
Articles
https://doi.org/10.1038/s42256-020-00237-3

1Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria. 2Technische Universität Wien (TU Wien), Vienna, Austria.
3Massachusetts Institute of Technology (MIT), Cambridge, USA. 4These authors contributed equally: Mathias Lechner, Ramin Hasani.
✉e-mail: mathias.lechner@ist.ac.at; rhasani@mit.edu

We set out to design a brain-inspired intelligent agent that
learns to control an autonomous vehicle directly from
its camera inputs (end-to-end learning to control1,2).

The agent has to learn a coherent representation of its world from
multidimensional sensory information, and utilize it to general-
ize well in unseen situations. Surprisingly, animals as small as the
nematode Caenorhabditis elegans have mastered such an ability,
to perform locomotion3, motor control4 and navigation5, through
their near-optimal nervous system structure6,7 and their harmo-
nious neural information-processing mechanisms8. In complex
real-world scenarios, for instance, autonomous driving, such neu-
ral computation inspiration9,10 can lead to more expressive artificial
intelligence agents with models that are simultaneously accurate
and explainable11.

Although deep learning algorithms have achieved noteworthy
successes in various high-dimensional tasks2,12–16, there still are
important representation-learning challenges17–19 that have to be
addressed. For instance, the domain of end-to-end control is safety
critical20. This demands interpretable dynamics of the intelligent
controllers, as a first step towards investigating their safety issues.
Furthermore, while learned vehicle control agents often show great
performance in offline testing and simulations, this considerably
degrades during live driving. In addition, it is desirable that agents
learn the true causal structure21,22 between the observed driving
scenes and their corresponding optimal-steering commands (the
specific task of the agent). Ideally, for a lane-keeping task, we wish
that the agent implicitly learns to attend to the road’s horizon when
taking a current steering decision, while maintaining an attractive
performance on short-term steering. However, in practice, perfor-
mant models have been shown to learn a variety of unfair23 and
suboptimal22 input–output causal structures24,25. Finally, within the
processing pipeline of the high-dimensional data-stream input, the
agent has to incorporate a short-term memory mechanism captur-
ing temporal dependencies.

The successful end-to-end autonomous-control approaches to
lane-keeping2,26–28 (Fig. 1) rely solely on deep convolutional neural

network architectures29, steering a vehicle at a time t, based on
the most recent camera frame30 (Fig. 2a). While such feedfor-
ward models can properly drive the vehicle in case of ideal input
data, they often fail if the data are noisy. This is because they do
not exploit the temporal nature of the task, enabling them to fil-
ter out transient disturbances. As a result, temporary corrup-
tions of the input stream (that is, sudden sunlight, as illustrated in
Fig. 2a) lead to unstable predictions. On the contrary, recurrent
neural networks (RNNs)31,32 are a class of artificial neural net-
works that take into account past observations at a current out-
put decision, through a feedback mechanism. Thus, in principle,
they should lead to more robust end-to-end controllers (Fig. 2b).
RNNs are trained over finite-length labelled training sequences by
the backpropagation algorithm33 applied to their unfolded feedfor-
ward representation32 (Figs. 2c,d). Historically, training RNNs has
been challenging due to their elevated or vanishing gradients dur-
ing the learning phase31,32. Owing to the development of advanced,
gated RNNs, such as the long short-term memory (LSTM)34, the
challenge is tackled by enforcing a constant error flow, through the
fixation of the recurrent weights to 1 and removing nonlinearities
within the feedback path31.

From a time-series-modelling point of view, having a constant
error flow is a desirable property, as arbitrary data sequences may
have long-term relations (Fig. 2d, right). However, in the case of
end-to-end autonomous driving, learning long-term dependencies
can be detrimental, due to the short-term causality of the underly-
ing task. When driving a vehicle to follow the lane, humans do not
recall images of the road from more than a few seconds ago to oper-
ate the steering wheel35. Consequently, LSTM networks may capture
spurious long-term dependencies that may have been present in the
training data, and thus learn inadequate causal models21. On the
contrary, vanishing of gradients prevents RNNs from learning cor-
relations of events with long-term-dependencies36–38. This property
counterintuitively enhances the real-world control performance of
a learned RNN agent, as it places a prior on the temporal attention
span of the network, to the most recent few observations.

Neural circuit policies enabling auditable
autonomy
Mathias Lechner   1,4 ✉, Ramin Hasani   2,3,4 ✉, Alexander Amini3, Thomas A. Henzinger   1,
Daniela Rus3 and Radu Grosu   2

A central goal of artificial intelligence in high-stakes decision-making applications is to design a single algorithm that simul-
taneously expresses generalizability by learning coherent representations of their world and interpretable explanations of its
dynamics. Here, we combine brain-inspired neural computation principles and scalable deep learning architectures to design
compact neural controllers for task-specific compartments of a full-stack autonomous vehicle control system. We discover that
a single algorithm with 19 control neurons, connecting 32 encapsulated input features to outputs by 253 synapses, learns to
map high-dimensional inputs into steering commands. This system shows superior generalizability, interpretability and robust-
ness compared with orders-of-magnitude larger black-box learning systems. The obtained neural agents enable high-fidelity
autonomy for task-specific parts of a complex autonomous system.

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell642

mailto:mathias.lechner@ist.ac.at
mailto:rhasani@mit.edu
http://orcid.org/0000-0002-6117-0076
http://orcid.org/0000-0002-9889-5222
http://orcid.org/0000-0002-2985-7724
http://orcid.org/0000-0001-5715-2142
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-020-00237-3&domain=pdf
http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE

The development of a single, task-specific algorithm that uni-
versally satisfies the representation-learning challenges described
above has been a central goal of artificial intelligence9,10. To advance
towards this goal, we draw inspiration from the neural computations
known to happen in biological brains6,7,39,40 and achieve a remark-
able degree of controllability3–5,8. We develop compact representa-
tions called neural circuit policies (NCPs), where each neuron has
increased computational capabilities41 compared with contemporary

deep models. We show that NCPs lead to sparse networks that are
more easily interpretable and demonstrate this in the context of
autonomous driving. We discovered that for the lane-keeping task
mentioned above, very small networks of brain-inspired neural
models (that is, networks with a control compartment consisting
of only 19 neurons), in combination with compact convolutional
neural networks (CNNs)29, achieved superior performance, com-
pared with state-of-the-art models, in learning how to steer a

Human drives
the car

Record camera inputs
and steering angles

End-to-end training
teach neural networks to map

Training samples

I

II III
IV

Training platform

Trained neural network
Autonomous steering from

camera inputs

Fig. 1 | End-to-end driving. The process starts by collecting a considerable amount of human driving experiences, in a car that is equipped with camera(s)
and in-car computing units. The diverse set of training samples are then edited (green boxes) and are labelled by their corresponding steering angle. An
end-to-end training algorithm trains and validates an artificial neural network agent, in a supervised learning fashion to directly turn camera inputs into
steering decisions. The obtained network is then deployed on the high-performance computing units mounted inside the car to drive the car autonomously
in real unseen environments.

Single image models are brittle

Input, It

a

d

b c

Input, It–n
∂xt–(n+1)

∂xt

∂xt–n

∂xt–1

Input, It–1

Input, It

Input, It Net

Net

Net

Net

Net

Net

Net

It–n

It–(n+1)

It

P(yt∣It) P(yt∣It, It – 1, ...)

P(yt+1∣It+1) P(yt+1∣It+1, It,...)

yt

yt–n

yt–(n+1)

yt

Input, It+1

Input, It

Input, It+1T
im

e

T
im

e

T
im

e

T
im

e

Time

Weighted attention on input

If gradients are stable

If gradients grow

If gradients shrink

Effect

Unfolding

Attention distributed
across memory

(1) Attention on older memory
(2) Unstable learning process

Attention on recent
input (preferred)

Time

Time

D
en

si
ty 1

0
Road curvature

Road curvature

Effect of error propagation on temporal attention of the system

Road curvature

Road curvature

D
en

si
ty 1

0

D
en

si
ty 1

0

D
en

si
ty 1

0

Temporal processing increases stability Training RNNs by unfolding

yt

Fig. 2 | Recurrent network modules are essential for the lane-keeping tasks. a, A feedforward CNN network computes its output, P(yt∣It), by relying solely
on the current observation, It. Consequently, inputs that are corrupted by transient perturbations (bottom) will result in high output variance and faulty
decisions. b, An RNN has access to past observations at a current driving step, enabling it to filter out transient corruptions that are present in the input
stream. c, Training RNNs by unrolling their state in time. d, Then, applying backpropagation through time in an unfolded RNN. Purple derivatives indicate
the dependency of the loss function’s derivative with respect to an RNN’s state weights to the evolution of the RNN’s state, x(t), in time. Blurred images
depict weaker attention of the RNN when computing a current decision. n is the number of unfolding steps.

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell 643

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncE

vehicle directly from high-dimensional inputs. Here we use the
representation-learning challenges as the main criteria for assessing
the performance of autonomous-control agents.

Designing and learning NCPs
To address the representation-learning challenges and the complex-
ity of autonomous lane-keeping, we design an end-to-end learning
system that perceives the inputs by a set of convolutional layers42,
extracts image features and performs control by an RNN structure,
termed an NCP.

