupt, suspend, or quit) is pressed. If the value of bf is FALSE then no flushing of the buffer
will occur when an interrupt key is pressed The default for the option is inherited from the
display driver settings. The win argument is ignored.

RETURN VALUE
Upon successful completion, intrflush() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The same effect is achieved outside Curses using the NOFLSH local mode flag specified in the
XBD specification (General Terminal Interface).

SEE ALSO
Section 3.5 on page 23, <curses.h>, XBD specification, Section 9.2, Parameters That Can Be Set.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

Issue 4, Version 2
The description of the bf argument has been changed to align with Issue 3 and preserve
compatibility.

128 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES in_wch()

NAME
in_wch, mvin_wch, mvwin_wch, win_wch — extract a complex character and rendition from a
window

SYNOPSIS
EC #include <curses.h>

int in_wch(cchar_t * wcval);

int mvin_wch(int y, int x, cchar_t * wcval);

int mvwin_wch(WINDOW * win , int y, int x, cchar_t * wcval);

int win_wch(WINDOW * win , cchar_t * wcval);

DESCRIPTION
These functions extract the complex character and rendition from the current or specified
position in the current or specified window into the object pointed to by wcval.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 129

in_wchnstr() ENHANCED CURSES Curses Interfaces

NAME
in_wchnstr, in_wchstr, mvin_wchnstr, mvin_wchstr, mvwin_wchnstr, mvwin_wchstr,
win_wchnstr, win_wchstr — extract an array of complex characters and renditions from a
window

SYNOPSIS
EC #include <curses.h>

int in_wchnstr(cchar_t * wchstr , int n);

int in_wchstr(cchar_t * wchstr);

int mvin_wchnstr(int y, int x, cchar_t * wchstr , int n);

int mvin_wchstr(int y, int x, cchar_t * wchstr);

int mvwin_wchnstr(WINDOW * win , int y, int x, cchar_t * wchstr , int n);

int mvwin_wchstr(WINDOW * win , int y, int x, cchar_t * wchstr);

int win_wchnstr(WINDOW * win , cchar_t * wchstr , int n);

int win_wchstr(WINDOW * win , cchar_t * wchstr);

DESCRIPTION
These functions extract characters from the current or specified window, starting at the current
or specified position and ending at the end of the line, and place them in the array pointed to by
wchstr.

The in_wchnstr(), mvin_wchnstr(), mvwin_wchnstr() and win_wchnstr() fill the array with at most
n cchar_t elements.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Reading a line that overflows the array pointed to by wchstr with in_wchstr(), mvin_wchstr(),
mvwin_wchstr() or win_wchstr() causes undefined results. The use of in_wchnstr(),
mvin_wchnstr(), mvwin_wchnstr() or win_wchnstr(), respectively, is recommended.

SEE ALSO
in_wch(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

130 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES inwstr()

NAME
inwstr — input a string of wide characters from the current window

SYNOPSIS
EC #include <curses.h>

int inwstr(wchar_t * wstr);

DESCRIPTION
Refer to innwstr().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 131

isendwin() ENHANCED CURSES Curses Interfaces

NAME
isendwin — determine whether a screen has been refreshed

SYNOPSIS
EC #include <curses.h>

bool isendwin(void);

DESCRIPTION
The isendwin() function indicates whether the screen has been refreshed since the last call to
endwin().

RETURN VALUE
The isendwin() function returns TRUE if endwin() has been called without any subsequent
refresh. Otherwise, it returns FALSE.

ERRORS
No errors are defined.

SEE ALSO
endwin(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

132 X/Open CAE Specification 1996

Curses Interfaces CURSES is_linetouched()

NAME
is_linetouched, is_wintouched, touchline, touchwin, untouchwin, wtouchln — window refresh
control functions

SYNOPSIS
#include <curses.h>

EC bool is_linetouched(WINDOW * win , int line);

bool is_wintouched(WINDOW * win);

int touchline(WINDOW * win , int start , int count);

int touchwin(WINDOW * win);

EC int untouchwin(WINDOW * win);

int wtouchln(WINDOW * win , int y, int n, int changed);

DESCRIPTION
The touchwin() function touches the specified window (that is, marks it as having changed more

EC recently than the last refresh operation). The touchline() function only touches count lines,
beginning with line start.

The untouchwin() function marks all lines in the window as unchanged since the last refresh
operation.

Calling wtouchln(), if changed is 1, touches n lines in the specified window, starting at line y. If
changed is 0, wtouchln() marks such lines as unchanged since the last refresh operation.

The is_wintouched () function determines whether the specified window is touched. The
is_linetouched () function determines whether line line of the specified window is touched.

RETURN VALUE
EC The is_linetouched () and is_wintouched () functions return TRUE if any of the specified lines, or

the specified window, respectively, has been touched since the last refresh operation.
Otherwise, they return FALSE.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.
Exceptions to this are noted in the preceding function descriptions.

ERRORS
No errors are defined.

APPLICATION USAGE
Calling touchwin() or touchline() is sometimes necessary when using overlapping windows,
since a change to one window affects the other window, but the records of which lines have been
changed in the other window do not reflect the change.

SEE ALSO
Section 3.2 on page 14, doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 133

keyname() ENHANCED CURSES Curses Interfaces

NAME
keyname, key_name — get name of key

SYNOPSIS
EC #include <curses.h>

char *keyname(int c);

char *key_name(wchar_t c);

DESCRIPTION
The keyname() and key_name() functions generate a character string whose value describes the
key c. The c argument of keyname() can be an 8-bit character or a key code. The c argument of
key_name() must be a wide character.

The string has a format according to the first applicable row in the following table:

Input Format of Returned String
Visible character The same character
Control character ˆ X
Meta-character (keyname() only) M-X
Key value defined in <curses.h> (keyname() only) KEY_name
None of the above UNKNOWN KEY

The meta-character notation shown above is used only if meta-characters are enabled.

RETURN VALUE
Upon successful completion, keyname() returns a pointer to a string as described above.
Otherwise, it returns a null pointer.

ERRORS
No errors are defined.

APPLICATION USAGE
The return value of keyname() and key_name() may point to a static area which is overwritten by
a subsequent call to either of these functions.

Applications normally process meta-characters without storing them into a window. If an
application stores meta-characters in a window and tries to retrieve them as wide characters,
keyname() cannot detect meta-characters, since wide characters do not support meta-characters.

SEE ALSO
meta(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

134 X/Open CAE Specification 1996

Curses Interfaces CURSES keypad()

NAME
keypad — enable/disable abbreviation of function keys

SYNOPSIS
#include <curses.h>

int keypad(WINDOW * win , bool bf);

DESCRIPTION
The keypad () function controls keypad translation. If bf is TRUE, keypad translation is turned
on. If bf is FALSE, keypad translation is turned off. The initial state is FALSE.

This function affects the behaviour of any function that provides keyboard input.

If the terminal in use requires a command to enable it to transmit distinctive codes when a
function key is pressed, then after keypad translation is first enabled, the implementation
transmits this command to the terminal before an affected input function tries to read any
characters from that terminal.

RETURN VALUE
Upon successful completion, keypad () returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.5.1 on page 23, <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 4, Version 2 135

killchar() CURSES Curses Interfaces

NAME
killchar, killwchar — terminal environment query functions

SYNOPSIS
#include <curses.h>

char killchar(void);

EC int killwchar(wchar_t * ch);

DESCRIPTION
Refer to erasechar().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for erasechar().

136 X/Open CAE Specification 1996

Curses Interfaces CURSES leaveok()

NAME
leaveok — control cursor position resulting from refresh operations

SYNOPSIS
#include <curses.h>

int leaveok(WINDOW * win , bool bf);

DESCRIPTION
Refer to clearok ().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for clearok ().

X/Open Curses, Issue 4, Version 2 137

LINES ENHANCED CURSES Curses Interfaces

NAME
LINES — number of lines on terminal screen

SYNOPSIS
EC #include <curses.h>

extern int LINES;

DESCRIPTION
The external variable LINES indicates the number of lines on the terminal screen.

SEE ALSO
initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

138 X/Open CAE Specification 1996

Curses Interfaces CURSES longname()

NAME
longname — get verbose description of current terminal

SYNOPSIS
#include <curses.h>

char *longname(void);

DESCRIPTION
The longname() function generates a verbose description of the current terminal. The maximum
length of a verbose description is 128 bytes. It is defined only after the call to initscr() or
newterm().

RETURN VALUE
Upon successful completion, longname() returns a pointer to the description specified above.
Otherwise, it returns a null pointer on error.

ERRORS
No errors are defined.

APPLICATION USAGE
The return value of longname() may point to a static area which is overwritten by a subsequent
call to newterm().

SEE ALSO
initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the longname() function is explicitly
declared as void.

X/Open Curses, Issue 4, Version 2 139

meta() ENHANCED CURSES Curses Interfaces

NAME
meta — enable/disable meta-keys

SYNOPSIS
EC #include <curses.h>

int meta(WINDOW * win , bool bf);

DESCRIPTION
Initially, whether the terminal returns 7 or 8 significant bits on input depends on the control
mode of the display driver (see the XBD specification, General Terminal Interface). To force 8
bits to be returned, invoke meta(win, TRUE). To force 7 bits to be returned, invoke meta(win,
FALSE). The win argument is always ignored. If the terminfo capabilities smm (meta_on) and
rmm (meta_off) are defined for the terminal, smm is sent to the terminal when meta(win, TRUE)
is called and rmm is sent when meta(win, FALSE) is called.

RETURN VALUE
Upon successful completion, meta() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The same effect is achieved outside Curses using the CS7 or CS8 control mode flag specified in
the XBD specification (General Terminal Interface).

The meta() function was designed for use with terminals with 7-bit character sets and a ‘‘meta’’
key that could be used to set the eighth bit.

SEE ALSO
Section 3.5 on page 23, getch(), <curses.h>, XBD specification, Section 9.2, Parameters That Can
Be Set (ISTRIP flag).

CHANGE HISTORY
First released in Issue 4.

140 X/Open CAE Specification 1996

Curses Interfaces CURSES move()

NAME
move, wmove — window cursor location functions

SYNOPSIS
#include <curses.h>

int move(int y, int x);

int wmove(WINDOW * win , int y, int x);

DESCRIPTION
The move() and wmove() functions move the cursor associated with the current or specified
window to (y, x) relative to the window’s origin. This function does not move the terminal’s
cursor until the next refresh operation.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

X/Open Curses, Issue 4, Version 2 141

mv CURSES Curses Interfaces

NAME
mv — pointer page for functions with mv prefix

DESCRIPTION
Most cases in which a Curses function has the mv prefix1 indicate that the function takes y and x
arguments and moves the cursor to that address as though move() were first called. (The
corresponding functions without the mv prefix operate at the cursor position.)

The mv prefix is combined with a w prefix to produce Curses functions beginning with mvw.

The mv and mvw functions are discussed together with the corresponding functions that do not
have these prefixes. They are found on the following entries:

Function Refer to
mvaddch() mvwaddch() addch()
mvaddchnstr() mvwaddchnstr() addchstr()
mvaddchstr() mvwaddchstr() addchstr()
mvaddnstr() mvwaddnstr() addnstr()
mvaddstr() mvwaddstr() addnstr()
mvaddnwstr() mvwaddnwstr() addnwstr()
mvaddwstr() mvwaddwstr() addnwstr()
mvadd_wch() mvwadd_wch() add_wch()
mvadd_wchnstr() mvwadd_wchnstr() add_wchnstr()
mvadd_wchstr() mvwadd_wchstr() add_wchnstr()
mvchgat() mvwchgat() chgat()
mvdelch() mvwdelch() delch()
mvgetch() mvwgetch() getch()
mvgetnstr() mvwgetnstr() getnstr()
mvgetstr() mvwgetstr() getnstr()
mvgetn_wstr() mvwgetn_wstr() getn_wstr()
mvget_wch() mvwget_wch() get_wch()
mvget_wstr() mvwget_wstr() getn_wstr()
mvhline() mvwhline() hline()
mvhline_set() mvwhline_set() hline_set()
mvinch() mvwinch() inch()
mvinchnstr() mvwinchnstr() inchnstr()
mvinchstr() mvwinchstr() inchnstr()
mvinnstr() mvwinnstr() innstr()
mvinnwstr() mvwinnwstr() innwstr()
mvinsch() mvwinsch() insch()
mvinsnstr() mvwinsnstr() insnstr()
mvinsstr() mvwinsstr() insnstr()

1. The mvcur(), mvderwin() and mvwin() functions are exceptions to this rule, in that mv is not a prefix with the usual meaning and
there are no corresponding functions without the mv prefix. These functions have entries under their own names.

In the mvprintw() and mvscanw() functions, mv is a prefix with the usual meaning, but the functions have entries under their own
names because the mv function is the first function in the family of functions in alphabetical order.

142 X/Open CAE Specification 1996

Curses Interfaces CURSES mv

Function Refer to
mvinstr() mvwinstr() innstr()
mvins_nwstr() mvwins_nwstr() ins_nwstr()
mvins_wch() mvwins_wch() ins_wch()
mvins_wstr() mvwins_wstr() ins_nwstr()
mvinwstr() mvwinwstr() innwstr()
mvin_wch() mvwin_wch() in_wch()
mvin_wchnstr() mvwin_wchnstr() in_wchnstr()
mvin_wchstr() mvwin_wchstr() in_wchnstr()
mvprintw() mvwprintw() amvprintw()
mvscanw() mvwscanw() mvscanw()
mvvline() mvwvline() hline()
mvvline_set() mvwvline_set() hline_set()

SEE ALSO
w.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 143

mvcur() ENHANCED CURSES Curses Interfaces

NAME
mvcur — output cursor movement commands to the terminal

SYNOPSIS
EC #include <curses.h>

int mvcur(int oldrow , int oldcol , int newrow , int newcol);

DESCRIPTION
The mvcur() function outputs one or more commands to the terminal that move the terminal’s
cursor to (newrow, newcol), an absolute position on the terminal screen. The (oldrow, oldcol)
arguments specify the former cursor position. Specifying the former position is necessary on
terminals that do not provide coordinate-based movement commands. On terminals that
provide these commands, Curses may select a more efficient way to move the cursor based on
the former position. If (newrow, newcol) is not a valid address for the terminal in use, mvcur()
fails. If (oldrow, oldcol) is the same as (newrow, newcol), then mvcur() succeeds without taking any
action. If mvcur() outputs a cursor movement command, it updates its information concerning
the location of the cursor on the terminal.

RETURN VALUE
Upon successful completion, mvcur() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
After use of mvcur(), the model Curses maintains of the state of the terminal might not match
the actual state of the terminal. The application should touch and refresh the window before
resuming conventional use of Curses.

SEE ALSO
doupdate (), is_linetouched (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

144 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES mvderwin()

NAME
mvderwin — define window coordinate transformation

SYNOPSIS
EC #include <curses.h>

int mvderwin(WINDOW * win , int par_y , int par_x);

DESCRIPTION
The mvderwin() function specifies a mapping of characters. The function identifies a mapped
area of the parent of the specified window, whose size is the same as the size of the specified
window and whose origin is at (par_y, par_x) of the parent window.

• During any refresh of the specified window, the characters displayed in that window’s
display area of the terminal are taken from the mapped area.

• Any references to characters in the specified window obtain or modify characters in the
mapped area.

That is, mvderwin() defines a coordinate transformation from each position in the mapped area
to a corresponding position (same y, x offset from the origin) in the specified window.

RETURN VALUE
Upon successful completion, mvderwin() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
derwin(), doupdate (), dupwin(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 145

mvprintw() CURSES Curses Interfaces

NAME
mvprintw, mvwprintw, printw, wprintw — print formatted output in window

SYNOPSIS
#include <curses.h>

int mvprintw(int y, int x, char * fmt , ...);

int mvwprintw(WINDOW * win , int y, int x, char * fmt , ...);

int printw(char * fmt , ...);

int wprintw(WINDOW * win , char * fmt , ...);

DESCRIPTION
The mvprintw(), mvwprintw(), printw() and wprintw() functions are analogous to printf(). The
effect of these functions is as though sprintf() were used to format the string, and then waddstr()
were used to add that multi-byte string to the current or specified window at the current or
specified cursor position.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
addnstr(), fprintf () (in the XSH specification), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity and its name is changed from printw() to mvprintw().

146 X/Open CAE Specification 1996

Curses Interfaces CURSES mvscanw()

NAME
mvscanw, mvwscanw, scanw, wscanw — convert formatted input from a window

SYNOPSIS
#include <curses.h>

int mvscanw(int y, int x, char * fmt , ...);

int mvwscanw(WINDOW * win , int y, int x, char * fmt , ...);

int scanw(char * fmt , ...);

int wscanw(WINDOW * win , char * fmt , ...);

DESCRIPTION
These functions are similar to scanf(). Their effect is as though mvwgetstr() were called to get a
multi-byte character string from the current or specified window at the current or specified
cursor position, and then sscanf() were used to interpret and convert that string.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
getnstr(), printw(), fscanf() (in the XSH specification), wcstombs() (in the XSH specification),
<curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity and its name is changed from scanw() to mvscanw().

X/Open Curses, Issue 4, Version 2 147

mvwin() CURSES Curses Interfaces

NAME
mvwin — move window

SYNOPSIS
#include <curses.h>

int mvwin(WINDOW * win , int y, int x);

DESCRIPTION
The mvwin() function moves the specified window so that its origin is at position (y, x). If the
move would cause any portion of the window to extend past any edge of the screen, the
function fails and the window is not moved.

RETURN VALUE
Upon successful completion, mvwin() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The application should not move subwindows by calling mvwin().

SEE ALSO
derwin(), doupdate (), is_linetouched (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

148 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES napms()

NAME
napms — suspend the calling process

SYNOPSIS
EC #include <curses.h>

int napms(int ms);

DESCRIPTION
The napms() function takes at least ms milliseconds to return.

RETURN VALUE
The napms() function returns OK.

ERRORS
No errors are defined.

APPLICATION USAGE
A more reliable method of achieving a timed delay is the usleep() function.

SEE ALSO
delay_output (), usleep() (in the XSH specification), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 149

newpad() CURSES Curses Interfaces

NAME
newpad, pnoutrefresh, prefresh, subpad — pad management functions

SYNOPSIS
#include <curses.h>

WINDOW *newpad(int nlines , int ncols);

int pnoutrefresh(WINDOW * pad , int pminrow , int pmincol , int sminrow ,
int smincol , int smaxrow , int smaxcol);

int prefresh(WINDOW * pad , int pminrow , int pmincol , int sminrow ,
int smincol , int smaxrow , int smaxcol);

EC WINDOW *subpad(WINDOW *orig , int nlines , int ncols , int begin_y ,
int begin_x);

DESCRIPTION
The newpad() function creates a specialised WINDOW data structure representing a pad with
nlines lines and ncols columns. A pad is like a window, except that it is not necessarily
associated with a viewable part of the screen. Automatic refreshes of pads do not occur.

EC The subpad() function creates a subwindow within a pad with nlines lines and ncols columns.
Unlike subwin(), which uses screen coordinates, the window is at position (begin_y, begin_x) on
the pad. The window is made in the middle of the window orig, so that changes made to one
window affect both windows.

The prefresh() and pnoutrefresh() functions are analogous to wrefresh() and wnoutrefresh() except
that they relate to pads instead of windows. The additional arguments indicate what part of the
pad and screen are involved. The pminrow and pmincol arguments specify the origin of the
rectangle to be displayed in the pad. The sminrow, smincol, smaxrow and smaxcol arguments
specify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of
the rectangle to be displayed in the pad is calculated from the screen coordinates, since the
rectangles must be the same size. Both rectangles must be entirely contained within their
respective structures. Negative values of pminrow, pmincol, sminrow or smincol are treated as if
they were zero.

RETURN VALUE
EC Upon successful completion, the newpad() and subpad() functions return a pointer to the pad

data structure. Otherwise, they return a null pointer.

Upon successful completion, pnoutrefresh() and prefresh() return OK. Otherwise, they return
ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
To refresh a pad, call prefresh() or pnoutrefresh(), not wrefresh(). When porting code to use pads
from WINDOWS, remember that these functions require additional arguments to specify the
part of the pad to be displayed and the location on the screen to be used for the display.

Although a subwindow and its parent pad may share memory representing characters in the
pad, they need not share status information about what has changed in the pad. Therefore, after
modifying a subwindow within a pad, it may be necessary to call touchwin() or touchline() on
the pad before calling prefresh().

150 X/Open CAE Specification 1996

Curses Interfaces CURSES newpad()

SEE ALSO
derwin(), doupdate (), is_linetouched (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The pnoutrefresh() and prefresh() functions are merged with this entry. In previous issues, they
appeared in the entry for prefresh(). The subpad() function is new in Issue 4.

X/Open Curses, Issue 4, Version 2 151

newterm() CURSES Curses Interfaces

NAME
newterm — screen initialisation function

SYNOPSIS
#include <curses.h>

SCREEN *newterm(char * type , FILE * outfile , FILE * infile);

DESCRIPTION
Refer to initscr().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for initscr().

152 X/Open CAE Specification 1996

Curses Interfaces CURSES newwin()

NAME
newwin — create a new window

SYNOPSIS
#include <curses.h>

WINDOW *newwin(int nlines , int ncols , int begin_y , int begin_x);

DESCRIPTION
Refer to derwin().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for derwin().

X/Open Curses, Issue 4, Version 2 153

nl() CURSES Curses Interfaces

NAME
nl, nonl — enable/disable newline translation

SYNOPSIS
#include <curses.h>

int nl(void);

int nonl(void);

DESCRIPTION
The nl() function enables a mode in which carriage return is translated to newline on input. The
nonl() function disables the above translation. Initially, the above translation is enabled.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The default translation adapts the terminal to environments in which newline is the line
termination character. However, by disabling the translation with nonl(), the application can
sense the pressing of the carriage return key.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the nl() and nonl() functions is explicitly
declared as void.

154 X/Open CAE Specification 1996

Curses Interfaces CURSES no

NAME
no — pointer page for functions with no prefix

DESCRIPTION
The no prefix indicates that a Curses function disables a mode. (The corresponding functions
without the no prefix enable the same mode.)

The no functions are discussed together with the corresponding functions that do not have these
prefixes.2 They are found on the following entries:

Function Refer to
nocbreak() cbreak()
noecho() echo()
nonl() nl()
noraw() cbreak()

CHANGE HISTORY
First released in Issue 4.

2. The nodelay() function has an entry under its own name because there is no corresponding delay () function.

The noqiflush() and notimeout() functions have an entry under their own names because they precede the corresponding function
without the no prefix in alphabetical order.

X/Open Curses, Issue 4, Version 2 155

nodelay() CURSES Curses Interfaces

NAME
nodelay — enable or disable block during read

SYNOPSIS
#include <curses.h>

int nodelay(WINDOW * win , bool bf);

DESCRIPTION
The nodelay () function specifies whether Delay Mode or No Delay Mode is in effect for the
screen associated with the specified window. If bf is TRUE, this screen is set to No Delay Mode.
If bf is FALSE, this screen is set to Delay Mode. The initial state is FALSE.

RETURN VALUE
Upon successful completion, nodelay () returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.5 on page 23, getch(), halfdelay (), <curses.h>, XBD specification, Section 9.2,
Parameters That Can Be Set.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

156 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES noqiflush()

NAME
noqiflush, qiflush — enable/disable queue flushing

SYNOPSIS
EC #include <curses.h>

void noqiflush(void);

void qiflush(void);

DESCRIPTION
The qiflush() function causes all output in the display driver queue to be flushed whenever an
interrupt key (interrupt, suspend, or quit) is pressed. The noqiflush() causes no such flushing to
occur. The default for the option is inherited from the display driver settings.

RETURN VALUE
These functions do not return a value.

ERRORS
No errors are defined.

APPLICATION USAGE
Calling qiflush() provides faster response to interrupts, but causes Curses to have the wrong idea
of what is on the screen. The same effect is achieved outside Curses using the NOFLSH local
mode flag specified in the XBD specification (General Terminal Interface).

SEE ALSO
Section 3.5 on page 23, intrflush(), <curses.h>, XBD specification, Section 9.2, Parameters That
Can Be Set (NOFLSH flag).

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 157

notimeout() ENHANCED CURSES Curses Interfaces

NAME
notimeout, timeout, wtimeout — control blocking on input

SYNOPSIS
EC #include <curses.h>

int notimeout(WINDOW * win , bool bf);

void timeout(int delay);

void wtimeout(WINDOW * win , int delay);

DESCRIPTION
The notimeout() function specifies whether Timeout Mode or No Timeout Mode is in effect for
the screen associated with the specified window. If bf is TRUE, this screen is set to No Timeout
Mode. If bf is FALSE, this screen is set to Timeout Mode. The initial state is FALSE.

The timeout() and wtimeout() functions set blocking or non-blocking read for the current or
specified window based on the value of delay:

delay < 0 One or more blocking reads (indefinite waits for input) are used.

delay = 0 One or more non-blocking reads are used. Any Curses input function will fail if
every character of the requested string is not immediately available.

delay > 0 Any Curses input function blocks for delay milliseconds and fails if there is still no
input.

RETURN VALUE
Upon successful completion, the notimeout() function returns OK. Otherwise, it returns ERR.

The timeout() and wtimeout() functions do not return a value.

ERRORS
No errors are defined.

SEE ALSO
Section 3.5 on page 23, getch(), halfdelay (), nodelay (), <curses.h>, XBD specification, Section 9.2,
Parameters That Can Be Set.

CHANGE HISTORY
First released in Issue 4.

158 X/Open CAE Specification 1996

Curses Interfaces CURSES overlay()

NAME
overlay, overwrite — copy overlapped windows

SYNOPSIS
#include <curses.h>

int overlay(const WINDOW * srcwin , WINDOW *dstwin);

int overwrite(const WINDOW * srcwin , WINDOW *dstwin);

DESCRIPTION
The overlay () and overwrite() functions overlay srcwin on top of dstwin. The scrwin and dstwin
arguments need not be the same size; only text where the two windows overlap is copied.

The overwrite() function copies characters as though a sequence of win_wch() and wadd_wch()
were performed with the destination window’s attributes and background attributes cleared.

The overlay () function does the same thing, except that, whenever a character to be copied is the
background character of the source window, overlay () does not copy the character but merely
moves the destination cursor the width of the source background character.

If any portion of the overlaying window border is not the first column of a multi-column
character then all the column positions will be replaced with the background character and
rendition before the overlay is done. If the default background character is a multi-column
character when this occurs, then these functions fail.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
copywin(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The type of argument srcwin() is changed from WINDOW * to
WINDOW *CONST.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 159

pair_content() ENHANCED CURSES Curses Interfaces

NAME
pair_content, PAIR_NUMBER — get information on a colour pair

SYNOPSIS
EC #include <curses.h>

int pair_content(short pair , short * f , short * b);

int PAIR_NUMBER(int value);

DESCRIPTION
Refer to can_change_color ().

