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We set out to design a brain-inspired intelligent agent that 
learns to control an autonomous vehicle directly from 
its camera inputs (end-to-end learning to control1,2). 

The agent has to learn a coherent representation of its world from 
multidimensional sensory information, and utilize it to general-
ize well in unseen situations. Surprisingly, animals as small as the 
nematode Caenorhabditis elegans have mastered such an ability, 
to perform locomotion3, motor control4 and navigation5, through 
their near-optimal nervous system structure6,7 and their harmo-
nious neural information-processing mechanisms8. In complex 
real-world scenarios, for instance, autonomous driving, such neu-
ral computation inspiration9,10 can lead to more expressive artificial 
intelligence agents with models that are simultaneously accurate 
and explainable11.

Although deep learning algorithms have achieved noteworthy 
successes in various high-dimensional tasks2,12–16, there still are 
important representation-learning challenges17–19 that have to be 
addressed. For instance, the domain of end-to-end control is safety 
critical20. This demands interpretable dynamics of the intelligent 
controllers, as a first step towards investigating their safety issues. 
Furthermore, while learned vehicle control agents often show great 
performance in offline testing and simulations, this considerably 
degrades during live driving. In addition, it is desirable that agents 
learn the true causal structure21,22 between the observed driving 
scenes and their corresponding optimal-steering commands (the 
specific task of the agent). Ideally, for a lane-keeping task, we wish 
that the agent implicitly learns to attend to the road’s horizon when 
taking a current steering decision, while maintaining an attractive 
performance on short-term steering. However, in practice, perfor-
mant models have been shown to learn a variety of unfair23 and 
suboptimal22 input–output causal structures24,25. Finally, within the 
processing pipeline of the high-dimensional data-stream input, the 
agent has to incorporate a short-term memory mechanism captur-
ing temporal dependencies.

The successful end-to-end autonomous-control approaches to 
lane-keeping2,26–28 (Fig. 1) rely solely on deep convolutional neural  

network architectures29, steering a vehicle at a time t, based on 
the most recent camera frame30 (Fig. 2a). While such feedfor-
ward models can properly drive the vehicle in case of ideal input 
data, they often fail if the data are noisy. This is because they do 
not exploit the temporal nature of the task, enabling them to fil-
ter out transient disturbances. As a result, temporary corrup-
tions of the input stream (that is, sudden sunlight, as illustrated in  
Fig. 2a) lead to unstable predictions. On the contrary, recurrent 
neural networks (RNNs)31,32 are a class of artificial neural net-
works that take into account past observations at a current out-
put decision, through a feedback mechanism. Thus, in principle, 
they should lead to more robust end-to-end controllers (Fig. 2b). 
RNNs are trained over finite-length labelled training sequences by 
the backpropagation algorithm33 applied to their unfolded feedfor-
ward representation32 (Figs. 2c,d). Historically, training RNNs has 
been challenging due to their elevated or vanishing gradients dur-
ing the learning phase31,32. Owing to the development of advanced, 
gated RNNs, such as the long short-term memory (LSTM)34, the 
challenge is tackled by enforcing a constant error flow, through the 
fixation of the recurrent weights to 1 and removing nonlinearities 
within the feedback path31.

From a time-series-modelling point of view, having a constant 
error flow is a desirable property, as arbitrary data sequences may 
have long-term relations (Fig. 2d, right). However, in the case of 
end-to-end autonomous driving, learning long-term dependencies 
can be detrimental, due to the short-term causality of the underly-
ing task. When driving a vehicle to follow the lane, humans do not 
recall images of the road from more than a few seconds ago to oper-
ate the steering wheel35. Consequently, LSTM networks may capture 
spurious long-term dependencies that may have been present in the 
training data, and thus learn inadequate causal models21. On the 
contrary, vanishing of gradients prevents RNNs from learning cor-
relations of events with long-term-dependencies36–38. This property 
counterintuitively enhances the real-world control performance of 
a learned RNN agent, as it places a prior on the temporal attention 
span of the network, to the most recent few observations.
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The development of a single, task-specific algorithm that uni-
versally satisfies the representation-learning challenges described 
above has been a central goal of artificial intelligence9,10. To advance 
towards this goal, we draw inspiration from the neural computations 
known to happen in biological brains6,7,39,40 and achieve a remark-
able degree of controllability3–5,8. We develop compact representa-
tions called neural circuit policies (NCPs), where each neuron has 
increased computational capabilities41 compared with contemporary  

deep models. We show that NCPs lead to sparse networks that are 
more easily interpretable and demonstrate this in the context of 
autonomous driving. We discovered that for the lane-keeping task 
mentioned above, very small networks of brain-inspired neural 
models (that is, networks with a control compartment consisting 
of only 19 neurons), in combination with compact convolutional 
neural networks (CNNs)29, achieved superior performance, com-
pared with state-of-the-art models, in learning how to steer a 
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Fig. 1 | End-to-end driving. The process starts by collecting a considerable amount of human driving experiences, in a car that is equipped with camera(s) 
and in-car computing units. The diverse set of training samples are then edited (green boxes) and are labelled by their corresponding steering angle. An 
end-to-end training algorithm trains and validates an artificial neural network agent, in a supervised learning fashion to directly turn camera inputs into 
steering decisions. The obtained network is then deployed on the high-performance computing units mounted inside the car to drive the car autonomously 
in real unseen environments.
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Fig. 2 | Recurrent network modules are essential for the lane-keeping tasks. a, A feedforward CNN network computes its output, P(yt∣It), by relying solely 
on the current observation, It. Consequently, inputs that are corrupted by transient perturbations (bottom) will result in high output variance and faulty 
decisions. b, An RNN has access to past observations at a current driving step, enabling it to filter out transient corruptions that are present in the input 
stream. c, Training RNNs by unrolling their state in time. d, Then, applying backpropagation through time in an unfolded RNN. Purple derivatives indicate 
the dependency of the loss function’s derivative with respect to an RNN’s state weights to the evolution of the RNN’s state, x(t), in time. Blurred images 
depict weaker attention of the RNN when computing a current decision. n is the number of unfolding steps.
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vehicle directly from high-dimensional inputs. Here we use the 
representation-learning challenges as the main criteria for assessing 
the performance of autonomous-control agents.

