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Abstract—We propose a method to estimate doubly-selective
channels based on the time and frequency correlation of scattered
pilots. To reduce the interference at the pilot and data positions,
we apply an iterative interference cancellation scheme. Our
method is applicable to arbitrary linear modulation techniques,
with Orthogonal Frequency Division Multiplexing (OFDM) and
Filter Bank Multicarrier Modulation (FBMC), being special
cases. Simulations over doubly-selective channels show that our
channel estimation method comes close to having perfect channel
knowledge available. A downloadable Matlab code supports
reproducibility.

Index Terms—FBMC-OQAM, OFDM, Multipath channels,
Time-varying channels, Channel Estimation.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
the dominant transmission technique of current wireless sys-
tems and is intended to remain relevant even in the next
generation of wireless system (5G). However, the interest in
alternative schemes, such as Filter Bank Multicarrier Modula-
tion (FBMC) with Offset Quadrature Amplitude Modulation
(OQAM), increased in recent years [1], [2]. FBMC has much
better spectral properties when compared with OFDM, but also
some additional disadvantages, such as a lower compatibil-
ity to Multiple-Input and Multiple-Output MIMO) [3]-[5].
Moreover, all multi-carrier schemes have the drawback of a
high Peak-to-Average Power Ratio (PAPR). Thus, additional
processing might be necessary [6]. On the other hand, one
of the biggest advantages of multi-carrier systems is that the
transmission over a time-variant multi-path channel can often
be modeled by one-tap channels, greatly simplifying the equal-
ization. This works as long as the delay spread and the Doppler
spread are sufficiently low [7]. Such condition, however, is not
always fulfilled. In highly doubly-selective channels, symbols
interfere with each other. Channel estimation and equalization
then becomes more challenging.

To estimate doubly-selective channels, authors in [8] and
[9] utilize a Minimum Mean Squared Error (MMSE) channel
estimation method, but consider only one OFDM symbol in
time. This requires clustered pilots. MMSE channel estimation
was also investigated in FBMC [10], but the authors ignore the
time-varying nature of wireless channels. Many other authors
employ a basis expansion model [11], [12] to estimate doubly-
selective channels. Here, the time variation is modeled by
a basis expansion, for example, an exponential basis [13],
a polynomial basis [14], a Slepian basis [15] or an MMSE

interpolation basis [16]. Some authors argue that statistical
models are bulky and difficult to handle [11], which is also
the main reason why they employ a basis expansion model.
However, we utilize a compact matrix description, allowing
to easily incorporate channel statistics, so that all elements of
a doubly-selective channel can be accurately estimated with
just a few pilots. The novel contributions of our paper can be
summarized as follows:

1) We propose a doubly-selective channel estimation
method that does not require clustered pilots or a basis
expansion model.

2) We generalize our previous paper, see [17], so that our
method is not only applicable to OFDM, as in [17],
but to arbitrary linear modulation methods, including
FBMC.

3) In contrast to [17], we employ a low-complexity interfer-
ence cancellation scheme instead of a computationally
demanding MMSE equalization.

To support reproducibility, our Matlab code can be down-
loaded at https://github.com/rnissel/Channel-Estimation.

II. SYSTEM MODEL

In multi-carrier systems, the transmitted symbols z;, at
subcarrier position [ and time position k, are modulated by
the basis pulses g; x(t), so that the transmitted signal in the
time domain, s(t), becomes [1], [2],
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Basis pulse g; ,(t) is nothing else than a time and frequency
shifted version of prototype filter prx(t). At the receiver, a
different prototype filter might be used, so that the received
basis pulses g; 1 (t) can be expressed as,

Qur(t) = prx(t — KT) 27 =FT) o i0uk 3)

In Cyclic Prefix (CP)-OFDM, prx(t) is a rectangular pulse
and prx(t) a slightly shorter rectangular pulse. Furthermore,
the time-frequency spacing is TF = 1 + TopF and the
basis pulses are orthogonal, that is, (g, k, (t), @s.k, (£)) =
0(1,—1),(k1—ks)- In FBMC, on the other hand, p(t) =



prx(t) = prx(t) is a smoother function, for example based
on a Hermite prototype filter [1], and (complex) orthogonal for
a time-frequency spacing of T'F' = 2. To improve the spectral
efficiency in FBMC, the time-frequency spacing is reduced to
TF = 0.5, and only real-valued data symbols z;; € R are
transmitted. Orthogonality then only holds in the real domain,
§R{<gll,’€1 (t)v 41y ko (ﬁ)>} = 6(11*12),(191*1%)'

To simplify the analytical description, we consider a discrete
time system model [1], where we sample the transmitted basis
pulses in (2) with rate fs = 1/At = F Nggr and stack all sam-
ples in a large vector g; ,, € CV*1. Additionally, we stack all
basis pulse vectors in matrix G = [go,0 gr-1,k-1] €
CNXLK 1Tn a similar way, we stack the receive basis pulse
samples, see (2), in matrix Q = [qo,0 ar-1,k-1] €
CN*LK Note that in OFDM, the orthogonality condition
implies that Q"G = I, x, while in FBMC only the real
orthogonality condition holds true, that is, R{Q"G} = I k.