CHANGE HISTORY
First released in Issue 4.

160 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES pechochar()

NAME
pechochar, pecho_wchar — write a character and rendition and immediately refresh the pad

SYNOPSIS
EC #include <curses.h>

int pechochar(WINDOW * pad , chtype ch);

int pecho_wchar(WINDOW * pad , const cchar_t * wch);

DESCRIPTION
The pechochar () and pecho_wchar () functions output one character to a pad and immediately
refresh the pad. They are equivalent to a call to waddch() or wadd_wch(), respectively, followed
by a call to prefresh(). The last location of the pad on the screen is reused for the arguments to
prefresh().

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The pechochar () function is only guaranteed to operate reliably on character sets in which each
character fits into a single byte, whose attributes can be expressed using only constants with the
A_ prefix.

SEE ALSO
echochar(), echo_char (), newpad(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
The second argument of pechochar () is changed to type chtype from chtype * .

X/Open Curses, Issue 4, Version 2 161

pnoutrefresh() CURSES Curses Interfaces

NAME
pnoutrefresh, prefresh — refresh pads

SYNOPSIS
#include <curses.h>

int pnoutrefresh(WINDOW * pad , int pminrow , int pmincol , int sminrow ,
int smincol , int smaxrow , int smaxcol);

int prefresh(WINDOW * pad , int pminrow , int pmincol , int sminrow ,
int smincol , int smaxrow , int smaxcol);

DESCRIPTION
Refer to newpad().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for newpad().

162 X/Open CAE Specification 1996

Curses Interfaces CURSES printw()

NAME
printw — print formatted output in the current window

SYNOPSIS
#include <curses.h>

int printw(char * fmt , ...);

DESCRIPTION
Refer to mvprintw().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for mvprintw().

X/Open Curses, Issue 4, Version 2 163

putp() ENHANCED CURSES Curses Interfaces

NAME
putp, tputs — output commands to the terminal

SYNOPSIS
EC #include <term.h>

int putp(const char * str);

int tputs(const char * str , int affcnt , int (* putfunc)(int));

DESCRIPTION
These functions output commands contained in the terminfo database to the terminal.

The putp() function is equivalent to tputs(str, 1, putchar). The output of putp() always goes to
stdout, not to the fildes specified in setupterm().

The tputs() function outputs str to the terminal. The str argument must be a terminfo string
variable or the return value from tgetstr(), tgoto (), tigetstr() or tparm(). The affcnt argument is
the number of lines affected, or 1 if not applicable. If the terminfo database indicates that the
terminal in use requires padding after any command in the generated string, tputs() inserts pad
characters into the string that is sent to the terminal, at positions indicated by the terminfo
database. The tputs() function outputs each character of the generated string by calling the
user-supplied function putfunc (see below).

The user-supplied function putfunc (specified as an argument to tputs()) is either putchar() or
some other function with the same prototype. The tputs() function ignores the return value of
putfunc .

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
Changing the terminal attributes using these functions may cause the renditions of characters
within a curses window to be altered on some terminals.

After use of any of these functions, the model Curses maintains of the state of the terminal might
not match the actual state of the terminal. The application should touch and refresh the window
before resuming conventional use of Curses.

SEE ALSO
doupdate (), is_linetouched (), putchar() (in the XSH specification), tgetent(), tigetflag(), <term.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

164 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES putwin()

NAME
putwin — dump window to a file

SYNOPSIS
EC #include <curses.h>

int putwin(WINDOW * win , FILE * filep);

DESCRIPTION
Refer to getwin().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 165

qiflush() ENHANCED CURSES Curses Interfaces

NAME
qiflush — enable queue flushing

SYNOPSIS
EC #include <curses.h>

void qiflush(void);

DESCRIPTION
Refer to noqiflush().

CHANGE HISTORY
First released in Issue 4.

166 X/Open CAE Specification 1996

Curses Interfaces CURSES raw()

NAME
raw — set Raw Mode

SYNOPSIS
#include <curses.h>

int raw(void);

DESCRIPTION
Refer to cbreak().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for cbreak().

X/Open Curses, Issue 4, Version 2 167

redrawwin() ENHANCED CURSES Curses Interfaces

NAME
redrawwin, wredrawln — line update status functions

SYNOPSIS
EC #include <curses.h>

int redrawwin(WINDOW * win);

int wredrawln(WINDOW * win , int beg_line , int num_lines);

DESCRIPTION
The redrawwin() and wredrawln() functions inform the implementation that some or all of the
information physically displayed for the specified window may have been corrupted. The
redrawwin() function marks the entire window; wredrawln() marks only num_lines lines starting
at line number beg_line. The functions prevent the next refresh operation on that window from
performing any optimisation based on assumptions about what is physically displayed there.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The redrawwin() and wredrawln() functions could be used in a text editor to implement a
command that redraws some or all of the screen.

SEE ALSO
clearok (), doupdate (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

168 X/Open CAE Specification 1996

Curses Interfaces CURSES refresh()

NAME
refresh — refresh current window

SYNOPSIS
#include <curses.h>

int refresh(void);

DESCRIPTION
Refer to doupdate ().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for doupdate ().

X/Open Curses, Issue 4, Version 2 169

reset_prog_mode() CURSES Curses Interfaces

NAME
reset_prog_mode, reset_shell_mode — restore program or shell terminal modes

SYNOPSIS
#include <curses.h>

int reset_prog_mode(void);

int reset_shell_mode(void);

DESCRIPTION
Refer to def_prog_mode ().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for def_prog_mode ().

170 X/Open CAE Specification 1996

Curses Interfaces CURSES resetty()

NAME
resetty, savetty — save/restore terminal mode

SYNOPSIS
#include <curses.h>

int resetty(void);

int savetty(void);

DESCRIPTION
The resetty() function restores the program mode as of the most recent call to savetty().

The savetty() function saves the state that would be put in place by a call to reset_prog_mode().

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
def_prog_mode (), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The argument list for the resetty() and savetty() functions is
explicitly declared as void.

X/Open Curses, Issue 4, Version 2 171

restartterm() ENHANCED CURSES Curses Interfaces

NAME
restartterm — change terminal type

SYNOPSIS
EC #include <term.h>

int restartterm(char * term , int fildes , int * errret);

DESCRIPTION
Refer to del_curterm().

CHANGE HISTORY
First released in Issue 4.

172 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES ripoffline()

NAME
ripoffline — reserve a line for a dedicated purpose

SYNOPSIS
EC #include <curses.h>

int ripoffline(int line , int (* init)(WINDOW *win , int columns));

DESCRIPTION
The ripoffline() function reserves a screen line for use by the application.

Any call to ripoffline() must precede the call to initscr() or newterm(). If line is positive, one line
is removed from the beginning of stdscr; if line is negative, one line is removed from the end.
Removal occurs during the subsequent call to initscr() or newterm(). When the subsequent call
is made, the function pointed to by init is called with two arguments: a WINDOW pointer to
the one-line window that has been allocated and an integer with the number of columns in the
window. The initialisation function cannot use the LINES and COLS external variables and
cannot call wrefresh() or doupdate (), but may call wnoutrefresh().

Up to five lines can be ripped off. Calls to ripoffline() above this limit have no effect but report
success.

RETURN VALUE
The ripoffline() function returns OK.

ERRORS
No errors are defined.

APPLICATION USAGE
Calling slk_init () reduces the size of the screen by one line if initscr() eventually uses a line from
stdscr to emulate the soft labels. If slk_init () rips off a line, it thereby reduces by one the number
of lines an application can reserve by subsequent calls to ripoffline(). Thus, portable applications
that use soft label functions should not call ripoffline() more than four times.

When initscr() or newterm() calls the initialisation function pointed to by init , the
implementation may pass NULL for the WINDOW pointer argument win . This indicates
inability to allocate a one-line window for the line that the call to ripoffline() ripped off. Portable
applications should verify that win is not NULL before performing any operation on the window
it represents.

SEE ALSO
doupdate (), initscr(), slk_attroff(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 173

savetty() CURSES Curses Interfaces

NAME
savetty — save terminal mode

SYNOPSIS
#include <curses.h>

int savetty(void);

DESCRIPTION
Refer to resetty().

CHANGE HISTORY
First released in Issue 4.

174 X/Open CAE Specification 1996

Curses Interfaces CURSES scanw()

NAME
scanw — convert formatted input from the current window

SYNOPSIS
#include <curses.h>

int scanw(char * fmt , ...);

DESCRIPTION
Refer to mvscanw().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for mvscanw().

X/Open Curses, Issue 4, Version 2 175

scr_dump() ENHANCED CURSES Curses Interfaces

NAME
scr_dump, scr_init, scr_restore, scr_set — screen file input/output functions

SYNOPSIS
EC #include <curses.h>

int scr_dump(const char * filename);

int scr_init(const char * filename);

int scr_restore(const char * filename);

int scr_set(const char * filename);

DESCRIPTION
The scr_dump() function writes the current contents of the virtual screen to the file named by
filename in an unspecified format.

The scr_restore() function sets the virtual screen to the contents of the file named by filename,
which must have been written using scr_dump(). The next refresh operation restores the screen
to the way it looked in the dump file.

The scr_init() function reads the contents of the file named by filename and uses them to initialise
the Curses data structures to what the terminal currently has on its screen. The next refresh
operation bases any updates on this information, unless either of the following conditions is
true:

• The terminal has been written to since the virtual screen was dumped to filename

• The terminfo capabilities rmcup and nrrmc are defined for the current terminal.

The scr_set() function is a combination of scr_restore() and scr_init(). It tells the program that
the information in the file named by filename is what is currently on the screen, and also what the
program wants on the screen. This can be thought of as a screen inheritance function.

RETURN VALUE
On successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The scr_init() function is called after initscr() or a system() call to share the screen with another
process that has done a scr_dump() after its endwin() call.

To read a window from a file, call getwin(); to write a window to a file, call putwin().

SEE ALSO
delscreen(), doupdate (), endwin(), getwin(), open() (in the XSH specification), read() (in the XSH
specification), write() (in the XSH specification), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

176 X/Open CAE Specification 1996

Curses Interfaces CURSES scrl()

NAME
scrl, scroll, wscrl — scroll a Curses window

SYNOPSIS
#include <curses.h>

EC int scrl(int n);

int scroll(WINDOW * win);

EC int wscrl(WINDOW * win , int n);

DESCRIPTION
The scroll() function scrolls win one line in the direction of the first line.

EC The scrl() and wscrl() functions scroll the current or specified window. If n is positive, the
window scrolls n lines toward the first line. Otherwise, the window scrolls −n lines toward the
last line.

These functions do not change the cursor position. If scrolling is disabled for the current or
specified window, these functions have no effect. The interaction of these functions with
setsccreg() is currently unspecified.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
<curses.h>.

CHANGE HISTORY
First released in Issue 4.

In previous issues, the scroll() function was described in an entry of its own. It has been merged
with this entry in Issue 4. Its description has been rewritten for clarity, but otherwise its
functionality is identical.

FUTURE DIRECTIONS
In a future issue the interaction of these functions with setsccreg() will be defined.

X/Open Curses, Issue 4, Version 2 177

scrollok() CURSES Curses Interfaces

NAME
scrollok — enable or disable scrolling on a window

SYNOPSIS
#include <curses.h>

int scrollok(WINDOW * win , bool bf);

DESCRIPTION
Refer to clearok ().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for clearok ().

178 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES setcchar()

NAME
setcchar — set cchar_t from a wide character string and rendition

SYNOPSIS
EC #include <curses.h>

int setcchar(cchar_t * wcval , const wchar_t * wch, const attr_t attrs ,
short color_pair , const void * opts);

DESCRIPTION
The setcchar() function initialises the object pointed to by wcval according to the character
attributes in attrs , the colour pair in color_pair and the wide character string pointed to by wch.

The opts argument is reserved for definition in a future edition of this document. Currently, the
application must provide a null pointer as opts.

RETURN VALUE
Upon successful completion, setcchar() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.3 on page 16, attroff(), can_change_color (), getcchar(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 179

set_curterm() ENHANCED CURSES Curses Interfaces

NAME
set_curterm — set current terminal

SYNOPSIS
EC #include <term.h>

TERMINAL *set_curterm(TERMINAL * nterm);

DESCRIPTION
Refer to del_curterm().

CHANGE HISTORY
First released in Issue 4.

180 X/Open CAE Specification 1996

Curses Interfaces CURSES setscrreg()

NAME
setscrreg, wsetscrreg — define software scrolling region

SYNOPSIS
#include <curses.h>

int setscrreg(int top , int bot);

int wsetscrreg(WINDOW * win , int top , int bot);

DESCRIPTION
Refer to clearok ().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for clearok ().

X/Open Curses, Issue 4, Version 2 181

set_term() CURSES Curses Interfaces

NAME
set_term — switch between screens

SYNOPSIS
#include <curses.h>

SCREEN *set_term(SCREEN * new);

DESCRIPTION
The set_term() function switches between different screens. The new argument specifies the new
current screen.

RETURN VALUE
Upon successful completion, set_term() returns a pointer to the previous screen. Otherwise, it
returns a null pointer.

ERRORS
No errors are defined.

APPLICATION USAGE
This is the only function that manipulates SCREEN pointers; all other functions affect only the
current screen.

SEE ALSO
Section 3.2 on page 14, initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity.

182 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES setupterm()

NAME
setupterm — access the terminfo database

SYNOPSIS
EC #include <term.h>

int setupterm(char * term , int fildes , int * errret);

DESCRIPTION
Refer to del_curterm().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 183

slk_attroff() ENHANCED CURSES Curses Interfaces

NAME
slk_attroff, slk_attr_off, slk_attron, slk_attr_on, slk_attrset, slk_attr_set, slk_clear, slk_color,
slk_init, slk_label, slk_noutrefresh, slk_refresh, slk_restore, slk_set, slk_touch, slk_wset — soft
label functions

SYNOPSIS
EC #include <curses.h>

int slk_attroff(const chtype attrs);

int slk_attr_off(const attr_t attrs , void *opts);

int slk_attron(const chtype attrs);

int slk_attr_on(const attr_t attrs , void *opts);

int slk_attrset(const chtype attrs);

int slk_attr_set(const attr_t attrs , short color_pair_number , void *opts);

int slk_clear(void);

int slk_color(short color_pair_number);

int slk_init(int fmt);

char *slk_label(int labnum);

int slk_noutrefresh(void);

int slk_refresh(void);

int slk_restore(void);

int slk_set(int labnum , const char *label , int justify);

int slk_touch(void);

int slk_wset(int labnum , const wchar_t *label , int justify);

DESCRIPTION
The Curses interface manipulates the set of soft function-key labels that exist on many terminals.
For those terminals that do not have soft labels, Curses takes over the bottom line of stdscr,
reducing the size of stdscr and the value of the LINES external variable. There can be up to eight
labels of up to eight display columns each.

To use soft labels, slk_init () must be called before initscr(), newterm() or ripoffline() is called. If
initscr() eventually uses a line from stdscr to emulate the soft labels, then fmt determines how the
labels are arranged on the screen. Setting fmt to 0 indicates a 3-2-3 arrangement of the labels; 1
indicates a 4-4 arrangement. Other values for fmt are unspecified.

The slk_init () function has the effect of calling ripoffline() to reserve one screen line to
accommodate the requested format.

The slk_set() and slk_wset() functions specify the text of soft label number labnum, within the
range from 1 to and including 8. The label argument is the string to be put on the label. With
slk_set(), and slk_wset(), the width of the label is limited to eight column positions. A null string
or a null pointer specifies a blank label. The justify argument can have the following values to
indicate how to justify label within the space reserved for it:

0 Align the start of label with the start of the space
1 Center label within the space

184 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES slk_attroff()

2 Align the end of label with the end of the space

The slk_refresh() and slk_noutrefresh() functions correspond to the wrefresh() and wnoutrefresh()
functions.

The slk_label () function obtains soft label number labnum.

The slk_clear () function immediately clears the soft labels from the screen.

The slk_restore() function immediately restores the soft labels to the screen after a call to
slk_clear ().

The slk_touch () function forces all the soft labels to be output the next time slk_noutrefresh() or
slk_refresh() is called.

The slk_attron (), slk_attrset() and slk_attroff() functions correspond to attron(), attrset(), and
attroff(). They have an effect only if soft labels are simulated on the bottom line of the screen.

The slk_attr_off(), slk_attr_on (), slk_attr_set (), and slk_color () functions correspond to
slk_attroff(), slk_attrond (), slk_attrset() and color_set() and thus support the attribute constants
with the WA_ prefix and colour.

The opts argument is reserved for definition in a future edition of this document. Currently, the
application must provide a null pointer as opts.

RETURN VALUE
Upon successful completion, slk_label () returns the requested label with leading and trailing
blanks stripped. Otherwise, it returns a null pointer.

Upon successful completion, the other functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
When using multi-byte character sets, applications should check the width of the string by
calling mbstowcs() and then wcswidth() before calling slk_set(). When using wide characters,
applications should check the width of the string by calling wcswidth() before calling slk_set().

Since the number of columns that a wide character string will occupy is codeset-specific, call
wcwidth() and wcswidth() to check the number of column positions in the string before calling
slk_wset().

Most applications would use slk_noutrefresh() because a wrefresh() is likely to follow soon.

SEE ALSO
attr_get(), attroff(), delscreen(), mbstowcs() (in the XSH specification), ripoffline(), wcswidth() (in
the XSH specification), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
This entry is rewritten to include the colour handling functions.

X/Open Curses, Issue 4, Version 2 185

standend() CURSES Curses Interfaces

NAME
standend, standout, wstandend, wstandout — set and clear window attributes

SYNOPSIS
#include <curses.h>

int standend(void);

int standout(void);

int wstandend(WINDOW * win);

int wstandout(WINDOW * win);

DESCRIPTION
The standend() and wstandend() functions turn off all attributes of the current or specified
window.

The standout() and wstandout() functions turn on the standout attribute of the current or
specified window.

RETURN VALUE
These functions always return 1.

ERRORS
No errors are defined.

SEE ALSO
attroff(), attr_get(), <curses.h>.

CHANGE HISTORY
Derived from the attroff() entry in Issue 3. The entry is reworded for clarity, but otherwise the
functionality is identical to previous issues.

186 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES start_color()

NAME
start_color — initialise use of colours on terminal

SYNOPSIS
EC #include <curses.h>

int start_color(void);

DESCRIPTION
Refer to can_change_color ().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 187

stdscr ENHANCED CURSES Curses Interfaces

NAME
stdscr — default window

SYNOPSIS
EC #include <curses.h>

extern WINDOW *stdscr;

DESCRIPTION
The external variable stdscr specifies the default window used by functions that do not specify a
window using an argument of type WINDOW *. Other windows may be created using
newwin().

SEE ALSO
derwin(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

188 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES subpad()

NAME
subpad — create a subwindow in a pad

SYNOPSIS
EC #include <curses.h>

WINDOW *subpad(WINDOW *orig , int nlines , int ncols , int begin_y ,
int begin_x);

DESCRIPTION
Refer to newpad().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 189

subwin() CURSES Curses Interfaces

NAME
subwin — create a subwindow

SYNOPSIS
#include <curses.h>

WINDOW *subwin(WINDOW *orig , int nlines , int ncols , int begin_y ,
int begin_x);

DESCRIPTION
Refer to derwin().

CHANGE HISTORY
First released in Issue 2.

Issue 4
The functionality previously described by this entry is moved to the entry for derwin().

190 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES syncok()

NAME
syncok, wcursyncup, wsyncdown, wsyncup — synchronise a window with its parents or
children

SYNOPSIS
EC #include <curses.h>

int syncok(WINDOW * win , bool bf);

void wcursyncup(WINDOW * win);

void wsyncdown(WINDOW * win);

void wsyncup(WINDOW * win);

DESCRIPTION
The syncok() function determines whether all ancestors of the specified window are implicitly
touched whenever there is a change in the window. If bf is TRUE, such implicit touching occurs.
If bf is FALSE, such implicit touching does not occur. The initial state is FALSE.

The wcursyncup() function updates the current cursor position of the ancestors of win to reflect
the current cursor position of win.

The wsyncdown() function touches win if any ancestor window has been touched.

The wsyncup() function unconditionally touches all ancestors of win.

RETURN VALUE
Upon successful completion, syncok() returns OK. Otherwise, it returns ERR.

The other functions do not return a value.

ERRORS
No errors are defined.

APPLICATION USAGE
Applications seldom call wsyncdown() because it is called by all refresh operations.

SEE ALSO
doupdate (), is_linetouched (), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 191

termattrs() ENHANCED CURSES Curses Interfaces

NAME
termattrs — get supported terminal video attributes

SYNOPSIS
EC #include <curses.h>

chtype termattrs(void);

attr_t term_attrs(void);

DESCRIPTION
The termattrs() function extracts the video attributes of the current terminal which is supported
by the chtype data type.

The term_attrs() function extracts information for the video attributes of the current terminal
which is supported for a cchar_t

RETURN VALUE
The termattrs() function returns a logical OR of A_ values of all video attributes supported by
the terminal.

The term_attrs() function returns a logical OR of WA_ values of all video attributes supported by
the terminal.

ERRORS
No errors are defined.

SEE ALSO
Attributes in attroff(), attr_get() and <curses.h.>

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", rewritten for clarity, Issue 4, Version 2.

192 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES termname()

NAME
termname — get terminal name

SYNOPSIS
EC #include <curses.h>

char *termname(void);

DESCRIPTION
The termname() function obtains the terminal name as recorded by setupterm().

RETURN VALUE
The termname() function returns a pointer to the terminal name.

ERRORS
No errors are defined.

SEE ALSO
Section 6.1.1 on page 239, del_curterm(), getenv() (in the XSH specification), initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 193

tgetent() ENHANCED CURSES Curses Interfaces

NAME
tgetent, tgetflag, tgetnum, tgetstr, tgoto — termcap database emulation (TO BE WITHDRAWN)

SYNOPSIS
EC #include <term.h>

int tgetent(char * bp, const char * name);

int tgetflag(char id [2]);

int tgetnum(char id [2]);

char *tgetstr(char id [2], char ** area);

char *tgoto(char * cap , int col , int row);

DESCRIPTION
The tgetent() function looks up the termcap entry for name. The emulation ignores the buffer
pointer bp.

The tgetflag() function gets the boolean entry for id.

The tgetnum() function gets the numeric entry for id.

The tgetstr() function gets the string entry for id. If area is not a null pointer and does not point
to a null pointer, tgetstr() copies the string entry into the buffer pointed to by *area and advances
the variable pointed to by area to the first byte after the copy of the string entry.

The tgoto () function instantiates the parameters col and row into the capability cap and returns a
pointer to the resulting string.

All of the information available in the terminfo database need not be available through these
functions.

RETURN VALUE
Upon successful completion, functions that return an integer return OK. Otherwise, they return
ERR.

Functions that return pointers return a null pointer on error.

ERRORS
No errors are defined.

APPLICATION USAGE
These functions are included as a conversion aid for programs that use the termcap library.
Their arguments are the same and the functions are emulated using the terminfo database.

These functions are only guaranteed to operate reliably on character sets in which each character
fits into a single byte, whose attributes can be expressed using only constants with the A_ prefix.

Any terminal capabilities from the terminfo database that cannot be retrieved using these
interfaces can be retrieved using the interfaces described on the tigetflg() page.

Portable applications must use tputs() to output the strings returned by tgetstr() and tgoto ().

SEE ALSO
putc(), setupterm(), tigetflg(), <term.h>.

CHANGE HISTORY
First released in Issue 4.

194 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES tgetent()

Issue 4, Version 2
The first argument to tgoto () is changed from const char * to char * .

X/Open Curses, Issue 4, Version 2 195

tigetflag() ENHANCED CURSES Curses Interfaces

NAME
tigetflag, tigetnum, tigetstr, tparm — retrieve capabilities from the terminfo database

SYNOPSIS
EC #include <term.h>

int tigetflag(char * capname);

int tigetnum(char * capname);

char *tigetstr(char * capname);

char *tparm(char * cap , long p1, long p2, long p3, long p4,
long p5, long p6, long p7, long p8, long p9);

DESCRIPTION
The tigetflag(), tigetnum(), and tigetstr() functions obtain boolean, numeric and string
capabilities, respectively, from the selected record of the terminfo database. For each capability,
the value to use as capname appears in the Capname column in the table in Section 6.1.3 on page
241.

The tparm() function takes as cap a string capability. If cap is parameterised (as described in
Section A.1.2 on page 256), tparm() resolves the parameterisation. If the parameterised string
refers to parameters %p1 through %p9, then tparm() substitutes the values of p1 through p9,
respectively.

RETURN VALUE
Upon successful completion, tigetflg(), tigetnum() and tigetstr() return the specified capability.
The tigetflag() function returns −1 if capname is not a boolean capability. The tigetnum() function
returns −2 if capname is not a numeric capability. The tigetstr() function returns (char *)−1 if
capname is not a string capability.

Upon successful completion, tparm() returns str with parameterisation resolved. Otherwise, it
returns a null pointer.

ERRORS
No errors are defined.

APPLICATION USAGE
For parameterised string capabilities, the application should pass the return value from tigetstr()
to tparm(), as described above.

Applications intending to send terminal capabilities directly to the terminal (which should only
be done using tputs() or putp()) instead of using Curses, normally should obey the following
rules:

• Call reset_shell_mode() to restore the display modes before exiting.

• If using cursor addressing, output enter_ca_mode upon startup and output exit_ca_mode
before exiting.

• If using shell escapes, output exit_ca_mode and call reset_shell_mode() before calling the
shell; call reset_prog_mode() and output enter_ca_mode after returning from the shell.

All parameterised terminal capabilities defined in this document can be passed to tparm(). Some
implementations create their own capabilities, create capabilities for non-terminal devices, and
redefine the capabilities in this document. These practices are non-conforming because it may
be that tparm() cannot parse these user-defined strings.

196 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES tigetflag()

SEE ALSO
def_prog_mode (), tgetent(), putp(), <term.h>.

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 197

timeout() ENHANCED CURSES Curses Interfaces

NAME
timeout — control blocking on input

SYNOPSIS
EC #include <curses.h>

void timeout(int delay);

DESCRIPTION
Refer to notimeout().

CHANGE HISTORY
First released in Issue 4.

198 X/Open CAE Specification 1996

Curses Interfaces CURSES touchline()

NAME
touchline, touchwin — window refresh control functions

SYNOPSIS
#include <curses.h>

EC int touchline(WINDOW * win , int start , int count);

int touchwin(WINDOW * win);

DESCRIPTION
Refer to is_linetouched ().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 199

tparm() ENHANCED CURSES Curses Interfaces

NAME
tparm — retrieve capabilities from the terminfo database

SYNOPSIS
EC #include <term.h>

char *tparm(char * cap , long p1, long p2, long p3, long p4,
long p5, long p6, long p7, long p8, long p9);

DESCRIPTION
Refer to tigetflag().