Designing and learning NCPs
To address the representation-learning challenges and the complex-
ity of autonomous lane-keeping, we design an end-to-end learning 
system that perceives the inputs by a set of convolutional layers42, 
extracts image features and performs control by an RNN structure, 
termed an NCP.

The network structure of NCPs is inspired by the wiring diagram 
of the C. elegans nematode43. Many neural circuits within the nema-
tode’s nervous system are constructed by a distinct four-layer hierar-
chical network topology. They receive environmental observations 
through sensory neurons. These are passed on to inter-neurons 
and command neurons, which generate an output decision. Finally, 
this decision is passed to the motor neurons to actuate its muscles. 
The wiring diagram of C. elegans achieves a sparsity of around 90% 
(ref. 6), with predominantly feedforward connections from sen-
sors to intermediate neurons, highly recurrent connections among 
inter-neurons and command neurons, and feedforward connections 
from command neurons to motor neurons. This specific topology 
was shown to have attractive computational advantages, such as, 
efficient distributed control, requiring a small number of neurons6, 
hierarchical temporal dynamics8, robot-learning capabilities44 and 
maximal information propagation in sparse-flow networks45.

Neural dynamics of NCPs are given by continuous-time ordinary 
differential equations (ODEs), originally developed to capture the 
dynamics of the nervous system of small species, such as C. elegans41 
(Fig. 3a). At their core, NCPs possess a nonlinear time-varying syn-
aptic transmission mechanism that improves their expressive power 
in modelling time series, compared with their deep learning coun-
terparts41. The foundational neural building blocks of NCPs are 
called liquid time constant (LTC) networks 41. Further details about 
LTCs are given in Methods.

The architecture of an NCP network is determined by the design 
principles introduced in rules 1–4, corresponding to the steps pre-
sented in Fig. 3c, as follows:

	(1)	 Insert four neural layers—Ns sensory neurons, Ni inter-neurons, 
Nc command neurons and Nm motor neurons ((1) in Fig. 3c).

	(2)	 Between every two consecutive layers—∀ source neuron, insert 
nso−t synapses (nso−t ≤ Nt), with synaptic polarity ~Bernoulli(p2), 
to nso−t target neurons, randomly selected ~Binomial(nso−t, p1) 
((2) in Fig. 3c). nso−t is the number of synapses from source 
to target. p1 and p2 are probabilities corresponding to their 
distributions.

	(3)	 Between every two consecutive layers—∀ target neuron j with 
no synapse, insert mso−t synapses (mso�t≤ 1

N t

PN t
i¼1; i≠j Lti

I
), where 

Lti
I

 is the number of synapses to target neuron i, with synaptic 
polarity (being excitatory or inhibitory) ~Bernoulli(p2), from 
mso−t source neurons, randomly selected from ~Binomial(mso−t, 
p3) ((3) in Fig. 3c). mso−t is the number of synapses from source 
to target neurons with no synaptic connections.

	(4)	 Recurrent connections of command neurons—∀ command 
neuron, insert lso−t synapses (lso−t ≤ Nc), with synaptic polarity 
~Bernoulli(p2), to lso−t target command neurons, randomly se-
lected from ~Binomial(lso−t, p4) ((4) in Fig. 3c). lso−t is the num-
ber of synapses from one interneuron to target neurons.

Applying the NCP design principles above results in very com-
pact and sparse networks of LTC neurons (see the NCP design 
algorithms in Methods). The learning system corresponding to the 
lane-keeping task consists of the convolutional frontend, stacked 
with the NCP network (Fig. 3b). This system is trained in an 
end-to-end, supervised learning fashion. Given a designed NCP 
network, we apply a semi-implicit ODE solver to obtain a numeri-
cally accurate and stable solution of the system41. We then recur-
sively fold the ODE solver call, into an RNN cell and prepare the 
system’s training pipeline. Further details on the training setup 
are provided in Methods. From the gradient propagation perspec-
tive, our approach gives rise to a vanishing gradient phenomenon, 
which, as described in Fig. 2d, is the preferable setting for learning a 
real-world autonomous vehicle control (see the proof in Methods).

A large-scale selection of labelled training data were collected 
by recording the observations and actions of a human driver (see 
Methods for more details). End-to-end driving is a feedback control 

Neuron model End-to-end network architecture

NCP design algorithm
(1) Insert four neural layers

Sensory Inter-neuron
Command Motor

Source
Ns

Target

nso-t mso-t

l so
-t

j

Nt

Source
Ns

Target
Nt

Nc command
neurons

(2) Initialize sparse synapses

Ns Ni Nc Nm

(3) Wire targets with no synapse (4) Insert recurrent synapses

C
ontrol com

m
ands

NCP
Camera input

Convolutional feature
extractor

Synapess

a

c

b

External
inputs

IinIsij

Ileakage

Cmi

Presynaptic neuron (j ) Postsynaptic neuron (i )

Neural stateMembrane capacitor

xi(t)xj(t)

Fig. 3 | Designing NCP networks with an LTC neural model. a, Representation of the neural state, xi(t), of a postsynaptic LTC neuron i receiving input 
currents from presynaptic neuron, j. The neural state is determined by the aggregation of the inflows/outflows to/from the cell. Iin is the external input 
currents, Ileakage is the leakage current. Synaptic currents (Isij

I
) are set by an input dependent nonlinearity f that is a function of the presynaptic neural state, 

xj(t) and its synaptic parameters (see Methods for further details). b, Representation of an NCP end-to-end network; it perceives the camera inputs that 
are transformed by a set of convolutional layers to a latent representation, which is exploited by the designed NCP (based on the steps described in c) to 
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problem, where the control actuated by the agent proprioceptively 
affects future observations. However, during the supervised train-
ing phase, this feedback mechanism is utterly disregarded.

We observed that such a train–test discrepancy led to situations 
where a trained neural network model that performs exceptionally 
well on the labelled sequences in an offline testing environment 
(Table 1) fails to steer the car safely in a real testing case. Modern 
RNNs are particularly vulnerable to these scenarios, as their 
decision-making process heavily relies on past observations. Hence, 
to properly assess performance, we chose the architectures that 
worked well during offline testing and evaluated them actively on 
a real car. We ran a tenfold cross-testing46 on 94 minutes of labelled 
sequences recorded in the Boston metropolitan area (see Methods 
for more details).

