
Frank Wefers

Partitioned convolution algorithms

for real-time auralization

Logos Verlag Berlin GmbH

λογος
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Abstract

Virtual Reality (VR) aims at the creation of responsive simulations, that
provide humans the illusion of a world or environment, they can interact
with. Therefore, the user is stimulated with sensory cues that are computer-
generated, based on a model of a virtual world (scene). Considering the sense
of hearing, the acoustic description of the scene is transformed into auditory
stimuli, which are then provided using headphones or loudspeakers. Signal
processing is fundamental to this process, called auralization. It involves
digital filtering in several uses and in diverse forms (e.g. non-linear and linear
filtering, time-invariant and time-varying filtering). A common requirement
for VR is a low latency (immediate system response). The computational
extent however, ranges from moderate to highly complex, depending on the
application.

This work focuses on finite impulse response filters (FIR filters), which are
applied in binaural synthesis, spatial sound reproduction and artificial rever-
beration. Straightforward FIR filtering in the time-domain fails to satisfy the
requirements stated above. These are met by implementing the FIR filtering
using efficient mathematical algorithms for fast convolution. Since the 1960s
different algorithmic concepts have been developed, often from the divide-
and-conquer paradigm. The most popular example is fast convolution using
the fast Fourier transform (FFT), which established as the standard tool.
However, also fast convolution algorithms must be adapted to serve for real-
time filtering. The most powerful concept hereby is partitioned convolution,
which first splits the operands and then solves the partial problems using
a fast convolution technique. Essential is that the decomposition conforms
with real-time processing.

This thesis considers three different classes of partitioned convolution algo-
rithms for the use in real-time auralization: uniformly and non-uniformly
partitioned filters, as well as unpartitioned filters. The algorithmic properties
of each class are derived and guidelines for an optimal choice of parameters
are provided. All techniques are analyzed regarding multi-channel processing,
networks of filters and time-varying filtering, as needed in Virtual Reality.
The work identifies suitable convolution techniques for different applications,
ranging from resource-aware auralization on mobile devices to extensive room
acoustical auralization on dedicated multi-processor systems.





Zusammenfassung

Virtuelle Realität (VR) schafft eine künstliche Wirklichkeit, in die ein Men-
sch eintauchen und mit der er interagieren kann. Ausgehend von der
Beschreibung einer virtuellen Szene werden hierzu mit Hilfe von Comput-
ern, verschiedene Sinnesreize generiert, welche beim Benutzer die Illusion
der Präsenz in dieser Wirklichkeit erzeugen. Für den Hörsinn bedeutet
dies, dass man die akustische Beschreibung einer Szene in hörbare Signale
überführen muss, welche dem Benutzer entsprechend dargeboten werden.
Für diesen Prozess, der Auralisierung genannt wird, sind digitale Filter ein
grundlegendes Werkzeug, das in verschiedenen Arten benötigt wird (z.B. lin-
eare/nichtlineare Filter, zeitinvariante/zeitveränderliche Filter). Eine in der
VR allgemeine Anforderung sind geringe Latenzen (möglichst zeitnahe Reak-
tion). Der Rechenaufwand hierfür reicht, je nach Anwendung, von moderat
bis hochkomplex.

Diese Arbeit befasst sich mit digitalen Filtern, welche endliche Impulsant-
worten haben, sogenannte FIR-Filter (von engl. finite impulse response).
Für diese finden sich zahlreiche Anwendungen in der akustischen virtuellen
Realität, wie beispielsweise in der binauralen Sythese, räumlichen Klang-
wiedergabeverfahren und bei der Erzeugung künstlichen Nachhalls. finite
impulse response (FIR)-Filter können auf einfache Weise im Zeitbereich im-
plementiert werden. Diese Art der Realisierung erfordert allerdings einen
erheblichen Rechenaufwand und scheidet dadurch für die oben genannten
Anwendungen aus. FIR-Filter können mit Hilfe schneller Faltungsalgorith-
men effizienter implementiert werden.

Seit Anfang der 1960er Jahre wurden verschiedene Konzepte zur schnellen
Faltung entwickelt, häufig ausgehend vom ”teile und herrsche” (divide-and-
conquer) Paradigma. Das populärste Beispiel hierfür ist die schnelle Faltung
mittels der schnellen Fouriertransformation (engl. fast Fourier transform,
FFT), welche sich als Standardverfahren etablierte. Leider sind die meis-
ten schnellen Faltungsverfahren nicht direkt zur Filterung von Signalen in
Echtzeit geeignet. Als leistungsfähigstes Konzept hat sich hierbei die Tech-
nik der partitionierten Faltung herausgestellt. Dieses zerteilt zunächst die
Operanden der Faltung (Partitionierung) und realisiert dann die gewünschte
Filterung mittels schneller Faltungen dieser Teilprobleme. Die Art der Zer-
legung bestimmt hierbei maßgeblich die Fähigkeit der Echtzeitverarbeitung.



Die vorliegende Arbeit untersucht drei Klassen von partitionierten Faltun-
gen, welche für Echtzeit-Auralisierungen geeignet sind: Algorithmen, welche
Filter als Ganzes (d.h. unpartitioniert) verarbeiten und solche, welche
Filter in gleiche Teile (uniform) und ungleiche Teile (nicht uniform) zer-
legen. Für jede Klasse werden die algorithmischen Eigenschaften im Detail
hergeleitet und analysiert und Richtlinien für die optimale Wahl der Pa-
rameter werden angegeben. Dabei werden alle Techniken auch hinsichtlich
weiterführender Aspekte untersucht, welche für die virtuelle Realität rele-
vant sind, wie Mehrkanal-Filterung, Zusammenschaltungen von Filtern zu
Netzwerken, sowie zeitveränderliche Filterung. Die Arbeit identifiziert die
geeigneten Faltungstechniken (Filterungsverfahren) für die oben genannten
Anwendungen auf verschiedenen Endgeräten, von Auralisierung auf mo-
bilen Endgeräten mit begrenzter Rechenkapazität bis hin zu umfangreichen
Raumakustik-Auralisierungen auf speziellen Multiprozessorsystemen.
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Notation and symbols

Elementary math

i, j, k, m, n Indices and superscripts
(a, b, c, . . . ) Tuple with elements a, b, c, . . .
~u, ~v, ~w, Vectors
C, F, H Matrices
diag(. . . ) Diagonal matrix

~u>, C> Transpose of a vector or matrix
X(z) = x0 + x1z + x2z

2 + . . . Polynomial over variable z
deg(·) Degree of a polynomial
e, ex Euler constant, exponential function
log Natural logarithm (base e)
log2 Logarithmus dualis (base 2)
i =
√
−1 Imaginary unit

a+ bi = a− bi Complex-conjugate
Re{·}, Im{·} Real, imaginary part of a complex number

WN = e−2πi/N Primitive N th roots of unity in C
Ω(·), O(·) Asymptotic lower and upper bound

(Landau notation)

Discrete signals and spectra

x(n) = [x(0), x(1), . . . ] Discrete-time signal
(finite or infinite length)

X(k) = [X(0), . . . , X(K−1)] Discrete spectrum (finite length K)
x(i), X(i) Sample or spectral coefficient of index i
xi(n) Block of index i in the signal x(n)

(continuous audio streams)

x(i)(n) ith input or output signal (multichannel)
hi(n) Sub filter of index i (filter partitions)

h(i)(n) ith filter in an assembly
x̃(n) = x〈n〉N N -periodic continuation of x(n)
δ(n) Unit impulse
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Notation and symbols

Operators

T {·}, T −1{·} Transform, inverse transform
DFT(N){·} N -point discrete Fourier transform
DFT −1

(N) {·} N -point inverse discrete Fourier transform

PN{ x(n) } Right-side zero-padding of x(n) to length N
RN{ x(n) } Rectangular window, extracting the first N

elements of x(n)c s Transformation time→ frequency domains c Transformation frequency→ time domain
× Pairwise or element-wise multiplication
∗, ~, ~̃ Linear, circular and symmetric convolution

Number theory

b·c, d·e Floor and ceiling function
a | b, a - b a divides b, a does not divide b
a ≡ b mod N Congruence relation
〈n〉N Integer n modulo N (Rader notation)
gcd(a, b) Greatest common divisor
lcm(a, b) Least common multiple

Algebraic structures

N, Z Natural numbers, integers
R, C Real numbers, complex numbers
N0 = N ∪ {0} Natural numbers with zero
ZM = Z/MZ = {0, . . . ,M−1} Set of integers modulo M
R,K Ring, field
R[z] Ring of polynomials (over variable z)
KM M -element vector space over the field K
KM×N Set of M×N -matrices over the field K

Remarks

Unless outlined, indices begin with 0
Polynomials are defined over the variable z
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AVR Acoustic Virtual Reality
C2R Complex-to-real
CCP Cyclic convolution property
CCS Complex-conjugate symmetric
CFM Common-factor map
CMAC Complex-valued multiply-accumulate
CMP Convolution multiplication property
CMUL Complex-valued multiply
CPU Central processing unit
CRT Chinese remainder theorem
DAG Directed acyclic graph
DCT Discrete cosine transform
DFT Discrete Fourier transform
DHT Discrete Hartley transform
DIF Decimation-in-frequency
DIT Decimation-in-time
DP Dynamic programming
DSP Digital signal processor
DST Discrete sine transform
DTT Discrete trigonometric transform
FDL Frequency-domain delay-line
FDN Feedback delay network
FFT Fast Fourier transform
FHT Fast Hartley transform
FIR Finite impulse response
FNT Fermat number transform
GA Geometrical acoustics
GPU Graphics processing unit
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HRIR Head-related impulse response
HRTF Head-related transfer function
IDFT Inverse discrete Fourier transform
IFFT Inverse fast Fourier transform
IIR Infinite impulse response
LTI Linear time-invariant
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MDF Multidelay block frequency domain adaptive filter
MIMO Multiple-input multiple-output
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MNT Mersenne number transform
NTT Number theoretic transform
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VDL Variable delay-line
VR Virtual Reality
WFTA Winograd Fourier transform algorithm
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1. Introduction

Acoustic Virtual Reality (AVR) aims at the simulation of the acoustics in
a non-existent world by the help of computers. The user is provided with
generated auditory cues, that shall give him a feeling of presence in the
virtual environment (immersion). A fundamental necessity for the belief
in the simulation is that it confirms with the laws of physics and allows
for interaction. The content of virtual scenes can emerge from reality (e.g.
acoustic in cars, in traffic, in architecture, musical performances, etc.) or
be fictional (e.g. computer games). Virtual reality has many uses. It can
blend into our daily life and support us (e.g. 3D telephone). Advances
in simulation technique make AVR nowadays usable for assessment tasks
(e.g. noise scenarios) and planning tasks (e.g. acoustic in rooms, buildings,
spaces).