CHANGE HISTORY
First released in Issue 4.

200 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES tputs()

NAME
tputs — output commands to the terminal

SYNOPSIS
EC #include <curses.h>

int tputs(const char * str , int affcnt , int (* putfunc)(int));

DESCRIPTION
Refer to putp().

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 201

typeahead() CURSES Curses Interfaces

NAME
typeahead — control checking for typeahead

SYNOPSIS
#include <curses.h>

int typeahead(int fildes);

DESCRIPTION
The typeahead () function controls the detection of typeahead during a refresh, based on the value
of fildes:

• If fildes is a valid file descriptor, typeahead is enabled during refresh; Curses periodically
checks fildes for input and aborts the refresh if any character is available. (This is the initial
setting, and the typeahead file descriptor corresponds to the input file associated with the
screen created by initscr() or newterm().) The value of fildes need not be the file descriptor on
which the refresh is occurring.

• If fildes is −1, Curses does not check for typeahead during refresh.

RETURN VALUE
Upon successful completion, typeahead () returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.5 on page 23, doupdate (), getch(), initscr(), <curses.h>, XBD specification, Section 9.2,
Parameters That Can Be Set.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The RETURN VALUE section now states that the function
returns OK on success and ERR on failure. No return values were defined in previous issues.

202 X/Open CAE Specification 1996

Curses Interfaces CURSES unctrl()

NAME
unctrl — generate printable representation of a character

SYNOPSIS
#include <unctrl.h>

char *unctrl(chtype c);

DESCRIPTION
The unctrl() function generates a character string that is a printable representation of c. If c is a
control character, it is converted to the ˆ X notation. If c contains rendition information, the
effect is undefined.

RETURN VALUE
Upon successful completion, unctrl() returns the generated string. Otherwise, it returns a null
pointer.

ERRORS
No errors are defined.

SEE ALSO
keyname(), wunctrl(), <unctrl.h>.

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is rewritten for clarity. The RETURN VALUE section now states that the function
may return a null pointer. This condition was not specified in previous issues.

X/Open Curses, Issue 4, Version 2 203

ungetch() ENHANCED CURSES Curses Interfaces

NAME
ungetch, unget_wch — push a character onto the input queue

SYNOPSIS
EC #include <curses.h>

int ungetch(int ch);

int unget_wch(const wchar_t wch);

DESCRIPTION
The ungetch() function pushes the single-byte character ch onto the head of the input queue.

The unget_wch() function pushes the wide character wch onto the head of the input queue.

One character of push-back is guaranteed. The result of successive calls without an intervening
call to getch() or get_wch() are unspecified.

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

SEE ALSO
Section 3.5 on page 23, getch(), get_wch(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

204 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES untouchwin()

NAME
untouchwin — window refresh control function

SYNOPSIS
EC #include <curses.h>

int untouchwin(WINDOW * win);

DESCRIPTION
Refer to is_linetouched ().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 205

use_env() ENHANCED CURSES Curses Interfaces

NAME
use_env — specify source of screen size information

SYNOPSIS
EC #include <curses.h>

void use_env(bool boolval);

DESCRIPTION
The use_env() function specifies the technique by which the implementation determines the size
of the screen. If boolval is FALSE, the implementation uses the values of lines and columns
specified in the terminfo database. If boolval is TRUE, the implementation uses the LINES and
COLUMNS environment variables. The initial value is TRUE.

Any call to use_env() must precede calls to initscr(), newterm() or setupterm().

RETURN VALUE
The function does not return a value.

ERRORS
No errors are defined.

SEE ALSO
del_curterm(), initscr(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
The first argument is changed from char bool to bool boolval .

206 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES vidattr()

NAME
vidattr, vid_attr, vidputs, vid_puts — output attributes to the terminal

SYNOPSIS
EC #include <curses.h>

int vidattr(chtype attr);

int vid_attr(attr_t attr , short color_pair_number , void *opt);

int vidputs(chtype attr , int (* putfunc)(int));

int vid_puts(attr_t attr , short color_pair_number , void *opt , int
(* putfunc)(int));

DESCRIPTION
These functions output commands to the terminal that change the terminal’s attributes.

If the terminfo database indicates that the terminal in use can display characters in the rendition
specified by attr, then vidattr () outputs one or more commands to request that the terminal
display subsequent characters in that rendition. The function outputs by calling putchar(). The
vidattr () function neither relies on nor updates the model which Curses maintains of the prior
rendition mode.

The vidputs() function computes the same terminal output string that vidattr () does, based on
attr, but vidputs() outputs by calling the user-supplied function putfunc . The vid_attr () and
vid_puts() functions correspond to vidattr () and vidputs() respectively, but take a set of
arguments, one of type attr_t for theattributes, short for the colour pair number and a void *, and
thus support the attribute constants with the WA_ prefix.

The opts argument is reserved for definition in a future edition of this document. Currently, the
application must provide a null pointer as opts.

The user-supplied function putfunc (which can be specified as an argument to either vidputs() or
vid_puts()) is either putchar() or some other function with the same prototype. Both the
vidputs() and the vid_puts() function ignore the return value of putfunc .

RETURN VALUE
Upon successful completion, these functions return OK. Otherwise, they return ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
After use of any of these functions, the model Curses maintains of the state of the terminal might
not match the actual state of the terminal. The application should touch and refresh the window
before resuming conventional use of Curses.

Use of these functions requires that the application contain so much information about a
particular class of terminal that it defeats the purpose of using Curses.

On some terminals, a command to change rendition conceptually occupies space in the screen
buffer (with or without width). Thus, a command to set the terminal to a new rendition would
change the rendition of some characters already displayed.

SEE ALSO
doupdate (), is_linetouched (), putchar() (in the XSH specification), putwchar() (in the XSH
specification), tigetflag(), <curses.h>.

X/Open Curses, Issue 4, Version 2 207

vidattr() ENHANCED CURSES Curses Interfaces

CHANGE HISTORY
First released in Issue 4.

Issue 4, Version 2
This entry is rewritten to include the colour handling functions.

208 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES vline()

NAME
vline — draw vertical line

SYNOPSIS
EC #include <curses.h>

int vline(chtype ch , int n);

DESCRIPTION
Refer to hline().

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 209

vline_set() ENHANCED CURSES Curses Interfaces

NAME
vline_set — draw vertical line from complex character and rendition

SYNOPSIS
EC #include <curses.h>

int vline_set(const cchar_t * ch , int n);

DESCRIPTION
Refer to hline_set().

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

210 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES vwprintw()

NAME
vwprintw — print formatted output in window (TO BE WITHDRAWN)

SYNOPSIS
EC #include <varargs.h>

#include <curses.h>

int vwprintw(WINDOW *, char *, va_list varglist);

DESCRIPTION
The vwprintw() function achieves the same effect as wprintw() using a variable argument list.
The third argument is a va_list, as defined in <varargs.h>.

RETURN VALUE
Upon successful completion, vwprintw() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The vwprintw() function is deprecated because it relies on deprecated functions in the XSH
specification. The vw_printw() function is preferred. The use of the vwprintw() and the
vw_printw() functions in the same file will not work, due to the requirement to include varargs.h
and stdarg.h which both contain definitions of va_list .

SEE ALSO
mvprintw(), fprintf () (in the XSH specification), vw_printw(), <curses.h>, <varargs.h> (in the
XSH specification).

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 211

vw_printw() ENHANCED CURSES Curses Interfaces

NAME
vw_printw — print formatted output in window

SYNOPSIS
EC #include <stdarg.h>

#include <curses.h>

int vw_printw(WINDOW *, char *, va_list varglist);

DESCRIPTION
The vw_printw() function achieves the same effect as wprintw() using a variable argument list.
The third argument is a va_list, as defined in <stdarg.h>.

RETURN VALUE
Upon successful completion, vw_printw() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The vw_printw() function is preferred over vwprintw(). The use of the vwprintw() and the
vw_printw() functions in the same file will not work, due to the requirement to include varargs.h
and stdarg.h which both contain definitions of va_list .

SEE ALSO
mvprintw(), fprintf () (in the XSH specification), <curses.h>, <stdarg.h> (in the XSH
specification).

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

212 X/Open CAE Specification 1996

Curses Interfaces ENHANCED CURSES vwscanw()

NAME
vwscanw — convert formatted input from a window (TO BE WITHDRAWN)

SYNOPSIS
EC #include <varargs.h>

#include <curses.h>

int vwscanw(WINDOW *, char *, va_list varglist);

DESCRIPTION
The vwscanw() function achieves the same effect as wscanw() using a variable argument list. The
third argument is a va_list, as defined in <varargs.h>.

RETURN VALUE
Upon successful completion, vwscanw() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The vwscanw() function is deprecated because it relies on deprecated functions in the XSH
specification. The vw_scanw() function is preferred. The use of the vwscanw() and the
vw_scanw() functions in the same file will not work, due to the requirement to include varargs.h
and stdarg.h which both contain definitions of va_list .

SEE ALSO
fscanf() (in the XSH specification), mvscanw(), vw_scanw(), <curses.h>, <varargs.h> (in the XSH
specification).

CHANGE HISTORY
First released in Issue 4.

Corrections made to section "SYNOPSIS", Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 213

vw_scanw() ENHANCED CURSES Curses Interfaces

NAME
vw_scanw — convert formatted input from a window

SYNOPSIS
EC #include <stdarg.h>

#include <curses.h>

int vw_scanw(WINDOW *, char *, va_list varflist);

DESCRIPTION
The vw_scanw() function achieves the same effect as wscanw() using a variable argument list.
The third argument is a va_list, as defined in <stdarg.h>.

RETURN VALUE
Upon successful completion, vw_scanw() returns OK. Otherwise, it returns ERR.

ERRORS
No errors are defined.

APPLICATION USAGE
The vw_scanw() function is preferred over vwscanw(). The use of the vwscanw() and the
vw_scanw() functions in the same file will not work, due to the requirement to include varargs.h
and stdarg.h which both contain definitions of va_list .

SEE ALSO
fscanf() (in the XSH specification), mvscanw(), <curses.h>, <stdarg.h> (in the XSH specification).

CHANGE HISTORY
First released in Issue 4.

Corrections made to sections "SYNOPSIS" and "APPLICATION USAGE", Issue 4, Version 2.

214 X/Open CAE Specification 1996

Curses Interfaces CURSES w

NAME
w — pointer page for functions with w prefix

DESCRIPTION
Most uses of the w prefix indicate that a Curses function takes a win argument that specifies the
affected window.3 (The corresponding functions without the w prefix operate on the current
window.)

The w functions are discussed together with the corresponding functions without the w prefix.
They are found on the following entries:

Function Refer to
waddch() addch()
waddchnstr() addchstr()
waddchstr() addchstr()
waddnstr() addnstr()
waddstr() addnstr()
waddnwstr() addnwstr()
waddwstr() addnwstr()
wadd_wch() add_wch()
wadd_wchnstr() add_wchnstr()
wadd_wchstr() add_wchnstr()
wattroff() attroff()
wattron() attroff()
wattrset() attroff()
wattr_get() attr_get()
wattr_off() attr_get()
wattr_on() attr_get()
wattr_set() attr_get()
wbkgd() bkgd()
wbkgdset() bkgd()
wbkgrnd() bkgrnd()
wbkgrndset() bkgrnd()
wborder() border()
wborder_set() border_set()
wchgat() chgat()
wclear() clear()
wclrtobot() clrtobot ()
wclrtoeol () clrtoeol ()
wcursyncup() * syncok()
wdelch() delch()
wdeleteln() deleteln()
wechochar() echochar()
wecho_wchar() echo_wchar()

3. The wunctrl() function is an exception to this rule and has an entry under its own name.
* There is no corresponding function without the w prefix.

X/Open Curses, Issue 4, Version 2 215

w CURSES Curses Interfaces

Function Refer to
werase() clear()
wgetbkgrnd() bkgrnd()
wgetch() getch()
wgetnstr() getnstr()
wgetn_wstr() getn_wstr()
wgetstr() getnstr()
wget_wch() get_wch()
wget_wstr() getn_wstr()
whline() hline()
whline_set() hline_set()
winch() inch()
winchnstr() inchnstr()
winchstr() inchnstr()
winnstr() innstr()
winnwstr() innwstr()
winsch() insch()
winsdelln() insdelln()
winsertln() insertln()
winsnstr() insnstr()
winsstr() insnstr()
winstr() innstr()
wins_nwstr() ins_nwstr()
wins_wch() ins_wch()
wins_wstr() ins_nwstr()
winwstr() innwstr()
win_wch() in_wch()
win_wchnstr() in_wchnstr()
win_wchstr() in_wchnstr()
wmove() move()
wnoutrefresh() * doupdate ()
wprintw() mvprintw()
wredrawln() redrawln()
wrefresh() doupdate ()
wscanw() mvscanw()
wscrl() scrl()
wsetscrreg() clearok ()
wstandend() standend()
wstandout() standend()
wsyncdown() * syncok()
wsyncup() * syncok()
wtimeout() notimeout()
wtouchln() * is_linetouch ()
wvline() hline()
wvline_set() hline_set()

* There is no corresponding function without the w prefix.

216 X/Open CAE Specification 1996

Curses Interfaces CURSES w

CHANGE HISTORY
First released in Issue 4.

X/Open Curses, Issue 4, Version 2 217

wunctrl() ENHANCED CURSES Curses Interfaces

NAME
wunctrl — generate printable representation of a wide character

SYNOPSIS
EC #include <curses.h>

wchar_t *wunctrl(cchar_t * wc);

DESCRIPTION
The wunctrl() function generates a wide character string that is a printable representation of the
wide character wc.

This function also performs the following processing on the input argument:

• Control characters are converted to the ˆ X notation.

• Any rendition information is removed.

RETURN VALUE
Upon successful completion, wunctrl() returns the generated string. Otherwise, it returns a null
pointer.

ERRORS
No errors are defined.

SEE ALSO
keyname(), unctrl(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

218 X/Open CAE Specification 1996

Chapter 5

Headers

This chapter describes the contents of headers used by the Curses functions, macros and external
variables.

Headers contain the definition of symbolic constants, common structures, preprocessor macros
and defined types. Each function in Chapter 4 specifies the headers that an application must
include in order to use that function. In most cases only one header is required. These headers
are present on an application development system; they do not have to be present on the target
execution system.

X/Open Curses, Issue 4, Version 2 219

<curses.h> CURSES Headers

NAME
curses.h — definitions for screen handling and optimisation functions

SYNOPSIS
#include <curses.h>

DESCRIPTION

Objects

EC The <curses.h> header provides a declaration forCOLOR_PAIRS, COLORS,COLS, curscr, LINES
and stdscr.

Constants

The following constants are defined:

EOF Function return value for end-of-file
ERR Function return value for failure
FALSE Boolean false value
OK Function return value for success
TRUE Boolean true value
WEOF Wide-character function return value for end-of-file, as defined in

<wchar.h>.

The following constant is defined if the implementation supports the indicated revision of the
X/Open Curses specification:

_XOPEN_CURSES X/Open Curses, Issue 4, Version 2, July 1996, (ISBN: 1-85912-171-3, C610)
(this document).

Data Types

The following data types are defined through typedef:

EC attr_t An OR-ed set of attributes
bool Boolean data type

EC chtype A character, attributes and a colour-pair
SCREEN An opaque terminal representation

EC wchar_t As described in <stddef.h>
EC wint_t As described in <wchar.h>
EC cchar_t References a string of wide characters

WINDOW An opaque window representation

These data types are described in more detail in Section 2.4 on page 12.

The inclusion of <curses.h> may make visible all symbols from the headers <stdio.h>, <term.h>,
<termios.h> and <wchar.h>.

220 X/Open CAE Specification 1996

Headers CURSES <curses.h>

Attribute Bits

EC The following symbolic constants are used to manipulate objects of type attr_t:

WA_ALTCHARSET Alternate character set
WA_BLINK Blinking
WA_BOLD Extra bright or bold
WA_DIM Half bright
WA_HORIZONTAL Horizontal highlight
WA_INVIS Invisible
WA_LEFT Left highlight
WA_LOW Low highlight
WA_PROTECT Protected
WA_REVERSE Reverse video
WA_RIGHT Right highlight
WA_STANDOUT Best highlighting mode of the terminal
WA_TOP Top highlight
WA_UNDERLINE Underlining
WA_VERTICAL Vertical highlight

These attribute flags shall be distinct.

The following symbolic constants are used to manipulate attribute bits in objects of type chtype:

EC A_ALTCHARSET Alternate character set
A_BLINK Blinking
A_BOLD Extra bright or bold
A_DIM Half bright

EC A_INVIS Invisible
A_PROTECT Protected
A_REVERSE Reverse video
A_STANDOUT Best highlighting mode of the terminal
A_UNDERLINE Underlining

EC These attribute flags need not be distinct except when _XOPEN_CURSES is defined and the
application sets _XOPEN_SOURCE_EXTENDED to 1.

The following symbolic constants can be used as bit-masks to extract the components of a
chtype:

A_ATTRIBUTES Bit-mask to extract attributes
A_CHARTEXT Bit-mask to extract a character

EC A_COLOR Bit-mask to extract colour-pair information

X/Open Curses, Issue 4, Version 2 221

<curses.h> CURSES Headers

Line-drawing Constants

EC The <curses.h> header defines the symbolic constants shown in the leftmost two columns of the
following table for use in drawing lines. The symbolic constants that begin with ACS_ are char
constants. The symbolic constants that begin with WACS_ are cchar_t constants for use with the
wide-character interfaces that take a pointer to a cchar_t.

In the POSIX locale, the characters shown in the POSIX Locale Default column are used when
the terminal database does not specify a value using the acsc capability as described in Section
A.1.12 on page 264.

POSIX Locale
char Constant cchar_t Constant Default Glyph Description

EC ACS_ULCORNER WACS_ULCORNER + upper left-hand corner
ACS_LLCORNER WACS_LLCORNER + lower left-hand corner
ACS_URCORNER WACS_URCORNER + upper right-hand corner
ACS_LRCORNER WACS_LRCORNER + lower right-hand corner
ACS_RTEE WACS_RTEE + right tee (- L)
ACS_LTEE WACS_LTEE + left tee (L-)
ACS_BTEE WACS_BTEE + bottom tee (_L)
ACS_TTEE WACS_TTEE + top tee (M L)
ACS_HLINE WACS_HLINE - horizontal line
ACS_VLINE WACS_VLINE | vertical line
ACS_PLUS WACS_PLUS + plus
ACS_S1 WACS_S1 - scan line 1
ACS_S9 WACS_S9 _ scan line 9
ACS_DIAMOND WACS_DIAMOND + diamond
ACS_CKBOARD WACS_CKBOARD : checker board (stipple)
ACS_DEGREE WACS_DEGREE ’ degree symbol
ACS_PLMINUS WACS_PLMINUS # plus/minus
ACS_BULLET WACS_BULLET o bullet
ACS_LARROW WACS_LARROW < arrow pointing left
ACS_RARROW WACS_RARROW > arrow pointing right
ACS_DARROW WACS_DARROW v arrow pointing down
ACS_UARROW WACS_UARROW ˆ arrow pointing up
ACS_BOARD WACS_BOARD # board of squares
ACS_LANTERN WACS_LANTERN # lantern symbol
ACS_BLOCK WACS_BLOCK # solid square block

222 X/Open CAE Specification 1996

Headers CURSES <curses.h>

Colour-related Macros

EC The following colour-related macros are defined:

COLOR_BLACK
COLOR_BLUE
COLOR_GREEN
COLOR_CYAN
COLOR_RED
COLOR_MAGENTA
COLOR_YELLOW
COLOR_WHITE

Coordinate-related Macros

The following coordinate-related macros are defined:

EC

void getbegyx(WINDOW * win , int y, int x);
void getmaxyx(WINDOW * win , int y, int x);
void getparyx(WINDOW * win , int y, int x);
?void getyx(WINDOW * win , int y, int x);

X/Open Curses, Issue 4, Version 2 223

<curses.h> CURSES Headers

Key Codes

The following symbolic constants representing function key values are defined:

Key Code Description
EC KEY_CODE_YES Used to indicate that a wchar_t variable

contains a key code
KEY_BREAK Break key
KEY_DOWN Down arrow key
KEY_UP Up arrow key
KEY_LEFT Left arrow key
KEY_RIGHT Right arrow key
KEY_HOME Home key
KEY_BACKSPACE Backspace
KEY_F0 Function keys; space for 64 keys is reserved
KEY_F(n) For 0 ≤ n ≤ 63
KEY_DL Delete line
KEY_IL Insert line
KEY_DC Delete character
KEY_IC Insert char or enter insert mode
KEY_EIC Exit insert char mode
KEY_CLEAR Clear screen
KEY_EOS Clear to end of screen
KEY_EOL Clear to end of line
KEY_SF Scroll 1 line forward
KEY_SR Scroll 1 line backward (reverse)
KEY_NPAGE Next page
KEY_PPAGE Previous page
KEY_STAB Set tab
KEY_CTAB Clear tab
KEY_CATAB Clear all tabs
KEY_ENTER Enter or send
KEY_SRESET Soft (partial) reset
KEY_RESET Reset or hard reset
KEY_PRINT Print or copy
KEY_LL Home down or bottom
KEY_A1 Upper left of keypad
KEY_A3 Upper right of keypad
KEY_B2 Center of keypad
KEY_C1 Lower left of keypad
KEY_C3 Lower right of keypad

The virtual keypad is a 3-by-3 keypad arranged as follows:

A1 UP A3
LEFT B2 RIGHT

C1 DOWN C3

Each legend, such as A1, corresponds to a symbolic constant for a key code from the preceding
table, such as KEY_A1.

224 X/Open CAE Specification 1996

Headers CURSES <curses.h>

EC The following symbolic constants representing function key values are also defined:

Key Code Description
KEY_BTAB Back tab key
KEY_BEG Beginning key
KEY_CANCEL Cancel key
KEY_CLOSE Close key
KEY_COMMAND Cmd (command) key
KEY_COPY Copy key
KEY_CREATE Create key
KEY_END End key
KEY_EXIT Exit key
KEY_FIND Find key
KEY_HELP Help key
KEY_MARK Mark key
KEY_MESSAGE Message key
KEY_MOVE Move key
KEY_NEXT Next object key
KEY_OPEN Open key
KEY_OPTIONS Options key
KEY_PREVIOUS Previous object key
KEY_REDO Redo key
KEY_REFERENCE Reference key
KEY_REFRESH Refresh key
KEY_REPLACE Replace key
KEY_RESTART Restart key
KEY_RESUME Resume key
KEY_SAVE Save key
KEY_SBEG Shifted beginning key
KEY_SCANCEL Shifted cancel key
KEY_SCOMMAND Shifted command key
KEY_SCOPY Shifted copy key
KEY_SCREATE Shifted create key
KEY_SDC Shifted delete char key
KEY_SDL Shifted delete line key
KEY_SELECT Select key
KEY_SEND Shifted end key
KEY_SEOL Shifted clear line key
KEY_SEXIT Shifted exit key
KEY_SFIND Shifted find key
KEY_SHELP Shifted help key
KEY_SHOME Shifted home key
KEY_SIC Shifted input key
KEY_SLEFT Shifted left arrow key
KEY_SMESSAGE Shifted message key
KEY_SMOVE Shifted move key
KEY_SNEXT Shifted next key
KEY_SOPTIONS Shifted options key

X/Open Curses, Issue 4, Version 2 225

<curses.h> CURSES Headers

Key Code Description
KEY_SPREVIOUS Shifted prev key
KEY_SPRINT Shifted print key
KEY_SREDO Shifted redo key
KEY_SREPLACE Shifted replace key
KEY_SRIGHT Shifted right arrow
KEY_SRSUME Shifted resume key
KEY_SSAVE Shifted save key
KEY_SSUSPEND Shifted suspend key
KEY_SUNDO Shifted undo key
KEY_SUSPEND Suspend key
KEY_UNDO Undo key

226 X/Open CAE Specification 1996

Headers CURSES <curses.h>

Function Prototypes

The following are declared as functions, and may also be defined as macros:

int addch(const chtype);
int addchnstr(const chtype *, int);

EC int addchstr(const chtype *);
int addnstr(const char *, int);
int addnwstr(const wchar_t *, int);
int addstr(const char *);
int add_wch(const cchar_t *);
int add_wchnstr(const cchar_t *, int);
int add_wchstr(const cchar_t *);
int addwstr(const wchar_t *);
int attroff(int);
int attron(int);
int attrset(int);

EC int attr_get(attr_t *, short *, void *);
int attr_off(attr_t, void *);
int attr_on(attr_t, void *);
int attr_set(attr_t, short, void *);
int baudrate(void);
int beep(void);

EC int bkgd(chtype);
void bkgdset(chtype);
int bkgrnd(const cchar_t *);
void bkgrndset(const cchar_t *);
int border(chtype, chtype, chtype, chtype, chtype, chtype, chtype,

chtype);
int border_set(const cchar_t *, const cchar_t *, const cchar_t *,

const cchar_t *, const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *);

int box(WINDOW *, chtype, chtype);
EC int box_set(WINDOW *, const cchar_t *, const cchar_t *);

bool can_change_color(void);
int cbreak(void);

EC int chgat(int, attr_t, short, const void *);
int clearok(WINDOW *, bool);
int clear(void);
int clrtobot(void);
int clrtoeol(void);

EC int color_content(short, short *, short *, short *);
int COLOR_PAIR(int);
int color_set(short,void *);
int copywin(const WINDOW *, WINDOW *, int, int, int, int, int, int,

int);
int curs_set(int);
int def_prog_mode(void);
int def_shell_mode(void);

X/Open Curses, Issue 4, Version 2 227

<curses.h> CURSES Headers

int delay_output(int);
int delch(void);
int deleteln(void);

EC void delscreen(SCREEN *);
int delwin(WINDOW *);

EC WINDOW *derwin(WINDOW *, int, int, int, int);
int doupdate(void);

EC WINDOW *dupwin(WINDOW *);
int echo(void);

EC int echochar(const chtype);
int echo_wchar(const cchar_t *);
int endwin(void);
char erasechar(void);
int erase(void);

EC int erasewchar(wchar_t *);
void filter(void);
int flash(void);
int flushinp(void);

EC chtype getbkgd(WINDOW *);
int getbkgrnd(cchar_t *);
int getcchar(const cchar_t *, wchar_t *, attr_t *, short *, void *);
int getch(void);

EC int getnstr(char *, int);
int getn_wstr(wint_t *, int);
int getstr(char *);