To perform a fair comparison, we equipped all RNN models with 
the same convolutional head that reduces the dimensionality of the 
input image to a more compact latent representation to be fed into 
the RNN compartments. We trained and evaluated the networks 
with the following architectures: a 64-neuron LSTM, a 64-neuron 
continuous-time (CT)-RNN and a 19-neuron NCP. Moreover, we 
compared these recurrent agents with the feedforward CNN model 
developed in Bokarski et al.2.

Learning a compact neural representation. A full-stack NCP net-
work is 63 times smaller than the CNN network that established 
the state-of-the-art of end-to-end driving2. Its control network is 
970 times sparser than that of LSTM and 241 times sparser than 
that of CT-RNN. An NCP’s RNN compartment possesses 233 times 
smaller trainable parameter space than that of LSTM, and 59 times 
lower than CT-RNN. Interestingly, the performance achieved by 
such a compact neural representation is superior to that of other 
models in multiple aspects of an ideal autonomous mobile robot 
controller, described as follows.

Avoiding crashes under increasing input perturbations. 
Compared with all learning systems under test, NCPs are signifi-
cantly more robust in avoiding crashes (requiring intervention) that 

are caused by raising the pixel-wise input perturbations (Fig. 4a). 
The reason for their noise resiliency is that their CT model serves 
as a filter (equation (1)). Note that the primary objective of this 
experiment was to identify how differently each model relies on 
its memory for making a prediction. As outlined in Fig. 2, an ideal 
model should incorporate temporal information to allow the filter-
ing of any form of perturbation. To demonstrate this, we used addi-
tive zero-mean Gaussian noise, because such noise was not present 
in the data used for the training process, and it required a minimal 
assumption on the form, shape and the severity of the perturbation 
signal. Notwithstanding, we already simulated lens flares during 
training. Thus, we could expect that all models would tolerate lens 
flares to some degree.

Robustness of the output decisions in the presence of input  
noise. Figure 4d,e depicts examples of crash incidents that hap-
pened at the locations shown on the map, when the inputs to the 
networks were heavily perturbed by an input noise. These panels 
also illustrate how the attention of each intact network is disrupted 
by the input noise and caused LSTM and CNN networks to drive 
the vehicle off-road (see Methods ‘Saliency map computation’). We 
quantified the influence of the input perturbations on the atten-
tion maps by computing their structural similarity index (SSIM), 
represented in Fig. 4b. The SSIM indicates how much the structure 
of the attention maps gets distorted when the incoming inputs are 
perturbed. The closer SSIM is to 1, the less distorted is the attention. 
Thus, the network can handle input noise more robustly. The closer 
the SSIM index is to 0, the more distorted the network’s attention 
is, which results in the increased uncertainty of the network when 
making a correct driving decision. Under different levels of input 
perturbations, NCPs consistently maintain a higher SSIM compared 
with the other models, therefore, reducing its output decision’s 
uncertainty (see Methods ‘Structural similarity index’).

Driving with smooth neural activity. We quantitatively mea-
sured the maximum steepness of the neural dynamics derivative 
(maximum local Lipschitz constant) for all neurons and report the 
results in Fig. 4c. We observed that the local decision-making pro-
cess in NCPs is remarkably smoother than those of other network 
types. More details are provided in Methods ‘Lipschitz continuity 
computation’.

NCPs enhance interpretability
Interpretation is the process of providing explanations to humans. 
Although no formal definition for interpretability exists yet47, 
we define a model to be more interpretable if its causal mapping 
between input observations and output decisions, as well as its 
global hidden-state dynamics up to the cellular level, is more com-
prehensible to humans48.

Scalable approaches to interpretability involve the development 
of algorithms that set quality measures (proxies) for explaining a 
learning system’s dynamics. In particular, for neural network mod-
els, numerous works explored post-training qualitative feature 
visualization techniques for this purpose49–55. In addition, comput-
ing input-feature attribution measures, such as saliency maps, were 
effectively used for interpretability56–59. Beyond feature visualiza-
tion, selecting a proper measure for post-training explanations can 
be arbitrary and challenging60.

A more systematic way to achieve interpretability would be to 
design neural architectures that, either through their learning pro-
cess or through their semantics, result in more transparency25,61. 
However, despite the effectiveness of these approaches for neu-
ral networks, the quality of explanations drastically drops as the 
dimensionality of models increases. This challenge becomes more 
noticeable when the model architecture is equipped with feedback 
mechanisms (for example, RNNs).

Table 1 | Results of the passive lane-keeping tenfold cross- 
testing evaluation

Model Training square error Test squared error

CNN 1.41 ± 0.30 4.28 ± 4.63

Vanilla RNN 0.14 ± 0.05 3.39 ± 4.39

CT-GRU 0.19 ± 0.05 3.63 ± 4.61

CT-RNN (19 units) 0.44 ± 0.14 3.62 ± 4.35

CT-RNN (64 units) 0.23 ± 0.09 3.43 ± 4.55

Sparse CT-RNN (19 units) 0.77 ± 0.35 4.03 ± 4.80

Sparse CT-RNN (64 units) 0.40 ± 0.43 3.72 ± 4.71

GRU 1.25 ± 1.02 5.06 ± 6.64

LSTM (64 units) 0.19 ± 0.05 3.17 ± 3.85

LSTM (19 units) 0.16 ± 0.06 3.38 ± 4.48

Sparse LSTM (19 units) 1.05 ± 0.57 3.68 ± 5.21

Sparse LSTM (64 units) 0.29 ± 0.14 3.25 ± 3.93

NCP 0.43 ± 0.26 3.22 ± 3.92

NCP (randomly wired) 2.12 ± 2.93 5.19 ± 5.43

NCP (fully connected) 2.41 ± 3.44 5.18 ± 4.19

Mean ± standard deviation (n = 10). Sparse LSTM models are trained with projected gradient 
descent to enforce a 95% sparsity level. All tested NCP architectures are composed of 19 neurons. 
Boldface numbers depict best performance. GRU, gated recurrent unit.
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As NCPs realize compact and sparse networks, constructed 
by expressive neural representations (the LTC model41), they 
ease the interpretation process through known methods, such 
as saliency map computations62, dimensionality reduction63 and 
cell-contribution analysis52.