The transmission over a doubly-selective channel is de-
scribed by the following input-output relationship [1],

y=Dx+n, o)

where x = [x(),o $L71,K71] € CLEX1 represents the
transmitted data symbols in vectorized form, y € CLEX1 the
received symbols, n ~ CN(0, P, Q"Q) the Gaussian noise,
and D € CLEXLEK the transmission matrix, defined as,

D=Q"HG. (5)

The time-variant channel in (5) is described by a time-
variant convolution matrix H € CN*N| where H],; =
heonv. [, n—7J], With heony.[n,m,]| denoting the time-variant
impulse response. If the delay spread and the Doppler spread
are sufficiently low, the off-diagonal elements of D can be
neglected, allowing us to approximate the transmission matrix
by D ~ diag{h}Q"G, with one-tap channel h € CFE*1,
The | + Lk-th element of h is given by k., = g}, Hg; ; and
can interpreted as the “sampled” time-variant transfer function
at frequency [F' and time k7.

III. LS CHANNEL ESTIMATION

We consider pilot symbol aided channel estimation [18],
[19], that is, a total of |P| “data” symbols, xp € (C”"Xl, the
so-called pilots, are known a priori at the receiver. This allows
a Least Squares (LS) estimation of the one-tap channel at the
pilot positions, ﬁ];)s € CIPIX1 "according to,

h = diag{xp} ' yp. (6)

Unfortunately, the imaginary interference in FBMC prevents
a straightforward LS estimation of the one-tap channel. Ad-
ditional preprocessing becomes necessary [20]-[25]. To be
specific, we apply precoding by,

x = Cx, @)

where X denotes the data symbols and C cancels the imaginary
interference at the pilot positions, that is,

3{apG}Cx =0, ®)
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Fig. 1. The LS channel estimates at the pilot positions are interpolated
to estimate the time-variant transfer function. Note that the elements of
transmission matrix D can be directly estimated without the detour of the
time-variant transfer function, see (9).

see [21], [22] for more details. Note that cancelation matrix
C may represent the auxiliary symbol method [22] or the
data spreading approach [21]. The latter requires additional
despreading at the receiver.

IV. DOUBLY SELECTIVE CHANNEL ESTIMATION

In case of a doubly-selective channel, many papers [16],
[26], try to estimate the channel impulse response, that is, H.
However, estimating the impulse response is quite problematic
because in practical systems the number of active subcarriers is
always lower than the Fast Fourier Transform (FFT) size, that
is, L < Nppr. This implies that the channel transfer function
at the zero subcarriers cannot be accurately estimated, prevent-
ing also an accurate estimation of the impulse response. By
applying an inverse Fourier transform onto the channel transfer
function of the L active subcarriers, one only obtains a pseudo
impulse response, implicitly assuming a rectangular filter. In
particular, the delay taps of the pseudo impulse response are
no longer limited in time (within the symbol duration), even
though the true impulse response might be. This is caused by
the discontinuity of the channel transfer function at the edge
subcarriers and becomes problematic for estimation methods
which rely on the assumption that the delay taps are limited
in time. Another aspect is the computational complexity. Even
if one is able to accurately estimate the impulse response,
the matrix multiplication in (5) still needs to be evaluated,
implying a huge computational burden. All those drawbacks
can be avoided by directly estimating transmission matrix
D. To some extend, this is already happening in practical
systems, as the one-tap channel is usually estimated through
interpolation. Those one-tap channel coefficients correspond
to the diagonal elements of D.

The main idea of our channel estimation method is il-
lustrated in Figure 1. The ‘“sampled” time-variant transfer
function (at the pilot positions) is interpolated, delivering an
estimate of the full time-variant transfer function. This is
possible because of a high correlation in time and frequency.