A central terminus in acoustic virtual reality is auralization [56]. It cov-
ers all necessary steps to create audible sound (stimuli) from the abstract
description of a virtual world (scene). Auralization covers many partial as-
pects: synthesis (artificial generation of sound), simulation (sound field in an
environment), rendering (applying the simulated sound field parameters to
the audio signals) and reproduction (presentation of the generated stimuli to
the user). Signal processing is fundamental to all of them. The basic tool
for modifying the sounds to the need of the applications are digital filters
of a variety of types. An example for non-linear filters are variable delay-
lines (VDLs), used to simulate time-varying propagation delays (Doppler
shifts) [106]. Linear filters are used in form of filter banks (e.g. directivity of
sound sources, medium attenuation, transmission modeling), for head-related
transfer functions (HRTFs) in binaural technology and for simulation rever-
beration using room impulse responses (RIRs)

Linear filters are divided in two different classes: Feed-forward filters with
finite impulse responses (FIR filters) and filters which facilitate feedback
loops, resulting in potentially infinite impulse responses (IIR filters). Both
types of filters are widely used in auralization. FIR filters allow complete
control over the filter characteristic and avoid instabilities by concept. Un-
fortunately, they can demand a high computational effort (large number of
arithmetic operations). The utilization of feedback loops in infinite impulse
response (IIR) filters allows a significant reduction of the effort. However,
their design is not trivial and issues of stability must be considered.
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1. Introduction

The computational burden of finite impulse response (FIR) filters is over-
come by facilitating the tools of mathematics and implementing them with
fast convolution methods. Their history dates back to the 1960s. Fast convo-
lution techniques are manifold and have been developed from quite diverse
mathematical fields. These include classical and linear algebra and number
theory. Unfortunately, most of fast convolution algorithms can not be di-
rectly applied to real-time filtering and must be adapted accordingly. This
is due to the fact, that real-time processing requires partial results to be
provided during the convolution. Moreover, they are not computationally
efficient, when short blocks of the signal are convolved with long impulse
responses. Partitioned convolution solves this issue by decomposing large
convolutions into better manageable shorter convolutions, while preserving
a low latency. This makes it an essential algorithmic tool for the design of
efficient real-time FIR filters.

1.1. Objective

This thesis researches how FIR filters can be realized by partitioned convo-
lution for applications in acoustic virtual reality. The filtering tasks in this
field are characterized by a variety of requirements. The objective of this
work is to identify and examine suited algorithms for these tasks. Immedi-
ate system responses are a fundamental requirement for interactive virtual
environments. Hence, the focus lies on real-time FIR filters, which process
the audio signals with minimal delays (latencies). A main intend is to realize
the filters with the least computational load, the least possible runtimes or,
in other words, within a minimal number of processor cycles. From a theo-
retical point of view, the complexity of algorithms can be expressed by the
number of operations (mainly arithmetic operations, like multiplications and
additions). On practical machines however, the performance of digital signal
processor (DSP) algorithms is strongly affect by many further aspects, like
the memory access, the caching and branching behaviour as well as the par-
allelization capabilities. In order to achieve an optimal performance, these
aspects must be considered likewise.

This thesis regards convolution algorithms from both perspectives: their an-
alytic complexity and their performance on actual hardware. A frequently
used term in this work is the computational efficiency of an algorithm. A
high efficiency is achieved, when a particular filtering task is accomplished
with a comparably low number of operations, regarding the problem from
the analytical point of view, or, considering the practical perspective, within
the least number of processor cycles. Both definitions asks of course for a
reference, which is found in the conceptually simple, but computationally
expensive time-domain FIR filters. A high efficiency is needed to overcome
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the present computational bottleneck, which limits the maximal number of
sound sources in a virtual environment. In high-performance computing,
simulations of more sources in very complex environments become possible.
On mobile devices, auralization becomes less energy consuming. Here, a high
computational efficiency helps saving battery life. A fast and efficient imple-
mentation is not the only attribute of interest. Section 1.3 outlines several
further properties which are of interest in target applications.

1.2. Related work

Auralization has been an area of intensive research. The foundation for
many simulation techniques can be traced back to the 1960s. The rising of
computers allowed substantial advances in many fields of science and paved
the way towards the above stated technologies. This accords in particular for
the simulation of acoustics (physics), digital signal processing and computer
science. Some notable advances are briefly summarized in the following.

The first approaches in simulating the sound fields in rooms date back to
the end of the 1960s. At time, the very limited capabilities of computers
and electronics did not allow for simulations based on the fundamental phys-
ical descriptions, the wave equations. Instead, the paradigm of geometrical
acoustics (GA) was conceived and in 1968, Krokstad [58] introduced the ray-
tracing technique for simulating sound fields in rooms. By the end of the
1970s, Allen and Berkley [6] published the image source technique which en-
abled a precise computation of the early reflections in a room. During the
1980s, the first sound field simulations based on the fundamental physical
descriptions, the wave equations, were realized. Smith [97] considered digital
waveguide networks for reverberation. Vorländer [117] combined both GA
approaches, the image source method and ray-tracing into an efficient hybrid
simulation technique. These techniques were later refined (e.g. by hierarchi-
cal search structures) and became efficient enough to simulate the sound field
in rooms in real-time. Botteldooren [15] applied the finite-difference time-
domain for wave-based simulations of room acoustics. While GA established
itself as a standard tool for engineers and scientists, recent advances in com-
puting hardware brought wave-based simulations into the realm of real-time
simulations. This became mainly possible, due to very powerful graphic pro-
cessors (GPUs), which can be successfully applied to solve acoustic problems
as well [113, 86, 118, 70, 82]. Savioja [84] achieved wave-based simulations
of the lower frequency sound field in real-time on these devices.

Sound field simulations are one fundamental aspect of auralization. Digital
filtering marks another cornerstone. The line of developments in simulation
techniques was accompanied by significant advances in digital signal process-
ing, particularly fast and efficient filtering techniques. In the 1960s, Schröder
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1. Introduction

and Logan [89, 88] layed the theoretical foundation for artificial reverbera-
tor networks. Aware of the limited hardware capabilities, they emulated
the reverberation in a room by low-complexity IIR filter networks consist-
ing of all-passes, comb filters and delay-lines. In 1965, Cooley and Tukey
[24] published their fast Fourier transform (FFT) algorithm, which helped to
establish the discrete Fourier transform (DFT) as the common tool it nowa-
days is. Shortly after, Stockham [105] outlined the use of the FFT for fast
convolution and correlation. This marked a milestone for the development
of efficient FIR filtering algorithms. In the 1980s, uniformly-partitioned con-
volution was presented by Kulp [59]. Meanwhile, Schröder’s and Logan’s
original IIR reverberators were developed further, leading to comprehensive
feedback delay networks (FDNs) [52]. At the beginning of the 1990s, the
hardware became fast enough so that many applications in the field of vir-
tual acoustics approached the realm of possibility. Hardware-accelerated FIR
filters enabled the first real-time auditory environments with reverberation
[32]. Convolvotron was a PC extension card equipped with a large number
of parallel DSPs. It could binaurally synthesize up to eight free-field sound
sources in real-time. Alternatively, a limited number of early reflection was
possible. The FFT computation advanced by the (re)discovery of the split-
radix FFT algorithm by Duhamel and Vetterli [29]. The concept of non-
uniformly partitioned convolution was proposed by Egelmeers and Sommen
[30] and popularized by Gardner [39]. Gardner and McGrath [80] consid-
ered FIR filtering using fast convolution for simulating reverberation. The
Huron digital audio workstation [69] implemented non-uniformly partitioned
convolution using DSPs and pushed the boundary of large-scale FIR filtering
a large leap forward. Multi-channel convolutions with several 100,000 filter
coefficients became possible at a low latency.