EC int get_wch(wint_t *);
WINDOW *getwin(FILE *);
int get_wstr(wint_t *);
int halfdelay(int);
bool has_colors(void);
bool has_ic(void);
bool has_il(void);

EC int hline(chtype, int);
int hline_set(const cchar_t *, int);
void idcok(WINDOW *, bool);
int idlok(WINDOW *, bool);

EC void immedok(WINDOW *, bool);
chtype inch(void);

EC int inchnstr(chtype *, int);
int inchstr(chtype *);
WINDOW *initscr(void);

EC int init_color(short, short, short, short);
int init_pair(short, short, short);
int innstr(char *, int);
int innwstr(wchar_t *, int);
int insch(chtype);

EC int insdelln(int);
int insertln(void);

EC int insnstr(const char *, int);
int ins_nwstr(const wchar_t *, int);
int insstr(const char *);
int instr(char *);

228 X/Open CAE Specification 1996

Headers CURSES <curses.h>

int ins_wch(const cchar_t *);
int ins_wstr(const wchar_t *);
int intrflush(WINDOW *, bool);

EC int in_wch(cchar_t *);
int in_wchnstr(cchar_t *, int);
int in_wchstr(cchar_t *);
int inwstr(wchar_t *);
bool isendwin(void);
bool is_linetouched(WINDOW *, int);
bool is_wintouched(WINDOW *);
char *keyname(int);
char *key_name(wchar_t);
int keypad(WINDOW *, bool);
char killchar(void);

EC int killwchar(wchar_t *);
int leaveok(WINDOW *, bool);
char *longname(void);

EC int meta(WINDOW *, bool);
int move(int, int);
int mvaddch(int, int, const chtype);

EC int mvaddchnstr(int, int, const chtype *, int);
int mvaddchstr(int, int, const chtype *);

EC int mvaddnstr(int, int, const char *, int);
int mvaddnwstr(int, int, const wchar_t *, int);
int mvaddstr(int, int, const char *);
int mvadd_wch(int, int, const cchar_t *);
int mvadd_wchnstr(int, int, const cchar_t *, int);
int mvadd_wchstr(int, int, const cchar_t *);
int mvaddwstr(int, int, const wchar_t *);
int mvchgat(int, int, int, attr_t, short, const void *);
int mvcur(int, int, int, int);
int mvdelch(int, int);

EC int mvderwin(WINDOW *, int, int);
int mvgetch(int, int);

EC int mvgetnstr(int, int, char *, int);
int mvgetn_wstr(int, int, wint_t *, int);
int mvgetstr(int, int, char *);

EC int mvget_wch(int, int, wint_t *);
int mvget_wstr(int, int, wint_t *);
int mvhline(int, int, chtype, int);
int mvhline_set(int, int, const cchar_t *, int);
chtype mvinch(int, int);

EC int mvinchnstr(int, int, chtype *, int);
int mvinchstr(int, int, chtype *);
int mvinnstr(int, int, char *, int);
int mvinnwstr(int, int, wchar_t *, int);
int mvinsch(int, int, chtype);

EC int mvinsnstr(int, int, const char *, int);
int mvins_nwstr(int, int, const wchar_t *, int);
int mvinsstr(int, int, const char *);
int mvinstr(int, int, char *);
int mvins_wch(int, int, const cchar_t *);

X/Open Curses, Issue 4, Version 2 229

<curses.h> CURSES Headers

int mvins_wstr(int, int, const wchar_t *);
int mvin_wch(int, int, cchar_t *);
int mvin_wchnstr(int, int, cchar_t *, int);
int mvin_wchstr(int, int, cchar_t *);
int mvinwstr(int, int, wchar_t *);
int mvprintw(int, int, char *, ...);
int mvscanw(int, int, char *, ...);

EC int mvvline(int, int, chtype, int);
int mvvline_set(int, int, const cchar_t *, int);
int mvwaddch(WINDOW *, int, int, const chtype);

EC int mvwaddchnstr(WINDOW *, int, int, const chtype *, int);
int mvwaddchstr(WINDOW *, int, int, const chtype *);

EC int mvwaddnstr(WINDOW *, int, int, const char *, int);
int mvwaddnwstr(WINDOW *, int, int, const wchar_t *, int);
int mvwaddstr(WINDOW *, int, int, const char *);
int mvwadd_wch(WINDOW *, int, int, const cchar_t *);
int mvwadd_wchnstr(WINDOW *, int, int, const cchar_t *, int);
int mvwadd_wchstr(WINDOW *, int, int, const cchar_t *);
int mvwaddwstr(WINDOW *, int, int, const wchar_t *);
int mvwchgat(WINDOW *, int, int, int, attr_t, short, const void *);
int mvwdelch(WINDOW *, int, int);
int mvwgetch(WINDOW *, int, int);

EC int mvwgetnstr(WINDOW *, int, int, char *, int);
int mvwgetn_wstr(WINDOW *, int, int, wint_t *, int);
int mvwgetstr(WINDOW *, int, int, char *);

EC int mvwget_wch(WINDOW *, int, int, wint_t *);
int mvwget_wstr(WINDOW *, int, int, wint_t *);
int mvwhline(WINDOW *, int, int, chtype, int);
int mvwhline_set(WINDOW *, int, int, const cchar_t *, int);
int mvwin(WINDOW *, int, int);
chtype mvwinch(WINDOW *, int, int);

EC int mvwinchnstr(WINDOW *, int, int, chtype *, int);
int mvwinchstr(WINDOW *, int, int, chtype *);
int mvwinnstr(WINDOW *, int, int, char *, int);
int mvwinnwstr(WINDOW *, int, int, wchar_t *, int);
int mvwinsch(WINDOW *, int, int, chtype);

EC int mvwinsnstr(WINDOW *, int, int, const char *, int);
int mvwins_nwstr(WINDOW *, int, int, const wchar_t *, int);
int mvwinsstr(WINDOW *, int, int, const char *);
int mvwinstr(WINDOW *, int, int, char *);
int mvwins_wch(WINDOW *, int, int, const cchar_t *);
int mvwins_wstr(WINDOW *, int, int, const wchar_t *);
int mvwin_wch(WINDOW *, int, int, cchar_t *);
int mvwin_wchnstr(WINDOW *, int, int, cchar_t *, int);
int mvwin_wchstr(WINDOW *, int, int, cchar_t *);
int mvwinwstr(WINDOW *, int, int, wchar_t *);
int mvwprintw(WINDOW *, int, int, char *, ...);
int mvwscanw(WINDOW *, int, int, char *, ...);

EC int mvwvline(WINDOW *, int, int, chtype, int);
int mvwvline_set(WINDOW *, int, int, const cchar_t *, int);
int napms(int);
WINDOW *newpad(int, int);

230 X/Open CAE Specification 1996

Headers CURSES <curses.h>

SCREEN *newterm(char *, FILE *, FILE *);
WINDOW *newwin(int, int, int, int);
int nl(void);
int nocbreak(void);
int nodelay(WINDOW *, bool);
int noecho(void);
int nonl(void);

EC void noqiflush(void);
int noraw(void);

EC int notimeout(WINDOW *, bool);
int overlay(const WINDOW *, WINDOW *);
int overwrite(const WINDOW *, WINDOW *);

EC int pair_content(short, short *, short *);
int PAIR_NUMBER(int);
int pechochar(WINDOW *, chtype);
int pecho_wchar(WINDOW *, const cchar_t*);
int pnoutrefresh(WINDOW *, int, int, int, int, int, int);
int prefresh(WINDOW *, int, int, int, int, int, int);
int printw(char *, ...);

EC int putp(const char *);
int putwin(WINDOW *, FILE *);
void qiflush(void);
int raw(void);

EC int redrawwin(WINDOW *);
int refresh(void);
int reset_prog_mode(void);
int reset_shell_mode(void);
int resetty(void);

EC int ripoffline(int, int (*)(WINDOW *, int));
int savetty(void);
int scanw(char *, ...);

EC int scr_dump(const char *);
int scr_init(const char *);
int scrl(int);
int scroll(WINDOW *);
int scrollok(WINDOW *, bool);

EC int scr_restore(const char *);
int scr_set(const char *);
int setcchar(cchar_t*, const wchar_t*, const attr_t, short,

const void*);
int setscrreg(int, int);
SCREEN *set_term(SCREEN *);
int setupterm(char *, int, int *);

EC int slk_attr_off(const attr_t, void *);
int slk_attroff(const chtype);
int slk_attr_on(const attr_t, void *);
int slk_attron(const chtype);
int slk_attr_set(const attr_t, short, void *);
int slk_attrset(const chtype);
int slk_clear(void);
int slk_color(short);
int slk_init(int);

X/Open Curses, Issue 4, Version 2 231

<curses.h> CURSES Headers

char *slk_label(int);
int slk_noutrefresh(void);
int slk_refresh(void);
int slk_restore(void);
int slk_set(int, const char *, int);
int slk_touch(void);
int slk_wset(int, const wchar_t *, int);
int standend(void);
int standout(void);

EC int start_color(void);
WINDOW *subpad(WINDOW *, int, int, int, int);
WINDOW *subwin(WINDOW *, int, int, int, int);

EC int syncok(WINDOW *, bool);
chtype termattrs(void);
attr_t term_attrs(void);
char *termname(void);
int tigetflag(char *);
int tigetnum(char *);
char *tigetstr(char *);
void timeout(int);
int touchline(WINDOW *, int, int);
int touchwin(WINDOW *);

EC char *tparm(char *, long, long, long, long, long, long, long, long,
long);

int typeahead(int);
EC int ungetch(int);

int unget_wch(const wchar_t);
int untouchwin(WINDOW *);
void use_env(bool);
int vid_attr(attr_t, short, void *);
int vidattr(chtype);
int vid_puts(attr_t, short, void *, int (*)(int));
int vidputs(chtype, int (*)(int));
int vline(chtype, int);
int vline_set(const cchar_t *, int);
int vwprintw(WINDOW *, char *, va_list *);
int vw_printw(WINDOW *, char *, va_list *);
int vwscanw(WINDOW *, char *, va_list *);
int vw_scanw(WINDOW *, char *, va_list *);
int waddch(WINDOW *, const chtype);

EC int waddchnstr(WINDOW *, const chtype *, int);
int waddchstr(WINDOW *, const chtype *);

EC int waddnstr(WINDOW *, const char *, int);
int waddnwstr(WINDOW *, const wchar_t *, int);
int waddstr(WINDOW *, const char *);
int wadd_wch(WINDOW *, const cchar_t *);
int wadd_wchnstr(WINDOW *, const cchar_t *, int);
int wadd_wchstr(WINDOW *, const cchar_t *);
int waddwstr(WINDOW *, const wchar_t *);
int wattroff(WINDOW *, int);
int wattron(WINDOW *, int);
int wattrset(WINDOW *, int);

232 X/Open CAE Specification 1996

Headers CURSES <curses.h>

EC int wattr_get(WINDOW *, attr_t *, short *, void *);
int wattr_off(WINDOW *, attr_t, void *);
int wattr_on(WINDOW *, attr_t, void *);
int wattr_set(WINDOW *, attr_t, short, void *);
int wbkgd(WINDOW *, chtype);
void wbkgdset(WINDOW *, chtype);
int wbkgrnd(WINDOW *, const cchar_t *);
void wbkgrndset(WINDOW *, const cchar_t *);
int wborder(WINDOW *, chtype, chtype, chtype, chtype, chtype, chtype,

chtype, chtype);
int wborder_set(WINDOW *, const cchar_t *, const cchar_t *,

const cchar_t *, const cchar_t *, const cchar_t *,
const cchar_t *, const cchar_t *, const cchar_t *);

int wchgat(WINDOW *, int, attr_t, short, const void *);
int wclear(WINDOW *);
int wclrtobot(WINDOW *);
int wclrtoeol(WINDOW *);

EC void wcursyncup(WINDOW *);
int wcolor_set(WINDOW *, short, void *);
int wdelch(WINDOW *);
int wdeleteln(WINDOW *);

EC int wechochar(WINDOW *, const chtype);
int wecho_wchar(WINDOW *, const cchar_t *);
int werase(WINDOW *);

EC int wgetbkgrnd(WINDOW *, cchar_t *);
int wgetch(WINDOW *);

EC int wgetnstr(WINDOW *, char *, int);
int wgetn_wstr(WINDOW *, wint_t *, int);
int wgetstr(WINDOW *, char *);

EC int wget_wch(WINDOW *, wint_t *);
int wget_wstr(WINDOW *, wint_t *);
int whline(WINDOW *, chtype, int);
int whline_set(WINDOW *, const cchar_t *, int);
chtype winch(WINDOW *);

EC int winchnstr(WINDOW *, chtype *, int);
int winchstr(WINDOW *, chtype *);
int winnstr(WINDOW *, char *, int);
int winnwstr(WINDOW *, wchar_t *, int);
int winsch(WINDOW *, chtype);

EC int winsdelln(WINDOW *, int);
int winsertln(WINDOW *);

EC int winsnstr(WINDOW *, const char *, int);
int wins_nwstr(WINDOW *, const wchar_t *, int);
int winsstr(WINDOW *, const char *);
int winstr(WINDOW *, char *);
int wins_wch(WINDOW *, const cchar_t *);
int wins_wstr(WINDOW *, const wchar_t *);
int win_wch(WINDOW *, cchar_t *);
int win_wchnstr(WINDOW *, cchar_t *, int);
int win_wchstr(WINDOW *, cchar_t *);
int winwstr(WINDOW *, wchar_t *);
int wmove(WINDOW *, int, int);

X/Open Curses, Issue 4, Version 2 233

<curses.h> CURSES Headers

int wnoutrefresh(WINDOW *);
int wprintw(WINDOW *, char *, ...);

EC int wredrawln(WINDOW *, int, int);
int wrefresh(WINDOW *);
int wscanw(WINDOW *, char *, ...);

EC int wscrl(WINDOW *, int);
int wsetscrreg(WINDOW *, int, int);
int wstandend(WINDOW *);
int wstandout(WINDOW *);

EC void wsyncup(WINDOW *);
void wsyncdown(WINDOW *);
void wtimeout(WINDOW *, int);
int wtouchln(WINDOW *, int, int, int);
wchar_t *wunctrl(cchar_t *);
int wvline(WINDOW *, chtype, int);
int wvline_set(WINDOW *, const cchar_t *, int);

SEE ALSO
Chapter 1, <stdio.h> (in the XSH specification), <term.h>, <termios.h> (in the XSH
specification), <unctrl.h>, <wchar.h> (in the XSH specification).

CHANGE HISTORY
First released in Issue 2.

Issue 4
The entry is completely rewritten to include new constants, data types and function prototypes.

Issue 4, Version 2
This entry is completely rewritten to correct the function prototypes.

234 X/Open CAE Specification 1996

Headers ENHANCED CURSES <term.h>

NAME
term.h — terminal capabilities

SYNOPSIS
EC #include <term.h>

DESCRIPTION
The following data type is defined through typedef:

TERMINAL An opaque representation of the capabilities for a single terminal from the
terminfo database.

The <term.h> header provides a declaration for the following object: cur_term. It represents the
current terminal record from the terminfo database that the application has selected by calling
set_curterm().

The <term.h> header contains the variable names listed in the Variable column in the table in
Section 6.1.3 on page 241.

The following are declared as functions, and may also be defined as macros:

int del_curterm(TERMINAL *);
int putp(const char *);
int restartterm(char *, int, int *);
TERMINAL *set_curterm(TERMINAL *);
int setupterm(char *, int, int *);
int tgetent(char *, const char *);
int tgetflag(char *);
int tgetnum(char *);
char *tgetstr(char *, char **):
char *tgoto(char *, int, int);
int tigetflag(char *);
int tigetnum(char *);
char *tigetstr(char *);
char *tparm(char *,long, long, long, long, long, long, long, long, long);
int tputs(const char *, int, int (*)(int));

The <term.h> header defines the following data type through typedef:

bool As described in <curses.h>.

SEE ALSO
Chapter 6, printf(), putp(), tigetflag(), tgetent(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

Corrections made, Issue 4, Version 2.

X/Open Curses, Issue 4, Version 2 235

<unctrl.h> CURSES Headers

NAME
unctrl.h — definitions for unctrl ()

DESCRIPTION
The <unctrl.h> header defines the chtype type as defined in <curses.h>.

The following is declared as a function, and may also be defined as a macro:

char *unctrl(chtype);

SEE ALSO
unctrl(), <curses.h>.

CHANGE HISTORY
First released in Issue 4.

236 X/Open CAE Specification 1996

Chapter 6

Terminfo Source Format (ENHANCED CURSES)

EC The requirements in this chapter are in effect only for implementations that claim Enhanced
Curses compliance.

The terminfo database contains a description of the capabilities of a variety of devices, such as
terminals and printers. Devices are described by specifying a set of capabilities, by quantifying
certain aspects of the device, and by specifying character sequences that effect particular results.

This chapter specifies the format of terminfo source files.

X/Open-compliant implementations must provide a facility that accepts source files in the
format specified in this chapter as a means of entering information into the terminfo database.
The facility for installing this information into the database is implementation-specific. A valid
terminfo entry describing a given model of terminal can be added to terminfo on any X/Open-
compliant implementation to permit use of the same terminal model.

Section 6.1 on page 238 describes the syntax of terminfo source files. A grammar and lexical
conventions appear in Section 6.1.2 on page 239. A list of all terminal capabilities defined by
X/Open appears in Section 6.1.3 on page 241. An example follows in Section 6.1.4 on page 251.
Section A.1 on page 255 describes the specification of devices in general, such as video terminals.
Section A.2 on page 268 describes the specification of printers.

The terminfo database is often used by screen-oriented applications such as vi and Curses
programs, as well as by some utilities such as ls and more. This usage allows them to work with
a variety of devices without changes to the programs.

X/Open Curses, Issue 4, Version 2 237

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

6.1 Source File Syntax
Source files can use the ISO 8859-1 codeset. The behaviour when the source file is in another
codeset is unspecified. Traditional practice has been to translate information from other
codesets into the source file syntax.

terminfo source files consist of one or more device descriptions. Each description defines a
mnemonic name for the terminal model. Each description consists of a header (beginning in
column 1) and one or more lines that list the features for that particular device. Every line in a
terminfo source file must end in a comma. Every line in a terminfo source file except the header
must be indented with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields. White space
after each comma is ignored. Embedded commas must be escaped by using a backslash. The
following example shows the format of a terminfo source file:

alias 1 | alias 2 | ... | aliasn | longname,
<white space> am, lines #24,
<white space> home=\Eeh,

The first line, commonly referred to as the header line, must begin in column one and must
contain at least two aliases separated by vertical bars. The last field in the header line must be
the long name of the device and it may contain any string.

Alias names must be unique in the terminfo database and they must conform to file naming
conventions established by implementation-specific terminfo compilation utilities.
Implementations will recognise alias names consisting only of characters from the portable
filename character set except that implementations need not accept a first character of minus (-).
For example, a typical restriction is that they cannot contain white space or slashes. There may
be further constraints imposed on source file values by the implementation-specific terminfo
compilation utilities. Section A.4.1 on page 279 provides conventions for choosing alias names.

Each capability in terminfo is of one of the following types:

• Boolean capabilities show that a device has or does not have a particular feature.

• Numeric capabilities quantify particular features of a device.

• String capabilities provide sequences that can be used to perform particular operations on
devices.

Capability names adhere to an informal length limit of five characters. Whenever possible,
capability names are chosen to be the same as or similar to those specified by the ANSI X3.64-
1979 standard. Semantics are also intended to match those of the ANSI standard.

All string capabilities may have padding specified, with the exception of those used for input.
Input capabilities, listed under the Strings section in the following tables, have names beginning
with key_. These capabilities are defined in <term.h>.

238 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

6.1.1 Minimum Guaranteed Limits

All X/Open-compliant implementations support at least the following limits for the terminfo
source file:

Source File Characteristic Minimum Guaranteed Value
Length of a line 1023 bytes
Length of a terminal alias 14 bytes
Length of a terminal model name 128 bytes
Width of a single field 128 bytes
Length of a string value 1000 bytes
Length of a string representing a numeric value 99 digits
Magnitude of a numeric value 0 up to and including 32 767

An implementation may support higher limits than those specified above.

6.1.2 Formal Grammar

The grammar and lexical conventions in this section together describe the syntax for terminfo
terminal descriptions within a terminfo source file. A terminal description that satisfies the
requirements of this section will be accepted by all implementations.

descriptions : START_OF_HEADER_LINE 4 rest_of_header_line feature_lines
| descriptions START_OF_HEADER_LINE rest_of_header_line
| feature_lines
;

rest_of_header_line : PIPE LONGNAME COMMA NEWLINE
| aliases PIPE LONGNAME COMMA NEWLINE
;

feature_lines : start_feature_line rest_of_feature_line
| feature_lines start_feature_line rest_of_feature_line
;

start_feature_line : START_FEATURE_LINE_BOOLEAN 5

| START_FEATURE_LINE_NUMERIC6

| START_FEATURE_LINE_STRING7

;

rest_of_feature_line : features COMMA NEWLINE
| COMMA NEWLINE
;

4. An ALIAS that begins in column one. This is handled by the lexical analyzer.
5. A BOOLEAN feature that begins after column one but is the first feature on the feature line. This is handled by the lexical

analyzer.
6. A NUMERIC feature that begins after column one but is the first feature on the feature line. This is handled by the lexical

analyzer.
7. A STRING feature that begins after column one but is the first feature on the feature line. This is handled by the lexical analyzer.

X/Open Curses, Issue 4, Version 2 239

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

features : COMMA feature
| features COMMA feature
;

aliases : PIPE ALIAS
| aliases PIPE ALIAS
;

feature : BOOLEAN
| NUMERIC
| STRING
;

The lexical conventions for terminfo descriptions are as follows:

1. White space consists of the ’ ’ and <tab> character.

2. An ALIAS may contain any graph8 characters other than ’,’ , ’/’ and ’|’.

3. A LONGNAME may contain any print9 characters other than ’,’ and ’|’.

4. A BOOLEAN feature may contain any print characters other than ’,’, ’=’, and ’#’.

5. A NUMERIC feature consists of:

a. A name which may contain any print character other than ’,’, ’=’, and ’#’.

b. The ’#’ character.

c. A positive integer which conforms to the C language convention for integer
constants.

6. A STRING feature consists of:

a. A name which may contain any print character other than ’,’, ’=’, and ’#’.

b. The ’=’ character.

c. A string which may contain any print characters other than ’,’.

7. White space immediately following a ’,’ is ignored.

8. Comments consist of <bol>, optional whitespace, a required ’#’, and a terminating <eol>.

9. A header line must begin in column one.

10. A feature line must not begin in column one.

11. Blank lines are ignored.

8. Graph characters are those characters for which isgraph () returns non-zero.
9. Print characters are those characters for which isprint() returns non-zero.

240 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

6.1.3 Defined Capabilities

X/Open defines the capabilities listed in the following table. All X/Open-compliant
implementations must accept each of these capabilities in an entry in a terminfo source file.
Implementations use this information to determine how properly to operate the current
terminal. In addition, implementations return any of the current terminal’s capabilities when the
application calls the query functions listed in tgetent() on page 194 (in the cases where the
following table lists a Termcap code) and tigetflag() on page 196.

The table of capabilities has the following columns:

Variable Names for use by the Curses functions that operate on the terminfo database.
These names are reserved and the application must not define them.

Capname The short name for a capability specified in the terminfo source file. It is used for
updating the source file and by the tput command.

Termcap Codes provided for compatibility with older applications. These codes are TO BE
WITHDRAWN. Because of this, not all Capnames have Termcap codes.

Booleans

Cap- Term-
Variable name cap Description
auto_left_margin bw bw cub1 wraps from column 0 to last column
auto_right_margin am am Terminal has automatic margins
back_color_erase bce ut Screen erased with background colour
can_change ccc cc Terminal can re-define existing colour
ceol_standout_glitch xhp xs Standout not erased by overwriting (hp)
col_addr_glitch xhpa YA Only positive motion for hpa/mhpa caps
cpi_changes_res cpix YF Changing character pitch changes resolution
cr_cancels_micro_mode crxm YB Using cr turns off micro mode
dest_tabs_magic_smso xt xt Destructive tabs, magic smso char (t1061)
eat_newline_glitch xenl xn Newline ignored after 80 columns (Concept)
erase_overstrike eo eo Can erase overstrikes with a blank
generic_type gn gn Generic line type (e.g., dialup, switch)
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key km km Has a meta key (shift, sets parity bit)
has_print_wheel daisy YC Printer needs operator to change

character set
has_status_line hs hs Has extra "status line"
hue_lightness_saturation hls hl Terminal uses only HLS colour

notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch changes resolution
memory_above da da Display may be retained above the screen
memory_below db db Display may be retained below the screen
move_insert_mode mir mi Safe to move while in insert mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won’t work, xon/xoff required

X/Open Curses, Issue 4, Version 2 241

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

Cap- Term-
Variable name cap Description
no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)
no_pad_char npc NP Pad character doesn’t exist
non_dest_scroll_region ndscr ND Scrolling region is nondestructive
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
over_strike os os Terminal overstrikes on hard-copy terminal
prtr_silent mc5i 5i Printer won’t echo on screen
row_addr_glitch xvpa YD Only positive motion for vpa/mvpa caps
semi_auto_right_margin sam YE Printing in last column causes cr
status_line_esc_ok eslok es Escape can be used on the status line
tilde_glitch hz hz Hazeltine; can’t print tilde (˜)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff handshaking

Numbers

Cap- Term-
Variable name cap Description
bit_image_entwining bitwin Yo Number of passes for each bit-map row
bit_image_type bitype Yp Type of bit image device
buffer_capacity bufsz Ya Number of bytes buffered before printing
buttons btns BT Number of buttons on the mouse
columns cols co Number of columns in a line
dot_horz_spacing spinh Yc Spacing of dots horizontally in dots per inch
dot_vert_spacing spinv Yb Spacing of pins vertically in pins per inch
init_tabs it it Tabs initially every # spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label
lines lines li Number of lines on a screen or a page
lines_of_memory lm lm Lines of memory if > lines; 0 means varies

Maximum combined video attributes terminal
can display

max_attributes ma ma

magic_cookie_glitch xmc sg Number of blank characters left by smso or rmso
max_colors colors Co Maximum number of colours on the screen
max_micro_address maddr Yd Maximum value in micro_..._address
max_micro_jump mjump Ye Maximum value in parm_..._micro
max_pairs pairs pa Maximum number of colour-pairs on the screen
maximum_windows wnum MW Maximum number of definable windows
micro_col_size mcs Yf Character step size when in micro mode
micro_line_size mls Yg Line step size when in micro mode
no_color_video ncv NC Video attributes that can’t be used with colours
num_labels nlab Nl Number of labels on screen (start at 1)
number_of_pins npins Yh Number of pins in print-head
output_res_char orc Yi Horizontal resolution in units per character
output_res_line orl Yj Vertical resolution in units per line
output_res_horz_inch orhi Yk Horizontal resolution in units per inch

242 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

Cap- Term-
Variable name cap Description
output_res_vert_inch orvi Yl Vertical resolution in units per inch
padding_baud_rate pb pb Lowest baud rate where padding needed
print_rate cps Ym Print rate in characters per second
virtual_terminal vt vt Virtual terminal number
wide_char_size widcs Yn Character step size when in double-wide mode
width_status_line wsl ws Number of columns in status line

Strings

Cap- Term-
Variable name cap Description
acs_chars acsc ac Graphic charset pairs aAbBcC
alt_scancode_esc scesa S8 Alternate escape for scancode emulation

(default is for VT100)
back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
bit_image_carriage_return bicr Yv Move to beginning of same row
bit_image_newline binel Zz Move to next row of the bit image
bit_image_repeat birep Xy Repeat bit-image cell #1 #2 times
carriage_return cr cr Carriage return
change_char_pitch cpi ZA Change number of characters per inch
change_line_pitch lpi ZB Change number of lines per inch
change_res_horz chr ZC Change horizontal resolution
change_res_vert cvr ZD Change vertical resolution
change_scroll_region csr cs Change to lines #1 through #2 (VT100)
char_padding rmp rP Like ip but when in replace mode
char_set_names csnm Zy Returns a list of character set names
clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear all margins (top, bottom,

and sides)
clear_screen clear cl Clear screen and home cursor
clr_bol el1 cb Clear to beginning of line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display
code_set_init csin ci Init sequence for multiple codesets
color_names colornm Yw Give name for colour #1
column_address hpa ch Set horizontal position to absolute #1
command_character cmdch CC Terminal settable cmd character

in prototype
create_window cwin CW Define win #1 to go from #2,#3 to #4,#5
cursor_address cup cm Move to row #1 col #2
cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 le Move left one space.