We conduct quantitative interpretability analysis by explaining 
the attention maps of the convolutional layers, and by comput-
ing the global network dynamics of the recurrent network com-
partment of the models. We then explain cell-level contributions 
through visualization techniques. For the driving task, we find that 
there is a close relationship between the geometry of the environ-
ment, the specific driving task and the network nodes responsible 
for the required behaviour. This is a consequence of defining the 
function of each neuron by differential equations. Accordingly, we 
experimented with the learned lane-keeping networks to measure 
their interpretability in three distinct ways.

(1) Explain and visualize where the attention of the convolu-
tional layers is. Figure 5b–e shows sample attention maps of the 
convolutional parts of the networks during live testing (see Methods 
‘Saliency map computation’). We have observed that the attention 
patterns are exclusive to the choice of network architecture (CNN, 
LSTM, CT-RNN, NCP) and that the explanations are invariant to 
the choice of hyperparameters (for example, network size).

For instance, the convolutional layers in the NCP networks pre-
dominantly attend to the road’s horizon to make a driving deci-
sion. This is very desirable in the lane-keeping task (Fig. 5e). In 
contrast, a CNN network looks at the roadside to make a driving 
decision and ignores the road itself (Fig. 5d). LSTM forced its per-
ception network to learn to attend to the roadside in most scenarios. 
However, lighting conditions, as well as road profiles, can notably 
alter the network’s attention portfolio (Fig. 5b). The attention of 
CT-RNN is inconsistent and is heavily influenced by the variations 
of the road’s lighting conditions (Fig. 5c). In the Supplementary 
Information, we provide an entire collection of saliency maps that 
we collected during live testing. These maps give an intuitive insight 
into the decision-making process of a task-specific network within 
a full-stack autonomous driving system. This insight could help in 
further safety and robustness analysis.

(2) Global network dynamics. To measure how concisely the 
networks learned the primitives of driving (straight roads, handling 
curves and road jitters), we performed a principal component anal-
ysis (PCA) and report its variance in Fig. 5f–i. PCA is conducted 
over the activations of the hidden neurons (without the inclusion 
of the output signal) of the RNN compartments of the driving net-
works, collected during live testing. The analysis demonstrated 
that the first principal component (PC1) of NCP’s neural dynamics  
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concisely learned the global driving features (explaining 92%), as 
shown in Fig. 5j, while PC2 learned fine-grained decisions. The 
conciseness was less apparent in networks with LSTM and CT-RNN 
recurrent compartments, and therefore it is more challenging to 
associate their behaviour with intuitive explanations.

To motivate this phenomenon further, we plotted the PC1 and 
the PC2 scores over the driving trajectory in Fig. 5k–n. NCP is 
the only model among the others that allocated distinct PC1 acti-
vation regimes to the main driving primitives, while fine-grained 
control decisions have been largely captured by PC2. Other baseline 
networks require at least two to three PCs to capture the driving 

profile up to 90%, as shown in Fig. 5f–i. A complementary experi-
ment to further elaborate on this analysis is given in Methods. 
Consequently, the added value of these results for a more complex 
autonomous-control system is that the global dynamics of a learned 
agent can be interpreted and used for further improvements on the 
task-specific networks (see an additional supporting experiment in 
Methods and Extended Data Fig. 1).

(3) Cell-level auditability by visualization. The neural state (the 
amplitude of a neuron’s output) and the coupling sensitivity (how a 
neuron adjusts its reaction speed when interacting with the environ-
ment) of LTC cells comprising an NCP network (Fig. 6a) can help 
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Saliency maps show where each network is learned to attend while driving
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Fig. 5 | Global network dynamics. a, A sequence of input camera images during the active testing. b–e, A set of saliency maps computed to obtain the 
attention of the convolutional layers of the trained networks while driving (see Methods ‘Saliency maps computation’ for details). b, LSTM learned to 
attend to the roadsides in most scenarios; however, lighting conditions considerably affect its attention portfolio. c, CT-RNN’s attention is inconsistent and 
is heavily influenced by the variations of the road’s lighting conditions. d, CNN learned to drive by focusing on the side roads. e, NCP learned to attend to 
the road’s horizon when taking a driving decision. f–i, The variance explained by first eight PCs of the activity of all neurons of LSTM (f), CT-RNN (g), CNN 
(h) and NCP (i) (n = 5). The black line indicates the cumulative variance explained and error bars are standard deviations. j, PC1’s variance explained for 
all models. k–n, The projection of PC1’s (top) and PC2’s (bottom) score (the score of the nth PC is computed by PCðnÞscore ¼ output vector ´weightPCðnÞ

I
), over 

the driving trajectory for LSTM (k), CT-RNN (l), CNN (m) and NCP (n). Colour bars depict PC values.
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to understand how an LTC network’s decision is made. Figure 6b–d 
illustrates the activity of five selected neurons from the NCP driv-
ing agent, projected over the driving trajectory. The motor neuron’s 
activity illustrates how the inferred motion primitives correspond 
to various driving situations (Fig. 6b, left). Its coupling sensitiv-
ity demonstrates that the neuron tends to set smoother dynamics 
while keeping its reaction speed at a relatively constant rate during  

straight motions. Inter-neuron 1 learned to activate during left 
turns (Fig. 6c, top left) while adjusting its dynamics to react faster 
at left-turning events (Fig. 6c, top right). Inter-neuron 2, in con-
trast, learned to rapidly get more active during right turns (Fig. 6c,  
bottom). Command neuron 1 is consistently activated during 
straight driving with a sensitive reaction speed while it is switched 
off on left turns (Fig. 6d, top). Command neuron 2 is biased at lower 

Neural state

Starting point

Motor neuron’s activity

Command neuron 1’s activityInter-neuron 1’s activity

Inter-neuron 2’s activity Command neuron 2’s activity

Coupling sensitivity

Neural state Coupling sensitivityNeural state Coupling sensitivity
0.2 0.6

0.5

0.4

0.3

0.8

0.7

0.6

0.5

0.4

0

0.7

0.6

0.5

0.4

–0.2
–0.4
–0.6

Neural state

Starting point

Driving
direction

Coupling sensitivity Neural state Coupling sensitivity

N
euron output (V)