The network structure of NCPs is inspired by the wiring diagram
of the C. elegans nematode43. Many neural circuits within the nema-
tode’s nervous system are constructed by a distinct four-layer hierar-
chical network topology. They receive environmental observations
through sensory neurons. These are passed on to inter-neurons
and command neurons, which generate an output decision. Finally,
this decision is passed to the motor neurons to actuate its muscles.
The wiring diagram of C. elegans achieves a sparsity of around 90%
(ref. 6), with predominantly feedforward connections from sen-
sors to intermediate neurons, highly recurrent connections among
inter-neurons and command neurons, and feedforward connections
from command neurons to motor neurons. This specific topology
was shown to have attractive computational advantages, such as,
efficient distributed control, requiring a small number of neurons6,
hierarchical temporal dynamics8, robot-learning capabilities44 and
maximal information propagation in sparse-flow networks45.

Neural dynamics of NCPs are given by continuous-time ordinary
differential equations (ODEs), originally developed to capture the
dynamics of the nervous system of small species, such as C. elegans41
(Fig. 3a). At their core, NCPs possess a nonlinear time-varying syn-
aptic transmission mechanism that improves their expressive power
in modelling time series, compared with their deep learning coun-
terparts41. The foundational neural building blocks of NCPs are
called liquid time constant (LTC) networks 41. Further details about
LTCs are given in Methods.

The architecture of an NCP network is determined by the design
principles introduced in rules 1–4, corresponding to the steps pre-
sented in Fig. 3c, as follows:

	(1)	 Insert four neural layers—Ns sensory neurons, Ni inter-neurons,
Nc command neurons and Nm motor neurons ((1) in Fig. 3c).

	(2)	 Between every two consecutive layers—∀ source neuron, insert
nso−t synapses (nso−t ≤ Nt), with synaptic polarity ~Bernoulli(p2),
to nso−t target neurons, randomly selected ~Binomial(nso−t, p1)
((2) in Fig. 3c). nso−t is the number of synapses from source
to target. p1 and p2 are probabilities corresponding to their
distributions.

	(3)	 Between every two consecutive layers—∀ target neuron j with
no synapse, insert mso−t synapses (mso�t≤ 1

N t

PN t
i¼1; i≠j Lti

I
), where

Lti
I

 is the number of synapses to target neuron i, with synaptic
polarity (being excitatory or inhibitory) ~Bernoulli(p2), from
mso−t source neurons, randomly selected from ~Binomial(mso−t,
p3) ((3) in Fig. 3c). mso−t is the number of synapses from source
to target neurons with no synaptic connections.

	(4)	 Recurrent connections of command neurons—∀ command
neuron, insert lso−t synapses (lso−t ≤ Nc), with synaptic polarity
~Bernoulli(p2), to lso−t target command neurons, randomly se-
lected from ~Binomial(lso−t, p4) ((4) in Fig. 3c). lso−t is the num-
ber of synapses from one interneuron to target neurons.

Applying the NCP design principles above results in very com-
pact and sparse networks of LTC neurons (see the NCP design
algorithms in Methods). The learning system corresponding to the
lane-keeping task consists of the convolutional frontend, stacked
with the NCP network (Fig. 3b). This system is trained in an
end-to-end, supervised learning fashion. Given a designed NCP
network, we apply a semi-implicit ODE solver to obtain a numeri-
cally accurate and stable solution of the system41. We then recur-
sively fold the ODE solver call, into an RNN cell and prepare the
system’s training pipeline. Further details on the training setup
are provided in Methods. From the gradient propagation perspec-
tive, our approach gives rise to a vanishing gradient phenomenon,
which, as described in Fig. 2d, is the preferable setting for learning a
real-world autonomous vehicle control (see the proof in Methods).

A large-scale selection of labelled training data were collected
by recording the observations and actions of a human driver (see
Methods for more details). End-to-end driving is a feedback control

Neuron model End-to-end network architecture

NCP design algorithm
(1) Insert four neural layers

Sensory Inter-neuron
Command Motor

Source
Ns

Target

nso-t mso-t

l so
-t

j

Nt

Source
Ns

Target
Nt

Nc command
neurons

(2) Initialize sparse synapses

Ns Ni Nc Nm

(3) Wire targets with no synapse (4) Insert recurrent synapses

C
ontrol com

m
ands

NCP
Camera input

Convolutional feature
extractor

Synapess

a

c

b

External
inputs

IinIsij

Ileakage

Cmi

Presynaptic neuron (j) Postsynaptic neuron (i)

Neural stateMembrane capacitor

xi(t)xj(t)

Fig. 3 | Designing NCP networks with an LTC neural model. a, Representation of the neural state, xi(t), of a postsynaptic LTC neuron i receiving input
currents from presynaptic neuron, j. The neural state is determined by the aggregation of the inflows/outflows to/from the cell. Iin is the external input
currents, Ileakage is the leakage current. Synaptic currents (Isij

I
) are set by an input dependent nonlinearity f that is a function of the presynaptic neural state,

xj(t) and its synaptic parameters (see Methods for further details). b, Representation of an NCP end-to-end network; it perceives the camera inputs that
are transformed by a set of convolutional layers to a latent representation, which is exploited by the designed NCP (based on the steps described in c) to
produce control actions, to command control orders. c, NCP design procedure based on rules 1 to 4 in the main text (see algorithms 2 to 6 in Methods).

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell644

http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE

problem, where the control actuated by the agent proprioceptively
affects future observations. However, during the supervised train-
ing phase, this feedback mechanism is utterly disregarded.

We observed that such a train–test discrepancy led to situations
where a trained neural network model that performs exceptionally
well on the labelled sequences in an offline testing environment
(Table 1) fails to steer the car safely in a real testing case. Modern
RNNs are particularly vulnerable to these scenarios, as their
decision-making process heavily relies on past observations. Hence,
to properly assess performance, we chose the architectures that
worked well during offline testing and evaluated them actively on
a real car. We ran a tenfold cross-testing46 on 94 minutes of labelled
sequences recorded in the Boston metropolitan area (see Methods
for more details).

To perform a fair comparison, we equipped all RNN models with
the same convolutional head that reduces the dimensionality of the
input image to a more compact latent representation to be fed into
the RNN compartments. We trained and evaluated the networks
with the following architectures: a 64-neuron LSTM, a 64-neuron
continuous-time (CT)-RNN and a 19-neuron NCP. Moreover, we
compared these recurrent agents with the feedforward CNN model
developed in Bokarski et al.2.

Learning a compact neural representation. A full-stack NCP net-
work is 63 times smaller than the CNN network that established
the state-of-the-art of end-to-end driving2. Its control network is
970 times sparser than that of LSTM and 241 times sparser than
that of CT-RNN. An NCP’s RNN compartment possesses 233 times
smaller trainable parameter space than that of LSTM, and 59 times
lower than CT-RNN. Interestingly, the performance achieved by
such a compact neural representation is superior to that of other
models in multiple aspects of an ideal autonomous mobile robot
controller, described as follows.

Avoiding crashes under increasing input perturbations.
Compared with all learning systems under test, NCPs are signifi-
cantly more robust in avoiding crashes (requiring intervention) that

are caused by raising the pixel-wise input perturbations (Fig. 4a).
The reason for their noise resiliency is that their CT model serves
as a filter (equation (1)). Note that the primary objective of this
experiment was to identify how differently each model relies on
its memory for making a prediction. As outlined in Fig. 2, an ideal
model should incorporate temporal information to allow the filter-
ing of any form of perturbation. To demonstrate this, we used addi-
tive zero-mean Gaussian noise, because such noise was not present
in the data used for the training process, and it required a minimal
assumption on the form, shape and the severity of the perturbation
signal. Notwithstanding, we already simulated lens flares during
training. Thus, we could expect that all models would tolerate lens
flares to some degree.

Robustness of the output decisions in the presence of input
noise. Figure 4d,e depicts examples of crash incidents that hap-
pened at the locations shown on the map, when the inputs to the
networks were heavily perturbed by an input noise. These panels
also illustrate how the attention of each intact network is disrupted
by the input noise and caused LSTM and CNN networks to drive
the vehicle off-road (see Methods ‘Saliency map computation’). We
quantified the influence of the input perturbations on the atten-
tion maps by computing their structural similarity index (SSIM),
represented in Fig. 4b. The SSIM indicates how much the structure
of the attention maps gets distorted when the incoming inputs are
perturbed. The closer SSIM is to 1, the less distorted is the attention.
Thus, the network can handle input noise more robustly. The closer
the SSIM index is to 0, the more distorted the network’s attention
is, which results in the increased uncertainty of the network when
making a correct driving decision. Under different levels of input
perturbations, NCPs consistently maintain a higher SSIM compared
with the other models, therefore, reducing its output decision’s
uncertainty (see Methods ‘Structural similarity index’).

Driving with smooth neural activity. We quantitatively mea-
sured the maximum steepness of the neural dynamics derivative
(maximum local Lipschitz constant) for all neurons and report the
results in Fig. 4c. We observed that the local decision-making pro-
cess in NCPs is remarkably smoother than those of other network
types. More details are provided in Methods ‘Lipschitz continuity
computation’.