Interactive auralizations in real-time and acoustic virtual reality systems
started to appear towards the end of the 1990s in scientific groups around
the world: the DIVA virtual audio reality system ([46, 85] developed at Aalto
University, Finland (former Helsinki University of Technology), the sound lab
system (abbreviated SLAB) developed at NASA Ames Research Center [125],
the virtual reality system at RWTH Aachen University ([63, 64, 91, 120]), the
REVES research project at INRIA in Sophia-Antipolis [114, 104] and at the
University of North Carolina at Chapel Hill [108]. Recent systems are evolv-
ing towards the simulation of outdoor scenarios [70]. As research in acoustic
virtual reality continues, the level of detail in simulations keeps increasing.
Lately, acoustic virtual reality approaches mobile devices [55, 83]. Never-
theless, after 50 years of research, the simulation of acoustics in real-time
still marks an extraordinary challenge and several questions are unanswered
yet—not excluding signal processing.
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1.3. Problem description

1.3. Problem description

This work targets the efficient realization of real-time FIR filters using
general-purpose processors. Hence, the considerations are limited to a block-
based audio processing (cp. Sec. A.1). A real-time FIR filtering problem
is defined as follows: A continuous audio stream is processed in length-B
blocks. B is referred to as the block length. The terms ‘streaming buffer
size’ and ‘frame size’ are often used alternatively in audio software develop-
ment. The sampling rate of the audio stream is fS . The resulting frame
rate (processed frames per second) is given by R = fS/B. Unless outlined,
a single channel is considered only. Figure 1.1(a) shows the corresponding
block diagram. The input signal x(n) consists of consecutive length-B blocks
x0(n), x1(n), · · · (sub indices denote the individual blocks). It is filtered with
finite impulse response h(n) of N filter coefficients. The filtering is pro-
cessed block by block. When the ith input block xi(n) is fed into the filter,
the filtering algorithm computes the corresponding output block yi(n). The
computation time is bounded by T = B/fS = 1/R, the duration of one
frame. If this time budget is exceeded, the audio stream is interrupted and
dropouts are the consequence. Precautions must be taken in order to prevent
this. Therefore, a certain safety margin is incorporated and the time budget
is not fully exploited. Several subsequent considerations require a clear def-
inition of the audio processing procedure, in particular its events and their
timescale. This is given in A.1 in the appendix.

The above stated problem considers a single input and single output only
(SISO system). The problem can be generalized to multiple inputs and mul-
tiple outputs (MIMO system), interconnected by intermediary FIR filters
hi→j(n). This is illustrated in figure 1.1(c). All inputs and outputs request
and provide blocks of the same length. The admissible time span for com-
putations T is the same as above. Signal processing for auralization often
incorporates assemblies of individual filters in serial (figure 1.1(b)) or par-
allel (figure 1.1(d)). These occur as cascaded filters on a sound path (e.g.
directivity, medium attenuation, etc.) or at points of superposition (e.g. the
listeners ears, coupling joints between separated spaces).

The regarded FIR filters are linear and time-invariant systems (LTI systems).
Interaction in virtual environments changes the auralization filters over time.
Time-varying FIR filtering has the following meaning in this thesis: at a
distinct point in time, a current filter impulse response h0(n) is replaced
with a new filter h1(n). Strictly speaking, both individual filters are still
LTI systems. The exchange h0(n)→h1(n) can usually not be accomplished
by instantaneous switching of all coefficients within a single sample. This
mostly causes audible artifacts. Hence a smooth transition is realized over
a number of L output samples. Even within this period, both sets of filter
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1. Introduction

coefficients remain constant. The transition is achieved by crossfading the
outputs of both filters.

Interaction demands imperceptibly short response times of a virtual reality
system. With respect to the filtering, two different types of latency occur:
Input-to-output latency is the duration between the events of exciting the
filter with a signal and receiving a response at its output. It is adjusted by
selecting a reasonably short audio processing block length B. Frequency-
domain techniques require the impulse response to be transformed, before it
can be used. This transformation consumes time. Moreover, the exchange
itself can be bound to specific points in time, which introduces further waiting
times. The filter exchange latency describes the delay, when the update of a
filter is initiated, until it is exchanged and affects the output of the filter.

1.4. Outline

The thesis is organized as follows: Chapter 2 reviews a wide variety of fast
convolution methods and assesses their use for real-time filtering. The objec-
tive is to identify the most promising base technology for partitioned convo-
lution methods. The chapter’s intention is also to scrutinize FFT-based fast
convolution in its status as a standard method. Several divide-and-conquer
strategies are examined for their real-time compliance. Chapter 3 introduces
the fundamentals of partitioned convolution. Partitions of both operands—
signal and filter—are formally defined. Common processing strategies are
reviewed. A classification of partitioned convolution techniques is presented.
The remaining part of the thesis is dedicated to the study of three of these
classes, which are useful for real-time FIR filtering. The subsequent chapter
4 reviews basic and straightforward techniques of real-time filtering using the
FFT. These techniques have in common that they do not partition the filter
impulse response. The examination of these algorithms aims at the identi-
fication of their weaknesses and as proof for the importance of higher-level
techniques, which partition the filters as well. Further aspects like filters with
multiple inputs and multiple outputs (MIMO filters), assemblies of filters and
the implementation of a time-varying filtering are firstly developed for these
conceptually simple techniques. Chapter 5 and 6 consider methods with
filter partitioning. The state-of-the-art algorithms are presented and their
properties are examined in detail. This includes the choice of parameters,
their dependencies, the algorithms’ performance and their runtime complex-
ity classes. Towards the end of both chapters the methods are reflected with
the advanced aspects, stated above. The benchmark procedure, test system
and its performance data is described in depth in chapter 7. Finally, the
findings of this thesis are summarized in chapter 8. Some guidelines on the
choice of algorithms and parameters are provided. Open scientific questions
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Figure 1.1.: Types of FIR filters and assemblies
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are quoted in the outlook. A description of real-time audio processing, com-
prehensive lists of results and additional mathematical correspondences are
found in the appendix.

1.5. Contributions

The main contributions of this thesis are:

• Review of fast convolution algorithms for real-time filtering and identifica-
tion of the most suitable methods on general purpose processors.

• Classification of partitioned convolution algorithms. The central part of
the thesis is dedicated to the examination of the three classes used for
real-time filtering: methods with a non-uniform, uniform and no filter
partitioning.

• Introduction of benchmark-based semi-empirical cost models of the algo-
rithms, allowing to capture and account for specific properties of a target
machine.

• Examination of uncommon FFT transform sizes (i.e. non powers-of-two)
for real-time filtering.

• Development of a generalized uniformly-partitioned convolution technique,
featuring individual partitions in both operands, input signal and filter.
Viable parameters and potential computational benefits are examined.

• Considerations on time-varying filtering in conjunction with frequency-
domain convolution techniques. Introduction of a computationally efficient
formulation of crossfading in the DFT domain.

• Considerations on the efficient implementation of MIMO filters with all
regarded running convolution techniques.

• Considerations on the efficient implementation of sequential and parallel
assemblies of frequency-domain filters.

• Formal derivation of general timing dependencies in non-uniformly parti-
tioned convolution techniques, also respecting individual sub filter itera-
tions.

• Derivation of the runtime complexities of all regarded real-time filtering
techniques. Comparison of their computational costs for different filter
lengths and latency requirements (block lengths).

• Guidelines for the choice of algorithms and selection of parameters for
real-time FIR filtering.
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2. Fast convolution techniques

This chapter gives an overview of fast convolution algorithms and their his-
toric evolution. All techniques are reviewed with respect to the previously
enumerated objectives and requirements (see section 1.3). The objective of
this chapter is to identify the algorithms with the least computational com-
plexity and usability for real-time filtering techniques, which are subject of
the subsequent chapters.

A fundamental design technique for fast convolution algorithms is to express
convolution operations with the concepts and tools of another mathematical
field. This facilitates it to apply methods from this field to the original prob-
lem. All fast convolution methods have origins in linear algebra, polynomial
algebra and number theory or combine techniques from these fields. Ma-
trix diagonalization in linear algebra is a corner stone of transform-based fast
convolution algorithms–like FFT-based fast convolution. This class marks
the most important class and is reviewed in the most detail in this chapter.
Another technique known as interpolation-based convolution has its roots in
classical algebra. It makes use of polynomial interpolation to derive simpli-
fied equations for discrete convolutions, with fewer terms than the discrete
convolution sum. Last but not least did number theory lead to many, often
revolutionary, new approaches. Many of these techniques were conceived in
the area of fast Fourier transform algorithms and then later applied to con-
volution methods as well. The central concept thereby have become factorial
rings and fields (e.g. calculations modulo integers or polynomials). Many
techniques involve the chinese remainder theorem (CRT).

In the almost 60 years that passed since the famous paper by Cooley and
Tukey [24] had been published in 1965, the fast Fourier transform certainly
became very popular and probably the most important tool in digital signal
processing. Today, most people associate fast convolution with FFT-based
convolution algorithms. And there are several good arguments, why FFT-
based convolution is an excellent choice. For instance, the intensive research
that has been done on fast algorithms and the availability of very matured
high-performance libraries. However, several other approaches to fast convo-
lution have been researched as well. Nowadays, many of these techniques are
overshadowed by the enormous success of FFT convolution. FFT-based fast
convolution can be thought of as the reference method—not only in this the-
sis, but also in practice. This chapter scrutinizes this statement and therefore,
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2. Fast convolution techniques

carefully analyzes and compares the algorithmic complexity of very different
fast convolution methods. It poses the simple, yet fundamental question: Is
FFT-based convolution nowadays the most reasonable technique for real-time
FIR filtering on general-purpose processors?

The chapter is organized as follows: In the beginning the elementary opera-
tions of linear and circular convolution are reconsidered and their relations
to the different mathematical areas are shown up. The remaining part of the
chapter is dedicated to the review of the three important classes of algorithms,
which were enumerated above. Emphasis lies on the most important tech-
niques, in particular FFT-based convolution, but a comprehensive overview
of the field is aimed. Most of the methods discussed here, were initially not
designed for real-time processing. It is evaluated how they can be adapted
to suit this purpose. If possible, the computational complexity is reviewed.
The chapter ends with a summary of the methods.

2.1. Discrete convolution

Discrete convolution is an operator for two sequences x(n) and h(n) of indef-
inite lengths. It is defined by the well-known formula [74]

y(n) = x(n) ∗ h(n) =

+∞∑
k=−∞

x(k) · h(n− k) (2.1)

= h(n) ∗ x(n) =

+∞∑
k=−∞

h(k) · x(n− k)

The result of this convolution operation x(n) ∗ h(n) is a sequence y(n), also
of indefinite length. In signal processing the sequences are referred to as
signals.