N
euron output (V)

N
euron output (V)

N
euron output (V)

N
euron output (V)

τ (s)
τ (s)

4

2

–2

0

1.0
1.2

τ (s)

τ (s)
τ (s)

0.30

0.25

0.20

0.15

1.0

0.8

0.6

0.5

–1.26
–1.28
–1.30
–1.32
–1.34
–1.36

–0.5

0

0.18
0.16
0.14
0.12
0.10

Driving
direction

NCP
Camera input

a b

c d

Convolutional layers

Inter-neurons
Command neurons Motor neuron

Sensory neurons Ns =
 32

N i =
 12

N c =
 6

Fig. 6 | Intuitive comprehension of NCP’s cells activity while driving. a, An NCP network trained end-to-end for autonomous lane-keeping. b–d, Examples 
of neural activities projected over the road trajectory on which the car was driven. The neural state (representing the amplitude of a neuron’s dynamics) 
and the coupling sensitivity (representing how a neuron adjusts its reaction speed) are plotted in each subsection. Colour bars on the left plot in each 
panel depict neuron’s output and on the right plot the time constant, τ. b, Neural activity of the motor neuron. c, Neural activity of two inter-neurons 1 and 
2. d, Neural activity of two command neurons 1 and 2. An immediate explanation of the cell-level dynamics for the NCP network is achieved and extends to 
every internal element of the network. See more in Extended Data Figs. 3 and 4.
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membrane potentials and tunes to road jitters when the vehicle 
drives on a straight path (Fig. 6d, bottom). This degree of immedi-
ate interpretation of dynamics is generalizable to every single cell 
within an NCP.

As the number of computational elements of an NCP system is 
considerably lower than that of state-of-the-art neural networks, 
such a degree of access to each cell dynamics could potentially 
be beneficial for designing fault-test and corner-case analysis to 
improve the safety of the deployed autonomous system.

NCPs and autonomy
NCPs are highly compact task-specific neural network agents 
that can proficiently control a vehicle on previously unseen roads, 
while at the same time being robust to input artefacts, learning 
short-term causal representations and realizing interpretable 
dynamics. NCPs are beneficially used within full-stack autono-
mous vehicle frameworks, given in Fig. 7c. They are designed 
to improve the performance and transparency of the black-box, 
task-specific compartments of such complex full-stack autono-
mous vehicle systems. A vision-based full-stack autopilot has to 
incorporate many different tasks for the incoming image streams, 
as shown in Fig. 7a.

State-of-the-art functional autonomous vehicle systems64 typi-
cally share a convolutional backbone network, with many upstream, 
task-specific networks65 (Fig. 7b). Although the complexity of the 
lane-keeping task on which we tested NCPs is relatively low com-
pared with multi-task end-to-end driving, we made sure that NCPs 
maintain compositionality within full-stack autonomous vehicles, 
by enabling an end-to-end training pipeline that can backpropa-
gate errors, through the NCPs to the static CNN-based backbone. 
The resulting task-specific NCPs (for example, for the lane-keeping 
task) improve many aspects of the contemporary neural control 
modules in use.

Real-world application domains, such as autonomous driv-
ing, avionics, service robots, health and medicine, are surrounded 
by environmental artefacts and uncertainty, and demand robust 
real-time decision-making. Moreover, similar to autonomous driv-
ing tasks, many applications deal with complex, high-dimensional 
input–output spaces that become safety critical when deployed in 
the real world. The success of NCPs in task-specific autonomous 
vehicles indicates that tackling the complexity of real-world prob-
lems does not necessarily require to learn very large neural net-
works that are hard to comprehend.

Methods
NCP’s neural model. An NCP is constructed by a set of LTC neurons, each with 
state dynamics xi(t), represented as follows, when connected through an input 
synapse to a neuron j (ref. 41):

_xi ¼ �
1
τi
þ wij

Cmi

σiðxjÞ
� �

xi þ
xleaki
τi
þ wij

Cmi

σiðxjÞEij

� �
; ð1Þ

where τi ¼ Cmi=gli
I

 is the time constant of the neuron i with a leakage 
conductance of g li

I
, wij is a synaptic weight from neuron i to j, Cmi

I
 is the membrane 

capacitance, σiðxjðtÞÞ ¼ 1=ð1þ e�γijðxj�μijÞÞ
I

, xleaki
I

 is the resting potential and Eij is a 
reversal synaptic potential that defines the polarity of the synapse. An LTC neuron’s 
overall coupling sensitivity (time constant) is defined by 41:

τsystemi
¼ 1

1
τi
þ wij

Cmi
σiðxjÞ

: ð2Þ

This variable time constant determines the reaction speed of a neuron during 
decision-making processes, as shown in Fig. 6, for a couple of neurons in the 
driving NCP. All parameters described in the model are trainable.

Numerical implementation of the NCP networks. To learn the parameters 
of an NCP circuit, we transform it into a differentiable representation. After 
modelling the circuit as a system of ordinary differential equations of LTC 
neurons, we employ a numerical ODE solver to obtain a computable form of it. A 
solving method suitable for our purpose has to comply with the following three 

constraints. First, the solver is applied to a real-time system that puts a hard limit 
on worst-case executing time. Hence, the solver uses a fixed step size66. Second, the 
ODE model of an NCP is stiff41,66. Consequently, to avoid numerical instabilities, 
we adopt a semi-implicit method66. Lastly, during the training phase, we compute 
partial derivatives by backpropagating through the solver. Similar to the stability 
arguments in the forward path, we need to monitor the error magnitude in the 
backward phase. In particular, a suitable solving method must not result in an 
exploding or a rapidly vanishing gradient. To comply with these constraints, we 
employed a simple Euler approach. As a result, in summary, for each neuron, we 
adopt a semi-implicit Euler approach with a fixed step size, Δ, of the form:

xiðt þ ΔÞ :¼
xiðtÞCmi=Δþ gli xleaki

P
j2Iinwij σiðxjðtÞÞEij

Cmi=Δþ g li þ
P

j2Iinwij σiðxjðtÞÞ
; ð3Þ

The set Iin represents the set of neurons that are presynaptic to neuron i. This 
equation was derived from the basic Euler formula66:

xðt þ ΔÞ :¼ xðtÞ þ Δ:f xðt þ τÞ; uðt þ 1Þð Þ ð4Þ

by setting τ = Δ for all x(t + τ) that appear linear in the nonlinearity f, and setting 
τ = 0 for all other occurrences (u is the set of inputs to the cell). Note that the 
well-known explicit (forward) Euler method can be obtained from equation 
(4) by setting τ = 0. Likewise, the implicit (backward) Euler method is realized 
by equation (4) if setting τ = Δ and solving the resulting nonlinear equation for 
x(t + Δ). RNNs usually process their incoming input stream at a fixed sampling 
frequency (for example, 30 Hz in the described end-to-end driving tasks). To 
achieve a decent precision, a computation complexity trade-off, we simulated the 
ODE at a frequency, six times higher than the input sampling rate; we packed six 
ODE solver steps into one RNN step. In both the training and testing phases, we 
initialized states of the ODE/RNN by zeros.

NCPs express vanishing gradient. Proof: let xi(t) be the state of an NCP circuit 
implemented by our hybrid ODE solver in equation (3). We assume that there is no 
self-connection synapse i → i. Then

∂xiðt þ ΔÞ
∂xiðtÞ

¼ Cmi=Δ

Cmi=Δþ g li|{z}≥ 0

þ
X

j2Iin
wijσiðxjðtÞÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}≥ 0

ð5Þ

¼ Cmi=Δ

Cmi=Δþ ϵ
; for some ϵ≥0 ð6Þ

≤1 ð7Þ

In equation (5), we see that the magnitude of the vanishing effect depends on 
the parameters g li ;wij

I
 and the current synapse activation σi(…). In the limit for 

g li ;wij ! 0
I

, our hybrid solver approaches a constant error flow, similar to that of an 
LSTM34.𝜖 stands for the positive value of the second term in the denominator of the 
right-hand side of equation (5).

Vehicle setup. All data used to train networks was collected on a Toyota Prius 
2015 V retrofitted with perception sensors (a forward-facing Leopard Imaging 
LI-AR0231-GMSL camera), inertial measurement unit (Xsens MTi 100-series 
IMU), GPS and drive-by-wire steering67. All data logging was done directly on an 
NVIDIA Drive PX2, the in-car high-performance computing platform. The IMU 
was used to record rotation of the vehicle’s rigid body frame and thus, compute the 
curvature of the vehicle’s traversed path. Specifically, given a yaw rate γt (rads s−1), 
and the speed of the vehicle, vt (m s−1), we compute the curvature of the path as:

yt ¼
1
rt
¼ γt

vt
ð8Þ

where rt is the radius of the traversing circle. Ultimately, for the networks learned 
in this paper, we consider the problem of directly learning a control command 
from the human-traversed road curvature (yt) instead of the steering wheel angle 
(αt). This is because αt is a nonlinear function of both yt and vt and depends on 
the tyre slip angle, road surface, weather conditions and vehicle dynamics. Hence, 
simply learning the steering wheel angle (that is, what the human commanded) 
is not sufficient for autonomous navigation. Instead, we require knowledge of the 
traversed road curvature (that is, where the human drove). We can compute the 
steering wheel angle online by using a bicycle model approximation to control the 
car at the inference time.

αt ¼ K arctanðVL ytÞ ð9Þ

where K is the steering ratio (that is, the ratio between steering and tyre angle) and 
VL is the vehicle length.

Passive test dataset. For the passive evaluation, we collected approximately five 
hours of driving data throughout diverse regions of the Boston metropolitan area 
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during dry, wet and snowy weather conditions on the highway, local and residential 
roads68. We processed the data by removing ambiguous segments, such as lane 
switches, crossings and congestion, from the recordings. We split the data into ten 
non-overlapping sets of equally sized chunks for the cross-testing procedure. We 
trained a model on the union of the remaining nine sets for every ten sets, then 
evaluated the performance of the model on the withhold test set. The number of 
training epochs was optimized based on a validation set, which we separated from 
the union of the nine sets before training. In Table 1, we reported the mean and 
standard deviation over these ten test iterations.

Active test setup. We conducted the active driving experiments on a private road 
system. To prepare the models, we collected approximately 94 minutes of data by 
manoeuvring the vehicle through the test track. We split the data into a training 
and a validation set of ratio 3:1. The number of training epochs was selected based 
on the lowest error on the validation set achieved during training (see Extended 
Data Fig. 2). See a list of full training parameters in Extended Data Fig. 7. We tested 
each trained model five times around the test track, without input perturbations, 
and two times while the input was disrupted by a zero-mean Gaussian distribution 
with variances 0.1, 0.2 and 0.3. Each evaluation consists of driving the car around 
one cycle of the outermost path of the track, in the anticlockwise direction. 
We started an evaluation by placing the vehicle at a designated initial location, 
accelerating the car up to a constant speed of 4.47 m s−1 and delegating the steering 
system’s control to the neural network. Every time the vehicle was manoeuvred off 
the road, we manually steered the car back on track and reported a crash (Fig. 4a).

We connected a random number generator to the input stream to test a model 
under noise, which added zero-mean Gaussian noise to the camera images. The 
variance of the Gaussian distribution was determined by the noise intensity 
levels: 0.1, 0.2 and 0.3. The input images were scaled to the range [0, 1] before the 
addition of the noise. To induce the same noise pattern for all models, we fixated 
the initial seed of the random number generator to a constant value.