NCPs enhance interpretability
Interpretation is the process of providing explanations to humans.
Although no formal definition for interpretability exists yet47,
we define a model to be more interpretable if its causal mapping
between input observations and output decisions, as well as its
global hidden-state dynamics up to the cellular level, is more com-
prehensible to humans48.

Scalable approaches to interpretability involve the development
of algorithms that set quality measures (proxies) for explaining a
learning system’s dynamics. In particular, for neural network mod-
els, numerous works explored post-training qualitative feature
visualization techniques for this purpose49–55. In addition, comput-
ing input-feature attribution measures, such as saliency maps, were
effectively used for interpretability56–59. Beyond feature visualiza-
tion, selecting a proper measure for post-training explanations can
be arbitrary and challenging60.

A more systematic way to achieve interpretability would be to
design neural architectures that, either through their learning pro-
cess or through their semantics, result in more transparency25,61.
However, despite the effectiveness of these approaches for neu-
ral networks, the quality of explanations drastically drops as the
dimensionality of models increases. This challenge becomes more
noticeable when the model architecture is equipped with feedback
mechanisms (for example, RNNs).

Table 1 | Results of the passive lane-keeping tenfold cross-
testing evaluation

Model Training square error Test squared error

CNN 1.41 ± 0.30 4.28 ± 4.63

Vanilla RNN 0.14 ± 0.05 3.39 ± 4.39

CT-GRU 0.19 ± 0.05 3.63 ± 4.61

CT-RNN (19 units) 0.44 ± 0.14 3.62 ± 4.35

CT-RNN (64 units) 0.23 ± 0.09 3.43 ± 4.55

Sparse CT-RNN (19 units) 0.77 ± 0.35 4.03 ± 4.80

Sparse CT-RNN (64 units) 0.40 ± 0.43 3.72 ± 4.71

GRU 1.25 ± 1.02 5.06 ± 6.64

LSTM (64 units) 0.19 ± 0.05 3.17 ± 3.85

LSTM (19 units) 0.16 ± 0.06 3.38 ± 4.48

Sparse LSTM (19 units) 1.05 ± 0.57 3.68 ± 5.21

Sparse LSTM (64 units) 0.29 ± 0.14 3.25 ± 3.93

NCP 0.43 ± 0.26 3.22 ± 3.92

NCP (randomly wired) 2.12 ± 2.93 5.19 ± 5.43

NCP (fully connected) 2.41 ± 3.44 5.18 ± 4.19

Mean ± standard deviation (n = 10). Sparse LSTM models are trained with projected gradient
descent to enforce a 95% sparsity level. All tested NCP architectures are composed of 19 neurons.
Boldface numbers depict best performance. GRU, gated recurrent unit.

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell 645

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncE

As NCPs realize compact and sparse networks, constructed
by expressive neural representations (the LTC model41), they
ease the interpretation process through known methods, such
as saliency map computations62, dimensionality reduction63 and
cell-contribution analysis52.

We conduct quantitative interpretability analysis by explaining
the attention maps of the convolutional layers, and by comput-
ing the global network dynamics of the recurrent network com-
partment of the models. We then explain cell-level contributions
through visualization techniques. For the driving task, we find that
there is a close relationship between the geometry of the environ-
ment, the specific driving task and the network nodes responsible
for the required behaviour. This is a consequence of defining the
function of each neuron by differential equations. Accordingly, we
experimented with the learned lane-keeping networks to measure
their interpretability in three distinct ways.

(1) Explain and visualize where the attention of the convolu-
tional layers is. Figure 5b–e shows sample attention maps of the
convolutional parts of the networks during live testing (see Methods
‘Saliency map computation’). We have observed that the attention
patterns are exclusive to the choice of network architecture (CNN,
LSTM, CT-RNN, NCP) and that the explanations are invariant to
the choice of hyperparameters (for example, network size).

For instance, the convolutional layers in the NCP networks pre-
dominantly attend to the road’s horizon to make a driving deci-
sion. This is very desirable in the lane-keeping task (Fig. 5e). In
contrast, a CNN network looks at the roadside to make a driving
decision and ignores the road itself (Fig. 5d). LSTM forced its per-
ception network to learn to attend to the roadside in most scenarios.
However, lighting conditions, as well as road profiles, can notably
alter the network’s attention portfolio (Fig. 5b). The attention of
CT-RNN is inconsistent and is heavily influenced by the variations
of the road’s lighting conditions (Fig. 5c). In the Supplementary
Information, we provide an entire collection of saliency maps that
we collected during live testing. These maps give an intuitive insight
into the decision-making process of a task-specific network within
a full-stack autonomous driving system. This insight could help in
further safety and robustness analysis.

(2) Global network dynamics. To measure how concisely the
networks learned the primitives of driving (straight roads, handling
curves and road jitters), we performed a principal component anal-
ysis (PCA) and report its variance in Fig. 5f–i. PCA is conducted
over the activations of the hidden neurons (without the inclusion
of the output signal) of the RNN compartments of the driving net-
works, collected during live testing. The analysis demonstrated
that the first principal component (PC1) of NCP’s neural dynamics

25

a

d e

b c

NCP
LSTM
CT-RNN
CNN

N
C

P
LS

TM
C

T-
R

N
N

C
N

N

N
C

P
LS

TM
C

T-
R

N
N

C
N

N

N
C

P
LS

TM
C

T-
R

N
N

C
N

N

N
C

P
LS

TM
C

T-
R

N
N

C
N

N

N
C

P
LS

TM
C

T-
R

N
N

C
N

N

N
C

P
LS

TM
C

T-
R

N
N

C
N

N

Noise robustness (interventions) Noise robustness (saliency) Output smoothness

20

N
um

be
r o

f c
ra

sh
es

SS
IM15

10

5

0

1.0

0.8

0.6

Input noise variance Neurons sorted by Lmax

Robustness at intervention site II

Input

Driving
direction

Driving
direction

Test track
Incident location

Test track
Incident location

No crash

No crash

No crash

No crash

No crash

No crash

No crash

No crash

Crash

No crash

Crash

No crash

Crash

No crash

Crash

No crash

Saliency map
(no perturbation)Input

Saliency map
(no perturbation)

Attention
0 1

Attention
0 1

Attention
0 1

Attention
10

Saliency map
(no perturbation)

Saliency map
(input noise σ2 = 0.3)

1

104

L m
ax

103

102

N

CNN N = 1,100
LSTM N = 64
NCP N = 19
CT-RNN N = 64

0.4

0.2

0
0.1 0.2 0.3

NCP
LSTM
CT-RNN
CNN

0 0.1 0.2
Input noise variance

Robustness at intervention site I

0.3

Fig. 4 | Robustness analysis. a, Number of crashes (steering commands with tendency to drive the vehicle off-road) for four networks, as the input
noise variance (σ2) increases, in an active driving test (n = 3). Additive input noise is sampled from a Gaussian distribution, Nð0; σ2Þ

I
. b, Variation of the

structural sensitivity index of the saliency maps for four networks as σ2 increases (see Methods for computational details). A higher value of SSIM is
preferable (n = 3). Each individual box represents the minimum, 25th percentile, median, 75th percentile, interquartile interval, maximum and the outliers.
c, Maximum Lipschitz constant, Lmax (an indicator of smoothness and stable dynamics) of the activity of every single neuron (sorted by the amplitude of
Lmax on the horizontal axis) (n = 5). Lower values are preferable. d, Example of the saliency maps before a crash event caused by LSTM and CNN, in the
presence of input perturbations, and how it was handled by CT-RNN and NCP. e, A second example of a crash incident caused by LSTM and CNN. Error
bars in a and the cloud intervals in c stand for standard deviation.

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell646

http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE

concisely learned the global driving features (explaining 92%), as
shown in Fig. 5j, while PC2 learned fine-grained decisions. The
conciseness was less apparent in networks with LSTM and CT-RNN
recurrent compartments, and therefore it is more challenging to
associate their behaviour with intuitive explanations.

To motivate this phenomenon further, we plotted the PC1 and
the PC2 scores over the driving trajectory in Fig. 5k–n. NCP is
the only model among the others that allocated distinct PC1 acti-
vation regimes to the main driving primitives, while fine-grained
control decisions have been largely captured by PC2. Other baseline
networks require at least two to three PCs to capture the driving

profile up to 90%, as shown in Fig. 5f–i. A complementary experi-
ment to further elaborate on this analysis is given in Methods.
Consequently, the added value of these results for a more complex
autonomous-control system is that the global dynamics of a learned
agent can be interpreted and used for further improvements on the
task-specific networks (see an additional supporting experiment in
Methods and Extended Data Fig. 1).

(3) Cell-level auditability by visualization. The neural state (the
amplitude of a neuron’s output) and the coupling sensitivity (how a
neuron adjusts its reaction speed when interacting with the environ-
ment) of LTC cells comprising an NCP network (Fig. 6a) can help

Inputa b c d e

f g h i

k l m n

j

LSTM

LSTM
100

20

40

60

80

0
1 2 3 4

PC

Driving
direction

0
2
4
6

–2

0

2

4

–2

P
C

1

0

0

2
4
6 100

50

0

40

20

0

–2

–2

–4

P
C

1

0

2

4 The main driving
primitives (drive straight,
left turn and right turn)
have been concisely

learned by an NCP’s
internal neural state. This
is shown by the
projection of PC1 on
the road profile.