X/Open Curses, Issue 4, Version 2 243

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

Cap- Term-
Variable name cap Description
cursor_mem_address mrcup CM Memory relative cursor addressing
cursor_normal cnorm ve Make cursor appear normal

(undo vs/vi)
cursor_right cuf1 nd Non-destructive space (cursor or

carriage right)
cursor_to_ll ll ll Last line, first column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
define_bit_image_region defbi Yx Define rectangular bit-image region
define_char defc ZE Define a character in a character set
delete_character dch1 dc Delete character
delete_line dl1 dl Delete line
device_type devt dv Indicate language/codeset support
dial_phone dial DI Dial phone number #1
dis_status_line dsl ds Disable status line
display_clock dclk DK Display time-of-day clock
display_pc_char dispc S1 Display PC character
down_half_line hd hd Half-line down (forward 1/2 linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region
enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra bright) mode
enter_ca_mode smcup ti String to begin programs that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print
enter_horizontal_hl_mode ehhlm Turn on horizontal highlight mode
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_left_hl_mode elhlm Turn on left highlight mode
enter_leftward_mode slm ZI Enable leftward carriage motion
enter_low_hl_mode elohlm Turn on low highlight mode
enter_micro_mode smicm ZJ Enable micro motion capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality print
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_right_hl_mode erhlm Turn on right highlight mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode (characters invisible)
enter_shadow_mode sshm ZM Enable shadow printing
enter_standout_mode smso so Begin standout mode

244 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

Cap- Term-
Variable name cap Description
enter_subscript_mode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm ZO Enable superscript printing
enter_top_hl_mode ethlm Turn on top highlight mode
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion
enter_vertical_hl_mode evhlm Turn on vertical highlight mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode sgr0 me Turn off all attributes
exit_ca_mode rmcup te String to end programs that use cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion
exit_micro_mode rmicm ZT Disable micro motion capabilities
exit_pc_charset_mode rmpch S3 Disable PC character display mode
exit_scancode_mode rmsc S5 Disable PC scancode mode
exit_shadow_mode rshm ZU Disable shadow printing
exit_standout_mode rmso se End standout mode
exit_subscript_mode rsubm ZV Disable subscript printing
exit_superscript_mode rsupm ZW Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward_mode rum ZX Enable downward (normal)

carriage motion
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
fixed_pause pause PA Pause for 2-3 seconds
flash_hook hook fh Flash the switch hook
flash_screen flash vb Visible bell (may move cursor)
form_feed ff ff Hardcopy terminal page eject
from_status_line fsl fs Return from status line
get_mouse getm Gm Curses should get button events
goto_window wingo WG Go to window #1
hangup hup HU Hang-up phone
init_1string is1 i1 Terminal or printer initialisation string
init_2string is2 is Terminal or printer initialisation string
init_3string is3 i3 Terminal or printer initialisation string
init_file if if Name of initialisation file
init_prog iprog iP Path name of program for initialisation
initialize_color initc IC Set colour #1 to RGB #2, #3, #4
initialize_pair initp Ip Set colour-pair #1 to fg #2, bg #3
insert_character ich1 ic Insert character
insert_line il1 al Add new blank line

X/Open Curses, Issue 4, Version 2 245

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

Cap- Term-
Variable name cap Description
insert_padding ip ip Insert pad after character inserted

The ‘‘key_’’ strings are sent by specific keys. The ‘‘key_’’ descriptions include the macro,
defined in <curses.h>, for the code returned by getch() when the key is pressed (see getch()).

Cap- Term-
Variable name cap Description
key_a1 ka1 K1 upper left of keypad
key_a3 ka3 K3 upper right of keypad
key_b2 kb2 K2 center of keypad
key_backspace kbs kb sent by backspace key
key_beg kbeg @1 sent by beg(inning) key
key_btab kcbt kB sent by back-tab key
key_c1 kc1 K4 lower left of keypad
key_c3 kc3 K5 lower right of keypad
key_cancel kcan @2 sent by cancel key
key_catab ktbc ka sent by clear-all-tabs key
key_clear kclr kC sent by clear-screen or erase key
key_close kclo @3 sent by close key
key_command kcmd @4 sent by cmd (command) key
key_copy kcpy @5 sent by copy key
key_create kcrt @6 sent by create key
key_ctab kctab kt sent by clear-tab key
key_dc kdch1 kD sent by delete-character key
key_dl kdl1 kL sent by delete-line key
key_down kcud1 kd sent by terminal down-arrow key
key_eic krmir kM sent by rmir or smir in insert mode
key_end kend @7 sent by end key
key_enter kent @8 sent by enter/send key
key_eol kel kE sent by clear-to-end-of-line key
key_eos ked kS sent by clear-to-end-of-screen key
key_exit kext @9 sent by exit key
key_f0 kf0 k0 sent by function key f0
key_f1 kf1 k1 sent by function key f1

. . . .

. . . .

. . . .
key_f62 kf62 Fq sent by function key f62
key_f63 kf63 Fr sent by function key f63
key_find kfnd @0 sent by find key
key_help khlp %1 sent by help key
key_home khome kh sent by home key
key_ic kich1 kI sent by ins-char/enter ins-mode key
key_il kil1 kA sent by insert-line key
key_left kcub1 kl sent by terminal left-arrow key
key_ll kll kH sent by home-down key

246 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

Cap- Term-
Variable name cap Description
key_mark kmrk %2 sent by mark key
key_message kmsg %3 sent by message key
key_mouse kmous Km 0631, Mouse event has occured
key_move kmov %4 sent by move key
key_next knxt %5 sent by next-object key
key_npage knp kN sent by next-page key
key_open kopn %6 sent by open key
key_options kopt %7 sent by options key
key_ppage kpp kP sent by previous-page key
key_previous kprv %8 sent by previous-object key
key_print kprt %9 sent by print or copy key
key_redo krdo %0 sent by redo key
key_reference kref &1 sent by ref(erence) key
key_refresh krfr &2 sent by refresh key
key_replace krpl &3 sent by replace key
key_restart krst &4 sent by restart key
key_resume kres &5 sent by resume key
key_right kcuf1 kr sent by terminal right-arrow key
key_save ksav &6 sent by save key
key_sbeg kBEG &9 sent by shifted beginning key
key_scancel kCAN &0 sent by shifted cancel key
key_scommand kCMD ∗1 sent by shifted command key
key_scopy kCPY ∗2 sent by shifted copy key
key_screate kCRT ∗3 sent by shifted create key
key_sdc kDC ∗4 sent by shifted delete-char key
key_sdl kDL ∗5 sent by shifted delete-line key
key_select kslt ∗6 sent by select key
key_send kEND ∗7 sent by shifted end key
key_seol kEOL ∗8 sent by shifted clear-line key
key_sexit kEXT ∗9 sent by shifted exit key
key_sf kind kF sent by scroll-forward/down key
key_sfind kFND ∗0 sent by shifted find key
key_shelp kHLP #1 sent by shifted help key
key_shome kHOM #2 sent by shifted home key
key_sic kIC #3 sent by shifted input key
key_sleft kLFT #4 sent by shifted left-arrow key
key_smessage kMSG %a sent by shifted message key
key_smove kMOV %b sent by shifted move key
key_snext kNXT %c sent by shifted next key
key_soptions kOPT %d sent by shifted options key
key_sprevious kPRV %e sent by shifted prev key
key_sprint kPRT %f sent by shifted print key
key_sr kri kR sent by scroll-backward/up key
key_sredo kRDO %g sent by shifted redo key
key_sreplace kRPL %h sent by shifted replace key
key_sright kRIT %i sent by shifted right-arrow key

X/Open Curses, Issue 4, Version 2 247

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

Cap- Term-
Variable name cap Description
key_srsume kRES %j sent by shifted resume key
key_ssave kSAV !1 sent by shifted save key
key_ssuspend kSPD !2 sent by shifted suspend key
key_stab khts kT sent by set-tab key
key_sundo kUND !3 sent by shifted undo key
key_suspend kspd &7 sent by suspend key
key_undo kund &8 sent by undo key
key_up kcuu1 ku sent by terminal up-arrow key
keypad_local rmkx ke Out of ‘‘keypad-transmit’’ mode
keypad_xmit smkx ks Put terminal in ‘‘keypad-transmit’’ mode
lab_f0 lf0 l0 Labels on function key f0 if not f0
lab_f1 lf1 l1 Labels on function key f1 if not f1
lab_f2 lf2 l2 Labels on function key f2 if not f2
lab_f3 lf3 l3 Labels on function key f3 if not f3
lab_f4 lf4 l4 Labels on function key f4 if not f4
lab_f5 lf5 l5 Labels on function key f5 if not f5
lab_f6 lf6 l6 Labels on function key f6 if not f6
lab_f7 lf7 l7 Labels on function key f7 if not f7
lab_f8 lf8 l8 Labels on function key f8 if not f8
lab_f9 lf9 l9 Labels on function key f9 if not f9
lab_f10 lf10 la Labels on function key f10 if not f10
label_format fln Lf Label format
label_off rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
meta_off rmm mo Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
micro_column_address mhpa ZY Like column_address for micro adjustment
micro_down mcud1 ZZ Like cursor_down for micro adjustment
micro_left mcub1 Za Like cursor_left for micro adjustment
micro_right mcuf1 Zb Like cursor_right for micro adjustment
micro_row_address mvpa Zc Like row_address for micro adjustment
micro_up mcuu1 Zd Like cursor_up for micro adjustment
mouse_info minfo Mi Mouse status information
newline nel nw Newline (behaves like cr followed by lf)
order_of_pins porder Ze Matches software bits to print-head pins
orig_colors oc oc Set all colour(-pair)s to the original ones
orig_pair op op Set default colour-pair to the original one
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars
parm_delete_line dl DL Delete #1 lines
parm_down_cursor cud DO Move down #1 lines.
parm_down_micro mcud Zf Like parm_down_cursor for micro adjust.
parm_ich ich IC Insert #1 blank chars
parm_index indn SF Scroll forward #1 lines.
parm_insert_line il AL Add #1 new blank lines
parm_left_cursor cub LE Move cursor left #1 spaces

248 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

Cap- Term-
Variable name cap Description
parm_left_micro mcub Zg Like parm_left_cursor for micro adjust.
parm_right_cursor cuf RI Move right #1 spaces.
parm_right_micro mcuf Zh Like parm_right_cursor for micro adjust.
parm_rindex rin SR Scroll backward #1 lines.
parm_up_cursor cuu UP Move cursor up #1 lines.
parm_up_micro mcuu Zi Like parm_up_cursor for micro adjust.
pc_term_options pctrm S6 PC terminal options
pkey_key pfkey pk Prog funct key #1 to type string #2
pkey_local pfloc pl Prog funct key #1 to execute string #2
pkey_plab pfxl xl Prog key #1 to xmit string #2 and show string #3
pkey_xmit pfx px Prog funct key #1 to xmit string #2
plab_norm pln pn Prog label #1 to show string #2
print_screen mc0 ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
pulse pulse PU Select pulse dialing

Dial phone number #1, without progress
detection

quick_dial qdial QD

remove_clock rmclk RC Remove time-of-day clock
repeat_char rep rp Repeat char #1 #2 times
req_for_input rfi RF Send next input char (for ptys)
req_mouse_pos reqmp RQ Request mouse position report
reset_1string rs1 r1 Reset terminal completely to sane modes
reset_2string rs2 r2 Reset terminal completely to sane modes
reset_3string rs3 r3 Reset terminal completely to sane modes
reset_file rf rf Name of file containing reset string
restore_cursor rc rc Restore cursor to position of last sc
row_address vpa cv Set vertical position to absolute #1
save_cursor sc sc Save cursor position
scancode_escape scesc S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
set0_des_seq s0ds s0 Shift into codeset 0 (EUC set 0, ASCII)
set1_des_seq s1ds s1 Shift into codeset 1
set2_des_seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3
set_a_attributes sgr1 Define second set of video attributes #1-#6
set_a_background setab AB Set background colour to #1 using ANSI escape
set_a_foreground setaf AF Set foreground colour to #1 using ANSI escape
set_attributes sgr sa Define first set of video attributes #1-#9
set_background setb Sb Set background colour to #1
set_bottom_margin smgb Zk Set bottom margin at current line
set_bottom_margin_parm smgbp Zl Set bottom margin at line #1 or #2

lines from bottom

X/Open Curses, Issue 4, Version 2 249

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

Cap- Term-
Variable name cap Description
set_clock sclk SC Set clock to hours (#1), minutes (#2), seconds (#3)
set_color_band setcolor Yz Change to ribbon colour #1
set_color_pair scp sp Set current colour pair to #1
set_foreground setf Sf Set foreground colour to #1
set_left_margin smgl ML Set left margin at current column
set_left_margin_parm smglp Zm Set left (right) margin at column #1 (#2)
set_lr_margin smglr ML Sets both left and right margins
set_page_length slines YZ Set page length to #1 lines
set_pglen_inch slength YI Set page length to #1 hundredth of an inch
set_right_margin smgr MR Set right margin at current column
set_right_margin_parm smgrp Zn Set right margin at column #1
set_tab hts st Set a tab in all rows, current column
set_tb_margin smgtb MT Sets both top and bottom margins
set_top_margin smgt Zo Set top margin at current line
set_top_margin_parm smgtp Zp Set top (bottom) margin at line #1 (#2)
set_window wind wi Current window is lines #1-#2 cols #3-#4
start_bit_image sbim Zq Start printing bit image graphics
start_char_set_def scsd Zr Start definition of a character set
stop_bit_image rbim Zs End printing bit image graphics
stop_char_set_def rcsd Zt End definition of a character set
subscript_characters subcs Zu List of ‘‘subscript-able’’ characters
superscript_characters supcs Zv List of ‘‘superscript-able’’ characters
tab ht ta Tab to next 8-space hardware tab stop
these_cause_cr docr Zw Printing any of these chars causes cr
to_status_line tsl ts Go to status line, col #1
tone tone TO Select touch tone dialing
user0 u0 u0 User string 0
user1 u1 u1 User string 1
user2 u2 u2 User string 2
user3 u3 u3 User string 3
user4 u4 u4 User string 4
user5 u5 u5 User string 5
user6 u6 u6 User string 6
user7 u7 u7 User string 7
user8 u8 u8 User string 8
user9 u9 u9 User string 9
underline_char uc uc Underscore one char and move past it
up_half_line hu hu Half-line up (reverse 1/2 linefeed)
wait_tone wait WA Wait for dial tone
xoff_character xoffc XF X-off character
xon_character xonc XN X-on character
zero_motion zerom Zx No motion for the subsequent character

250 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

6.1.4 Sample Entry

The following entry describes the AT&T 610 terminal.

610 | 610bct | ATT610 | att610 | AT&T 610; 80 column; 98key keyboard,
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80,
acsc=‘‘aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}˜˜,
bel=ˆG, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12l,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,
cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[?5h$<200>\E[?5l, fsl=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15l\E[13;20l\E[?7h\E[12h\E(B\E)0,
is2=\E[0mˆO, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=ˆH, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kfP=\EOc, kfP0=\ENp,
kfP1=\ENq, kfP2=\ENr, kfP3=\ENs, kfP4=\ENt, kfI=\EOd,
kfB=\EOe, kf4=\EOf, kf(CW=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%p1%d;%p2%l%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=ˆO, rmir=\E[4l, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3l, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;

%?%p3%p1% | %t;7%;%?%p7%t;8%;m%?%p9%tˆN%eˆO%;,
sgr0=\E[mˆO, smacs=ˆN, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

6.1.5 Types of Capabilities in the Sample Entry

The sample entry shows the formats for the three types of terminfo capabilities: Boolean,
numeric, and string. All capabilities specified in the terminfo source file must be followed by
commas, including the last capability in the source file. In terminfo source files, capabilities are
referenced by their capability names (as shown in the Capname column of the previous tables).

Boolean Capabilities

A boolean capability is true if its Capname is present in the entry, and false if its Capname is not
present in the entry.

The ‘@’ character following a Capname is used to explicitly declare that a boolean capability is
false, in situations described in Section A.1.16 on page 268.

X/Open Curses, Issue 4, Version 2 251

Source File Syntax Terminfo Source Format (ENHANCED CURSES)

Numeric Capabilities

Numeric capabilities are followed by the character ‘#’ and then a positive integer value. The
example assigns the value 80 to the cols numeric capability by coding:

cols#80

Values for numeric capabilities may be specified in decimal, octal or hexadecimal, using normal
C-language conventions.

String Capabilities

String-valued capabilities such as el (clear to end of line sequence) are listed by the Capname, an
‘=’, and a string ended by the next occurrence of a comma.

A delay in milliseconds may appear anywhere in such a capability, preceded by $ and enclosed
in angle brackets, as in el=\EK$<3>. The Curses implementation achieves delays by outputting
to the terminal an appropriate number of system-defined padding characters. The tputs()
function provides delays when used to send such a capability to the terminal.

The delay can be any of the following: a number, a number followed by an asterisk, such as 5∗, a
number followed by a slash, such as 5/, or a number followed by both, such as 5∗/.

• A ‘∗’ shows that the required delay is proportional to the number of lines affected by the
operation, and the amount given is the delay required per affected unit. (In the case of insert
characters, the factor is still the number of lines affected. This is always 1 unless the device
has in and the software uses it.) When a ‘∗’ is specified, it is sometimes useful to give a delay
of the form 3.5 to specify a delay per unit to tenths of milliseconds. (Only one decimal place
is allowed.)

• A ‘/’ indicates that the delay is mandatory and padding characters are transmitted regardless
of the setting of xon. If ‘/’ is not specified or if a device has xon defined, the delay
information is advisory and is only used for cost estimates or when the device is in raw
mode. However, any delay specified for bel or flash is treated as mandatory.

The following notation is valid in terminfo source files for specifying special characters:

Notation Represents Character
ˆx Control-x (for any appropriate x)
\a Alert
\b Backspace

\E or \e An ESCAPE character
\f Form feed
\l Linefeed
\n Newline
\r Carriage return
\s Space
\t Tab
\ˆ Caret (ˆ)
\\ Backslash (\)
\, Comma (,)
\: Colon (:)
\0 Null

252 X/Open CAE Specification 1996

Terminfo Source Format (ENHANCED CURSES) Source File Syntax

\nnn Any character, specified as three octal digits

(See the XBD specification, General Terminal Interface.)

Commented-out Capabilities

Sometimes individual capabilities must be commented out. To do this, put a period before the
capability name. For example, see the second ind in the example in Section 6.1.4 on page 251.
Note that capabilities are defined in a left-to-right order and, therefore, a prior definition will
override a later definition.

X/Open Curses, Issue 4, Version 2 253

Terminfo Source Format (ENHANCED CURSES)

254 X/Open CAE Specification 1996

Appendix A

Application Usage

A.1 Device Capabilities

A.1.1 Basic Capabilities

The number of columns on each line for the device is given by the cols numeric capability. If the
device has a screen, then the number of lines on the screen is given by the lines capability. If the
device wraps around to the beginning of the next line when it reaches the right margin, then it
should have the am capability. If the terminal can clear its screen, leaving the cursor in the home
position, then this is given by the clear string capability. If the terminal overstrikes (rather than
clearing a position when a character is struck over) then it should have the os capability. If the
device is a printing terminal, with no soft copy unit, specify both hc and os. If there is a way to
move the cursor to the left edge of the current row, specify this as cr. (Normally this will be
carriage return, control-M.) If there is a way to produce an audible signal (such as a bell or a
beep), specify it as bel. If, like most devices, the device uses the xon-xoff flow-control protocol,
specify xon.

If there is a way to move the cursor one position to the left (such as backspace), that capability
should be given as cub1. Similarly, sequences to move to the right, up, and down should be
given as cuf1, cuu1, and cud1, respectively. These local cursor motions must not alter the text
they pass over; for example, you would not normally use ‘‘cuf1=\s’’ because the space would
erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are undefined
at the left and top edges of a screen terminal. Programs should never attempt to backspace
around the left edge, unless bw is specified, and should never attempt to go up locally off the
top. To scroll text up, a program goes to the bottom left corner of the screen and sends the ind
(index) string. To scroll text down, a program goes to the top left corner of the screen and sends
the ri (reverse index) string. The strings ind and ri are undefined when not on their respective
corners of the screen.

Parameterised versions of the scrolling sequences are indn and rin. These versions have the
same semantics as ind and ri, except that they take one argument and scroll the number of lines
specified by that argument. They are also undefined except at the appropriate edge of the
screen.

The am capability tells whether the cursor sticks at the right edge of the screen when text is
output, but this does not necessarily apply to a cuf1 from the last column. Backward motion
from the left edge of the screen is possible only when bw is specified. In this case, cub1 will
move to the right edge of the previous row. If bw is not given, the effect is undefined. This is
useful for drawing a box around the edge of the screen, for example. If the device has switch-
selectable automatic margins, am should be specified in the terminfo source file. In this case,
initialisation strings should turn on this option, if possible. If the device has a command that
moves to the first column of the next line, that command can be given as nel (newline). It does
not matter if the command clears the remainder of the current line, so if the device has no cr and
lf it may still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the AT&T 5320
hardcopy terminal is described as follows:

X/Open Curses, Issue 4, Version 2 255

Device Capabilities Application Usage

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=ˆG, cr=\r, cub1=\b, cnd1=\n,
dch1=\E[P, dl1=\E[M,
ind=\n,

while the Lear Siegler ADM-3 is described as

adm3 | lsi adm3,
am, bel=ˆG, clear=ˆZ, cols#80, cr=ˆM, cub1=ˆH,
cud1=ˆJ, ind=ˆJ, lines#24,

A.1.2 Parameterised Strings

Cursor addressing and other strings requiring arguments are described by a argumentised string
capability with escapes in a form (%x) comparable to printf(). For example, to address the
cursor, the cup capability is given, using two arguments: the row and column to address to.
(Rows and columns are numbered from zero and refer to the physical screen visible to the user,
not to any unseen memory.) If the terminal has memory relative cursor addressing, that can be
indicated by mrcup.

The argument mechanism uses a stack and special % codes to manipulate the stack in the
manner of Reverse Polish Notation (postfix). Typically a sequence pushes one of the arguments
onto the stack and then prints it in some format. Often more complex operations are necessary.
Operations are in postfix form with the operands in the usual order. That is, to subtract 5 from
the first argument, one would use %p1%{5}%-.

The % encodings have the following meanings:

%% Outputs ‘%’.

%[[:]flags][width[.precision]][doxXs]
As in printf(); flags are [-+#] and space.

%c Print pop() gives %c.

%p[1-9] Push the ith argument.

%P[a-z] Set dynamic variable [a-z] to pop().

%g[a-z] Get dynamic variable [a-z] and push it.

%P[A-Z] Set static variable [a-z] to pop().

%g[A-Z] Get static variable [a-z] and push it.

%’c’ Push char constant c.

%{nn} Push decimal constant nn.

%l Push strlen(pop()).

%+ %- %∗ %/ %m
Arithmetic (%m is mod): push(pop integer2 op pop integer1) where integer1
represents the top of the stack

%& %| %ˆ Bit operations: push(pop integer2 op pop integer1)

%= %> %< Logical operations: push(pop integer2 op pop integer1)

256 X/Open CAE Specification 1996

Application Usage Device Capabilities

%A %O Logical operations: and, or

%! %˜ Unary operations: push(op pop())

%i (For ANSI terminals) add 1 to the first argument (if one argument present), or
first two arguments (if more than one argument present).

%? expr %t thenpart %e elsepart %;
If-then-else, %e elsepart is optional; else-if’s are possible ala Algol 68: %? c

1
%t

b
1

%e c
2

%t b
2

%e c
3

%t b
3

%e c
4

%t b
4

%e b
5
%;

ci are conditions, bi are bodies.

If the ‘‘-’’ flag is used with ‘‘%[doxXs]’’, then a colon must be placed between the ‘‘%’’ and the
‘‘-’’ to differentiate the flag from the binary ‘‘%-’’ operator. For example: ‘‘%:-16.16s’’.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be sent
\E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and columns is inverted
here, and that the row and column are zero-padded as two digits. Thus its cup capability is:

cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a ˆT, with the row
and column simply encoded in binary:

cup=ˆT%p1%c%p2%c

Devices that use ‘‘%c’’ need to be able to backspace the cursor (cub1), and to move the cursor up
one line on the screen (cuu1). This is necessary because it is not always safe to transmit \n, ˆD,
and \r, as the system may change or discard them. (The library functions dealing with terminfo
set tty modes so that tabs are never expanded, so \t is safe to send. This turns out to be essential
for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank character, thus:

cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c

After sending ‘‘\E=’’, this pushes the first argument, pushes the ASCII value for a space (32),
adds them (pushing the sum on the stack in place of the two previous values), and outputs that
value as a character. Then the same is done for the second argument. More complex arithmetic
is possible using the stack.