Models and the training procedure. The architecture of the convolutional 
layers of each model is given in Extended Data Figs. 5 and 6. Next, we describe 
the training procedure of the models. If not stated otherwise, this description 
applies to the passive and active test scenarios. We formulated the end-to-end 
autonomous driving as a regression task. Hence, we adopted the square error as 
the training loss function. As recordings of curves and turns are underrepresented 
in the training data, we multiplied a weighting factor to the loss value of each 
sample. This weighting factor wðyÞ :¼ expðjyjαÞ

I
 depends on the target curvature 

y exponentially, thus assigns a higher priority to samples containing road curves 
and turns. As the test track is located in a forest area where trees cast shadows 
with variable profiles on the road, we implemented a shadow augmentation 
data technique during training. In essence, we draw a semi-transparent black 
or white line over each training image. The location, orientation and width 
of lines are randomly sampled from uniform distributions. We trained all 
models, except the feedforward CNN, on subsequences of 16 time steps, which 
correspond to 0.53 real-time seconds. The neural state-of-standard CT-RNN and 
LSTM implementations are unbounded, which may lead to instabilities during 
closed-loop testing, as they are only trained on finite sequences. To avoid the 
internal states of the controller to grow indefinitely, that is, we apply a clipping 
operation to the states of the CT-RNN and LSTM to keep the values within the 
range [−5, 5]. We used Adam69 as the optimization algorithm with parameters 
shown in Extended Data Fig. 7. Models’ performance and their termination 
condition is given in Extended Data Fig. 8.

Algorithm 1. Training algorithm.
Require: Training set (X, Y), validation set ðX̂; ŶÞ

I
, neural network f(x, w) ↦ y, 

loss Lðy; ŷÞ7!R
I

, minibatch size k
  Initialize weights w
  lbest: = ∞
    for e = 1…maxepochs do
      for i = 1…⌊∣X∣/k⌋ do
        (x, y) is random batch of size k from (X, Y)
        w :¼ w� α ∂Lðy;f ðx;wÞÞÞ

∂w
I

 ▽ stochastic gradient descent
      end for
      le :¼ 1

jX̂j
P
ðx;yÞ2ðX̂;ŶÞ Lðy; f ðx;wÞÞ

I

 ▽ validation loss
      if le < lbest then
        lbest: = le

        wbest: = w
      end if
    end for
    return wbest

Algorithm 2. Create NCP architecture.
Require: Set of sensory neurons Ns, set of inter-neurons Ni, set of command 

neuron Nc, set of motor neurons Nm, density parameters ks, ki, kc and km. Allocate 
graph (V, E) with V = Ns ∪ Ni ∪ Nc ∪ Nm and E = {}

call Algorithm 3 Connect sensory to inter neurons
call Algorithm 4 Connect intern to command neurons

call Algorithm 5 Recurrently connect command neurons
call Algorithm 6 Connect command to motor neurons
return (V, E)
The convolutional layers’ architecture for all RNN models are listed in 

Extended Data Fig. 5. After the last convolutional layer, we applied four 
per-channel linear layers to obtain 8 × 4 = 32 latent features serving as sensory 
inputs to the RNN compartment. We empirically tuned the learning rates and 
the convolutional layers’ hyperparameters and evaluated them on the passive 
dataset. We observed that NCP took advantage of a lower learning rate for the 
convolutional layers and a higher learning rate for the RNN compartment. We 
apply a per-image whitening filter to the images before feeding them into the 
networks.

NCP design algorithm. The architecture of an NCP is designed by procedurally 
calling connecting subroutines given by Algorithm 2.

Algorithm 3. Subroutine—connect sensory to inter-neurons.
  for all s ∈ Ns do
    T is random permutation of the set Ni

    for i = 1…ks do
      p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
      Add synapse (s → Ti) to E with polarity p
    end for
  end for
  μin  1

jN i j
P

t2Ni
jfsjðs! tÞ 2 Egj

I

 ▽ Compute mean fan-in of neurons Ni

  for all t ∈ Ni such that ∄s: (s → t) ∈ E do
    S is random permutation of the set Ns

    for i = 1…μin do
      p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
      Add synapse (Si → t) to E with polarity p
    end for
  end for

Algorithm 4. Subroutine—connect inter- to command neurons.
  for all s ∈ Ni do
    T is random permutation of the set Nc

    for i = 1…ki do
      p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
      Add synapse (s → Ti) to E with polarity p
    end for
  end for
  μin  1

jNc j
P

t2Nc
jfsjðs! tÞ 2 Egj

I

 ▽ Compute mean fan-in of neurons Nc

  for all t ∈ Nc such that ∄s: (s → t) ∈ E do
    S is random permutation of the set Ni

    for i = 1…μin do
      p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
      Add synapse (Si → t) to E with polarity p
    end for
  end for

Algorithm 5. Subroutine—recurrently connect command neurons.
  for i = 1…kc do
    s is random element from Nc

    t is random element from Nc

    p is a random variable of distribution {50% ↦ 1, 50% ↦ − 1}
    Add synapse (s → t) to E
    with polarity p
  end for

Algorithm 6. Subroutine—connect command to motor neurons.
  for all t ∈ Nm do
    S is random permutation of the set Nc

    for i = 1…km do
      p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
      Add synapse (Si → t) to E, polarity p
    end for
  end for

Comparing network sizes. Table 2 illustrates the compactness of the NCP 
networks compared with the other deep learning counterparts.

Computing saliency maps of convolutional layers. Saliency maps are 
interpretation methods to visualize the inner workings of a trained neural network 
by highlighting parts of the input image that contributed most to the decision of a 
network. We employ saliency maps to analyse what our networks have learned to 
attend qualitatively. In particular, we are interested in how layers that are common 
to all tested architectures evolve differently during training. Consequently, we 
narrow our analysis to the convolutional layers at the beginning of the network. We 
adopted a technique named VisualBackProp62 that has been developed deliberately 
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for autonomous driving research, to compute the saliency maps presented. This 
method leverages the property of the rectified linear unit (ReLU) activation that 
the value of each neuron in the feature map is either positive or zero.

Algorithm 7. Compute saliency map
  Inputs: Convolutional feature maps h1, h2, …hN

  s: = average-over-channel-dimension(hN)
  for i from N − 1 to 1 do
    z: = average-over-channel-dimension (hi)
    s: = z ⊙ deconvolution-to-size-of (s,z)
  end for
  return s.
In Algorithm 7, ⊙ represents the element-wise multiplication, and the 

deconvolution-to-size-of function scales the first argument to the dimension of the 
second argument by applying a deconvolution operation.