–2

–0.5

0

0.5

–1.0

P
C

1

P
C

1

P
C

2

P
C

2

P
C

2

P
C

2

5 6 7 8 1 2 3 4

PC

5 6 7 8 1 2 3 4

PC

5 6 7 8 1 2 3 4

PC

5 6 7 8

V
ar

ia
nc

e
ex

pl
ai

ne
d

(%
) 100

20

40

60

80

0V
ar

ia
nc

e
ex

pl
ai

ne
d

(%
) 100

20

40

60

80

0V
ar

ia
nc

e
ex

pl
ai

ne
d

(%
) 100

20

40

60

80

0V
ar

ia
nc

e
ex

pl
ai

ne
d

(%
)

Saliency maps show where each network is learned to attend while driving

Saliency map
0 1

Saliency map
0 1

Saliency map
0 1

Saliency map
0 1

CT-RNN CNN NCP

CT-RNN CNN NCP NET

LSTM

CT-RNN

CNN

NCP

51

60

83

92

PC1
variance explained (%)

Fig. 5 | Global network dynamics. a, A sequence of input camera images during the active testing. b–e, A set of saliency maps computed to obtain the
attention of the convolutional layers of the trained networks while driving (see Methods ‘Saliency maps computation’ for details). b, LSTM learned to
attend to the roadsides in most scenarios; however, lighting conditions considerably affect its attention portfolio. c, CT-RNN’s attention is inconsistent and
is heavily influenced by the variations of the road’s lighting conditions. d, CNN learned to drive by focusing on the side roads. e, NCP learned to attend to
the road’s horizon when taking a driving decision. f–i, The variance explained by first eight PCs of the activity of all neurons of LSTM (f), CT-RNN (g), CNN
(h) and NCP (i) (n = 5). The black line indicates the cumulative variance explained and error bars are standard deviations. j, PC1’s variance explained for
all models. k–n, The projection of PC1’s (top) and PC2’s (bottom) score (the score of the nth PC is computed by PCðnÞscore ¼ output vector ´weightPCðnÞ

I
), over

the driving trajectory for LSTM (k), CT-RNN (l), CNN (m) and NCP (n). Colour bars depict PC values.

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell 647

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncE

to understand how an LTC network’s decision is made. Figure 6b–d
illustrates the activity of five selected neurons from the NCP driv-
ing agent, projected over the driving trajectory. The motor neuron’s
activity illustrates how the inferred motion primitives correspond
to various driving situations (Fig. 6b, left). Its coupling sensitiv-
ity demonstrates that the neuron tends to set smoother dynamics
while keeping its reaction speed at a relatively constant rate during

straight motions. Inter-neuron 1 learned to activate during left
turns (Fig. 6c, top left) while adjusting its dynamics to react faster
at left-turning events (Fig. 6c, top right). Inter-neuron 2, in con-
trast, learned to rapidly get more active during right turns (Fig. 6c,
bottom). Command neuron 1 is consistently activated during
straight driving with a sensitive reaction speed while it is switched
off on left turns (Fig. 6d, top). Command neuron 2 is biased at lower

Neural state

Starting point

Motor neuron’s activity

Command neuron 1’s activityInter-neuron 1’s activity

Inter-neuron 2’s activity Command neuron 2’s activity

Coupling sensitivity

Neural state Coupling sensitivityNeural state Coupling sensitivity
0.2 0.6

0.5

0.4

0.3

0.8

0.7

0.6

0.5

0.4

0

0.7

0.6

0.5

0.4

–0.2
–0.4
–0.6

Neural state

Starting point

Driving
direction

Coupling sensitivity Neural state Coupling sensitivity

N
euron output (V)

N
euron output (V)

N
euron output (V)

N
euron output (V)

N
euron output (V)

τ (s)
τ (s)

4

2

–2

0

1.0
1.2

τ (s)

τ (s)
τ (s)

0.30

0.25

0.20

0.15

1.0

0.8

0.6

0.5

–1.26
–1.28
–1.30
–1.32
–1.34
–1.36

–0.5

0

0.18
0.16
0.14
0.12
0.10

Driving
direction

NCP
Camera input

a b

c d

Convolutional layers

Inter-neurons
Command neurons Motor neuron

Sensory neurons Ns =
 32

N i =
 12

N c =
 6

Fig. 6 | Intuitive comprehension of NCP’s cells activity while driving. a, An NCP network trained end-to-end for autonomous lane-keeping. b–d, Examples
of neural activities projected over the road trajectory on which the car was driven. The neural state (representing the amplitude of a neuron’s dynamics)
and the coupling sensitivity (representing how a neuron adjusts its reaction speed) are plotted in each subsection. Colour bars on the left plot in each
panel depict neuron’s output and on the right plot the time constant, τ. b, Neural activity of the motor neuron. c, Neural activity of two inter-neurons 1 and
2. d, Neural activity of two command neurons 1 and 2. An immediate explanation of the cell-level dynamics for the NCP network is achieved and extends to
every internal element of the network. See more in Extended Data Figs. 3 and 4.

Environment tags

Input image from a single camera
a b c

Multi-task hydranet Six cameras → six hydranets

Task-specific networks can
be replaced by NCPs

Shared backbone

Traffic
signs

Moving
objects

NCP

Lane-
keepingTraffic light

Static
objects

Traffic
signs

Moving objects
Road marks

Lane keeping

Lane lines

Fig. 7 | NCPs as task-specific networks within a full-stack autonomous vehicle engine. a, Camera input and examples of tasks. b, An overview of
hydranets of Tesla Autopilot64 redesigned from Tesla at PyTorch 201965. c, The overall structure of a vision-based full-stack autonomous vehicle system
redesigned from Tesla at PyTorch 201965.

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell648

http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE

membrane potentials and tunes to road jitters when the vehicle
drives on a straight path (Fig. 6d, bottom). This degree of immedi-
ate interpretation of dynamics is generalizable to every single cell
within an NCP.

As the number of computational elements of an NCP system is
considerably lower than that of state-of-the-art neural networks,
such a degree of access to each cell dynamics could potentially
be beneficial for designing fault-test and corner-case analysis to
improve the safety of the deployed autonomous system.

NCPs and autonomy
NCPs are highly compact task-specific neural network agents
that can proficiently control a vehicle on previously unseen roads,
while at the same time being robust to input artefacts, learning
short-term causal representations and realizing interpretable
dynamics. NCPs are beneficially used within full-stack autono-
mous vehicle frameworks, given in Fig. 7c. They are designed
to improve the performance and transparency of the black-box,
task-specific compartments of such complex full-stack autono-
mous vehicle systems. A vision-based full-stack autopilot has to
incorporate many different tasks for the incoming image streams,
as shown in Fig. 7a.

State-of-the-art functional autonomous vehicle systems64 typi-
cally share a convolutional backbone network, with many upstream,
task-specific networks65 (Fig. 7b). Although the complexity of the
lane-keeping task on which we tested NCPs is relatively low com-
pared with multi-task end-to-end driving, we made sure that NCPs
maintain compositionality within full-stack autonomous vehicles,
by enabling an end-to-end training pipeline that can backpropa-
gate errors, through the NCPs to the static CNN-based backbone.
The resulting task-specific NCPs (for example, for the lane-keeping
task) improve many aspects of the contemporary neural control
modules in use.

Real-world application domains, such as autonomous driv-
ing, avionics, service robots, health and medicine, are surrounded
by environmental artefacts and uncertainty, and demand robust
real-time decision-making. Moreover, similar to autonomous driv-
ing tasks, many applications deal with complex, high-dimensional
input–output spaces that become safety critical when deployed in
the real world. The success of NCPs in task-specific autonomous
vehicles indicates that tackling the complexity of real-world prob-
lems does not necessarily require to learn very large neural net-
works that are hard to comprehend.

Methods
NCP’s neural model. An NCP is constructed by a set of LTC neurons, each with
state dynamics xi(t), represented as follows, when connected through an input
synapse to a neuron j (ref. 41):

_xi ¼ �
1
τi
þ wij

Cmi

σiðxjÞ
� �

xi þ
xleaki
τi
þ wij

Cmi

σiðxjÞEij

� �
; ð1Þ

where τi ¼ Cmi=gli
I

 is the time constant of the neuron i with a leakage
conductance of g li

I
, wij is a synaptic weight from neuron i to j, Cmi

I
 is the membrane

capacitance, σiðxjðtÞÞ ¼ 1=ð1þ e�γijðxj�μijÞÞ
I

, xleaki
I

 is the resting potential and Eij is a
reversal synaptic potential that defines the polarity of the synapse. An LTC neuron’s
overall coupling sensitivity (time constant) is defined by 41:

τsystemi
¼ 1

1
τi
þ wij

Cmi
σiðxjÞ

: ð2Þ

This variable time constant determines the reaction speed of a neuron during
decision-making processes, as shown in Fig. 6, for a couple of neurons in the
driving NCP. All parameters described in the model are trainable.