Discrete convolution is of fundamental importance in system theory. Given
a linear and time-invariant system (LTI system), which is fully described by
its impulse response h(n), the discrete convolution in Eq. 2.1 defines the

h(n)

LTI systemInput signal Output signal

x(n) y(n) = x(n) h(n)

Figure 2.1.: Correspondences between the input signal, the output signal and
the filter impulse response of a linear time-invariant system
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resulting signal y(n) at the output of the system, when a discrete-time signal
x(n) is given into its input (figure 2.1). h(n) is the filter impulse response or
short filter. Signals of indefinite length are needed for theoretical analysis.
In practical applications on computers, at least the filter h(n) has a definite
length (finite impulse response). The domain K of sample values x(n), y(n)
and filter coefficients h(n) can be integers (Z), real numbers (R) or complex
numbers (C) in floating representation.

Two different cases of discrete convolution can be distinguished in Eq. 2.1

• The convolution of two sequences which both have finite lengths. This
marks the most general convolution operation on computers. It is the
standard operation for offline audio processing, e.g. filtering an audio
file with a specific finite impulse response.

• The convolution of infinite-length sequence with a finite-length sequence,
often called running convolution. A typical application is FIR filtering
of a (potentially) infinite stream of audio samples x(n) with a filter
impulse response h(n) of a finite length N . This is a typical real-time
application, where the output samples y(n) are continuously computed
from the input samples x(n) with only a small amount of latency. On
computers this is done by means of blocks (or frames) of a specific block
length B.

The operator in Eq. 2.1 is linear convolution. The relations in Fig. 2.1
are only fulfilled by this operator, making it the desired type of convolution
in audio filtering applications. Further discrete convolution operations are
known, for instance circular convolution (Sec. 2.3), symmetric convolution
or skew-symmetric convolution (Sec. 2.5.6). These operators have favorable
mathematical properties. Very often, they are used to realize the desired
linear convolution (Sec. 2.3 and Sec. 2.5.6).

2.2. Linear convolution

The linear convolution (symbolized by ∗) of a potentially infinite-length
sequence x(n) with a length-N filter h(n) = h(0), . . . , h(N −1) is defined
as [73, 74]

y(n) = x(n) ∗ h(n) =

N−1∑
k=0

x(n− k) · h(k) (2.2)

The resulting sequence y(n) is a superposition of shifted versions x(n− k) of
the original sequence x(n), weighted by the filter coefficients h(k).

In case that both sequences x(n) = x(0), . . . , x(M−1) and h(n) = h(0), . . . ,
h(N−1) have finite lengths M,N ∈ N, the summation in Eq. 2.2 is limited
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2. Fast convolution techniques

to indices k for which both sequences, the shifted x(n− k) and h(k), overlap
in at least one element (0≤ n−k ≤M−1 ∧ 0≤ k ≤N−1). Outside these
index intervals the values x(n − k) and y(k) are undefined. This yields the
definition of linear convolution of two finite-length sequences

y(n) = x(n) ∗ h(n) =

min{n−M+1,N−1}∑
k=max{0,n}

x(n− k) · h(k) (2.3)

From the necessary overlapping of the sequences x(n−k) and h(k) it follows,
that the output sequence y(n) has the length M +N − 1.

Matrix-vector product formulation

Linear convolution in Eq. 2.2 can be interpreted as a matrix-vector product of
the form ~y = H~x in Eq. 2.4. Burrus and Parks provide detailed explanations
on the relations between convolution algorithms and matrix operations in
their textbook [21] and give several examples. Let in the following K be a
field. KM denotes the M -element vector space over the field K. KM×N is
the set of all M×N matrices defined over K.

The sequence x(n) corresponds to a M -element vector ~x = [x0 · · ·xM−1]> ∈
KM and y(n) to a vector ~y = [y0 · · · yM+N−2]> ∈ KM+N−1 with M +N − 1
elements accordingly. H ∈ KM+N−1×M is a convolution matrix with M +
N − 1 rows and M columns. Its columns contain shifted versions of the
sequence h(n), padded by zeros.


y0

y1

...
yM+N−2

 =



h0 0 . . . 0 0

h1 h0 . . .
...

...
h2 h1 . . . 0 0
... h2 . . . h0 0

hN−2

... . . . h1 h0

hN−1 hN−2

. . .
... h1

0 hN−1 . . . hN−3

...
0 0 . . . hN−2 hN−3

...
...

... hN−1 hN−2

0 0 0 . . . hN−1



·


x0

x1

...
xM−1

 (2.4)
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Polynomial product formulation

Linear convolution can also be defined by polynomial products [13]. Se-
quences are represented by polynomials as algebraic structures. The values
x(0), . . . , x(M−1) and h(0), . . . , h(N−1) can be interpreted as polynomial
coefficients x0, . . . , xM−1 and h0, . . . , hN−1 of their two generating polyno-
mials X,H ∈R[z] with deg(X) = M − 1 and deg(H) = N − 1. R[z] denotes
the ring of polynomials defined over a ring or field R and the variable z.1

X =

M−1∑
n=0

x(n)zn = x(0) + x(1)z + x(2)z2 + · · ·+ x(M−1)zM−1 (2.5)

H =

N−1∑
n=0

h(n)zn = h(0) + h(1)z + h(2)z2 + · · ·+ h(N−1)zN−1 (2.6)

Operations on the sequences, like addition, multiplication and shifting, map
to operations within polynomial algebra, for instance polynomial addition
and multiplication. The linear convolution of the sequences x(n) and h(n)
corresponds to the polynomial product

y(n) = x(n) ∗ h(n) =̂ Y = X ·H (2.7)

The resulting polynomial Y ∈R[z] has the degree deg(Y ) = M+N−2

Y =

M+N−2∑
n=0

ynz
n = y0 + y1z + y2z

2 + · · ·+ yM+N−2z
M+N−2 (2.8)

with yk =

k∑
i=0

xihk−i (2.9)

Its coefficients y0, . . . , yM+N−2 are defined by a linear convolution in Eq. 2.9
and they correspond to values of the output sequence y(n).

Computational complexity

The simplest way to compute a linear convolution is to evaluate the Eq. 2.2
for all output samples. Sometimes, this is cited as direct convolution. In
signal processing, this corresponds to filter the input samples with a tapped
delay-line (TDL), as shown in Fig. 2.2. In the following the required number
of arithmetic operations is derived.

1In this work z is favored as a polynomial variable, as x is used for sequences and
signals.
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h(0)

z
-1

h(1)

z
-1

h(2)

z
-1

h(N-1)

x(n)

y(n)

Figure 2.2.: Direct-form FIR filter (tapped delay-line)

Firstly, the running convolution of an infinite input signal with an N -point
filter is considered. As the length of the input signal is quasi-infinite, the
computational complexity is assessed by the number of arithmetic operations
that are necessary to compute one sample of filtered output. Evaluating Eq.
2.2 for one output value y(n) requires N multiplications and N−1 additions.
The number of arithmetic operations T (N) per filtered output sample for the
direct running linear convolution with a N -tap filter is

T (N) = 2N−1 ∈ O(N) (2.10)

Secondly, the number of arithmetic operations T (M,N) for the linear con-
volution of two sequences with finite lengths M,N is derived from the cor-
responding N -tap FIR filter (Fig. 2.2). The filtering processing can be split
into three phases:

• Within the first N−1 steps the accumulators of the filter are getting
filled with input samples. Before, they contained zeros. The number
of operations in this phase is
N−1∑
i=1

(2i− 1) = N2 − 2N + 1.

• In the next M−N+1 steps all accumulators contain input samples and
Eq. 2.10 applies. The number of operations in this phase is (M−N+
1)(2N − 1).

• Now all M input samples have been given into the filter and within the
next N−1 the accumulators fill up with zeros again. Here the number
of operations is the same as in the first phase.

The total number of operations is 2(N2−2N+1) + (M−N+1)(2N − 1).
Simplifying this expression, the exact number of arithmetic operations for an
M×N direct linear convolution is

T (M,N) = 2MN − (M+N−1) ∈ O(M ·N) (2.11)
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2.3. Circular convolution

Zeros in the accumulators of an FIR filter should not be neglected. A 16×16
linear convolution requires 481 operations. Computing a 16-point running
convolution for the same number of 16+16−1 = 31 output samples demands
312 = 961 operations.

The time complexity of an N×N direct linear convolution lies within O(N2).
Any algorithm that computes the same result in a time complexity lower
than O(N2) is considered a fast linear convolution method in the following.

2.3. Circular convolution

Linear convolution is aperiodic (or non-cyclic) [73]. Many fast convolution
algorithms perform the convolution operation within the domain of some
discrete transform (e.g. the DFT), where it can be realized more efficiently.
Most of these transforms assume some periodicity of the sequences. The
assumption of periodic sequences leads to an adapted formulation of discrete
convolution, which is known as cyclic or circular convolution.

Let x(n) be a sequence of the finite length N ∈N. The periodic continuation
of x(n) is defined as x̃(n) = x〈n〉N , where the indices −∞ < n < ∞ are
evaluated modulo the period N . 〈·〉N denotes the residual of the integer n
modulo N [68]: 〈n〉N = k ⇔ n ≡ k mod N . x̃(n) is periodic in N samples.

The N -point circular convolution (symbolized by ~) of two length-N se-
quences x(n) and h(n) is defined as the sum [74]

ỹ(n) = x(n) ~ h(n) =

N−1∑
k=0

x̃(n− k) · h̃(k) =

N−1∑
k=0

x〈n− k〉N · h(k) (2.12)

As the indices of the reversed and shifted sequence x〈n− k〉N are evaluated
modulo N , the output sequence ỹ(n) is periodic in every N th element as well.
Therefore, it is fully determined by N values of ỹ(n) and has the length N .
As the index k is in the range 0≤k<N anyway, the modulo operation can
be dropped for the term h(k).