Structural similarity index. SSIM is a method to compare quality of given 
images70. It is computed as the product of three comparison criteria, the luminance 
l, contrast c and structure s for given images x and y as follows70:

SSIMðx; yÞ ¼ ½lðx; yÞα½cðx; yÞβ½sðx; yÞγ ; ð10Þ

where:

l ¼
2μxμy þ C1

μ2x þ μ2y þ C1
; c ¼ 2σxσy þ C2

σ2x þ σ2y þ C2
; s ¼ σxy þ C3

σxσy þ C3
: ð11Þ

Here, C1, C2 and C3 are the regularization constants, μx and μy are the means of x 
and y, σx and σy are standard deviations and σxy is the cross-covariance of x and y. In 
the analysis provided in Fig. 4b, we computed the SSIM for pairs of saliency maps 
at each time frame (overall 200 frames), between a noise-free version as reference 
and a perturbed one resulted from input noise injections. We set the exponents 
α = β = γ = 1, the regularization components C1 = (0.01L)2, C2 = (0.03L)2 and C3 = C2/2, 
with L = 255 corresponding to the dynamics range of the input image values.

Lipschitz continuity computation. The limitation on the speed of 
change of a function can be computed by the Lipschitz continuity criteria 
(|f(t2) − f(t1)| ≤ L|t2 − t1|). The smaller is the Lipschitz constant (L), the smoother 
the transitions of function f are. The following algorithm computes the maximum 
Lipschitz constants for neural state activity of RNNs X(t), for an episode of active 
testing for all RNN types reported in Fig. 4c, we run Algorithm 8.

Algorithm 8. Compute maximum Lipschitz constants.
  Inputs: X(N×T) N = number of neurons, T = length of the test episode
  for n from 1 to N do
    for t from 1 to T − 1 do
      Lðn; tÞ ¼ dX

dt  Xðn; t þ 1Þ � Xðn; tÞ=Δt
I

, Δt = 1
    end for
  end for
  LðN ´ 1Þ

max ¼ max LðN;TÞ�

I  Return Lmaxsorted ¼
I

sort(Lmax).

Principal component analysis. For the analysis provided in Fig. 5f–n, we 
computed the PCs of the activity of individual neurons in every RNN network, 
collected from episodes of active driving tests. The output trajectory (steering 
command) is not included in the PCA analysis, to investigate how the global 
purpose of the network is expressed by the main PCs of a network’s neurons, 
standalone.

Complementary experiment elaborating on the results of the PCA analysis. 
Extended Data Fig. 1a represents the dynamics of 64 LSTM cells as a function of 
the steering control output trajectory. These plots are qualitative representations of 
the cross-correlation between individual hidden neuron dynamics and the output. 
A positive slope in these plots denotes a positive correlation, while a negative 
slope is a sign of a negative correlation. A vertical or horizontal shape is a sign of 
independence. Extended Data Fig. 1b represents the same space for 19 hidden 
neurons of an NCP network.

LSTM cells behave more arbitrarily and dispersed, while NCP neurons realize a 
consistent correlation pattern to that of their outputs. This behaviour (conciseness) 
is well explained by the PCA results shown in Fig. 5. Moreover, we confirmed 
the concise representation of the NCP network dynamics compared with that of 
LSTMs by an additional computational experiment. Moving from the PCA results 
achieved when the network output is included in the experiments, to the setting 
in which we only consider PCs of the hidden states, we observe that the concise 
representation for the LSTM network is shattered (Extended Data Fig. 1c,d). This 
is less apparent in the case of an NCP network, where we observe that the hidden 
states without having information about the output, can concisely explain the 
dynamics of driving predominantly by only two PCs (Extended Data Fig. 1e,f).

Data availability
A description of how to obtain the data and code used for this manuscript is 
available at the manuscript’s GitHub repository: https://github.com/mlech26l/
keras-ncp/ (https://doi.org/10.5281/zenodo.3999484). The data generated by the 
active test runs is available for download from the repository, while the full dataset 
of 193 GB is available on request from M.L.

Code availability
An Apache-2.0 licensed reference implementation maintained by the authors 
is available at the GitHub repository: https://github.com/mlech26l/keras-ncp/ 
(https://doi.org/10.5281/zenodo.3999484)
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Extended Data Fig. 1 | Conciseness of the hidden-state dynamics of LSTMs vs NCPs. a, Hidden state dynamics of 64 LSTM cells as a function of network 
output. b, Hidden state dynamics of 13 NCP cells as a function of the network output. c, PCA on LSTM cells + output, d, PCA on LSTM cells only. e, PCA 
on NCP cells + output. f, PCA on NCP cells only. x-axis represents the activity of the output, y-axis stands for the dynamics of an individual neuron. The 
colour represents the steering angle (The more yellow regions depict sharper turns to the left-hand-side, and the more blue regions stand for sharper turns 
to the right-hand-side).
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Extended Data Fig. 2 | Learning curves of the models tested in the active driving experiments. Early stopping 71,72 is deployed as a regularisation 
mechanism to obtain better generalisation. The terminating epoch for each experiment, is reported in Extended Data Figure 4.
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Extended Data Fig. 3 | Neural activity of all NCP neurons presented in Fig. 6. The colour-bar represents the neuron output of each individual neuron in 
the NCP architecture.
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Extended Data Fig. 4 | Coupling sensitivity of all NCP neurons presented in Fig. 6. The colour-bar represents the time constant of each individual neuron 
in the NCP architecture.
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Extended Data Fig. 5 | Convolutional head. Size of the convolutional kernels.
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Extended Data Fig. 6 | Layers of the feedforward CNN, adapted from 2. Conv2D refers to a convolutional layer, F to the number of filters, K to the kernel 
size, S to the strides, U to the number of units in a fully-connected layer. The values of the dropout-rates δ1,δ2, and δ3 were optimised on the passive 
benchmark and reported in Extended Data Figure 3.
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Extended Data Fig. 7 | Models’ training hyperparameters. The values of all hyperparameters were selected through empirical evaluation over the passive 
training dataset. We did not search through the hyperparameters space exhaustively, due to the computational costs. However, the use of a systematic 
meta-learning algorithm over these parameter-spaces can presumably result in achieving better performances.
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Extended Data Fig. 8 | The learning termination epoch properties, (shown in Extended Data Fig. 2). Training and validation metrics of the models tested 
in the active driving experiment. As discussed thoroughly (Fig. 4), LSTM model achieves the best performance in the passive test but fails to express 
proper driving behaviour under environmental disturbances.
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