Numerical implementation of the NCP networks. To learn the parameters
of an NCP circuit, we transform it into a differentiable representation. After
modelling the circuit as a system of ordinary differential equations of LTC
neurons, we employ a numerical ODE solver to obtain a computable form of it. A
solving method suitable for our purpose has to comply with the following three

constraints. First, the solver is applied to a real-time system that puts a hard limit
on worst-case executing time. Hence, the solver uses a fixed step size66. Second, the
ODE model of an NCP is stiff41,66. Consequently, to avoid numerical instabilities,
we adopt a semi-implicit method66. Lastly, during the training phase, we compute
partial derivatives by backpropagating through the solver. Similar to the stability
arguments in the forward path, we need to monitor the error magnitude in the
backward phase. In particular, a suitable solving method must not result in an
exploding or a rapidly vanishing gradient. To comply with these constraints, we
employed a simple Euler approach. As a result, in summary, for each neuron, we
adopt a semi-implicit Euler approach with a fixed step size, Δ, of the form:

xiðt þ ΔÞ :¼
xiðtÞCmi=Δþ gli xleaki

P
j2Iinwij σiðxjðtÞÞEij

Cmi=Δþ g li þ
P

j2Iinwij σiðxjðtÞÞ
; ð3Þ

The set Iin represents the set of neurons that are presynaptic to neuron i. This
equation was derived from the basic Euler formula66:

xðt þ ΔÞ :¼ xðtÞ þ Δ:f xðt þ τÞ; uðt þ 1Þð Þ ð4Þ

by setting τ = Δ for all x(t + τ) that appear linear in the nonlinearity f, and setting
τ = 0 for all other occurrences (u is the set of inputs to the cell). Note that the
well-known explicit (forward) Euler method can be obtained from equation
(4) by setting τ = 0. Likewise, the implicit (backward) Euler method is realized
by equation (4) if setting τ = Δ and solving the resulting nonlinear equation for
x(t + Δ). RNNs usually process their incoming input stream at a fixed sampling
frequency (for example, 30 Hz in the described end-to-end driving tasks). To
achieve a decent precision, a computation complexity trade-off, we simulated the
ODE at a frequency, six times higher than the input sampling rate; we packed six
ODE solver steps into one RNN step. In both the training and testing phases, we
initialized states of the ODE/RNN by zeros.

NCPs express vanishing gradient. Proof: let xi(t) be the state of an NCP circuit
implemented by our hybrid ODE solver in equation (3). We assume that there is no
self-connection synapse i → i. Then

∂xiðt þ ΔÞ
∂xiðtÞ

¼ Cmi=Δ

Cmi=Δþ g li|{z}≥ 0

þ
X

j2Iin
wijσiðxjðtÞÞ

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}≥ 0

ð5Þ

¼ Cmi=Δ

Cmi=Δþ ϵ
; for some ϵ≥0 ð6Þ

≤1 ð7Þ

In equation (5), we see that the magnitude of the vanishing effect depends on
the parameters g li ;wij

I
 and the current synapse activation σi(…). In the limit for

g li ;wij ! 0
I

, our hybrid solver approaches a constant error flow, similar to that of an
LSTM34.𝜖 stands for the positive value of the second term in the denominator of the
right-hand side of equation (5).

Vehicle setup. All data used to train networks was collected on a Toyota Prius
2015 V retrofitted with perception sensors (a forward-facing Leopard Imaging
LI-AR0231-GMSL camera), inertial measurement unit (Xsens MTi 100-series
IMU), GPS and drive-by-wire steering67. All data logging was done directly on an
NVIDIA Drive PX2, the in-car high-performance computing platform. The IMU
was used to record rotation of the vehicle’s rigid body frame and thus, compute the
curvature of the vehicle’s traversed path. Specifically, given a yaw rate γt (rads s−1),
and the speed of the vehicle, vt (m s−1), we compute the curvature of the path as:

yt ¼
1
rt
¼ γt

vt
ð8Þ

where rt is the radius of the traversing circle. Ultimately, for the networks learned
in this paper, we consider the problem of directly learning a control command
from the human-traversed road curvature (yt) instead of the steering wheel angle
(αt). This is because αt is a nonlinear function of both yt and vt and depends on
the tyre slip angle, road surface, weather conditions and vehicle dynamics. Hence,
simply learning the steering wheel angle (that is, what the human commanded)
is not sufficient for autonomous navigation. Instead, we require knowledge of the
traversed road curvature (that is, where the human drove). We can compute the
steering wheel angle online by using a bicycle model approximation to control the
car at the inference time.

αt ¼ K arctanðVL ytÞ ð9Þ

where K is the steering ratio (that is, the ratio between steering and tyre angle) and
VL is the vehicle length.

Passive test dataset. For the passive evaluation, we collected approximately five
hours of driving data throughout diverse regions of the Boston metropolitan area

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell 649

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncE

during dry, wet and snowy weather conditions on the highway, local and residential
roads68. We processed the data by removing ambiguous segments, such as lane
switches, crossings and congestion, from the recordings. We split the data into ten
non-overlapping sets of equally sized chunks for the cross-testing procedure. We
trained a model on the union of the remaining nine sets for every ten sets, then
evaluated the performance of the model on the withhold test set. The number of
training epochs was optimized based on a validation set, which we separated from
the union of the nine sets before training. In Table 1, we reported the mean and
standard deviation over these ten test iterations.

Active test setup. We conducted the active driving experiments on a private road
system. To prepare the models, we collected approximately 94 minutes of data by
manoeuvring the vehicle through the test track. We split the data into a training
and a validation set of ratio 3:1. The number of training epochs was selected based
on the lowest error on the validation set achieved during training (see Extended
Data Fig. 2). See a list of full training parameters in Extended Data Fig. 7. We tested
each trained model five times around the test track, without input perturbations,
and two times while the input was disrupted by a zero-mean Gaussian distribution
with variances 0.1, 0.2 and 0.3. Each evaluation consists of driving the car around
one cycle of the outermost path of the track, in the anticlockwise direction.
We started an evaluation by placing the vehicle at a designated initial location,
accelerating the car up to a constant speed of 4.47 m s−1 and delegating the steering
system’s control to the neural network. Every time the vehicle was manoeuvred off
the road, we manually steered the car back on track and reported a crash (Fig. 4a).

We connected a random number generator to the input stream to test a model
under noise, which added zero-mean Gaussian noise to the camera images. The
variance of the Gaussian distribution was determined by the noise intensity
levels: 0.1, 0.2 and 0.3. The input images were scaled to the range [0, 1] before the
addition of the noise. To induce the same noise pattern for all models, we fixated
the initial seed of the random number generator to a constant value.

Models and the training procedure. The architecture of the convolutional
layers of each model is given in Extended Data Figs. 5 and 6. Next, we describe
the training procedure of the models. If not stated otherwise, this description
applies to the passive and active test scenarios. We formulated the end-to-end
autonomous driving as a regression task. Hence, we adopted the square error as
the training loss function. As recordings of curves and turns are underrepresented
in the training data, we multiplied a weighting factor to the loss value of each
sample. This weighting factor wðyÞ :¼ expðjyjαÞ

I
 depends on the target curvature

y exponentially, thus assigns a higher priority to samples containing road curves
and turns. As the test track is located in a forest area where trees cast shadows
with variable profiles on the road, we implemented a shadow augmentation
data technique during training. In essence, we draw a semi-transparent black
or white line over each training image. The location, orientation and width
of lines are randomly sampled from uniform distributions. We trained all
models, except the feedforward CNN, on subsequences of 16 time steps, which
correspond to 0.53 real-time seconds. The neural state-of-standard CT-RNN and
LSTM implementations are unbounded, which may lead to instabilities during
closed-loop testing, as they are only trained on finite sequences. To avoid the
internal states of the controller to grow indefinitely, that is, we apply a clipping
operation to the states of the CT-RNN and LSTM to keep the values within the
range [−5, 5]. We used Adam69 as the optimization algorithm with parameters
shown in Extended Data Fig. 7. Models’ performance and their termination
condition is given in Extended Data Fig. 8.

Algorithm 1. Training algorithm.
Require: Training set (X, Y), validation set ðX̂; ŶÞ

I
, neural network f(x, w) ↦ y,

loss Lðy; ŷÞ7!R
I

, minibatch size k
  Initialize weights w
  lbest: = ∞
   for e = 1…maxepochs do
    for i = 1…⌊∣X∣/k⌋ do
     (x, y) is random batch of size k from (X, Y)
     w :¼ w� α ∂Lðy;f ðx;wÞÞÞ

∂w
I

 ▽ stochastic gradient descent
    end for
    le :¼ 1

jX̂j
P
ðx;yÞ2ðX̂;ŶÞ Lðy; f ðx;wÞÞ

I

 ▽ validation loss
    if le < lbest then
     lbest: = le

     wbest: = w
    end if
   end for
   return wbest

Algorithm 2. Create NCP architecture.
Require: Set of sensory neurons Ns, set of inter-neurons Ni, set of command

neuron Nc, set of motor neurons Nm, density parameters ks, ki, kc and km. Allocate
graph (V, E) with V = Ns ∪ Ni ∪ Nc ∪ Nm and E = {}

call Algorithm 3 Connect sensory to inter neurons
call Algorithm 4 Connect intern to command neurons

call Algorithm 5 Recurrently connect command neurons
call Algorithm 6 Connect command to motor neurons
return (V, E)
The convolutional layers’ architecture for all RNN models are listed in

Extended Data Fig. 5. After the last convolutional layer, we applied four
per-channel linear layers to obtain 8 × 4 = 32 latent features serving as sensory
inputs to the RNN compartment. We empirically tuned the learning rates and
the convolutional layers’ hyperparameters and evaluated them on the passive
dataset. We observed that NCP took advantage of a lower learning rate for the
convolutional layers and a higher learning rate for the RNN compartment. We
apply a per-image whitening filter to the images before feeding them into the
networks.