As already mentioned before, it is computationally more
efficient to directly estimate D without the detour of the
channel transfer function, whereby the underlying correlation
is preserved. One element of transmission matrix ]5 at row
position l1k1 = 11+ Lk and column position loko = lo+ Lko,
can then be estimated by

[D]l1k17l2k2

[x1

H LS
Wik iz, ko hz, ©))

where Wi, 1, 1,.k, € CI7!¥1 represents a weighting vector and
f11735 € CIPIX1 the LS channel estimates at the pilot positions,
see (6). The weighting vector has a major influence on the
channel estimation accuracy. We consider an MMSE weighting
vector, the best possible channel estimation method in terms
of MSE. By utilizing the orthogonal projection theorem,

) . B
E{ (D)5t — Do) Dl s f =0, (10)

which states that the error of the estimator must be orthogonal
to the estimator, the MMSE weighting vector in (9) can be
calculated by,

=R-!

r
his "B Dl

(1)
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with Rth = IE{hLS (hLS) } € CIPIXIPI denoting the correla-

tion matrix of the LS channel estimates at the pilot positions

and rpis D] € CIPIX! the correlation vector between
P

11kq,loky
the LS channel estimates at the pilot positions and one element

of transmission matrix D. Very often, the biggest challenge
is to find the required correlation matrices. Thanks to our
matrix notation, however, finding those matrices is relatively
easy. Let us first consider the correlation between the -
th LS channel estimate and the j-th LS channel estimate,
E{BLS(ELS)H} € CY¥1. Assuming i # j, the
1nterference as well as the noise are uncorrelated, so that
By utilizing the Kronecker product,

RhLS hLS

R; =R .
RS, i3, hphp;

hp, = ap Hgp, = (g5, @ 4 ) vec{H}, we calculate the
correlation between the LS channel estimates at the pilot
positions, i # j, according to,
H
T H T H
Rﬁgi’hlﬁsj = (gp, ® ap,) Ruee(m) (gpj ® quj) 12)

For the power at the pilot positions, we have to consider
interference gf, — CTGT and noise P,q!} qp,, leading to

r{(CTGT @ af ) Rueeiay (CTGT @ )" } + Puct, ar,
Pp '

13)

The cross-correlation in (12) and the auto-correlation in (13)
build up the overall correlation matrix Rth e CIPIXIPI
and depend on the correlation matrix of the vectorized chan-
nel, Ryecqry = E{vec{H}vec{H}"}. The elements of this
correlation matrix can easily be calculated because they are
just the correlation of the time-variant impulse response, that

is, E{hcony.[n1, m1] hlony [N2, ma]}, assumed to be perfectly

known. Only the mapping of this correlation to the correct
position in Ryecpyy is a bit challenging because of the
vectorized structure. Similar as in (12), the correlation between
the LS channel estimate at the i-th pilot position and one
element of transmission matrix D can be calculated by,

H
= (gp, @ dp,) Ryectm) (8Lk, @ Al iy)
(14)

Tps
h, Pl g

: : N P|x1
and builds up correlation vector T D] € CIPIxt,

With (12)-(14) we have all the necessar;lllktloyé)Qlks2 to calculate
the MMSE weighting vector in (11), that is, Wy, &, 15k, One
might think that our channel estimation method is unrealistic
because the correlation matrices are not perfectly known in
practical systems. While it is indeed hard to find the true
correlation matrices, a rough approximation can easily be
found and is often sufficient. For example, in the context of
OFDM, testbed measurements at 400 km/h have already vali-
dated that our MMSE channel estimation works in real world
testbed scenarios [17]. To measure at such high velocities, we
augmented the Vienna Wireless Testbed by a rotation wheel
unit [27], [28]. The measurement results in [17] indicate that
our channel estimation method, see (9) and (11), performs
close to perfect channel knowledge. In [17] we considered
MMSE equalization instead of a low-complexity interference
cancellation scheme. Still, in contrast to many other works
related to time-variant channel estimation, our MMSE channel
estimation method was already proven to work in real world
testbed scenarios, at least in the context of OFDM.

V. INTERFERENCE CANCELLATION

Besides the challenge of doubly-selective channel estima-
tion, channel equalization is equally important [29], [30], for
which we consider a low-complexity interference cancellation
scheme [31]. Interference cancellation is also important for the
channel estimation process because the LS channel estimates
at the pilot positions are corrupted by interference. By can-
celing this interference, the channel estimation accuracy can
be improved. Our iterative channel estimation and interference
cancellation scheme works as follows, where the superscript
()@ denotes the i-th iteration step:

1) MMSE channel estimation of transmission matrix ]5(0),
see (9) and (11).

2) One-tap equalization and quantization, z( k) =
Q{yl([;g/ill((g}, with h(® = diag{D©}.

3) Initialize with i = 0. )

4) Interference cancellation, y(+?) = y — (DO —

diag{diag{D®}1)x® X
5) Improved estimation of transmission matrix D(i“),
enabled by a reduced interference at the pilot positions.