A.1.3 Cursor Motions

If the terminal has a fast way to home the cursor (to very upper left corner of screen) then this
can be given as home; similarly a fast way of getting to the lower left-hand corner can be given
as ll; this may involve going up with cuu1 from the home position, but a program should never
do this itself (unless ll does) because it can make no assumption about the effect of moving up
from the home position. Note that the home position is the same as addressing to (0,0): to the
top left corner of the screen, not of memory. (Thus, the \EH sequence on Hewlett-Packard
terminals cannot be used for home without losing some of the other features on the terminal.)

If the device has row or column absolute-cursor addressing, these can be given as single
argument capabilities hpa (horizontal position absolute) and vpa (vertical position absolute).
Sometimes these are shorter than the more general two-argument sequence (as with the
Hewlett-Packard 2645) and can be used in preference to cup. If there are argumentised local
motions (such as ‘‘move n spaces to the right’’), these can be given as cud, cub, cuf, and cuu with
a single argument indicating how many spaces to move. These are primarily useful if the device
does not have cup, such as the Tektronix 4025.

X/Open Curses, Issue 4, Version 2 257

Device Capabilities Application Usage

If the device needs to be in a special mode when running a program that uses these capabilities,
the codes to enter and exit this mode can be given as smcup and rmcup. This arises, for
example, from terminals, such as the Concept, with more than one page of memory. If the
device has only memory relative cursor addressing and not screen relative cursor addressing, a
one screen-sized window must be fixed into the device for cursor addressing to work properly.
This is also used for the Tektronix 4025, where smcup sets the command character to be the one
used by terminfo. If the rmcup sequence will not restore the screen after an smcup sequence is
output (to the state prior to outputting smcup), specify nrrmc.

A.1.4 Area Clears

If the terminal can clear from the current position to the end of the line, leaving the cursor where
it is, this should be given as el. If the terminal can clear from the beginning of the line to the
current position inclusive, leaving the cursor where it is, this should be given as el1. If the
terminal can clear from the current position to the end of the display, then this should be given
as ed. ed is only defined from the first column of a line. (Thus, it can be simulated by a request
to delete a large number of lines, if a true ed is not available.)

A.1.5 Insert/Delete Line

If the terminal can open a new blank line before the line where the cursor is, this should be given
as il1; this is done only from the first position of a line. The cursor must then appear on the
newly blank line. If the terminal can delete the line which the cursor is on, then this should be
given as dl1; this is done only from the first position on the line to be deleted. Versions of il1 and
dl1 which take a single argument and insert or delete that many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the command to set
this can be described with the csr capability, which takes two arguments: the top and bottom
lines of the scrolling region. The cursor position is, alas, undefined after using this command. It
is possible to get the effect of insert or delete line using this command — the sc and rc (save and
restore cursor) commands are also useful. Inserting lines at the top or bottom of the screen can
also be done using ri or ind on many terminals without a true insert/delete line, and is often
faster even on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non-destructive scrolling
regions, create a scrolling region in the middle of the screen, place data on the bottom line of the
scrolling region, move the cursor to the top line of the scrolling region, and do a reverse index
(ri) followed by a delete line (dl1) or index (ind). If the data that was originally on the bottom
line of the scrolling region was restored into the scrolling region by the dl1 or ind, then the
terminal has non-destructive scrolling regions. Otherwise, it has destructive scrolling regions.
Do not specify csr if the terminal has non-destructive scrolling regions, unless ind, ri, indn, rin,
dl, and dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all commands affect,
it should be given as the argumentised string wind. The four arguments are the starting and
ending lines in memory and the starting and ending columns in memory, in that order.

If the terminal can retain display memory above, then the da capability should be given; if
display memory can be retained below, then db should be given. These indicate that deleting a
line or scrolling a full screen may bring non-blank lines up from below or that scrolling back
with ri may bring down non-blank lines.

258 X/Open CAE Specification 1996

Application Usage Device Capabilities

A.1.6 Insert/Delete Character

There are two basic kinds of intelligent terminals with respect to insert/delete character
operations which can be described using terminfo. The most common insert/delete character
operations affect only the characters on the current line and shift characters off the end of the line
rigidly. Other terminals, such as the Concept 100 and the Perkin-Elmer Owl, make a distinction
between typed and untyped blanks on the screen, shifting upon an insert or delete only to an
untyped blank on the screen which is either eliminated, or expanded to two untyped blanks.
You can determine the kind of terminal you have by clearing the screen and then typing text
separated by cursor motions. Type ‘‘abc def’’ using local cursor motions (not spaces) between
the abc and the def. Then position the cursor before the abc and put the terminal in insert mode.
If typing characters causes the rest of the line to shift rigidly and characters to fall off the end,
then your terminal does not distinguish between blanks and untyped positions. If the abc shifts
over to the def which then move together around the end of the current line and onto the next as
you insert, you have the second type of terminal, and should give the capability in, which stands
for ‘‘insert null.’’ While these are two logically separate attributes (one line versus multiline
insert mode, and special treatment of untyped spaces) we have seen no terminals whose insert
mode cannot be described with the single attribute.

terminfo can describe both terminals that have an insert mode and terminals which send a
simple sequence to open a blank position on the current line. Give as smir the sequence to get
into insert mode. Give as rmir the sequence to leave insert mode. Now give as ich1 any
sequence needed to be sent just before sending the character to be inserted. Most terminals with
a true insert mode will not give ich1; terminals that send a sequence to open a screen position
should give it here. (If your terminal has both, insert mode is usually preferable to ich1. Do not
give both unless the terminal requires both to be used in combination.) If post-insert padding is
needed, give this as a number of milliseconds padding in ip (a string option). Any other
sequence which may need to be sent after an insert of a single character may also be given in ip.
If your terminal needs both to be placed into an ‘‘insert mode’’ and a special code to precede
each inserted character, then both smir/rmir and ich1 can be given, and both will be used. The
ich capability, with one argument, n, will insert n blanks.

If padding is necessary between characters typed while not in insert mode, give this as a number
of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete characters on the
same line (for example, if there is a tab after the insertion position). If your terminal allows
motion while in insert mode you can give the capability mir to speed up inserting in this case.
Omitting mir will affect only speed. Some terminals (notably Datamedia) must not have mir
because of the way their insert mode works.

Finally, you can specify dch1 to delete a single character, dch with one argument, n, to delete n
characters, and delete mode by giving smdc and rmdc to enter and exit delete mode (any mode
the terminal needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks without moving the cursor)
can be given as ech with one argument.

X/Open Curses, Issue 4, Version 2 259

Device Capabilities Application Usage

A.1.7 Highlighting, Underlining and Visible Bells

Your device may have one or more kinds of display attributes that allow you to highlight
selected characters when they appear on the screen. The following display modes (shown with
the names by which they are set) may be available:

• A blinking screen (blink)

• Bold or extra-bright characters (bold)

• Dim or half-bright characters (dim)

• Blanking or invisible text (invis)

• Protected text (prot)

• A reverse-video screen (rev)

• An alternate character set (smacs to enter this mode and rmacs to exit it) (If a command is
necessary before you can enter alternate character set mode, give the sequence in enacs or
‘‘enable alternate-character-set’’ mode.) Turning on any of these modes singly may turn off
other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should always be specified
because it represents the only way to turn off some capabilities, such as dim or blink.

Choose one display method as standout mode and use it to highlight error messages and other
text to which you want to draw attention. Choose a form of display that provides strong
contrast but that is easy on the eyes. (We recommend reverse-video plus half-bright or reverse-
video alone.) The sequences to enter and exit standout mode are given as smso and rmso,
respectively. If the code to change into or out of standout mode leaves one or even two blank
spaces on the screen, as the TVI 912 and Teleray 1061 do, then xmc should be given to tell how
many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and rmul,
respectively. If the device has a sequence to underline the current character and to move the
cursor one space to the right (such as the Micro-Term MIME), this sequence can be specified as
uc.

Terminals with the ‘‘magic cookie’’ glitch (xmc) deposit special ‘‘cookies’’ when they receive
mode-setting sequences, which affect the display algorithm rather than having extra bits for each
character. Some terminals, such as the Hewlett-Packard 2621, automatically leave standout
mode when they move to a new line or the cursor is addressed. Programs using standout mode
should exit standout mode before moving the cursor or sending a newline, unless the msgr
capability, asserting that it is safe to move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell replacement),
then this can be given as flash; it must not move the cursor. A good flash can be done by
changing the screen into reverse video, pad for 200 ms, then return the screen to normal video.

If the cursor needs to be made more visible than normal when it is not on the bottom line (to
make, for example, a non-blinking underline into an easier to find block or blinking underline)
give this sequence as cvvis. The boolean chts should also be given. If there is a way to make the
cursor completely invisible, give that as civis. The capability cnorm should be given, which
undoes the effects of either of these modes.

If your terminal generates underlined characters by using the underline character (with no
special sequences needed) even though it does not otherwise overstrike characters, then specify
the capability ul. For devices on which a character overstriking another leaves both characters
on the screen, specify the capability os. If overstrikes are erasable with a blank, then this should

260 X/Open CAE Specification 1996

Application Usage Device Capabilities

be indicated by specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given as sgr (set
attributes), taking nine arguments. Each argument is either 0 or non-zero, as the corresponding
attribute is on or off. The nine arguments are, in order: standout, underline, reverse, blink, dim,
bold, blank, protect, alternate character set. Not all modes need to be supported by sgr; only
those for which corresponding separate attribute commands exist should be supported. For
example, let’s assume that the terminal in question needs the following escape sequences to turn
on various modes.

tparm
Argument Attribute Escape Sequence

none \E[0m
p1 standout \E[0;4;7m
p2 underline \E[0;3m
p3 reverse \E[0;4m
p4 blink \E[0;5m
p5 dim \E[0;7m
p6 bold \E[0;3;4m
p7 invis \E[0;8m
p8 protect not available
p9 altcharset ˆO (off) ˆN (on)

Note that each escape sequence requires a 0 to turn off other modes before turning on its own
mode. Also note that, as suggested above, standout is set up to be the combination of reverse and
dim. Also, because this terminal has no bold mode, bold is set up as the combination of reverse
and underline. In addition, to allow combinations, such as underline+blink, the sequence to use
would be \E[0;3;5m. The terminal doesn’t have protect mode, either, but that cannot be
simulated in any way, so p8 is ignored. The altcharset mode is different in that it is either ˆO or
ˆN, depending on whether it is off or on. If all modes were to be turned on, the sequence would
be:

\E[0;3;4;5;7;8mˆN

Now look at when different sequences are output. For example, ;3 is output when either p2 or
p6 is true, that is, if either underline or bold modes are turned on. Writing out the above
sequences, along with their dependencies, gives the following:

Sequence When to Output terminfo Translation
\E[0 always \E[0
;3 if p2 or p6 %?%p2%p6%|%t;3%;
;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;
;5 if p4 %?%p4%t;5%;
;7 if p1 or p5 %?%p1%p5%|%t;7%;
;8 if p7 %?%p7%t;8%;
m always m
ˆN or ˆO if p9 ˆN, else ˆO %?%p9%tˆN%eˆO%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6%
|%t;4%;%?%p5%t;5%;%?%p1%p5%
|%t;7%;%?%p7%t;8%;m%?%p9%tˆN%eˆO%;,

X/Open Curses, Issue 4, Version 2 261

Device Capabilities Application Usage

Remember that sgr and sgr0 must always be specified.

A.1.8 Keypad

If the device has a keypad that transmits sequences when the keys are pressed, this information
can also be specified. Note that it is not possible to handle devices where the keypad only works
in local (this applies, for example, to the unshifted Hewlett-Packard 2621 keys). If the keypad
can be set to transmit or not transmit, specify these sequences as smkx and rmkx. Otherwise the
keypad is assumed to always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and home keys can be
given as kcub1, kcuf1, kcuu1, kcud1 and khome, respectively. If there are function keys such as
f0, f1, ..., f63, the sequences they send can be specified as kf0, kf1, ..., kf63. If the first 11 keys
have labels other than the default f0 through f10, the labels can be given as lf0, lf1, ..., lf10.

The codes transmitted by certain other special keys can be given: kll (home down), kbs
(backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr (clear screen or
erase key), kdch1 (delete character), kdl1 (delete line), krmir (exit insert mode), kel (clear to end
of line), ked (clear to end of screen), kich1 (insert character or enter insert mode), kil1 (insert
line), knp (next page), kpp (previous page), kind (scroll forward/down), kri (scroll
backward/up), khts (set a tab stop in this column). In addition, if the keypad has a 3 by 3 array
of keys including the four arrow keys, the other five keys can be given as ka1, ka3, kb2, kc1, and
kc3. These keys are useful when the effects of a 3 by 3 directional pad are needed. Further keys
are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A string to program
screen labels should be specified as pln. Each of these strings takes two arguments: a function
key identifier and a string to program it with. pfkey causes pressing the given key to be the
same as the user typing the given string; pfloc causes the string to be executed by the terminal in
local mode; and pfx causes the string to be transmitted to the computer. The capabilities nlab,
lw and lh define the number of programmable screen labels and their width and height. If there
are commands to turn the labels on and off, give them in smln and rmln. smln is normally
output after one or more pln sequences to make sure that the change becomes visible.

A.1.9 Tabs and Initialisation

If the device has hardware tabs, the command to advance to the next tab stop can be given as ht
(usually control-I). A ‘‘backtab’’ command that moves leftward to the next tab stop can be given
as cbt. By convention, if tty modes show that tabs are being expanded by the computer rather
than being sent to the device, programs should not use ht or cbt (even if they are present)
because the user might not have the tab stops properly set. If the device has hardware tabs that
are initially set every n spaces when the device is powered up, the numeric argument it is given,
showing the number of spaces the tabs are set to. This is normally used by tput init to determine
whether to set the mode for hardware tab expansion and whether to set the tab stops. If the
device has tab stops that can be saved in nonvolatile memory, the terminfo description can
assume that they are properly set. If there are commands to set and clear tab stops, they can be
given as tbc (clear all tab stops) and hts (set a tab stop in the current column of every row).

Other capabilities include: is1, is2, and is3, initialisation strings for the device; iprog, the path
name of a program to be run to initialise the device; and if, the name of a file containing long
initialisation strings. These strings are expected to set the device into modes consistent with the
rest of the terminfo description. They must be sent to the device each time the user logs in and
be output in the following order: run the program iprog; output is1; output is2; set the margins
using mgc, smgl and smgr; set the tabs using tbc and hts; print the file if; and finally output is3.
This is usually done using the init option of tput.

262 X/Open CAE Specification 1996

Application Usage Device Capabilities

Most initialisation is done with is2. Special device modes can be set up without duplicating
strings by putting the common sequences in is2 and special cases in is1 and is3. Sequences that
do a reset from a totally unknown state can be given as rs1, rs2, rf, and rs3, analogous to is1, is2,
is3, and if. (The method using files, if and rf, is used for a few terminals however, the
recommended method is to use the initialisation and reset strings.) These strings are output by
tput reset, which is used when the terminal gets into a wedged state. Commands are normally
placed in rs1, rs2, rs3, and rf only if they produce annoying effects on the screen and are not
necessary when logging in. For example, the command to set a terminal into 80-column mode
would normally be part of is2, but on some terminals it causes an annoying glitch on the screen
and is not normally needed because the terminal is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by using tbc and hts,
the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify commands to set and
clear margins, see Margins on page 273.)

A.1.10 Delays

Certain capabilities control padding in the tty driver. These are primarily needed by hard-copy
terminals, and are used by tput init to set tty modes appropriately. Delays embedded in the
capabilities cr, ind, cub1, ff, and tab can be used to set the appropriate delay bits to be set in the
tty driver. If pb (padding baud rate) is given, these values can be ignored at baud rates below
the value of pb.

A.1.11 Status Lines

If the terminal has an extra ‘‘status line’’ that is not normally used by software, this fact can be
indicated. If the status line is viewed as an extra line below the bottom line, into which one can
cursor address normally (such as the Heathkit H19’s 25th line, or the 24th line of a VT100 which
is set to a 23-line scrolling region), the capability hs should be given. Special strings that go to a
given column of the status line and return from the status line can be given as tsl and fsl. (fsl
must leave the cursor position in the same place it was before tsl. If necessary, the sc and rc
strings can be included in tsl and fsl to get this effect.) The capability tsl takes one argument,
which is the column number of the status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work while in the status line, the
flag eslok can be given. A string which turns off the status line (or otherwise erases its contents)
should be given as dsl. If the terminal has commands to save and restore the position of the
cursor, give them as sc and rc. The status line is normally assumed to be the same width as the
rest of the screen (that is, cols). If the status line is a different width (possibly because the
terminal does not allow an entire line to be loaded) the width, in columns, can be indicated with
the numeric argument wsl.

X/Open Curses, Issue 4, Version 2 263

Device Capabilities Application Usage

A.1.12 Line Graphics

If the device has a line drawing alternate character set, the mapping of glyph to character would
be given in acsc. The definition of this string is based on the alternate character set used in the
Digital VT100 terminal, extended slightly with some characters from the AT&T 4410v1 terminal.

VT100+
Glyph Name Character
arrow pointing right +
arrow pointing left ,
arrow pointing down .
solid square block 0
lantern symbol I
arrow pointing up -
diamond ‘
checker board (stipple) a
degree symbol f
plus/minus g
board of squares h
lower right corner j
upper right corner k
upper left corner l
lower left corner m
plus n
scan line 1 o
horizontal line q
scan line 9 s
left tee (L-) t
right tee (- L) u
bottom tee (_L) v
top tee (M L) w
vertical line x
bullet ˜

The best way to describe a new device’s line graphics set is to add a third column to the above
table with the characters for the new device that produce the appropriate glyph when the device
is in alternate-character-set mode. For example:

VT100+ Character Used
Glyph Name Character on New Device
upper left corner l R
lower left corner m F
upper right corner k T
lower right corner j G
horizontal line q ,
vertical line x .

Now write down the characters left to right; for example:

acsc=lRmFkTjGq\,x.

In addition, terminfo lets you define multiple character sets (see Section A.2.5 on page 275).

264 X/Open CAE Specification 1996

Application Usage Device Capabilities

A.1.13 Colour Manipulation

Most colour terminals belong to one of two classes of terminal:

• Tektronix-style

The Tektronix method uses a set of N predefined colours (usually 8) from which an
application can select "current" foreground and background colours. Thus a terminal can
support up to N colours mixed into N*N colour-pairs to be displayed on the screen at the
same time.

• Hewlett-Packard-style

In the HP method, the application cannot define the foreground independently of the
background, or vice-versa. Instead, the application must define an entire colour-pair at once.
Up to M colour-pairs, made from 2*M different colours, can be defined this way.

The numeric variables colors and pairs define the number of colours and colour-pairs that can
be displayed on the screen at the same time. If a terminal can change the definition of a colour
(for example, the Tektronix 4100 and 4200 series terminals), this should be specified with ccc (can
change colour). To change the definition of a colour (Tektronix 4200 method), use initc (initialise
colour). It requires four arguments: colour number (ranging from 0 to colors−1) and three RGB
(red, green, and blue) values or three HLS colours (Hue, Lightness, Saturation). Ranges of RGB
and HLS values are terminal-dependent.

Tektronix 4100 series terminals only use HLS colour notation. For such terminals (or dual-mode
terminals to be operated in HLS mode) one must define a boolean variable hls; that would
instruct the init_color () functions to convert its RGB arguments to HLS before sending them to
the terminal. The last three arguments to the initc string would then be HLS values.

If a terminal can change the definitions of colours, but uses a colour notation different from RGB
and HLS, a mapping to either RGB or HLS must be developed.

If the terminal supports ANSI escape sequences to set background and foreground, they should
be coded as setab and setaf, respectively. If the terminal supports other escape sequences to set
background and foreground, they should be coded as setb and setf, respectively. The vidputs()
function and the refresh functions use setab and setaf if they are defined. Each of these
capabilities requires one argument: the number of the colour. By convention, the first eight
colours (0−7) map to, in order: black, red, green, yellow, blue, magenta, cyan, white. However,
colour re-mapping may occur or the underlying hardware may not support these colours.
Mappings for any additional colours supported by the device (that is, to numbers greater than 7)
are at the discretion of the terminfo entry writer.

To initialise a colour-pair (HP method), use initp (initialise pair). It requires seven arguments:
the number of a colour-pair (range=0 to pairs−1), and six RGB values: three for the foreground
followed by three for the background. (Each of these groups of three should be in the order
RGB.) When initc or initp are used, RGB or HLS arguments should be in the order "red, green,
blue" or "hue, lightness, saturation"), respectively. To make a colour-pair current, use scp (set
colour-pair). It takes one argument, the number of a colour-pair.

Some terminals (for example, most colour terminal emulators for PCs) erase areas of the screen
with current background colour. In such cases, bce (background colour erase) should be
defined. The variable op (original pair) contains a sequence for setting the foreground and the
background colours to what they were at the terminal start-up time. Similarly, oc (original
colours) contains a control sequence for setting all colours (for the Tektronix method) or colour-
pairs (for the HP method) to the values they had at the terminal start-up time.

X/Open Curses, Issue 4, Version 2 265

Device Capabilities Application Usage

Some colour terminals substitute colour for video attributes. Such video attributes should not be
combined with colours. Information about these video attributes should be packed into the ncv
(no colour video) variable. There is a one-to-one correspondence between the nine least
significant bits of that variable and the video attributes. The following table depicts this
correspondence.

Bit Decimal Characteristic
Attribute Position Value That Sets

WA_STANDOUT 0 1 sgr, parameter 1
WA_UNDERLINE 1 2 sgr, parameter 2
WA_REVERSE 2 4 sgr, parameter 3
WA_BLINK 3 8 sgr, parameter 4
WA_DIM 4 16 sgr, parameter 5
WA_BOLD 5 32 sgr, parameter 6
WA_INVIS 6 64 sgr, parameter 7
WA_PROTECT 7 128 sgr, parameter 8
WA_ALTCHARSET 8 256 sgr, parameter 9
WA_HORIZONTAL 9 512 sgr1, parameter 1
WA_LEFT 10 1024 sgr1, parameter 2
WA_LOW 11 2048 sgr1, parameter 3
WA_RIGHT 12 4096 sgr1, parameter 4
WA_TOP 13 8192 sgr1, parameter 5
WA_VERTICAL 14 16384 sgr1, parameter 6

When a particular video attribute should not be used with colours, set the corresponding ncv bit
to 1; otherwise set it to 0. To determine the information to pack into the ncv variable, add the
decimal values corresponding to those attributes that cannot coexist with colours. For example,
if the terminal uses colours to simulate reverse video (bit number 2 and decimal value 4) and
bold (bit number 5 and decimal value 32), the resulting value for ncv will be 36 (4 + 32).

A.1.14 Miscellaneous

If the terminal requires other than a null (zero) character as a pad, then this can be given as pad.
Only the first character of the pad string is used. If the terminal does not have a pad character,
specify npc.

If the terminal can move up or down half a line, this can be indicated with hu (half-line up) and
hd (half-line down). This is primarily useful for superscripts and subscripts on hardcopy
terminals. If a hardcopy terminal can eject to the next page (form feed), give this as ff (usually
control-L).

If there is a command to repeat a given character a given number of times (to save time
transmitting a large number of identical characters) this can be indicated with the argumentised
string rep. The first argument is the character to be repeated and the second is the number of
times to repeat it. Thus, tparm(repeat_char, ’x’, 10) is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025, this can be
indicated with cmdch. A prototype command character is chosen which is used in all
capabilities. This character is given in the cmdch capability to identify it. The following
convention is supported on some systems: If the environment variable CC exists, all occurrences
of the prototype character are replaced with the character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such as switch,
dialup, patch, and network, should include the gn (generic) capability so that programs can
complain that they do not know how to talk to the terminal. (This capability does not apply to

266 X/Open CAE Specification 1996

Application Usage Device Capabilities

virtual terminal descriptions for which the escape sequences are known.) If the terminal is one of
those supported by the virtual terminal protocol, the terminal number can be given as vt. A
line-turn-around sequence to be transmitted before doing reads should be specified in rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding information should
still be included so that functions can make better decisions about costs, but actual pad
characters will not be transmitted. Sequences to turn on and off xon/xoff handshaking may be
given in smxon and rmxon. If the characters used for handshaking are not ˆS and ˆQ, they may
be specified with xonc and xoffc.

If the terminal has a ‘‘meta key’’ which acts as a shift key, setting the 8th bit of any character
transmitted, this fact can be indicated with km. Otherwise, software will assume that the 8th bit
is parity and it will usually be cleared. If strings exist to turn this ‘‘meta mode’’ on and off, they
can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the number of lines
of memory can be indicated with lm. A value of lm#0 indicates that the number of lines is not
fixed, but that there is still more memory than fits on the screen.

Media copy strings which control an auxiliary printer connected to the terminal can be given as:

mc0 Print the contents of the screen
mc4 Turn off the printer
mc5 Turn on the printer

When the printer is on, all text sent to the terminal will be sent to the printer. A variation, mc5p,
takes one argument, and leaves the printer on for as many characters as the value of the
argument, then turns the printer off. The argument should not exceed 255. If the text is not
displayed on the terminal screen when the printer is on, specify mc5i (silent printer). All text,
including mc4, is transparently passed to the printer while an mc5p is in effect.

A.1.15 Special Cases

The working model used by terminfo fits most terminals reasonably well. However, some
terminals do not completely match that model, requiring special support by terminfo. These are
not meant to be construed as deficiencies in the terminals; they are just differences between the
working model and the actual hardware. They may be unusual devices or, for some reason, do
not have all the features of the terminfo model implemented.

Terminals that cannot display tilde (˜) characters, such as certain Hazeltine terminals, should
indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept 100, should
indicate xenl. Those terminals whose cursor remains on the right-most column until another
character has been received, rather than wrapping immediately upon receiving the right-most
character, such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it), xhp should be
given.

Those Teleray terminals whose tabs turn all characters moved over to blanks, should indicate xt
(destructive tabs). This capability is also taken to mean that it is not possible to position the
cursor on top of a ‘‘magic cookie.’’ Therefore, to erase standout mode, it is necessary, instead, to
use delete and insert line.

For Beehive Superbee terminals that do not transmit the escape or control-C characters, specify
xsb, indicating that the f1 key is to be used for escape and the f2 key for control-C.

X/Open Curses, Issue 4, Version 2 267

Device Capabilities Application Usage

A.1.16 Similar Terminals

If there are two similar terminals, one can be defined as being just like the other with certain
exceptions. The string capability use can be given with the name of the similar terminal. The
capabilities given before use override those in the terminal type invoked by use. A capability
can be canceled by placing capability-name@ prior to the appearance of the string capability use.
For example, the entry:

att4424-2|Teletype 4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T 04424 terminal that does not have the rev, sgr, and smul capabilities, and hence
cannot do highlighting. This is useful for different modes for a terminal, or for different user
preferences. More than one use capability may be given.