Matrix-vector product formulation

The matrix-vector product representation of N -point circular convolution has
the form ~̃y = C~x. The length-N sequences x(n), h(n) and ỹ(n) correspond

to N -element vectors ~x,~h, ~̃y∈KN . C = (ci,j) ∈ KN×N is an N×N Toeplitz
matrix, called circulant matrix (or circular convolution matrix ) [19]. Its
elements are ci,j = h〈i−j〉N (with indices 0≤ i, j < N). C has the special
property that each row or column vector is a copy of its neighboring row
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2. Fast convolution techniques

or column vectors, shifted by one element. An example length-5 circular
convolution has the form

ỹ0

ỹ1

ỹ2

ỹ3

ỹ4

 =


h0 h2 h1 h0 h2

h1 h0 h2 h1 h0

h2 h1 h0 h2 h1

h0 h2 h1 h0 h2

h1 h0 h2 h1 h0

 ·

x0

x1

x2

x3

x4

 (2.13)

Where in a linear convolution matrix the column vectors are zero-padded and
shifted versions of the sequence h(n), the circulant matrix contains shifted

versions of the N -periodic continuations h̃(n).

Circulant matrices have an important mathematical property: Their eigen-
values λ0, . . . , λN−1 are linear combinations of the filter coefficients h(n) with
powers of primitive N th roots of unity WN = e−2πi/N ∈ C in the complex
number plane [43]

λj =

N−1∑
k=0

h(k)W jk
N (2.14)

This results in eigenvectors of the form

~vj =
1√
N

[
1,W j

N , (W
j
N )2, · · · , (W j

N )N−1
]>

(2.15)

Eq. 2.14 corresponds to a N -point DFT of h(n) (cp. Eq. 2.31) and
[~v0, . . . , ~vN−1] (Eq. 2.15) defines an eigenvector basis of C. Hence the DFT
diagonalizes a circulant matrix, resulting in the cyclic convolution prop-
erty (CCP). These relations are reviewed in more detail in section 2.5.1.

Polynomial product formulation

Circular convolution can be defined using polynomial products as well. The
essential difference lies in the algebraic structure, in which the computation is
performed. For linear convolution it is computed in the polynomial ring R[z].
In order to obtain circular convolution, the calculation need to be performed
in modular arithmetic over the quotient polynomial ring R[z]/(zN − 1) with
a polynomial modulus zN − 1 [13]. All polynomials P ∈ R[z]/(zN − 1) have
a degree deg(P ) ≤ N . The circular convolution can be computed directly
from the linear convolution polynomial Y = X · H ∈ R[z] by evaluating Y
modulo zN− 1 [13], realizing the fold-back of overlapping samples into the
N -point period.

y(n) = x(n) ~ h(n) =̂ Y ≡ X ·H mod zN− 1 (2.16)

16



2.4. Interpolation-based fast convolution

This is illustrated in the following example (N = 3):

x =
[
2 −1 3

]
X = 2− z + 3z2

h =
[
1 2 −1

]
H = 1 + 2z − z2

x ∗ h =
[
2 3 −1 7 −3

]
X ·H = (2− z + 3z2) · (1 + 2z − z2) =
2 + 3z − z2 + 7z3 − 3z4

x~ h =
[
9 0 −1

]
X ·H = 2 + 3z − z2 + 7z3 − 3z4 =
(7− 3z) · (z3 − 1) + (9− z2)
X ·H mod z3 − 1 = 9− z2

Example 2.1: Convolutions and corresponding polynomial products

Linear convolution using circular convolution

Linear-convolution can be implemented using circular convolution. This
makes fast circular convolution algorithms applicable for linear filtering. The
relations between both operations are illustrated by the examples in figure
2.3. Let x(n) be a length-M sequence and h(n) a length-N sequence. The
result of an M×N linear convolution has the length M+N−1. The K-point
circular convolution equals a M×N linear convolution, when its period K
is sufficiently large, so that the M+N−1 samples do not overlap in time
(avoiding time-aliasing)

RM+N−1

{
PK{ x(n) } ~K PK{ h(n) }

}
= x(n) ∗ h(n) ⇔ (2.17)

K ≥M +N − 1 (2.18)

For completeness, PK is a padding operator appending zeros until a length
K and RM+N−1 is a rectangular window, cutting out the first M+N−1 values
of the sequence. Given that condition 2.18 is violated and K < M+N−1,
it is not guaranteed that the linear convolution results do not overlap and
consequently does the equality Eq. 2.17 not hold anymore.

2.4. Interpolation-based fast convolution

The class of methods reviewed first are interpolation-based fast convolu-
tion techniques. These are fast algorithms for computing linear convolutions
and found on the polynomial product formulation, introduced in section 2.2.
Computing the linear convolution x(n) ∗ h(n) translates to the problem of
finding the polynomial coefficients y0, . . . , yM+N−2 of Y (z) (Eq 2.8), as moti-
vated in section 2.2. They can be calculated using direct discrete convolution
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2. Fast convolution techniques

x h y

M N M+N-1

M×N linear convolution

K-point circular convolution (K=M+N-1)

x 0 x x 0··· ···

h 0 h h 0··· ···

··· ···y y

Oversized period (K > M+N-1)  Valid results

··· ···y

Undersized period (K < M+N-1)  Time-aliasing

··· ···≠y≠y ≠y

y

period K

0 00 y

0

0

y

Figure 2.3.: Realizing linear convolution by circular convolution
for two example sequences2

(Eq. 2.9), resulting at the runtime complexity of O(M ·N) (cp. section 2.2).
A computational advantage arises from transforming the problem of find-
ing the coefficients yi into an interpolation problem. This allows obtaining
formulations (sequences of terms) of linear convolutions that have less arith-
metic operations than the naive evaluation. The mathematical framework
for interpolation-based convolution is the class of Toom-Cook algorithms. A
particular method is the Karatsuba algorithm [54]. It has a runtime com-
plexity O(N log2 3) ⊂ O(N2) and is hence considered fast here (cp. section
2.2), although it is asymptotically slower than transform-based approaches
in O(N logN). Unfortunately, interpolation-based techniques become ineffi-
cient for longer filters and suit short convolutions only. Their relevance for

2Correct scaling is neglected
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2.4. Interpolation-based fast convolution

real-time filtering (also with longer filters), stems from their use in accelerat-
ing partition convolutions [47] in conjunction with multi-dimensional index
mapping (see section 2.6.1). The index mapping techniques are introduced in
section 2.6.1 and their application for real-time FIR filtering is reviewed. For
a detailed introduction the reader is referred to the textbook by Blahut [13].
Part of this section is the derivation of the exact number of operations for
the Karatsuba convolution algorithm, enabling the comparison to alternative
methods.

2.4.1. Toom-Cook algorithm

The Toom-Cook algorithm was originally conceived by Toom [110] in 1963
as a method for fast integer multiplication. Later in 1966, Cook [23] im-
proved the algorithm. Blahut [13] shows how the technique can be used to
implement linear convolution. As motivated above, the problem of linear con-
volution corresponds to finding the coefficients yk of the product polynomial
Y (z) = X(z) ·H(z). A fundamental consideration is, that the resulting poly-
nomial Y (z) has deg(Y ) = M +N − 2 and is therefore uniquely determined
by M + N − 1 data points. Instead of explicitly multiplying the polynomi-
als X(z) · H(z) using the discrete convolution in Eq. 2.9, the Toom-Cook
algorithm evaluates the polynomials X(z) and H(z) for a set of data points
αi and then multiplies their values Y (αi) = X(αi) ·H(αi). Afterwards the
product polynomial Y (z) is constructed using Lagrange interpolation and its
coefficients yk are obtained. The algorithm consists of three phases:

1. M +N − 1 distinct supporting points α0, . . . , αM+N−2

(∀i, j : i 6= j → αi 6= αj) are chosen.

2. X(αi) and H(αi) are evaluated for all supporting points αi and
multiplied Y (αi) = X(αi) ·H(αi).

3. Y (z) is constructed from the M +N − 1 data points (αi, Y (αi))
using Lagrange interpolation

Y (z) =

M+N−2∑
n=0

Y (αi)Li(z) Li(z) =

M+N−2∏
k=0
k 6=i

z − αi
αk − αi

(2.19)

The interpolation approach results in an alternative formulation of linear
convolution, in form of a sequence of terms. These terms group common
expressions and remove redundant computations, resulting in less operations
than the corresponding direct convolution. Hence, the Toom-Cook method
allows deriving fast algorithms for short convolutions. Technically, it com-
putes a factorization H = CGA of the convolution matrix H (Eq. 2.4) [13],
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2. Fast convolution techniques

where G is a diagonal matrix. Given two lengths M,N ∈ N, its parameters of
the Toom-Cook algorithm are the M +N − 1 supporting points αi. Ideally,
the αi are chosen to be small integers, like 0 and ±1. Then the matrices
C and A consist of 0,±1, making it possible to realize them by a number
of pre- and post-additions, but without multiplications. For longer convolu-
tions further supporting points αi have to be chosen. This requires to use
larger integers like ±2,±4, . . . , which show up within the matrices C and
A. Unfortunately, this increases the number of multiplications significantly,
making the Toom-Cook algorithm reasonable for short convolutions only.