NCP design algorithm. The architecture of an NCP is designed by procedurally
calling connecting subroutines given by Algorithm 2.

Algorithm 3. Subroutine—connect sensory to inter-neurons.
  for all s ∈ Ns do
   T is random permutation of the set Ni

   for i = 1…ks do
    p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
    Add synapse (s → Ti) to E with polarity p
   end for
  end for
  μin 1

jN i j
P

t2Ni
jfsjðs! tÞ 2 Egj

I

 ▽ Compute mean fan-in of neurons Ni

  for all t ∈ Ni such that ∄s: (s → t) ∈ E do
   S is random permutation of the set Ns

   for i = 1…μin do
    p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
    Add synapse (Si → t) to E with polarity p
   end for
  end for

Algorithm 4. Subroutine—connect inter- to command neurons.
  for all s ∈ Ni do
   T is random permutation of the set Nc

   for i = 1…ki do
    p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
    Add synapse (s → Ti) to E with polarity p
   end for
  end for
  μin 1

jNc j
P

t2Nc
jfsjðs! tÞ 2 Egj

I

 ▽ Compute mean fan-in of neurons Nc

  for all t ∈ Nc such that ∄s: (s → t) ∈ E do
   S is random permutation of the set Ni

   for i = 1…μin do
    p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
    Add synapse (Si → t) to E with polarity p
   end for
  end for

Algorithm 5. Subroutine—recurrently connect command neurons.
  for i = 1…kc do
   s is random element from Nc

   t is random element from Nc

   p is a random variable of distribution {50% ↦ 1, 50% ↦ − 1}
   Add synapse (s → t) to E
   with polarity p
  end for

Algorithm 6. Subroutine—connect command to motor neurons.
  for all t ∈ Nm do
   S is random permutation of the set Nc

   for i = 1…km do
    p is random variable of distribution {50% ↦ 1, 50% ↦ − 1}
    Add synapse (Si → t) to E, polarity p
   end for
  end for

Comparing network sizes. Table 2 illustrates the compactness of the NCP
networks compared with the other deep learning counterparts.

Computing saliency maps of convolutional layers. Saliency maps are
interpretation methods to visualize the inner workings of a trained neural network
by highlighting parts of the input image that contributed most to the decision of a
network. We employ saliency maps to analyse what our networks have learned to
attend qualitatively. In particular, we are interested in how layers that are common
to all tested architectures evolve differently during training. Consequently, we
narrow our analysis to the convolutional layers at the beginning of the network. We
adopted a technique named VisualBackProp62 that has been developed deliberately

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell650

http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE

for autonomous driving research, to compute the saliency maps presented. This
method leverages the property of the rectified linear unit (ReLU) activation that
the value of each neuron in the feature map is either positive or zero.

Algorithm 7. Compute saliency map
  Inputs: Convolutional feature maps h1, h2, …hN

  s: = average-over-channel-dimension(hN)
  for i from N − 1 to 1 do
   z: = average-over-channel-dimension (hi)
   s: = z ⊙ deconvolution-to-size-of (s,z)
  end for
  return s.
In Algorithm 7, ⊙ represents the element-wise multiplication, and the

deconvolution-to-size-of function scales the first argument to the dimension of the
second argument by applying a deconvolution operation.

Structural similarity index. SSIM is a method to compare quality of given
images70. It is computed as the product of three comparison criteria, the luminance
l, contrast c and structure s for given images x and y as follows70:

SSIMðx; yÞ ¼ ½lðx; yÞα½cðx; yÞβ½sðx; yÞγ ; ð10Þ

where:

l ¼
2μxμy þ C1

μ2x þ μ2y þ C1
; c ¼ 2σxσy þ C2

σ2x þ σ2y þ C2
; s ¼ σxy þ C3

σxσy þ C3
: ð11Þ

Here, C1, C2 and C3 are the regularization constants, μx and μy are the means of x
and y, σx and σy are standard deviations and σxy is the cross-covariance of x and y. In
the analysis provided in Fig. 4b, we computed the SSIM for pairs of saliency maps
at each time frame (overall 200 frames), between a noise-free version as reference
and a perturbed one resulted from input noise injections. We set the exponents
α = β = γ = 1, the regularization components C1 = (0.01L)2, C2 = (0.03L)2 and C3 = C2/2,
with L = 255 corresponding to the dynamics range of the input image values.

Lipschitz continuity computation. The limitation on the speed of
change of a function can be computed by the Lipschitz continuity criteria
(|f(t2) − f(t1)| ≤ L|t2 − t1|). The smaller is the Lipschitz constant (L), the smoother
the transitions of function f are. The following algorithm computes the maximum
Lipschitz constants for neural state activity of RNNs X(t), for an episode of active
testing for all RNN types reported in Fig. 4c, we run Algorithm 8.

Algorithm 8. Compute maximum Lipschitz constants.
  Inputs: X(N×T) N = number of neurons, T = length of the test episode
  for n from 1 to N do
   for t from 1 to T − 1 do
    Lðn; tÞ ¼ dX

dt  Xðn; t þ 1Þ � Xðn; tÞ=Δt
I

, Δt = 1
   end for
  end for
  LðN ´ 1Þ

max ¼ max LðN;TÞ�

I  Return Lmaxsorted ¼
I

sort(Lmax).

Principal component analysis. For the analysis provided in Fig. 5f–n, we
computed the PCs of the activity of individual neurons in every RNN network,
collected from episodes of active driving tests. The output trajectory (steering
command) is not included in the PCA analysis, to investigate how the global
purpose of the network is expressed by the main PCs of a network’s neurons,
standalone.

Complementary experiment elaborating on the results of the PCA analysis.
Extended Data Fig. 1a represents the dynamics of 64 LSTM cells as a function of
the steering control output trajectory. These plots are qualitative representations of
the cross-correlation between individual hidden neuron dynamics and the output.
A positive slope in these plots denotes a positive correlation, while a negative
slope is a sign of a negative correlation. A vertical or horizontal shape is a sign of
independence. Extended Data Fig. 1b represents the same space for 19 hidden
neurons of an NCP network.

LSTM cells behave more arbitrarily and dispersed, while NCP neurons realize a
consistent correlation pattern to that of their outputs. This behaviour (conciseness)
is well explained by the PCA results shown in Fig. 5. Moreover, we confirmed
the concise representation of the NCP network dynamics compared with that of
LSTMs by an additional computational experiment. Moving from the PCA results
achieved when the network output is included in the experiments, to the setting
in which we only consider PCs of the hidden states, we observe that the concise
representation for the LSTM network is shattered (Extended Data Fig. 1c,d). This
is less apparent in the case of an NCP network, where we observe that the hidden
states without having information about the output, can concisely explain the
dynamics of driving predominantly by only two PCs (Extended Data Fig. 1e,f).

Data availability
A description of how to obtain the data and code used for this manuscript is
available at the manuscript’s GitHub repository: https://github.com/mlech26l/
keras-ncp/ (https://doi.org/10.5281/zenodo.3999484). The data generated by the
active test runs is available for download from the repository, while the full dataset
of 193 GB is available on request from M.L.

Code availability
An Apache-2.0 licensed reference implementation maintained by the authors
is available at the GitHub repository: https://github.com/mlech26l/keras-ncp/
(https://doi.org/10.5281/zenodo.3999484)

Received: 10 March 2020; Accepted: 10 September 2020;
Published online: 13 October 2020

References
	1.	 Lecun, Y., Cosatto, E., Ben, J., Muller, U. & Flepp, B. Dave: Autonomous

Off-road Vehicle Control Using End-to-end Learning Technical Report
DARPA-IPTO Final Report (Courant Institute/CBLL, 2004); https://cs.nyu.
edu/~yann/research/dave/

	2.	 Bojarski, M. et al. End to end learning for self-driving cars. Preprint at http://
arXiv.org/abs/1604.07316 (2016).

	3.	 Kato, S. et al. Global brain dynamics embed the motor command sequence of
Caenorhabditis elegans. Cell 163, 656–669 (2015).

	4.	 Stephens, G. J., Johnson-Kerner, B., Bialek, W. & Ryu, W. S. Dimensionality
and dynamics in the behavior of C. elegans. PLoS Comput. Biol. 4,
e1000028 (2008).

	5.	 Gray, J. M., Hill, J. J. & Bargmann, C. I. A circuit for navigation in
caenorhabditis elegans. Proc. Natl Acad. Sci. USA 102, 3184–3191 (2005).

	6.	 Yan, G. et al. Network control principles predict neuron function in the
Caenorhabditis elegans connectome. Nature 550, 519–523 (2017).