6) Improved one-tap equalization and quantization
l(l]jl) _ (1+1)/h(1+1)

7) Repeat Step 4 to Step 7. We consider i = 0,1, ...,4

Note that the underlying correlation in (13) does not take
interference cancellation at the pilot positions into account,
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Fig. 2. Our proposed doubly-selective channel estimation method performs
close to perfect channel knowledge.

because nonlinearities make the analytical calculation chal-
lenging. To circumvent this problem, we employ a slightly
mismatched MMSE estimation. For iteration step i = 0,1, 2,
we consider the correlation as described in (13), while for
iteration step i = 3 and i = 4, we assume that the interference
is perfectly canceled, transforming matrix product CTGT in
(13) into C'G" — /Pp g}, .

VI. NUMERICAL RESULTS

For our numerical evaluations, we consider a Long Term
Evolution (LTE) like OFDM signal. We assume a diamond-
shaped pilot pattern, same as in LTE, that is, |P| = 32
pilots are distributed over a time-frequency resource of K'1' =
2ms and LF = 360kHz, representing the transmission
of two subframes with eight resource blocks in total. The
overhead in OFDM, including pilot symbols and the CP, is
MZI;CTP%W = 11.1%. Figure 2 shows the Bit Error Ratio
(BER) over the Signal-to-Noise Ratio (SNR) for OFDM. Note
that the BER is relatively high because of a 256-Quadrature
Amplitude Modulation (QAM) signal constellation. To im-
prove the channel estimation accuracy, we consider a pilot-
to-data power offset of Pp/Pp = 2. A one-tap equalizer
performs poorly once interference starts to dominate the noise.
By employing our interference cancellation scheme, on the
other hand, the performance can be significantly improved.
Overall, our doubly-selective channel estimation technique
performs close to perfect channel knowledge (only a small
SNR shift of approximately 1 dB for the “no edges” curve). For
the “no edges” MMSE channel estimation curve in Figure 2,
we exclude time-frequency positions close to the edge, that
is, we consider only points which are in the center of the
frame. One can imagine a sliding block with an inner and an
outer block where only the inner block is evaluated for the
BER, while the outer block only contributes to the channel
estimation. In Figure 2 we also include the lower bound
of doubly-flat fading in combination with perfect channel
knowledge and no pilot-to-data power offset.

Figure 3 shows the BER over SNR for FBMC, using the
auxiliary symbol channel estimation method. We employ four
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Fig. 3. Compared to Figure 2, the performance is better because the additional
pilot symbol power is taken from the auxiliary symbols (which are close to
zero) and not from the data symbols.
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Fig. 4. Compared with Figure 3, the BER is slightly worse because of
spreading and the fact that the additional pilot power is taken from the data
symbols. However, the spreading method has a lower overhead and thus a
higher data rate.

auxiliary symbols per pilot, guaranteeing that the channel
induced interference at the pilot position is relatively low. The
overhead is the same as in LTE, that is, w =11.1%.
Furthermore, the auxiliary symbol power is close to zero,
allowing us to increase the pilot-to-data power offset to 4.685.
In contrast to OFDM, however, we do not lose any data symbol
power, improving the performance further. Because we have
in FBMC more power available for the data symbols than
in OFDM, and because the channel induced interference is
lower, FBMC shows a better BER performance than OFDM.
Again, our MMSE channel estimation scheme performs close
to perfect channel knowledge, showing its capability to deal
with doubly-selective channels.

Figure 4 shows the BER for FBMC based on the data
spreading approach, which has a relatively low overhead of
7;;‘?? = 4.4%. Similar as in OFDM, we consider a pilot-
to-data power offset of two (equal to four in the real do-
main) to improve the channel estimation accuracy. Again, our
doubly-selective channel estimation method performs close to
perfect channel knowledge. Compared to FBMC based on
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Fig. 5. We consider the same parameters as in Figure 3. The first iteration
step, see Section V, greatly improves the BER, which soon saturates.

the auxiliary method, however, the performance is slightly
worse because of the SNR shift. Additionally, we have to
despread symbols, further reducing the BER performance
when compared to the auxiliary symbol method. However, one
has to keep in mind that the data rate is higher than for the
auxiliary symbol method.

Finally, Figure 5 shows how the number of iteration steps,
see Section V, improves the BER. We consider FBMC based
on the auxiliary symbol method and an SNR of 32 dB. The first
iteration step greatly improves the BER, which soon saturates.

VII. CONCLUSION

We have proposed a doubly-selective channel estimation and
interference cancellation scheme. Our method is applicable to
any linear modulation scheme, such as, OFDM and FBMC.
FBMC based on the auxiliary symbol method outperforms
OFDM in terms of BER. FBMC based on that data spreading
method performs slightly worse than FBMC based on the
auxiliary symbol method, but has the additional advantage of
a higher data rate.
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