2.4.2. Karatsuba algorithm

In 1962 Karatsuba and Ofman [54] published an algorithm for fast multipli-
cation of large numbers with many digits, widely known as the Karatsuba
algorithm. For several decades, the algorithm was the de facto fastest known
multiplication algorithm for practical problem sizes. This made it a very
important tool for the design of hardware multipliers in integrated circuits.
Although the original Karatsuba algorithm was originally conceived for fast
multiplication of integers, it can also be applied to other algebraic struc-
tures, allowing fast polynomial multiplication and as well fast convolution.
Blahut [13] presented how the Karatsuba technique, which can be consid-
ered a special case of the modified Toom-Cook algorithm, can be applied
for fast convolution. Hurchalla [47] showed, that the decomposing scheme
of the Karatsuba algorithm conforms with real-time constraints, making the
algorithm applicable for low latency filtering. The Karatsuba algorithm is a
classic example for a divide-and-conquer strategy. Let x(n) and h(n) be two
length-2N sequences. Both sequences are split in half, forming four length-N
subsequences

x0(n) = x(0), . . . , x(N − 1) h0(n) = h(0), . . . , h(N − 1)

x1(n) = x(N), . . . , x(2N − 1) h1(n) = h(N), . . . , h(2N − 1)

The 2N×2N -linear convolution x(n) ∗ h(n) can be expressed using four
N×N -sub convolutions [47]

y0(n) = x0(n) ∗ h0(n) (2.20)

y1(n) = x0(n) ∗ h1(n) + x1(n) ∗ h0(n) (2.21)

y2(n) = x1(n) ∗ h1(n) (2.22)

The desired output sequence y(n) of length 4N−1 is overlap-added from the
sequences y0(n), y1(n), y2(n) of length 2N − 1 (as illustrated in Fig. 2.4)

y(n) = y0(n) + y1(n−N) + y2(n− 2N) (2.23)
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2.4. Interpolation-based fast convolution

y2(N � 2N-2)y2(0 � N-1)

y1(N � 2N-2)y1(0 � N-1)

y0(0 � N-1) y0(N � 2N-2)

N

Figure 2.4.: Overlap-Add scheme used in the
Karatsuba convolution algorithm

The Karatsuba algorithm founds on the following equivalence

y1(n) =x0(n) ∗ h1(n) + x1(n) ∗ h0(n)

= [x0(n) + x1(n) ] ∗ [h0(n) + h1(n) ] (2.24)

− x0(n) ∗ h0(n)︸ ︷︷ ︸
=y0(n)

−x1(n) ∗ h1(n)︸ ︷︷ ︸
=y2(n)

It allows computing the Eq. 2.20-2.22 using three N×N -sub convolutions
instead of four, thus saving one N×N -sub convolution. However, this comes
at the expense of 2N further additions ([x0(n) + x1(n)], [h0(n) + h1(n)]) and
2 × (2N − 1) subtractions (−y0(n),−y2(n)). The full potential of this trick
is unleashed, when the equivalance is applied recursively. Therefore N =
2k(k ∈ N) is considered to be a power of two. This results in the Karatsuba
convolution algorithm, where two length-N sequences (N a power of two)
are recursively decomposed and the reduction Eq. 2.24 is applied in every
stage. The decomposition ends in trivial 1×1-convolutions y(0) = x(0)·h(0).

Computational complexity

The runtime complexity of the Karatsuba multiplication algorithm is
O(N log2 3) [57]. This class also holds for the Karatsuba convolution method.
The actual number of operations depends on the implementation. A detailed
runtime analysis of the presented algorithm is carried out in the following,
revealing the exact number of arithmetic operations, which is used for later
comparisons.

The trivial case of an 1× 1-convolution requires a single multiplication
(y0 = x0 · h0). Let now N = 2k(k ∈ N) be a power of two. Each N×N -
Karatsuba convolution recursively computes three N/2×N/2-Karatsuba
convolutions (Eq. 2.20, 2.22 and 2.24). Before this step, the intermedi-
ate sequences [x0(n) + x1(n)], [h0(n) + h1(n)] have to be added, requiring
2 × N/2 = N additions. Then, the subtractions in Eq. 2.24 must be per-
formed on 2 × (N − 1) overlapping elements. Finally, the computed inter-
mediate sequence y1(n) is overlap-added to the (non-overlapping) sequences
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2. Fast convolution techniques

y0(n) and y2(n). On close examination, this step consumes N−2 additions, as
only N−2 samples actually overlap (see figure 2.4). Alltogether the number
of arithmetic operations T (N) is given by the recurrence

T (1) = 1, T (N) = 3T

(
N

2

)
+ 4N − 4 (2.25)

It is helpful to rewrite this expression using the exponent k

T ′(0) = 1, T ′(k) = 3T ′(k − 1) + 4 · 2k − 4 (2.26)

By nesting, this equation can then be transformed into the explicit form

T ′(k) = 7 · 3k − 8 · 2k + 2 (2.27)

Reinserting the definition of N finally yields the total number of arithmetic
operations for a N×N -Karatsuba convolution

T (N) = 7 · 3log2 N − 8N + 2 (2.28)

The runtime complexity class of the algorithm is found by applying the Mas-
ter theorem [25] to Eq. 2.26. This yields the known [57] runtime complexity
class of O(N log2 3). Considering that O(N log2 3) ⊂ O(N2) the Karatsuba al-
gorithm can be considered a fast convolution algorithm, working entirely in
the time-domain. Nevertheless, it is asymptotically slower than O(N logN)
convolution methods (e.g. FFT convolution, cp. Sec. 2.5.2).

2.4.3. Improved Karatsuba convolution

A direct 2×2 linear convolution (Eq. 2.3) has the form

[ x(0)·h(0), x(0)·h(1) + x(1)·h(0), x(1))·h(1) ] (2.29)

and requires five arithmetic operations (four multiplies and one addition). In
contrast, a 2×2 Karatsuba convolution is slightly more complex

[ x(0)·h(0)︸ ︷︷ ︸
=y0(0)

, (x(0) + x(1)) · (h(0) + h(1))− y0(0)− y2(0), x(1)·h(1)︸ ︷︷ ︸
=y2(0)

] (2.30)

consuming seven operations (three multiplies, two additions and two subtrac-
tions). Hence, the Karatsuba ‘trick’ turns out not to be beneficial in every
case. As the method decomposes a large convolution into a large number of
small 2×2 convolutions, these small convolutions do strongly affect the overall
computational complexity of the entire method. Therefore, the author sug-
gests two improvements over the original method [47]: (1) By implementing
2×2 convolutions using direct convolution, the performance can be signifi-
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2.4. Interpolation-based fast convolution

cantly improved. Table 2.1 shows the number of arithmetic operations for
N×N linear convolutions, including the direct approach and the Karatsuba
variants. Apart from interpolation-based approaches, algorithms for very
short lengths (N<10) can be derived by hand, offering some additional sav-
ings. Several authors list such short convolution templates—for instance for
linear convolution [5, 47] and for circular convolution [73, 13]. Agarwal and
Cooley propose a 4×4 linear convolution template that requires 20 opera-
tions (five multiplies and 15 additions), saving five operations over the direct
convolution. The proposed method (2) combines it with the Karatsuba al-
gorithm, so that the Karatsuba decomposition stops at N = 4 and then the
template is used. The second approach saves even more operations. In order
to constrast the results, table 2.1 also includes the complexity of FFT-based
convolution [105] (see Sec. 2.5.2). The data in table 2.1 is visualized in fig-
ure 2.5. The numbers consider an implementation using three 2N real-data
FFTs [50]. It can be seen that the Karatsuba algorithm is not only fast by
means of its asymptotic behaviour, but also in the actual number of opera-
tions. This is remarkable in face of that the algorithm works entirely in the
time-domain. The improved variant (2) outperforms the direct approach for
length N ≥ 4. Interestingly, it also outperforms the FFT-based convolution
for lengths N < 128. However, these break-even points might differ in prac-
tice. It turned out to be rather challenging to fully develop the Karatsuba
technique with respect to exploitation of the available processor capabilities.
In contrast high-performance FFT libraries are technically very matured (cp.
FFT algorithms in Sec. 2.5.2 and benchmarks in Sec. 7.4).

100
101
102
103
104
105
106
107

1 2 4 8 16 32 64 128
256

512
1k 2k 4k

A
rit

hm
et

ic
 o

pe
ra

tio
ns

Operation size N

Direct convolution
Improved Karatsuba convolution (2)
FFT convolution

Figure 2.5.: Arithmetic complexity of direct N×N linear convolution,
Karatsuba convolution and real-data FFT-based fast convolution
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2.5. Transform-based fast convolution

2.4.4. Conclusions

The Karatsuba algorithm is an important case of the general class of Toom-
Cook algorithms. It is applicable only for power-of-two sizes N = 2k. How-
ever, Toom-Cook algorithms can be derived for many other combinations of
lengths M×N [13]. Hurchalla [47] presents decompositions into three, four
and five parts.

From the results in table 2.1 it can be concluded, that interpolation-based
fast convolution algorithms offer significant computational savings over direct
time-domain filtering. Here, the author showed how the Karatsuba technique
can be further improved by the use of optimized convolution templates. For
short lengths, these methods might also be an alternative to FFT-based
convolution—given a well-thought implementation.

However, interpolation-based convolution methods can also be seen from a
different perspective: they provide efficient schemes to decompose large con-
volutions into small ones. The fundamental constraint for real-time process-
ing is that these schemes are real-time capable (detailed discussion of these
constraints in chapter 6). Hurchulla [47] showed for the Karatsuba algorithm,
that even with full nesting, all partial convolution results can be computed
in time, making the algorithm real-time compliant. The algorithm does not
introduce additional latencies, as all of its nested sub convolutions can be
computed in time. However, there is no general ‘zero-latency ’ property for
the theoretical framework of interpolation-based convolution. Examples of
Toom-Cook algorithms can be found [47], where the execution order of the
sub convolutions inherits timing dependencies, that result in a large latency.

2.5. Transform-based fast convolution

The most important class of fast convolution algorithms, with most frequent
use in practice, are transform-based fast convolution methods. They found
on two cornerstones: Firstly, a discrete transform, in whose domain the con-
volution operation is simpler to compute (lower complexity class). Secondly,
a fast algorithm to compute the transform in less than O(N2), typically
O(N logN).