	7.	 Cook, S. J. et al. Whole-animal connectomes of both Caenorhabditis elegans
sexes. Nature 571, 63–71 (2019).

	8.	 Kaplan, H. S., Thula, O. S., Khoss, N. & Zimmer, M. Nested neuronal
dynamics orchestrate a behavioral hierarchy across timescales. Neuron 105(3),
562–576 (2019).

	9.	 LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521,
436–444 (2015).

	10.	Hassabis, D., Kumaran, D., Summerfield, C. & Botvinick, M.
Neuroscience-inspired artificial intelligence. Neuron 95, 245–258 (2017).

	11.	Rudin, C. Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215
(2019).

	12.	Mnih, V. et al. Human-level control through deep reinforcement learning.
Nature 518, 529–533 (2015).

	13.	Silver, D. et al. Mastering the game of go with deep neural networks and tree
search. Nature 529, 484–489 (2016).

	14.	Silver, D. et al. Mastering the game of go without human knowledge. Nature
550, 354–359 (2017).

	15.	Schrittwieser, J. et al. Mastering atari, go, chess and shogi by planning with a
learned model. Preprint at http://arXiv.org/abs/1911.08265 (2019).

	16.	Vinyals, O. et al. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature 575, 350–354 (2019).

	17.	Bengio, Y., Courville, A. & Vincent, P. Representation learning: a
review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35,
1798–1828 (2013).

	18.	Lipton, Z. C. The mythos of model interpretability. Queue 16, 31–57 (2018).
	19.	Lechner, M., Hasani, R., Rus, D. & Grosu, R. Gershgorin loss stabilizes the

recurrent neural network compartment of an end-to-end robot learning
scheme. In Proc. 2020 International Conference on Robotics and Automation
(ICRA) 5446–5452 (2020).

	20.	Knight, J. C. Safety critical systems: challenges and directions. In Proc. 24th
International Conference on Software Engineering 547–550 (2002).

	21.	Pearl, J. Causality (Cambridge Univ. Press, 2009).
	22.	Peters, J., Janzing, D. & Schölkopf, B. Elements of Causal Inference:

Foundations and Learning Algorithms (MIT Press, 2017).

Table 2 | Network size comparison

Model Convolutional
layers parameters

RNN
neurons

RNN
synapses

RNN trainable
parameters

CNN 5,068,900 - - -
CT-RNN 79,420 64 6,112 6,273
LSTM 79,420 64 24,640 24,897

NCP 79,420 19 253 1,065

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell 651

https://github.com/mlech26l/keras-ncp/
https://github.com/mlech26l/keras-ncp/
https://doi.org/10.5281/zenodo.3999484
https://github.com/mlech26l/keras-ncp/
https://doi.org/10.5281/zenodo.3999484
https://cs.nyu.edu/~yann/research/dave/
https://cs.nyu.edu/~yann/research/dave/
http://arXiv.org/abs/1604.07316
http://arXiv.org/abs/1604.07316
http://arXiv.org/abs/1911.08265
http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncE

	23.	Joseph, M., Kearns, M., Morgenstern, J. H. & Roth, A. Fairness in learning:
classic and contextual bandits. In Proc. Advances in Neural Information
Processing Systems (NeurIPS) 325–333 (2016).

	24.	Fish, B., Kun, J. & Lelkes, Á. D. A confidence-based approach for balancing
fairness and accuracy. In Proc. SIAM International Conference on Data Mining
144–152 (2016).

	25.	Vaswani, A. et al. Attention is all you need. In Proc. Advances in Neural
Information Processing Systems (NeurIPS) 5998–6008 (2017).

	26.	Xu, H., Gao, Y., Yu, F. & Darrell, T. End-to-end learning of driving models
from large-scale video datasets. In Proc. IEEE Conference on Computer Vision
and Pattern Recognition 2174–2182 (2017).

	27.	Amini, A., Paull, L., Balch, T., Karaman, S. & Rus, D. Learning steering
bounds for parallel autonomous systems. In IEEE International Conference on
Robotics and Automation (ICRA) 1–8 (2018).

	28.	Fridman, L. et al. MIT advanced vehicle technology study: large-scale
naturalistic driving study of driver behavior and interaction with automation.
IEEE Access 7, 102021–102038 (2019).

	29.	LeCun, Y. et al. Handwritten digit recognition with a back-propagation
network. In Proc. Advances in Neural Information Processing Systems
(NeurIPS) 396–404 (1990).

	30.	Amini, A., Rosman, G., Karaman, S. & Rus, D. Variational end-to-end
navigation and localization. In Proc. 2019 International Conference on
Robotics and Automation (ICRA) 8958–8964 (2019).

	31.	Hochreiter, S. Untersuchungen zu dynamischen neuronalen netzen. Diploma,
Technische Universität München 91 (1991).

	32.	Bengio, Y., Simard, P. & Frasconi, P. et al. Learning long-term dependencies
with gradient descent is difficult. IEEE Trans. Neural Netw. 5, 157–166 (1994).

	33.	Rumelhart, D. E., Hinton, G. E. & Williams, R. J. Learning representations by
back-propagating errors. Nature 323, 533–536 (1986).

	34.	Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput.
9, 1735–1780 (1997).

	35.	Reimer, B., Mehler, B., Wang, Y. & Coughlin, J. F. A field study on the impact
of variations in short-term memory demands on drivers’ visual attention and
driving performance across three age groups. Hum. Factors 54, 454–468 (2012).

	36.	Funahashi, K.-i & Nakamura, Y. Approximation of dynamical systems by
continuous time recurrent neural networks. Neural Netw. 6, 801–806 (1993).

	37.	Chen, T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary
differential equations. In Proc. Advances in Neural Information Processing
Systems (NeurIPS) 6571–6583 (2018).

	38.	Lechner, M. & Hasani, R. Learning long-term dependencies in
irregularly-sampled time series. Preprint at http://arXiv.org/abs/2006.04418
(2020).

	39.	Sarma, G. P. et al. Openworm: overview and recent advances in integrative
biological simulation of Caenorhabditis elegans. Phil. Trans. R. Soc. B 373,
20170382 (2018).

	40.	Gleeson, P., Lung, D., Grosu, R., Hasani, R. & Larson, S. D. c302: a multiscale
framework for modelling the nervous system of Caenorhabditis elegans. Phil.
Trans. R. Soc. B. 373, 20170379 (2018).

	41.	Hasani, R., Lechner, M., Amini, A., Rus, D. & Grosu, R. Liquid time-constant
networks. Preprint at http://arXiv.org/abs/2006.04439 (2020).

	42.	LeCun, Y. et al. Backpropagation applied to handwritten zip code recognition.
Neural Comput. 1, 541–551 (1989).

	43.	Wicks, S. R., Roehrig, C. J. & Rankin, C. H. A dynamic network simulation
of the nematode tap withdrawal circuit: predictions concerning synaptic
function using behavioral criteria. J. Neurosci. 16, 4017–4031 (1996).

	44.	Lechner, M., Hasani, R., Zimmer, M., Henzinger, T. A. & Grosu, R. Designing
worm-inspired neural networks for interpretable robotic control. In
International Conference on Robotics and Automation (ICRA) 87–94 (2019).

	45.	Hasani, R., Lechner, M., Amini, A., Rus, D. & Grosu, R. The natural lottery
ticket winner: reinforcement learning with ordinary neural circuits. In Proc.
International Conference on Machine Learning (2020).

	46.	Bengio, Y. & Grandvalet, Y. No unbiased estimator of the variance of k-fold
cross-validation. J. Mach. Learn. Res. 5, 1089–1105 (2004).

	47.	Molnar, C. Interpretable Machine Learning (Lulu.com, 2019).
	48.	Hasani, R. Interpretable Recurrent Neural Networks in Continuous-time

Control Environments. PhD dissertation, Technische Universität Wien (2020).
	49.	Erhan, D., Bengio, Y., Courville, A. & Vincent, P. Visualizing Higher-layer

Features of a Deep Network Technical Report 1341 (Univ. Montreal, 2009).
	50.	Zeiler, M. D. & Fergus, R. Visualizing and understanding convolutional

networks. In European Conference on Computer Vision 818–833 (2014).
	51.	Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding

neural networks through deep visualization. Preprint at http://arXiv.org/
abs/1506.06579 (2015).

	52.	Karpathy, A., Johnson, J. & Fei-Fei, L. Visualizing and understanding
recurrent networks. Preprint at http://arXiv.org/abs/1506.02078 (2015).

	53.	Strobelt, H., Gehrmann, S., Pfister, H. & Rush, A. M. LSTMVis: a tool for
visual analysis of hidden state dynamics in recurrent neural networks. IEEE
Trans. Vis. Comput Graph. 24, 667–676 (2018).

	54.	Bilal, A., Jourabloo, A., Ye, M., Liu, X. & Ren, L. Do convolutional neural
networks learn class hierarchy? IEEE Trans. Vis. Comput. Graph. 24,
152–162 (2018).

	55.	Olah, C. et al. The building blocks of interpretability. Distill 3, e10 (2018).
	56.	Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional

networks: visualising image classification models and saliency maps. Preprint
at http://arXiv.org/abs/1312.6034 (2013).