A.2 Printer Capabilities
The terminfo database lets you define capabilities of printers as well as terminals. Capabilities
available for printers are included in the lists in Section 6.1.3 on page 241.

A.2.1 Rounding Values

Because argumentised string capabilities work only with integer values, terminfo designers
should create strings that expect numeric values that have been rounded. Application designers
should note this and should always round values to the nearest integer before using them with a
argumentised string capability.

A.2.2 Printer Resolution

A printer’s resolution is defined to be the smallest spacing of characters it can achieve. In
general, the horizontal and vertical resolutions are independent. Thus the vertical resolution of a
printer can be determined by measuring the smallest achievable distance between consecutive
printing baselines, while the horizontal resolution can be determined by measuring the smallest
achievable distance between the leftmost edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and vertical
resolution. The view of printing that terminfo currently presents is one of printing inside a
uniform matrix: All characters are printed at fixed positions relative to each ‘‘cell’’ in the matrix;
furthermore, each cell has the same size given by the smallest horizontal and vertical step sizes
dictated by the resolution. (The cell size can be changed as will be seen later.)

Many printers are capable of ‘‘proportional printing,’’ where the horizontal spacing depends on
the size of the character last printed. terminfo does not make use of this capability, although it
does provide enough capability definitions to allow an application to simulate proportional
printing.

A printer must not only be able to print characters as close together as the horizontal and vertical
resolutions suggest, but also of ‘‘moving’’ to a position an integral multiple of the smallest
distance away from a previous position. Thus printed characters can be spaced apart a distance
that is an integral multiple of the smallest distance, up to the length or width of a single page.

Some printers can have different resolutions depending on different ‘‘modes.’’ In ‘‘normal
mode,’’ the existing terminfo capabilities are assumed to work on columns and lines, just like a
video terminal. Thus the old lines capability would give the length of a page in lines, and the
cols capability would give the width of a page in columns. In ‘‘micro mode,’’ many terminfo
capabilities work on increments of lines and columns. With some printers the micro mode may

268 X/Open CAE Specification 1996

Application Usage Printer Capabilities

be concomitant with normal mode, so that all the capabilities work at the same time.

A.2.3 Specifying Printer Resolution

The printing resolution of a printer is given in several ways. Each specifies the resolution as the
number of smallest steps per distance:

Characteristic Number of Smallest Steps
orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement to the next column,
except in special cases described later; the distance moved is the same as the per-column
resolution. Some printers cause an automatic movement to the next line when a character is
printed in the rightmost position; the distance moved vertically is the same as the per-line
resolution. When printing in micro mode, these distances can be different, and may be zero for
some printers.

Automatic Motion after Printing
Normal Mode:
orc Steps moved horizontally
orl Steps moved vertically
Micro Mode:
mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a wide
character is printed in normal mode may be different from when a regular width character is
printed. The distance moved when a wide character is printed in micro mode may also be
different from when a regular character is printed in micro mode, but the differences are
assumed to be related: If the distance moved for a regular character is the same whether in
normal mode or micro mode (mcs = orc), then the distance moved for a wide character is also the
same whether in normal mode or micro mode. This doesn’t mean the normal character distance
is necessarily the same as the wide character distance, just that the distances don’t change with a
change in normal to micro mode. However, if the distance moved for a regular character is
different in micro mode from the distance moved in normal mode (mcs < orc), the micro mode
distance is assumed to be the same for a wide character printed in micro mode, as the table
below shows.

Automatic Motion after Printing Wide Character
Normal Mode or Micro Mode (mcs = orc):
widcs Steps moved horizontally
Micro Mode (mcs < orc):
mcs Steps moved horizontally

X/Open Curses, Issue 4, Version 2 269

Printer Capabilities Application Usage

There may be control sequences to change the number of columns per inch (the character pitch)
and to change the number of lines per inch (the line pitch). If these are used, the resolution of the
printer changes, but the type of change depends on the printer:

Changing the Character/Line Pitches
cpi Change character pitch
cpix If set, cpi changes orhi, otherwise changes orc
lpi Change line pitch
lpix If set, lpi changes orvi, otherwise changes orl
chr Change steps per column
cvr Change steps per line

The cpi and lpi string capabilities are each used with a single argument, the pitch in columns (or
characters) and lines per inch, respectively. The chr and cvr string capabilities are each used
with a single argument, the number of steps per column and line, respectively.

Using any of the control sequences in these strings will imply a change in some of the values of
orc, orhi, orl, and orvi. Also, the distance moved when a wide character is printed, widcs,
changes in relation to orc. The distance moved when a character is printed in micro mode, mcs,
changes similarly, with one exception: if the distance is 0 or 1, then no change is assumed.

Programs that use cpi, lpi, chr, or cvr should recalculate the printer resolution (and should
recalculate other values; see Section A.2.7 on page 277).

Effects of Changing the Character/Line Pitches
Before After

Using cpi with cpix clear:
orhi´ orhi

orc´ orc=
Vcpi

orhi_____

Using cpi with cpix set:
orhi´ orhi=orc.Vcpi
orc´ orc
Using lpi with lpix clear:
orvi´ orvi

orl´ orl=
Vlpi

orvi_____

Using lpi with lpix set:
orvi´ orvi=orl.Vlpi
orl´ orl
Using chr:

orhi´ orhi
orc´ Vchr

Using cvr:

orvi´ orvi
orl´ Vcvr

270 X/Open CAE Specification 1996

Application Usage Printer Capabilities

Using cpi or chr:

widcs´ widcs=widcs´
orc´
orc_____

mcs´ mcs=mcs´
orc´
orc_____

Vcpi , Vlpi , Vchr , and Vcvr are the arguments used with cpi, lpi, chr, and cvr, respectively. The
prime marks (’) indicate the old values.

A.2.4 Capabilities that Cause Movement

In the following descriptions, ‘‘movement’’ refers to the motion of the ‘‘current position.’’ With
video terminals this would be the cursor; with some printers, this is the carriage position. Other
printers have different equivalents. In general, the current position is where a character would
be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a number of full
columns or lines. It also has equivalent string capabilities for control sequences that cause
movement a number of smallest steps.

String Capabilities for Motion
mcub1 Move 1 step left
mcuf1 Move 1 step right
mcuu1 Move 1 step up
mcud1 Move 1 step down
mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down
mhpa Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also, some printers
don’t accept absolute motion to the left of the current position. terminfo has capabilities for
specifying these limits.

Limits to Motion
mjump Limit on use of mcub1, mcuf1, mcuu1, mcud1
maddr Limit on use of mhpa, mvpa
xhpa If set, hpa and mhpa can’t move left
xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a ‘‘micro mode’’ for the motion capabilities described above to work,
there are string capabilities defined to contain the control sequence to enter and exit this mode.
A boolean is available for those printers where using a carriage return causes an automatic
return to normal mode.

X/Open Curses, Issue 4, Version 2 271

Printer Capabilities Application Usage

Entering/Exiting Micro Mode
smicm Enter micro mode
rmicm Exit micro mode
crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies among
printers. Some make no movement, some move to the beginning of the next line, others move to
the beginning of the same line. terminfo has boolean capabilities for describing all three cases.

What Happens After Character Printed in Rightmost Position
sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is reversed. This
mode can be especially useful when there are no capabilities for leftward or upward motion,
because those capabilities can be built from the motion reversal capability and the rightward or
downward motion capabilities. It is best to leave it up to an application to build the leftward or
upward capabilities, though, and not enter them in the terminfo database. This allows several
reverse motions to be strung together without intervening wasted steps that leave and reenter
reverse mode.

Entering/Exiting Reverse Modes
slm Reverse sense of horizontal motions
rlm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions
While sense of horizontal motions reversed:
mcub1 Move 1 step right
mcuf1 Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cub1 Move 1 column right
cuf1 Move 1 column left
cub Move N columns right
cuf Move N columns left
While sense of vertical motions reversed:
mcuu1 Move 1 step down
mcud1 Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuu1 Move 1 line down
cud1 Move 1 line up
cuu Move N lines down
cud Move N lines up

The reverse motion modes should not affect the mvpa and mhpa absolute motion capabilities.
The reverse vertical motion mode should, however, also reverse the action of the line
‘‘wrapping’’ that occurs when a character is printed in the right-most position. Thus printers
that have the standard terminfo capability am defined should experience motion to the
beginning of the previous line when a character is printed in the rightmost position in reverse
vertical motion mode.

272 X/Open CAE Specification 1996

Application Usage Printer Capabilities

The action when any other motion capabilities are used in reverse motion modes is not defined;
thus, programs must exit reverse motion modes before using other motion capabilities.

Two miscellaneous capabilities complete the list of motion capabilities. One of these is needed
for printers that move the current position to the beginning of a line when certain control
characters, such as line-feed or form-feed , are used. The other is used for the capability of
suspending the motion that normally occurs after printing a character.

Miscellaneous Motion Strings
docr List of control characters causing cr
zerom Prevent auto motion after printing next single character

Margins

terminfo provides two strings for setting margins on terminals: one for the left and one for the
right margin. Printers, however, have two additional margins, for the top and bottom margins
of each page. Furthermore, some printers require not using motion strings to move the current
position to a margin and then fixing the margin there, but require the specification of where a
margin should be regardless of the current position. Therefore terminfo offers six additional
strings for defining margins with printers.

Setting Margins
smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line
smgbp Set bottom margin at line N
smglp Set left margin at column N
smgrp Set right margin at column N
smgtp Set top margin at line N

The last four strings are used with one or more arguments that give the position of the margin or
margins to set. If both of smglp and smgrp are set, each is used with a single argument, N, that
gives the column number of the left and right margin, respectively. If both of smgtp and smgbp
are set, each is used to set the top and bottom margin, respectively: smgtp is used with a single
argument, N, the line number of the top margin; however, smgbp is used with two arguments, N
and M, that give the line number of the bottom margin, the first counting from the top of the
page and the second counting from the bottom. This accommodates the two styles of specifying
the bottom margin in different manufacturers’ printers. When coding a terminfo entry for a
printer that has a settable bottom margin, only the first or second argument should be used,
depending on the printer. When writing an application that uses smgbp to set the bottom
margin, both arguments must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the column number of
the left and right margins, in that order. Likewise, if only one of smgtp and smgbp is set, then it
is used with two arguments that give the top and bottom margins, in that order, counting from
the top of the page. Thus when coding a terminfo entry for a printer that requires setting both
left and right or top and bottom margins simultaneously, only one of smglp and smgrp or smgtp
and smgbp should be defined; the other should be left blank. When writing an application that
uses these string capabilities, the pairs should be first checked to see if each in the pair is set or
only one is set, and should then be used accordingly.

X/Open Curses, Issue 4, Version 2 273

Printer Capabilities Application Usage

In counting lines or columns, line zero is the top line and column zero is the left-most column. A
zero value for the second argument with smgbp means the bottom line of the page.

All margins can be cleared with mgc.

Shadows, Italics, Wide Characters, Superscripts, Subscripts

Five sets of strings describe the capabilities printers have of enhancing printed text.

Enhanced Printing
sshm Enter shadow-printing mode
rshm Exit shadow-printing mode
sitm Enter italicising mode
ritm Exit italicising mode
swidm Enter wide character mode
rwidm Exit wide character mode
ssupm Enter superscript mode
rsupm Exit superscript mode
supcs List of characters available as superscripts
ssubm Enter subscript mode
rsubm Exit subscript mode
subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be shadow-printed, the
rshm string is left blank. Thus programs that find a control sequence in sshm but none in rshm
should use the sshm control sequence before every character to be shadow-printed; otherwise,
the sshm control sequence should be used once before the set of characters to be shadow-
printed, followed by rshm. The same is also true of each of the sitm/ritm, swidm/rwidm,
ssupm/rsupm, and ssubm/rsubm pairs.

terminfo also has a capability for printing emboldened text (bold). While shadow printing and
emboldened printing are similar in that they ‘‘darken’’ the text, many printers produce these two
types of print in slightly different ways. Generally, emboldened printing is done by overstriking
the same character one or more times. Shadow printing likewise usually involves overstriking,
but with a slight movement up and/or to the side so that the character is ‘‘fatter.’’

It is assumed that enhanced printing modes are independent modes, so that it would be
possible, for instance, to shadow print italicised subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide character
should be given in widcs.

If only a subset of the printable ASCII characters can be printed as superscripts or subscripts,
they should be listed in supcs or subcs strings, respectively. If the ssupm or ssubm strings
contain control sequences, but the corresponding supcs or subcs strings are empty, it is assumed
that all printable ASCII characters are available as superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be the same as
for regular characters. Thus, for example, printing any of the following three examples results in
equivalent motion:

Bi B i Bi

Note that the existing msgr boolean capability describes whether motion control sequences can
be used while in ‘‘standout mode.’’ This capability is extended to cover the enhanced printing
modes added here. msgr should be set for those printers that accept any motion control

274 X/Open CAE Specification 1996

Application Usage Printer Capabilities

sequences without affecting shadow, italicised, widened, superscript, or subscript printing.
Conversely, if msgr is not set, a program should end these modes before attempting any motion.

A.2.5 Alternate Character Sets

In addition to allowing you to define line graphics (described in Section A.1.12 on page 264),
terminfo lets you define alternate character sets. The following capabilities cover printers and
terminals with multiple selectable or definable character sets:

Alternate Character Sets
scs Select character set N
scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
rcsd End definition of character set N
csnm List of character set names
daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a number from 0 to 63 that
identifies the character set. The scsd string is also used with the argument N and another, M,
that gives the number of characters in the set. The defc string is used with three arguments: A
gives the ASCII code representation for the character, B gives the width of the character in dots,
and D is zero or one depending on whether the character is a ‘‘descender’’ or not. The defc
string is also followed by a string of ‘‘image-data’’ bytes that describe how the character looks
(see below).

Character set 0 is the default character set present after the printer has been initialised. Not
every printer has 64 character sets, of course; using scs with an argument that doesn’t select an
available character set should cause a null pointer to be returned by tparm.

If a character set has to be defined before it can be used, the scsd control sequence is to be used
before defining the character set, and the rcsd is to be used after. They should also cause a
NULL pointer to be returned by tparm when used with an argument N that doesn’t apply. If a
character set still has to be selected after being defined, the scs control sequence should follow
the rcsd control sequence. By examining the results of using each of the scs, scsd, and rcsd
strings with a character set number in a call to tparm, a program can determine which of the
three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define each character.
To print any character on printers covered by terminfo, the ASCII code is sent to the printer.
This is true for characters in an alternate set as well as ‘‘normal’’ characters. Thus the definition
of a character includes the ASCII code that represents it. In addition, the width of the character
in dots is given, along with an indication of whether the character should descend below the
print line (such as the lower case letter ‘‘g’’ in most character sets). The width of the character in
dots also indicates the number of image-data bytes that will follow the defc string. These
image-data bytes indicate where in a dot-matrix pattern ink should be applied to ‘‘draw’’ the
character; the number of these bytes and their form are defined in Section A.2.6 on page 276.

It’s easiest for the creator of terminfo entries to refer to each character set by number; however,
these numbers will be meaningless to the application developer. The csnm string alleviates this
problem by providing names for each number.

When used with a character set number in a call to tparm, the csnm string will produce the
equivalent name. These names should be used as a reference only. No naming convention is
implied, although anyone who creates a terminfo entry for a printer should use names
consistent with the names found in user documents for the printer. Application developers

X/Open Curses, Issue 4, Version 2 275

Printer Capabilities Application Usage

should allow a user to specify a character set by number (leaving it up to the user to examine the
csnm string to determine the correct number), or by name, where the application examines the
csnm string to determine the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are not available,
the strings should not be defined. For printers that have manually changed print-wheels or font
cartridges, the boolean daisy is set.

A.2.6 Dot-Matrix Graphics

Dot-matrix printers typically have the capability of reproducing raster graphics images. Three
numeric capabilities and three string capabilities help a program draw raster-graphics images
independent of the type of dot-matrix printer or the number of pins or dots the printer can
handle at one time.

Dot-Matrix Graphics
npins Number of pins, N, in print-head
spinv Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
sbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the technique
used for most dot-matrix printers: each pass of the printer’s print-head is assumed to produce a
dot-matrix that is N dots high and B dots wide. This is typically a wide, squat, rectangle of dots.
The height of this rectangle in dots will vary from one printer to the next; this is given in the
npins numeric capability. The size of the rectangle in fractions of an inch will also vary; it can be
deduced from the spinv and spinh numeric capabilities. With these three values an application
can divide a complete raster-graphics image into several horizontal strips, perhaps interpolating
to account for different dot spacing vertically and horizontally.

The sbim and rbim strings start and end a dot-matrix image, respectively. The sbim string is
used with a single argument that gives the width of the dot-matrix in dots. A sequence of
‘‘image-data bytes’’ are sent to the printer after the sbim string and before the rbim string. The
number of bytes is a integral multiple of the width of the dot-matrix; the multiple and the form
of each byte is determined by the porder string as described below.

The porder string is a comma separated list of pin numbers optionally followed by an numerical
offset. The offset, if given, is separated from the list with a semicolon. The position of each pin
number in the list corresponds to a bit in an 8-bit data byte. The pins are numbered
consecutively from 1 to npins, with 1 being the top pin. Note that the term ‘‘pin’’ is used loosely
here; ‘‘ink-jet’’ dot-matrix printers don’t have pins, but can be considered to have an equivalent
method of applying a single dot of ink to paper. The bit positions in porder are in groups of 8,
with the first position in each group the most significant bit and the last position the least
significant bit. An application produces 8-bit bytes in the order of the groups in porder.

An application computes the ‘‘image-data bytes’’ from the internal image, mapping vertical dot
positions in each print-head pass into 8-bit bytes, using a 1 bit where ink should be applied and 0
where no ink should be applied. This can be reversed (0 bit for ink, 1 bit for no ink) by giving a
negative pin number. If a position is skipped in porder, a 0 bit is used. If a position has a lower
case ‘x’ instead of a pin number, a 1 bit is used in the skipped position. For consistency, a lower
case ‘o’ can be used to represent a 0 filled, skipped bit. There must be a multiple of 8 bit

276 X/Open CAE Specification 1996

Application Usage Printer Capabilities

positions used or skipped in porder; if not, low-order bits of the last byte are set to 0. The offset,
if given, is added to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470, AT&T 475 and
C.Itoh 8510 printers provide eight pins for graphics. The pins are identified top to bottom by the
8 bits in a byte, from least significant to most. The porder strings for these printers would be
8,7,6,5,4,3,2,1. The AT&T 478 and AT&T 479 printers also provide eight pins for graphics.
However, the pins are identified in the reverse order. The porder strings for these printers
would be 1,2,3,4,5,6,7,8. The AT&T 5310, AT&T 5320, Digital LA100, and Digital LN03 printers
provide six pins for graphics. The pins are identified top to bottom by the decimal values 1, 2, 4,
8, 16 and 32. These correspond to the low six bits in an 8-bit byte, although the decimal values
are further offset by the value 63. The porder string for these printers would be ,,6,5,4,3,2,1;63, or
alternately o,o,6,5,4,3,2,1;63.

A.2.7 Effect of Changing Printing Resolution

If the control sequences to change the character pitch or the line pitch are used, the pin or dot
spacing may change:

Changing the Character/Line Pitches
cpi Change character pitch
cpix If set, cpi changes spinh
lpi Change line pitch
lpix If set, lpi changes spinv

Programs that use cpi or lpi should recalculate the dot spacing:

Effects of Changing the Character/Line Pitches
Before After

Using cpi with cpix clear:
spinh´ spinh
Using cpi with cpix set:

spinh´ spinh=spinh´.
orhi´
orhi_____

Using lpi with lpix clear:
spinv´ spinv
Using lpi with lpix set:

spinv´ spinv=spinv´.
orhi´
orhi_____

Using chr:

spinh´ spinh
Using cvr:

spinv´ spinv

orhi’ and orhi are the values of the horizontal resolution in steps per inch, before using cpi and
after using cpi, respectively. Likewise, orvi’ and orvi are the values of the vertical resolution in
steps per inch, before using lpi and after using lpi, respectively. Thus, the changes in the dots
per inch for dot-matrix graphics follow the changes in steps per inch for printer resolution.

X/Open Curses, Issue 4, Version 2 277

Printer Capabilities Application Usage

A.2.8 Print Quality

Many dot-matrix printers can alter the dot spacing of printed text to produce near-letter-quality
printing or draft-quality printing. It is important to be able to choose one or the other because the
rate of printing generally decreases as the quality improves. Three strings describe these
capabilities:

Print Quality
snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have all three levels,
the respective strings should be left blank.

A.2.9 Printing Rate and Buffer Size

Because there is no standard protocol that can be used to keep a program synchronised with a
printer, and because modern printers can buffer data before printing it, a program generally
cannot determine at any time what has been printed. Two numeric capabilities can help a
program estimate what has been printed.

Print Rate/Buffer Size
cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this value is not given,
the rate should be estimated at one-tenth the prevailing baud rate. bufsz is the maximum
number of subsequent characters buffered before the guaranteed printing of an earlier character,
assuming proper flow control has been used. If this value is not given it is assumed that the
printer does not buffer characters, but prints them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter ‘‘a’’ followed by
1000 additional characters is guaranteed to cause the letter ‘‘a’’ to print. If the same printer
prints at the rate of 100 characters per second, then it should take 10 seconds to print all the
characters in the buffer, less if the buffer is not full. By keeping track of the characters sent to a
printer, and knowing the print rate and buffer size, a program can synchronise itself with the
printer.

Note that most printer manufacturers advertise the maximum print rate, not the nominal print
rate. A good way to get a value to put in for cps is to generate a few pages of text, count the
number of printable characters, and then see how long it takes to print the text.

Applications that use these values should recognise the variability in the print rate. Straight text,
in short lines, with no embedded control sequences will probably print at close to the advertised
print rate and probably faster than the rate in cps. Graphics data with a lot of control sequences,
or very long lines of text, will print at well below the advertised rate and below the rate in cps. If
the application is using cps to decide how long it should take a printer to print a block of text,
the application should pad the estimate. If the application is using cps to decide how much text
has already been printed, it should shrink the estimate. The application will thus err in favour of
the user, who wants, above all, to see all the output in its correct place.

278 X/Open CAE Specification 1996

Application Usage Selecting a Terminal

A.3 Selecting a Terminal
If the environment variable TERMINFO is defined, any program using Curses checks for a local
terminal definition before checking in the standard place. For example, if TERM is set to att4424,
then the compiled terminal definition is found in by default the path:

a/att4424

within an implementation-specific directory.

(The a is copied from the first letter of att4424 to avoid creation of huge directories.) However, if
TERMINFO is set to $HOME/myterms, Curses first checks:

$HOME/myterms/a/att4424

If that fails, it then checks the default pathname.

This is useful for developing experimental definitions or when write permission in the
implementation-defined default database is not available.

If the LINES and COLUMNS environment variables are set, or if the program is executing in a
window environment, line and column information in the environment will override
information read by terminfo.

A.4 Application Usage
The most effective way to prepare a terminal description is by imitating the description of a
similar terminal in terminfo and to build up a description gradually, using partial descriptions
with a screen-oriented editor, to check that they are correct. To easily test a new terminal
description the environment variable TERMINFO can be set to the pathname of a directory
containing the compiled description, and programs will look there rather than in the terminfo
database.

A.4.1 Conventions for Device Aliases

Every device must be assigned a name, such as vt100. Device names (except the long name)
should be chosen using the following conventions. The name should not contain hyphens
because hyphens are reserved for use when adding suffixes that indicate special modes.

These special modes may be modes that the hardware can be in, or user preferences. To assign a
special mode to a particular device, append a suffix consisting of a hyphen and an indicator of
the mode to the device name. For example, the -w suffix means wide mode; when specified, it
allows for a width of 132 columns instead of the standard 80 columns. Therefore, if you want to
use a vt100 device set to wide mode, name the device vt100-w. Use the following suffixes where
possible:

X/Open Curses, Issue 4, Version 2 279

Application Usage Application Usage

Suffix Meaning Example
-w Wide mode (more than 80 columns) 5410-w
-am With automatic margins (usually default) vt100-am
-nam Without automatic margins vt100-nam
-n Number of lines on the screen 2300-40
-na No arrow keys (leave them in local) c100-na
-np Number of pages of memory c100-4p
-rv Reverse video 4415-rv

A.4.2 Variations of Terminal Definitions

It is implementation-defined how the entries in terminfo may be created.

There is more than one way to write a terminfo entry. A minimal entry may permit applications
to use Curses to operate the terminal. If the entry is enhanced to describe more of the terminal’s
capabilities, applications can use Curses to invoke those features, and can take advantages of
optimisations within Curses and thus operate more efficiently. For most terminals, an optimal
terminfo entry has already been written.

280 X/Open CAE Specification 1996

Glossary

background
A property of a window that specifies a character (the background character) and a rendition to
be used in a variety of situations. See Section 3.3.6 on page 18.

Curses window
Data structures, which can be thought of as two-dimensional arrays of characters that represent
screen displays. These data structures are manipulated with Curses functions.

cursor position
The line and column position on the screen denoted by the terminal’s cursor.

empty wide-character string
A wide-character string whose first element is a null wide-character code.

erase character
A special input character that deletes the last character in the current line, if there is one.

kill character
A special input character that deletes all data in the current line, if there are any.

null chtype
A chtype with all bits set to zero.

null wide-character code
EC A wide-character code with all bits set to zero.

pad
EC A window that is not necessarily associated with a viewable part of a screen.

parent window
A window that has subwindows or derived windows associated with it.

rendition
EC The rendition of a character displayed on the screen is its attributes and a colour pair.

SCREEN
An opaque Curses data type that is associated with the display screen.

subwindow
A window, created within another window, but positioned relative to that other window.
Changes made to a subwindow do not affect its parent window. A derived window differs from
a subwindow only in that it is positioned relative to the origin of its parent window. Changes to
a parent window will affect both subwindows and derived windows.

touch
To set a flag in a window that indicates that the information in the window could differ from the
that displayed on the terminal device.

wide-character code (C language)
EC An integer value corresponding to a single graphic symbol or control code.

wide-character string
EC A contiguous sequence of wide-character codes terminated by and including the first null wide-

character code.

X/Open Curses, Issue 4, Version 2 281

Glossary

window
A two-dimensional array of characters representing all or part of the terminal screen. The term
window in this document means one of the data structures maintained by the Curses
implementation, unless specified otherwise. (This document does not define the interaction
between the Curses implementation and other windowing system paradigms.)

window hierarchy
The aggregate of a parent window and all of its subwindows and derived windows.