A method that revolutionized fast convolution is FFT-based fast convolu-
tion, published by Stockham [105] in 1966, one year after Cooleys and Tukeys
renowned FFT algorithm [24]. Today it is still the most widely known and
commonly used fast convolution technique and became widely a synonym for
fast convolution. The cyclic convolution property (CCP) of the DFT states,
that circular convolution in the time-domain corresponds to the pair-wise
multiplication of spectral coefficients in the DFT domain. The mathemat-
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2. Fast convolution techniques

ical origin of this relation can be traced back to matrix diagonalization in
linear algebra. By computing DFTs using FFT algorithms, a fast circular
convolution method in O(N logN)⊂O(N2) is obtained. With appropriate
zero-padding, the technique can be used to realize fast linear convolution as
well.

The DFT demands complex-valued arithmetic, which especially on those
early day computers was rather expensive to realize. This motivated re-
search in real-valued transforms. A promising alternative to the DFT was the
discrete Hartley transform (DHT). Other considered candidates are discrete
trigonometric transforms (DTTs), including the variety of discrete sine trans-
forms (DSTs) and discrete cosine transforms (DCTs). Fast algorithms exists
for all of the cited transforms. Unfortunately, none of them holds the strict
CCP and thus, spectral convolutions become more than just a pairwise prod-
uct of spectral coefficients. For discrete trigonometric transforms (DTTs) in
particular, such a convolution multiplication property (CMP) only exists for
special convolution operators. Yet the real-valued transform techniques are
worth the consideration as an alternative to FFT-based convolution, in par-
ticular when hardware transformers are available or the input data is already
within the domain of the transforms.

All of the above mentioned transforms are defined over trigonometric func-
tions and hence rely on floating-point arithmetic. Interestingly, integer-based
transforms with similar properties as the DFT exist. A starting point was
the extension of the DFT to finite fields by Pollard [75] in the 1970s. In-
stead of using the complex number plane, a transform of similar structure
to that of the DFT can be defined in modulo arithmetic over integers. In
successive years a variety of methods has been proposed, which constitutes
the class of number theoretic transforms (NTTs). These transforms have the
CCP. The existence of fast NTTs algorithms allows realizing a numerically
exact fast convolution without round-off errors. Especially for the design of
hardware convolution units, they turned out to be very beneficial, reducing
the complexity of circuits. However, number theoretic transform (NTT)-
based convolution never reached the same level of popularity as FFT-based
convolution.

This section reviews transform-based convolution techniques in the face of
real-time filtering and identifies the computationally most efficient one. As-
pects of hardware design are not considered here. The focus lies on software
implementations on current general purpose processors. A main part of the
section is dedicated to the review of FFT-based convolution. Improvements
to the original FFT-based convolution technique are discussed. The compu-
tational complexity of the FFT convolution techniques is carefully examined.
Afterwards, real-valued transforms and NTTs are discussed as alternative
techniques. It is outlined how convolution can be realized in the domains of

26



2.5. Transform-based fast convolution

these transforms. The complexity is analyzed and is compared to the one of
the FFT-based approach, determining if they are actual alternatives.

2.5.1. Discrete Fourier Transform

The length-N discrete Fourier transform (DFT) [73, 21, 74] transforms a
sequence x(n) = x(0), . . . , x(N−1) into a N -point DFT spectrum X(k) =
X(0), . . . , X(N−1) (Eq. 2.31). x(n) can be recovered from the DFT spectrum
X(k) using an inverse DFT (Eq. 2.32).

x(n)
DFTc s X(k) =

N−1∑
n=0

x(n) e−2πink
N =

N−1∑
n=0

x(n)Wnk
N (2.31)

X(k)
DFT−1s c x(n) =

1

N

N−1∑
k=0

X(k) e2πink
N =

1

N

N−1∑
k=0

X(k)W−nkN (2.32)

The kernels Wnk
N and W−nkN of the DFT and IDFT are powers of the N th

primitive root of unity W−2πi/N in the complex number plane C. In general,
the input and output values are complex numbers x(n), X(k) ∈ C. Eq.
2.31 and 2.32 can also be interpreted as matrix-vector products of the form
~X = FN~x (DFT) and ~x = F−1

N
~X (IDFT), with vectors ~x, ~X ∈ CN and DFT

matrices FN , F
−1
N ∈ CN×N

FN =
(
W jk
N

)
0≤j,k<N

F−1
N =

1

N

(
W−jkN

)
0≤j,k<N

(2.33)

Circular convolution property

Within the DFT domain, the circular convolution ỹ(n) = x(n) ~ h(n) (Eq.
2.12) of two length-N sequences x(n) and h(n) can then be realized by the
element-wise multiplication of DFT coefficients (symbolized by ×) [73, 21, 74]

ỹ(n) = DFT −1
(N)

{
DFT(N){ x(n) } × DFT(N){ h(n) }

}
(2.34)

This relation is widely known and often referred to as the cyclic convolu-
tion property (CCP) [3, 5]. It can be derived by inserting the definition of
circular convolution 2.12 into Eq. 2.31 (for details see [74]). Another way
of interpretation arises from linear algebra. Written as products of matrices
and vectors, Eq. 2.34 reads

ỹ(n) = x(n) ~ h(n) =̃ ~̃y = C~x ⇔ F−1
N (FNCF

−1
N )︸ ︷︷ ︸

=diag(H)

(FN~x) (2.35)
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2. Fast convolution techniques

The DFT matrix FN (Eq. 2.33) is a Vandermode matrix consisting of powers
W jk
N of N th primitive roots of unity. Its column vectors form the basis

functions of the DFT, which are all orthogonal. Hence, FN has rank(FN ) =
N and defines a base of the vector space CN . Applying the DFT in form
of a right-multiplication FN~x can therefore be interpreted as a change of
basis (time-domain → DFT domain). The right-product F−1

N
~X corresponds

to the inverse transformation (DFT domain → time-domain). Expressing a
circulant matrix C (Eq. 2.13) within this ‘discrete Fourier basis’ turns it into
a diagonal matrix

FNCF
−1
N = diag(H(0), . . . , H(N−1)) (2.36)

with H(k) = DFT(N){ h(n) }

This holds because the DFT basis (Eq. 2.33) defines an eigenvector basis
of the circulant matrix (cp. Eq. 2.15). The elements of the diagonal ma-
trix are the discrete Fourier coefficients H(k) of the sequence h(n). These
correspondences are illustrated in example 2.2 for the case of N=4.

2.5.2. Fast Fourier Transform

Shortly after Cooley and Tukeys important FFT paper [24] in 1965, Stock-
ham proposed to use the FFT for fast convolution and correlation [105]. Until
today FFT-based convolution is arguably the most applied fast convolution
concept. This section firstly reconsiders the basic (unpartitioned) method as
suggested by Stockham [105]. Its performance is largely determined by the
FFT algorithm, which accounts for the major share of the runtime. Hence,
significant improvements can be achieved by exploiting specific properties of
the DFT and its computation using FFT techniques. Therefore, the most
important FFT algorithms, their historic development and incorporated con-
cepts are briefly reviewed subsequently. Afterwards, improvements to the
basic FFT-convolution technique are discussed, in particular those which are
of interest for audio processing (e.g. real input data). The study includes
only those aspects which are relevant for comparing the basic FFT convolu-
tion technique to other fast convolution methods. A more detailed discussion
of improvements is given in chapter 4, also with respect to computing run-
ning convolution, which is not part of this chapter. In order to analyze the
complexity bounds, special attention is payed to partial transforms. These
can be applied to lessen the increased computation that comes along with
the necessary zero-padding in order to achieve linear convolution. Concepts
of partitioning are not reviewed in this section. They are regarded in the
chapters 3-6.
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2.5. Transform-based fast convolution

x(n) =
[
2 −1 3 1

]
~x =

[
2 −1 3 1

]>
h(n) =

[
1 2 3 −1

]
~h =

[
1 2 3 −1

]>
ỹ(n) = x(n) ~ h(n)

=
[
14 3 6 2

] ~̃y = C · ~x

=


1 −1 3 2
2 1 −1 3
3 2 1 −1
−1 3 2 1


︸ ︷︷ ︸

=C

·


2
−1

3
1


=
[
14 3 6 2

]>

DFT 4 F4 =


1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i



DFT −1
4 F−1

4 =
1

4


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


X(k) = DFT 4{ x(n) }

=
[
5 −1+2i 5 −1−2i

] ~X = F4 · ~x

=
[
5 −1+2i 5 −1−2i

]>
H(k) = DFT 4{ h(n) }

=
[
5 −2−3i 3 −2+3i

] F4 · C · F−1
4 =

5 0 0 0
0 −2−3i 0 0
0 0 3 0
0 0 0 −2+3i


Y (k) = X(k) ·H(k)

=
[
25 8−i 15 8+i

] ~Y = diag(5,−2−3i, 3,−2+3i) · ~X

=
[
25 8−i 15 8+i

]>
ỹ(k) = DFT −1

4 { Y (k) }
=
[
14 3 6 2

] ~̃y = F−1
4 · ~Y

=
[
14 3 6 2

]>
Example 2.2: DFT-based length-4 circular convolution and corresponding

matrix-vector representations (C circulant matrix, F4 4-point
DFT matrix, F−1

4 4-point inverse DFT matrix)
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x(n)

h(n)

y(n)

K-point

FFT

K-point

FFT

K-point 

IFFT

Complex-valued multiplication

�K

�K

Zero-padding to length K

�M+N-1

Extraction of the first M+N-1 values

Figure 2.6.: Fast linear convolution realized by circular convolution in the
DFT domain, implemented using fast Fourier transforms (FFTs),
as proposed by Stockham [105]

FFT-based fast convolution

Let x(n) be a length-M and h(n) a length-N sequence. The M×N linear
convolution x(n) ∗ h(n) in O(K logK) can be computed in O(K logK), by
implementing Eq. 2.34 using K-point FFTs. The transform size K must
satisfy K ≥ M +N −1 (Cond. 2.18), otherwise the linear convolution is
corrupted (see section 2.5.1). Figure 2.6 illustrates this well-known method,
which was proposed by Stockham [105].