	57.	Fong, R. C. & Vedaldi, A. Interpretable explanations of black boxes by
meaningful perturbation. Proc. IEEE International Conference on Computer
Vision 3449–3457 (IEEE, 2017).

	58.	Kindermans, P.-J., Schütt, K. T., Alber, M., Müller, K.-R. & Dähne, S.
Learning how to explain neural networks: PatternNet and PatternAttribution.
Proc. International Conference on Learning Representations (ICLR) (2018).

	59.	Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks.
Proc. 34th International Conference on Machine Learning (ICML) (2017).

	60.	Doshi-Velez, F. & Kim, B. Towards a rigorous science of interpretable
machine learning. Preprint at http://arXiv.org/abs/1702.08608 (2017).

	61.	Trask, A. et al. Neural arithmetic logic units. In Proc. Advances in Neural
Information Processing Systems (NeurIPS) 8035–8044 (2018).

	62.	Bojarski, M. et al. Visualbackprop: efficient visualization of cnns for
autonomous driving. In IEEE International Conference on Robotics and
Automation (ICRA) 1–8 (2018).

	63.	Maaten, Lvd & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9,
2579–2605 (2008).

	64.	Tesla Autopilot (Tesla, 2020); https://www.tesla.com/autopilot
	65.	Karpathy, A. PyTorch at Tesla. In PyTorch Devcon Conference 19 https://

youtu.be/oBklltKXtDE (2019).
	66.	Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. Numerical

Recipes: The Art of Scientific Computing 3rd edn (Cambridge Univ.
Press, 2007).

	67.	Naser, F. et al. A parallel autonomy research platform. In 2017 IEEE Intelligent
Vehicles Symposium (IV) 933–940 (IEEE, 2017).

	68.	Amini, A. et al. Learning robust control policies for end-to-end autonomous
driving from data-driven simulation. IEEE Robot. Autom. Lett. 5,
1143–1150 (2020).

	69.	Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In Proc.
3rd International Conference for Learning Representations (ICLR) (2015).

	70.	Wang, Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P. et al. Image quality
assessment: from error visibility to structural similarity. IEEE Trans. Image
Process. 13, 600–612 (2004).

	71.	Girosi, F., Jones, M. & Poggio, T. Regularization theory and neural networks
architectures. Neural Comput. 7, 219–269 (1995).

	72.	Smale, S. & Zhou, D.-X. Learning theory estimates via integral operators and
their approximations. Constr. Approx. 26, 153–172 (2007).

Acknowledgements
We thank M. Zimmer and the Zimmer Group for constructive discussions. R.H.
and R.G. are partially supported by Horizon-2020 ECSEL Project grant no. 783163
(iDev40), and the Austrian Research Promotion Agency (FFG), project no. 860424. M.L.
and T.A.H. were supported in part by the Austrian Science Fund (FWF) under grant
Z211-N23 (Wittgenstein Award). A.A. is supported by the National Science Foundation
(NSF) Graduate Research Fellowship Program. A.A. and D.R. were partially sponsored
by the United States Air Force Research Laboratory and was accomplished under
Cooperative Agreement no. FA8750-19-2-1000. R.H. and D.R. are partially supported by
The Boeing Company. This research work is drawn from the PhD dissertation of R.H.

Author contributions
R.H. and M.L. conceptualized, designed and performed research, and analysed data.
A.A. contributed to data curation, research implementation and new analytical tools, and
analysed data. R.G., T.A.H. and D.R. helped with the design and supervised the work. All
authors wrote the paper.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s42256-020-00237-3.

Supplementary information is available for this paper at https://doi.org/10.1038/
s42256-020-00237-3.

Correspondence and requests for materials should be addressed to M.L. or R.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2020

Nature Machine Intelligence | VOL 2 | October 2020 | 642–652 | www.nature.com/natmachintell652

http://arXiv.org/abs/2006.04418
http://arXiv.org/abs/2006.04439
http://Lulu.com
http://arXiv.org/abs/1506.06579
http://arXiv.org/abs/1506.06579
http://arXiv.org/abs/1506.02078
http://arXiv.org/abs/1312.6034
http://arXiv.org/abs/1702.08608
https://www.tesla.com/autopilot
https://youtu.be/oBklltKXtDE
https://youtu.be/oBklltKXtDE
https://doi.org/10.1038/s42256-020-00237-3
https://doi.org/10.1038/s42256-020-00237-3
https://doi.org/10.1038/s42256-020-00237-3
http://www.nature.com/reprints
http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE ArticlesNATurE MAcHinE InTElligEncE

Extended Data Fig. 1 | Conciseness of the hidden-state dynamics of LSTMs vs NCPs. a, Hidden state dynamics of 64 LSTM cells as a function of network
output. b, Hidden state dynamics of 13 NCP cells as a function of the network output. c, PCA on LSTM cells + output, d, PCA on LSTM cells only. e, PCA
on NCP cells + output. f, PCA on NCP cells only. x-axis represents the activity of the output, y-axis stands for the dynamics of an individual neuron. The
colour represents the steering angle (The more yellow regions depict sharper turns to the left-hand-side, and the more blue regions stand for sharper turns
to the right-hand-side).

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncEArticles NATurE MAcHinE InTElligEncE

Extended Data Fig. 2 | Learning curves of the models tested in the active driving experiments. Early stopping 71,72 is deployed as a regularisation
mechanism to obtain better generalisation. The terminating epoch for each experiment, is reported in Extended Data Figure 4.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE ArticlesNATurE MAcHinE InTElligEncE

Extended Data Fig. 3 | Neural activity of all NCP neurons presented in Fig. 6. The colour-bar represents the neuron output of each individual neuron in
the NCP architecture.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncEArticles NATurE MAcHinE InTElligEncE

Extended Data Fig. 4 | Coupling sensitivity of all NCP neurons presented in Fig. 6. The colour-bar represents the time constant of each individual neuron
in the NCP architecture.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE ArticlesNATurE MAcHinE InTElligEncE

Extended Data Fig. 5 | Convolutional head. Size of the convolutional kernels.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncEArticles NATurE MAcHinE InTElligEncE

Extended Data Fig. 6 | Layers of the feedforward CNN, adapted from 2. Conv2D refers to a convolutional layer, F to the number of filters, K to the kernel
size, S to the strides, U to the number of units in a fully-connected layer. The values of the dropout-rates δ1,δ2, and δ3 were optimised on the passive
benchmark and reported in Extended Data Figure 3.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

ArticlesNATurE MAcHinE InTElligEncE ArticlesNATurE MAcHinE InTElligEncE

Extended Data Fig. 7 | Models’ training hyperparameters. The values of all hyperparameters were selected through empirical evaluation over the passive
training dataset. We did not search through the hyperparameters space exhaustively, due to the computational costs. However, the use of a systematic
meta-learning algorithm over these parameter-spaces can presumably result in achieving better performances.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

Articles NATurE MAcHinE InTElligEncEArticles NATurE MAcHinE InTElligEncE

Extended Data Fig. 8 | The learning termination epoch properties, (shown in Extended Data Fig. 2). Training and validation metrics of the models tested
in the active driving experiment. As discussed thoroughly (Fig. 4), LSTM model achieves the best performance in the passive test but fails to express
proper driving behaviour under environmental disturbances.

Nature Machine Intelligence | www.nature.com/natmachintell

http://www.nature.com/natmachintell

	Neural circuit policies enabling auditable autonomy

	Designing and learning NCPs

	Learning a compact neural representation.
	Avoiding crashes under increasing input perturbations.
	Robustness of the output decisions in the presence of input noise.
	Driving with smooth neural activity.

	NCPs enhance interpretability

	NCPs and autonomy

	Methods

	NCP’s neural model
	Numerical implementation of the NCP networks
	NCPs express vanishing gradient
	Vehicle setup
	Passive test dataset
	Active test setup
	Models and the training procedure
	NCP design algorithm
	Comparing network sizes
	Computing saliency maps of convolutional layers
	Structural similarity index
	Lipschitz continuity computation
	Principal component analysis
	Complementary experiment elaborating on the results of the PCA analysis

	Acknowledgements

	Fig. 1 End-to-end driving.
	Fig. 2 Recurrent network modules are essential for the lane-keeping tasks.
	Fig. 3 Designing NCP networks with an LTC neural model.
	Fig. 4 Robustness analysis.
	Fig. 5 Global network dynamics.
	Fig. 6 Intuitive comprehension of NCP’s cells activity while driving.
	Fig. 7 NCPs as task-specific networks within a full-stack autonomous vehicle engine.
	Extended Data Fig. 1 Conciseness of the hidden-state dynamics of LSTMs vs NCPs.
	Extended Data Fig. 2 Learning curves of the models tested in the active driving experiments.
	Extended Data Fig. 3 Neural activity of all NCP neurons presented in Fig.
	Extended Data Fig. 4 Coupling sensitivity of all NCP neurons presented in Fig.
	Extended Data Fig. 5 Convolutional head.
	Extended Data Fig. 6 Layers of the feedforward CNN, adapted from 2.
	Extended Data Fig. 7 Models’ training hyperparameters.
	Extended Data Fig. 8 The learning termination epoch properties, (shown in Extended Data Fig.
	Table 1 Results of the passive lane-keeping tenfold cross-testing evaluation.
	Table 2 Network size comparison.