282 X/Open CAE Specification 1996

Index

-w suffix ..279
<curses.h> ..220
<term.h>...235
<unctrl.h>...236
@...268
XBD specification

relationship to ...13
_w infix ...26
_XOPEN_SOURCE...9
acsc ..264
add

effect on straddling character21
resulting rendition..22

add function...19
addch() ...32
addchnstr() ..33
addchstr()...33
addnstr() ..34
addnwstr() ...35
addstr()...34
addwstr() ...35
add_wch()..36
add_wchnstr()...37
add_wchstr() ...37
adjustment of cursor position................................20
advertised print rate ..278
advisory delay...252
alias

in terminfo ...238
alternate character set260, 275

line drawing...264
alternate keypad ...262
am ..255

ignoring linefeed after267
ancestor...14
Ann Arbor 4080 (example)257
ANSI foreground/background...........................265
ANSI X3.64-1979 ...238
application consideration30
area clear...258
arrow keys..262
asterisk

in terminfo ...252
AT&T 4410v1

line drawing...264
AT&T 470/475...277

AT&T 5320 (example) ..255
AT&T 610 (example) ..251
attribute ..16
attroff() ...38
attron()..38
attrset() ...38
attr_get() ..39
attr_off() ...39
attr_on() ...39
attr_set() ...39
audible signal ..255
automatic margin ...255
automatic motion ...274
auxiliary printer control ..267
background..18, 281
background character ..18

implicit use ..22
background colour ...265
backslash

use in terminfo ..238
backslash in terminfo...252
backspace

special processing...21
basic capability..255
baud rate, versus printer throughput.................278
baudrate() ..41
bce..265
Beehive Superbee..267
beep() ..42
bel...255

delays ..252
bell ...255

visible..260
bidirectional writing ..2
bkgd() ...43
bkgdset() ..43
bkgrnd() ...44
bkgrndset() ..44
blanking text ..260
blink...260
blinking screen ..260
block cursor ...260
block mode...30
bold..260

printing...274
boolean capability ..238

X/Open Curses, Issue 4, Version 2 283

Index

border() ..45
eliminates straddling characters21

border_set() ...46
box drawing...255
box() ..47
box_set()...48
brightness of character ..260
buffer size ...278
bufsz ..278
bw ..255
C language ...7
C.Itoh 8510 ...277
calculating print rate..278
can..4
can_change_color()..49
capability of device ..237
capability, device ..238
carriage return

special processing...21
cbreak()...52
cbt...262
CC environment variable266
ccc ..265
change

affecting subwindow ...14
change resolution ...277
character

replacement ...19
resulting rendition..22
straddling...21

character insert/delete20, 259
character set

alternate ...260, 275
as sub/superscript ...274
line drawing...264
name..275

character spacing..268
chgat()...53
chr ..270

recalculate resolution after...............................270
chts...260
civis..260
clear ...255
clear screen...255
clear to end-of-line ...258
clear() ..54
clearok() ...55
clipping of window..14
clrtobot() ..57
clrtoeol()...58
cmdch..266

cnorm ..260
code set ...1
COLORS ...49
colors ...265
color_content() ...49, 59
COLOR_PAIR() ..49
COLOR_PAIRS...49, 60
color_set() ..39
colour ..16
colour manipulation ..265
COLS ...61
cols ...255

status line ...263
column

orphaned ..19
COLUMNS...279

in use_env()...206
comma

after last entry in terminfo................................251
use in terminfo ..238

command character..266
comment in terminfo ...253
Common Usage C...7
compilation environment ...8
complex character ..17

function naming ...26
Concept (example) ...258
Concept 100

ignoring linefeed after wrap267
Concept 100 (example) ..259
conformance ..3
constant

line-drawing..222
conventions, lexical..240
cookie ..260
coordinate pair ..19
copywin()...62
cpi...277

recalculate resolution after...............................270
cpix ..277
cpi[x]..270
cps ..278
cr ..255

delays ..263
crxm...272
CS7/CS8 ...140
csnm ..275
csr...258
cub ...257
cub1 ...255, 257

delays ..263

284 X/Open CAE Specification 1996

Index

cud ...257
cuf ..257
cuf1 ..255
cup ...256
current or specified position26
current or specified window26
current position...271
curscr ...63
Curses..1
Curses window...281
cursor

actual position...19
analogue in printing terminal..........................271
appearance of ..260

cursor addressing ...256
cursor movement..255

relocation..20
within row or column..257

cursor position ..19, 281
at insert/delete..20

curs_set()..64
cur_term ...65
cuu ...257
cuu1 ...257
cu[b/d/f/u][1] ..272
cvr ..270

recalculate resolution after...............................270
cvvis ..260
da..258
daisy ..275
darkened printing...274
database, terminfo..237
Datamedia (example) ..259
db ...258
dch ...259
dch1 ...259
defc ..275
definition, sharing ..268
def_prog_mode() ...66
def_shell_mode()..66
delay..252, 263
delay_output() ..67
delch()...68
delete

effect on straddling character21
delete/insert character ..259
delete/insert line ..258
deleteln() ..71
deletion ...20
delscreen() ...72
delwin() ..73

del_curterm() ..69
depth of input queue ...204
derwin()..74
description of device..238
destructive scrolling...258
destructive tab...267
device capability ...237
device name...279
dialup terminal..266
Digital LA100, LN03 ..277
dim...260
direct cursor addressing..256
dl ..258
dl1 ..258
docr..273
dot-matrix graphics..276
doupdate() ...75
draft-quality...278
drawing a box..255
dsl...263
dupwin() ..76
EC5, 8-9, 11-12, 16-17, 19-21, 23-24, 29, 237, 281

in <curses.h>................................220-225, 227-234
in <term.h> ..235
in addchstr()..33
in addnstr()..34
in addnwstr() ..35
in add_wch() ...36
in add_wchnstr()..37
in attr_get()..39
in bkgd()...43
in bkgrnd()...44
in border()..45
in border_set() ..46
in box_set()..48
in can_change_color() ...49
in chgat()..53
in color_content()...59
in COLOR_PAIRS ..60
in COLS ..61
in copywin()..62
in curscr ..63
in curs_set()...64
in cur_term...65
in delscreen()...72
in del_curterm() ...69
in derwin()...74
in dupwin() ...76
in echochar() ...78
in echo_wchar()..79
in erasechar() ..82

X/Open Curses, Issue 4, Version 2 285

Index

in filter() ...83
in getbegyx() ...86
in getbkgd()...88
in getbkgrnd()...89
in getcchar() ..90
in getmaxyx()..93
in getnstr() ...94
in getn_wstr() ...96
in getparyx()..98
in getwin() ...101
in get_wch() ..100
in get_wstr()..102
in halfdelay()...104
in has_colors() ..105
in hline()...107
in hline_set() ...108
in idcok()..109
in immedok() ..111
in inchnstr()...113
in init_color() ..114
in innstr() ...117
in innwstr()..118
in insdelln() ...120
in insnstr() ...122
in insstr()..124
in instr() ...125
in ins_nwstr()..123
in ins_wch()...126
in ins_wstr() ..127
in inwstr() ..131
in in_wch() ..129
in in_wchnstr() ...130
in isendwin()...132
in is_linetouched() ...133
in keyname() ...134
in killchar() ..136
in LINES ...138
in meta()...140
in mvcur()..144
in mvderwin()...145
in napms() ...149
in newpad()...150
in noqiflush() ..157
in notimeout()...158
in pair_content()...160
in pechochar()...161
in putp() ...164
in putwin() ..165
in qiflush() ...166
in redrawwin() ...168
in restartterm() ...172

in ripoffline() ...173
in scrl() ...177
in scr_dump() ...176
in setcchar()...179
in setupterm()...183
in set_curterm()..180
in slk_attroff() ...184
in start_color() ..187
in stdscr ..188
in subpad() ..189
in syncok()...191
in termattrs()...192
in termname() ...193
in tgetent() ...194
in tigetflag()...196
in timeout() ...198
in touchline()...199
in tparm()...200
in tputs() ..201
in ungetch() ...204
in untouchwin() ...205
in use_env()...206
in vidattr() ...207
in vline()...209
in vline_set() ...210
in vwprintw() ...211
in vwscanw() ..213
in vw_printw() ...212
in vw_scanw() ..214
in wunctrl() ...218

ech..259
echo() ..77
echochar() ..78
echo_wchar()...79
ed..258
eighth bit...267
el...258
el1...258
empty wide-character string................................281
emulator, terminal..265
en..257
enacs ..260
end-of-line

truncation/wrapping...19
endwin()...80
enhancement, turn off..260
enter_ca_mode

in tigetflag()...196
eo..260
erase character...281
erase to end-of-line...258

286 X/Open CAE Specification 1996

Index

erase() ...54, 81
erasechar() ...82
erasewchar()..82
error numbers..11
escape in terminfo ..252
escape sequence ..14
eslok...263
estimating printer throughput.............................278
et ..257
exit_ca_mode

in tigetflag()...196
extra line of screen..263
extra-bright character ..260
ff . ..266

delays ..263
filter() ..83
first line in terminfo ...238
flag, touched ..14
flash ...260

delays ..252
flash() ..84
flashing screen...260
flow control..267
flushinp() ...85
foreground colour ..265
form feed ..273
format of entries..6
format of terminfo..238
fsl..263
full duplex ..77
function naming..26
generic terminal description266
getbegyx() ..86
getbkgd() ...43, 88
getbkgrnd() ...44, 89
getcchar() ...90
getch()...91
getmaxyx() ..86, 93
getnstr()..94
getn_wstr() ..96
getparyx() ..86, 98
getstr() ..94, 99
getwin()..101
getyx() ..86, 103
get_wch() ...100
get_wstr() ..96, 102
glitch, magic cookie..260
glyph..20
gn ...266
grammar...239
graphic rendition, setting......................................261

graphics, dot-matrix...276
graphics, line-drawing...264
half line cursor movement....................................266
half-bright character ..260
halfdelay() ...104
has_colors() ...49, 105
has_ic() ...106
has_il()..106
Hazeltine ..267
hc..255
hd ...266
header line in terminfo ..238
headers..219
Heathkit H19 (example)..263
Hewlett-Packard

model of colour specification...........................265
Hewlett-Packard 2621

keypad ..262
magic cookie glitch ..260

Hewlett-Packard 2645 (example)257
high-order bit, setting ..267
highlighting ...260
hline() ...107
hline_set() ..108
hls...265
home..257
hpa ...257
hs..263
ht ..262
hts...262
hu ...266
hz..267
ich...259
ich1...259
idcok() ..109
idlok() ...55, 110
if . ..262
il . ..258
il1..258
immedok() ...111
implementation-dependent......................................4
inch()...112
inchnstr()..113
inchstr() ..113
ind..255, 258

delays ..263
independence of print modes assumed.............274
indn ...255, 258
initc ..265
initialisation...29, 262
initialisation string ...29

X/Open Curses, Issue 4, Version 2 287

Index

initialise a colour-pair..265
initp ...265
initscr() ...115
init_color()...49, 114
init_pair()...49, 114
innstr()..117
innwstr() ..118
input queue, depth...204
insch() ...119
insdelln() ..120
insert

delay per line...252
effect on straddling character21
resulting rendition..22

insert/delete character ..259
insert/delete line...258
insertion..20
insertln()...121
insnstr() ..122
insstr() ..122, 124
instr() ..117, 125
ins_nwstr() ..123
ins_wch() ...126
ins_wstr()...123, 127
interfaces

implementation...7
system...219
use..7

intrflush()...128
invis ...260
invisible text ..260
inwstr() ..118, 131
in_wch() ...129
in_wchnstr() ..130
in_wchstr() ..130
ip ..259
iprog ..262
is1, is2, is3...262
isendwin()..132
ISO C ...7
is_linetouched()..133
is_wintouched() ...133
it . ..262
italic ...274
ka1, ka3 ...262
kb2 ...262
kbs..262
kc1, kc3..262
kclr ...262
kctab ..262
kcub1 ...262

kcud1...262
kcuf1 ..262
kcuu1...262
kdch1...262
kdl1..262
ked ...262
kel...262
keyname()..134
keypad ..262
keypad() ...135
key_ prefix..238
key_name()..134
kf0, kf1, and so on...262
khome ...262
khts ..262
kich1 ..262
kil1 ...262
kill character ..281
killchar()...82, 136
killwchar() ...82
kind..262
kll ...262
km ..267
knp...262
kpp...262
kri ...262
krmir..262
ktbc ..262
last entry in terminfo ...251
LC_CTYPE ...16
Lear Siegler ADM-3 (example)256
leaveok() ..55, 137
left and top edge ...255
left margin..273
left-to-right writing ..2
length of line, effect on print rate278
letter-quality ..278
lexical conventions...240
lf . ..255
lf0, lf1, and so on...262
lh ..262
line drawing character...14
line feed ..273
line graphics...264
line-drawing constant..222
line/column coordinate...19
LINES..138
lines..255
LINES..279

in use_env()...206
lines on screen ...255

288 X/Open CAE Specification 1996

Index

ll . ..257
lm ...267
locale..1
locale-specific ..16
long name of device ...238
longname() ..139
lpi ...277

recalculate resolution after...............................270
lpix ...277
lpi[x] ..270
LSI ADM-3a (example)..257
lw ...262
maddr..271
magic cookie glitch...260
mandatory delay...252
manipulation of window ..14
manual pages...31

format..6
margin...255, 273
may ..4
mc0, mc4, and so on...267
mcs...269
mcub[1]...271
mcud[1]...271
mcuf[1]..271
mcuu[1]...271
mcu[b/d/f/u][1]...272
media copy string...267
meta key...140, 267
meta() ...140
mgc..263, 274
mhpa ...271

reverse motion should not affect272
Micro-Term ACT-IV (example)257
Micro-Term MIME (example)260
mir..259
mjump...271
mls ...269
modification outside subwindow.........................21
motion, automatic ..274
move() ..141
mrcup..256
msgr...260

enhanced printing ..274
multi-byte character

function naming ...26
multi-column character...16
multiple character functions26
must ...4
mv ..142
mv prefix ..26

position arguments ..19
mvaddch() ...32
mvaddchnstr() ..33
mvaddchstr() ..33
mvaddnstr() ..34
mvaddnwstr()...35
mvaddstr()...34
mvaddwstr() ...35
mvadd_wch()..36
mvadd_wchnstr() ..37
mvadd_wchstr()...37
mvchgat()...53
mvcur()...144
mvdelch()...68
mvderwin() ...145
mvgetch()...91
mvgetnstr()..94
mvgetn_wstr() ..96
mvgetstr() ..94
mvget_wch() ...100
mvget_wstr()...96
mvhline() ...107
mvhline_set() ..108
mvinch()...112
mvinchnstr() ...113
mvinchstr()..113
mvinnstr()..117
mvinnwstr() ..118
mvinsch()...119
mvinsnstr() ..122
mvinsstr() ..122
mvinstr() ..117
mvins_nwstr() ..123
mvins_wch() ...126
mvins_wstr()...123
mvinwstr()...118
mvin_wch() ...129
mvin_wchnstr()..130
mvin_wchstr() ..130
mvpa ...271

reverse motion should not affect272
mvprintw() ..146
mvscanw()...147
mvvline() ...107
mvvline_set() ..108
mvw prefix...26
mvwaddch()..32
mvwaddchnstr()...33
mvwaddchstr() ...33
mvwaddnstr()...34
mvwaddnwstr() ...35

X/Open Curses, Issue 4, Version 2 289

Index

mvwaddstr() ...34
mvwaddwstr()..35
mvwadd_wch() ..36
mvwadd_wchnstr() ...37
mvwadd_wchstr() ...37
mvwchgat() ...53
mvwdelch() ...68
mvwgetch() ...91
mvwgetnstr() ..94
mvwgetn_wstr()...96
mvwgetstr()...94
mvwget_wch() ...100
mvwget_wstr() ...96
mvwhline()..107
mvwhline_set()...108
mvwin() ...148
mvwinch() ...112
mvwinchnstr() ..113
mvwinchstr() ..113
mvwinnstr() ..117
mvwinnwstr()...118
mvwinsch() ...119
mvwinsnstr() ..122
mvwinsstr()...122
mvwinstr()...117
mvwins_nwstr()...123
mvwins_wch()..126
mvwins_wstr() ...123
mvwinwstr() ...118
mvwin_wch()..129
mvwin_wchnstr() ..130
mvwin_wchstr()...130
mvwprintw() ..146
mvwscanw() ...147
mvwvline()..107
mvwvline_set()...108
n infix...26
name of capability ..238
name of device ..279
name space

X/Open...9
naming ..26
napms() ..149
ncv ...266
near-letter-quality...278
nel...255
network terminal ..266
networked asynchronous terminal.......................30
newline ...255

special processing...21
newpad()..150

newterm()..115, 152
newwin() ...74, 153
nl() ...154
nlab ..262
no ...155
nocbreak()..52
nodelay()..156
noecho() ...77
NOFLSH...128, 157
non-spacing character..17
non-standard terminal...30
nonl() ..154
noqiflush() ...157
noraw()...52
notimeout mode..23
notimeout() ...158
npc ...266
npins..276
nrrmc...258

in scr_dump() ...176
null chtype ...281
null wide-character code.......................................281
numeric capability..238
obsolescent ...4
oc ..265
octal specification in terminfo252
op ...265
optimisation...1
orc ..269

implied change to...270
orhi...269

implied change to...270
origin ...19
orl ...269

implied change to...270
orphaned character ..19
orphaned column ...19
orvi...269

implied change to...270
os..255, 260
overlapping..20
overlay()...159
overstrike..255
overwrite()...159
overwriting...19-20
p prefix..26
pad...266, 281

functions that use ...26
pad character ...266
padding...238
padding character...252

290 X/Open CAE Specification 1996

Index

page eject ..266
pairs...265
pair_content() ...49, 160
PAIR_NUMBER() ..49, 160
parametrised string..256
parent window..14, 281
patch..266
pb ...263
PC terminal emulator ..265
pechochar()..161
pecho_wchar() ..161
period in terminfo ..253
Perkin-Elmer Owl (example)259
pfkey..262
pfloc ...262
pfx ..262
pln..262
pnoutrefresh() ..150, 162
pop-up window ..21
porder..276
position

current or specified ..26
postfix ...256
prefix on function/argument26
prefresh() ...150
print quality ...278
printer resolution..268
printer specification in terminfo..........................268
printing rate ...278
printw()..146, 163
property

background..18
rendition...18
window...18

proportional delay..252
proportional printing...268
prot ..260
protected text...260
protocol (xon/xoff)...255
putp()..164
putwin()...101, 165
qiflush()..157, 166
quality of printing ..278
raster graphics...276
raw() ...52, 167
rbim ...276
rc ..258, 263

inclusion in tsl/fsl ..263
rcsd ..275
reading subwindow

effect on straddling character21

redrawwin() ..168
refresh ...14

clears touched flag..14
refresh()..75, 169
relocation of cursor ..20
rendition...17, 261, 281

background..18
window...18

rendition of character placed in window22
rep..266
replacing characters ...19
resetty() ..171
reset_prog_mode() ..66, 170
reset_shell_mode()...66
resolution ...268
resolution, effect of changing...............................277
restartterm()..69, 172
restoring subwindow...21
rev ..260
reverse Polish ..256
reverse-video screen ..260
rf. ..263
rfi..266
ri...255, 258
right margin...273
right-to-left writing ..2
rin...255, 258
ripoffline()..173
ritm ..274
rlm..272
rmacs ...260
rmcup..258

in scr_dump() ...176
rmdc ..259
rmicm ..272
rmir..259
rmkx ..262
rmln ...262
rmm ...267
rmp ..259
rmso...260
rmul ...260
rmxon..267
rounding...268
row or column cursor addressing.......................257
RPN ...256
rs1, rs2 ...263
rshm...274
rsubm ..274
rsupm..274
rum ..272

X/Open Curses, Issue 4, Version 2 291

Index

rwidm..274
sam...272
savetty() ...171, 174
sbim ...276
sc ..258, 263

inclusion in tsl/fsl ..263
scanw()...147, 175
scp..265
screen ..14, 255
SCREEN..281
screen blink..260
scrl() ..177
scroll

effect on straddling character21
scroll()...177
scrolling ..255
scrolling region ...258
scrollok()..55, 178
scr_dump() ..176
scr_init() ...176
scr_restore()...176
scr_set() ..176
scs...275
scsd ..275
sdrfq...278
search path for TERM..279
setab...265
setaf ...265
setb...265
setcchar()..179
setf..265
setscrreg() ..55, 181
settable scrolling region ..258
setupterm()..69, 183
set_curterm() ..69, 180
set_term()...182
sgr ..261
sgr0 ..260
shadow..274
shadowing..274
sharing definition in terminfo..............................268
should..4
signals, relationship to...13
similar terminal...268
single-byte character

function naming ...26
sitm ..274
slash

in terminfo ...252
slk_attroff()..184
slk_attron() ..184

slk_attrset()..184
slk_attr_off()..184
slk_attr_on() ..184
slk_attr_set() ...184
slk_clear() ..184
slk_color() ..184
slk_init() ...184
slk_label() ..184
slk_noutrefresh()..184
slk_refresh() ..184
slk_restore()...184
slk_set() ..184
slk_touch()...184
slk_wset()...184
slm ...272
smacs ...260
smb[b/l/r/t]..273
smcup..258
smdc ..259
smg[b/l/r/t]p ...273
smicm..272
smir..259
smkx ..262
smln ...262
smm...267
smso...260
smul...260
smxon..267
snlq ..278
snrmq ..278
space

use in terminfo ..238
space character

resulting rendition..22
spacing complex character17
spacing of characters ...268
special keys ..262
special mode..258
special mode of device ..279
speed of printing...278
spinh..276
spinv..276
sshm ..274
ssubm ..274
ssupm..274
stack in terminfo ...256
standend()..186
standout mode ..260
standout() ..186
start_color()...49, 187
status line ...263

292 X/Open CAE Specification 1996

Index

stdscr ...14, 188
straddling character ...21
string capability ..238
string, parametrised...256
subcs..274
subpad()...150, 189
subscript ...274

characters available..274
subwin()...74, 190

overview...14
subwindow..14, 281

character straddling border................................21
sum ..272
supcs..274
superscript ...274

characters available..274
swidm ...274
switch ..266
synchronous terminal..30
syncok()..191
system interfaces ..219
tab ..262

delays ..263
expansion ...257
special processing...22
use in terminfo ..238

tab stop ...29
tbc...262
Tektronix

model of colour specification...........................265
Tektronix 4025

command character ...266
Tektronix 4025 (example)......................................257
Teleray

destructive tab ..267
Teleray 1061 (example)..260
TERM

in initscr() ..115
termattrs()..192
terminal...15
terminal emulator...265
terminal-independence1, 237
terminfo ..237
TERMINFO..279
terminfo

format ...238
terminology..4
termname()..193
tgetent()..194
tgetflag()...194
tgetnum()...194

tgetstr()...194
tgoto() ...194
throughput...278
tigetflag() ...196
tigetnum()..196
tigetstr()..196
tilde, inability to display267
timeout()..158, 198
top and left edge ...255
touch..281
touched ...14
touchline() ...133, 199
touchwin() ...133
tparm() ...196, 200
tputs()...164, 201
truncation ...19
tsl..263
TVI 912 (example) ..260
typeahead

discarding...85
typeahead() ...202
uc..260
ul ..260
unctrl()..203
undefined..4
underline cursor..260
underlining ..260
ungetch()..204
unget_wch() ..204
uniqueness of terminfo aliases238
unspecified...4
untouchwin()..133, 205
update

sets touched flag ...14
use..268
user preference for use of device.........................279
use_env() ...206
variability in print rate ..278
variable-width font ..268
vertical bar

use in terminfo ..238
vi

use of terminfo..237
vidattr() ..207
video attribute ...16
video enhancement, turn off260
vidputs() ..207
vid_attr() ..207
vid_puts() ..207
virtual terminal ...266
visible bell ..260

X/Open Curses, Issue 4, Version 2 293

Index

vline() ...107, 209
vline_set()..108, 210
vpa ...257
vt ..266
VT100

delayed line wrap...267
line drawing...264
scrolling region ...258
status line ...263

vwprintw() ..211
vwscanw() ...213
vw_printw() ..212
vw_scanw()...214
w ..215
w infix ...26
w prefix...26
waddch()..32
waddchnstr()...33
waddchstr() ...33
waddnstr() ...34
waddnwstr() ...35
waddstr() ...34
waddwstr()..35
wadd_wch() ..36
wadd_wchnstr() ...37
wadd_wchstr() ...37
warning

EC...5
wattroff()..38
wattron() ..38
wattrset()..38
wattr_get() ...39
wattr_off()..39
wattr_on() ..39
wattr_set() ...39
wbkgd()..43
wbkgdset()...43
wbkgrnd()..44
wbkgrndset()...44
wborder() ...45
wborder_set()..46
wchgat() ...53
wclear() ..54
wclrtobot()...57
wclrtoeol() ...58
wcolor_set()...39
wcursyncup()..191
wdelch() ...68
wdeleteln()...71
wechochar()...78
wecho_wchar() ...79

werase()..54
wgetbkgrnd() ..44
wgetch() ...91
wgetnstr() ..94
wgetn_wstr()...96
wgetstr()...94
wget_wch()..100
wget_wstr() ...96
whline() ..107
whline_set()...108
widcs ...269, 274
wide character ...274
wide mode ...279
wide-character code (C language)281
wide-character string...281
width of character, variable..................................268
will ...4
winch() ...112
winchnstr() ..113
winchstr() ..113
wind...258
window ..14, 258, 282

clipping...14
current or specified ..26
parent ..14
touched flag ...14

window background..18
window hierarchy ..282
window property..18
window rendition...18
winnstr() ..117
winnwstr()...118
winsch() ...119
winsdelln() ..120
winsertln() ...121
winsnstr()...122
winsstr() ...122
winstr()...117
wins_nwstr() ...123
wins_wch()..126
wins_wstr() ...123
winwstr() ...118
win_wch()..129
win_wchnstr() ..130
win_wchstr()...130
wmove()...141
wnoutrefresh()..75
wprintw()...146
wrap to next line...255
wrapping ..19
wredrawln() ..168

294 X/Open CAE Specification 1996

Index

wrefresh() ..75
wscanw() ...147
wscrl()...177
wsetscrreg()...55
wsl..263
wstandend() ..186
wstandout()...186
wsyncdown() ..191
wsyncup()..191
wtimeout()...158
wtouchln() ...133
wunctrl() ..218
wvline() ..107
wvline_set()...108
X/Open name space ..9
xenl ..267
xhp ...267
xhpa...271
xmc ..260
xoffc ...267
xon...255, 267

and padding characters.....................................252
xonc ...267
xsb..267
xt ..267
xvpa ...271
y, x pair ...19
zero-based row/column numbering..................256
zero-width character..17
zerom ..273

X/Open Curses, Issue 4, Version 2 295

Index

296 X/Open CAE Specification 1996

	c610cov.pdf
	Page 1

	blank.pdf
	Page 1