Initially both sequences are padded to length K, expressed by a padding
operator PK and transformed using K-point forward FFTs. The result-
ing K-point DFT spectra X(k) and H(k) are pairwisely multiplied using K
complex-valued multiplications. These are referred to as ‘spectral convolu-
tions’. The result is transformed back into the time-domain using a K-point
inverse fast Fourier transform (IFFT). Given that K > M+N−1 the first
M+N−1 samples are selected, represented by the trim operator RM+N−1.
The runtime complexity is a function of the transform size K, determined
by the sequence length M,N , of the following general form

TCONV-FFT(K) := 2 TFFT(K) + TCMUL(K) + TIFFT(K) (2.37)

with K ≥M +N − 1 (2.38)

The terms TFFT(K), TIFFT(K) and TCMUL(K) express the computational
complexity (number of arithmetic operations, central processing unit (CPU)
cycles or runtimes). The general formula in Eq. 2.37 will be refined in later
sections and chapters. Possible points for optimization can already be iden-
tified here: transformations and spectral convolutions. The choice of the
transform size K is crucial for the performance of the algorithm. This aspect
is reviewed in detail in section 4.1.4. If the filter h(n) remains unchanged,
the spectrum H(k) can be reused for multiple input signals and one forward
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2.5. Transform-based fast convolution

FFT can be dropped from Eq. 2.37. By time-reversing one sequence the
method can be used to compute fast correlations [105]. General DFT spec-
tra consist of complex-valued coefficients. Real-valued input data introduces
symmetries to the DFT spectra, so that effectively only half of the coefficients
need to be stored and processed. The details are examined later, at the end
of this section. The inevitable zero-padding of the input sequences is unfor-
tunately carried into the computation of the FFTs. Transform algorithms
process many ineffective zeros. Techniques to save operations from these
circumstances are reviewed in section 2.5.4 on partial transforms. A further
simplification arises for even or odd sequences, which have purely real respec-
tively imaginary DFT coefficients. The resulting arithmetic simplifications
are examined in section 2.5.3.

Computing the Fast Fourier Transform

This section gives a brief overview on the current state of the art in com-
puting the fast Fourier transform. The focus lies on the algorithmic design
principles and in particular on the decomposition techniques for obtaining
divide-and-conquer algorithms for the fast computation of the DFT. Only
the most important milestones with respect to fast convolution are outlined
here, serving as the basis for the discussion of enhancements in FFT-based
fast convolution techniques. These do not regard the FFT as a black box,
but try to exploit certain properties of the transform and the transform al-
gorithms. A compact overview on the state of the art in computing the
FFT can be found in [29]. For a more comprehensive introduction, includ-
ing the mathematical backgrounds, the author recommends the textbooks
by Nussbaumer [73] and Burrus and Parks [21].

History of the FFT

The FFT is presumably one of the most intensively researched algorithms in
history and numerous papers have been published about it [115]. In the year
2000 issue of ‘computing in science and engineering’ the FFT was credited
one of the ‘top ten algorithms of the century’ [26] with the ‘greatest influ-
ence on the development and practice of science and engineering in the 20th
century’. In 1965 John W. Tukey and James W. Cooley published a ground-
breaking paper on the fast computation of discrete trigonometric series [24].
This publication is widely considered as ‘the original fast Fourier transform’.
In their paper they derive the famous radix-2 DIT FFT algorithm as an ex-
ample, which lead to the widespread belief, that the Cooley-Tukey FFT is
only suitable to compute power-of-two FFTs. But it is not. The scientific
impact of Cooley’s and Tukey’s algorithm is reasoned by the fact, that they
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2. Fast convolution techniques

developed an algorithm for any FFT length N which is not a prime num-
ber. The essential contribution of their paper is the composition of a large
DFT into several DFTs of smaller sizes by utilizing an index-mapping tech-
nique called common-factor map (CFM). The use of this mapping requires
intermediate multiplication by complex constants, called twiddle factors [40],
which account for the most computation.

A thorough study in the mid 1980s [45] revealed that the German math-
ematician Carl Friedrich Gauss can be considered the first inventor of the
FFT. Gauss developed an algorithm which is mathematically equivalent to
the Cooley-Tukey twiddle-factor FFT. The reader is encouraged to read
the interesting paper by Heideman, Johnson and Burrus [45], from which
some key findings are cited in the following. Gauss who used his algorithm
for computing the trajectories of asteroids, did not publish the algorithm
in his lifetime. It was rediscovered posthumously from his collected publi-
cations. His invention cannot be dated accurately, but very likely it even
predates Fourier’s publications on harmonic analysis in 1807 [45]—the origin
of the discrete Fourier transform. In the following 150 years several fast al-
gorithms for discrete trigonometric series have been invented, published and
used [45] (first for some fixed length 4, 8, 12, 16, 32, later for multiples of pow-
ers 2nk, 3nk). However, none of these results were as general as Gauss’ and
Cooley’s and Tukey’s results and could be applied for arbitrary composite
transform sizes. A milestone before the Cooley-Tukey FFT was the Good-
Thomas prime-factor algorithm (PFA) [42, 109], published 1958. It allows the
efficient computation of length-N DFTs, when N is assembled from coprime
factors (e.g. 15 = 3 · 5). Thereby it makes use of an index mapping called
prime-factor map (PFM). It cannot be used for factorizations with common
factors (e.g. 20 = 2 · 10 where gcd(2, 10) = 2). The prime-factor algorithm
does not require multiplications with intermediate twiddle factors, like for
the Cooley-Tukey FFT, but unfortunately it does involve the computation
of many prime-size DFTs. Today the PFA still serves as a decomposition
principle for computing FFT of arbitrary sizes, that are not primes. Further
remarkable achievements were the publication by Rader [77] in 1968 and
Bluestein [14] in 1970, who showed how DFTs can be computed by circular
convolutions. In particular Raders method reexpresses an N -point prime-
size DFT as an N−1-point circular convolution, with the help of the discrete
logarithm [77]. Eventually, this circular convolution is then realized using
regular FFT techniques again, which do not involve prime-size transforms
anymore. This approach paved the way to fast O(N logN) algorithms for
computing prime-size FFTs. Yet it should be remarked, that these prime-
size FFTs compute several magnitudes slower than power-of-two FFTs (see
benchmarks in chapter 7). Winograd [127] suggested to use Rader’s prime-
size FFTs concept in conjunction with the PFA, where it is used to compute
prime-size FFT efficiently. This algorithm, known as the Winograd Fourier
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2.5. Transform-based fast convolution

transform algorithm (WFTA), also provides a lower bound for the number
of multiplications for an FFT. Unfortunately, the algorithm comes along
with an increased number of additions, making other techniques faster in
practice. Based on the original Cooley-Tukey CFM mapping, several other
radices (radix-4, radix-8, etc.) have been developed and it has been shown
that these transforms can save further operations over the classical radix-2
FFT [10]. A major step forward in reducing the arithmetic complexity of
the FFT happened with the invention of the split-radix FFT. Originally con-
ceived by Yavne in 1968 [129] it remained largely unnoticed for many years
[115]. Split-radix FFTs decompose an N -point DFT into two N/4-point
DFTs and one N/2-point DFT. Duhamel and Holland [27] reinventend this
decomposition concept in 1984 and popularized it. A split-radix FFT can
be computed for any transform length N that is dividable by 4. Until to-
day split-radix FFTs achieve the lowest operation counts for power-of-two
sizes N [115, 27, 50]. At the time of writing, the most recent and advanced
FFT algorithms for complex and real data for power-of-two sizes were the
split-radix algorithms by Johnson and Frigo [50]. Not only these algorithms
are part of the FFTW library [34], but also do the authors provide exact
formulas for the number of arithmetic operations. In this thesis, these two
algorithms are mostly used for theoretical comparisons.

Besides this line of developments aiming for general FFT transforms, a sci-
entific topic of great interest became specialized transforms for real-valued
input data, known as real-data FFTs. By exploiting the complex-conjugate
symmetry in DFT spectra of real-valued input data, these algorithms com-
pute an N -point real-data FFT in approximately 50-60% of the runtime of
a complex-valued N -point transform. The application of the FFT for digital
filtering was proposed by Stockham in 1966, shortly after the reinvention
of the FFT by Cooley and Tukey. Stockham [105] showed how the FFT
could be used for fast convolution and fast correlation. Realizing fast lin-
ear convolution using fast circular convolution in the DFT domain, involved
zero-padding of the input sequences. When computing running convolutions
using Overlap-Save (OLS), a subset of the IDFT output values is needed.
For these cases partial FFT transforms have been proposed. These concepts
will be reviewed in detail in section 2.5.4. The computational savings by
partial transforms for digital filtering turn out to be little. Many of the al-
gorithmic concepts derived for FFTs apply to other discrete transforms as
well [29]. This includes the discrete Hartley transform, the family of discrete
trigonometric transforms, as well as the NTTs . For all of these transforms
fast O(N logN) algorithms exist.
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Computing FFTs today

Nowadays, FFTs are mostly computed using matured high performance li-
braries, like FFTW [34], Intel’s Math Kernel Library (MKL) or Performance
Primitives (IPP), AMD’s Math Core Library (ACML) or Apples vDSP li-
brary. These libraries can be considered as collections of FFT building blocks.
FFTW is thereby of particular scientific interest, as it is open-source software
and its internal design is well-documented [36]. Furthermore, it computed
the most complete set of discrete transforms of all mentioned libraries. The
libary consists of a set of small-size fast Fourier transform (FFT) assembly
language templates, called codelets (e.g. a length-32 real-data DFT). These
templates can be specific for machines or instruction sets. On top of this,
the libray holds various decomposition schemes (e.g. a radix-2 Cooley-Tukey
decomposition). Before an FFT can be computed, the user has to plan the
transform, providing the library the transform properties (real vs. complex,
dimensions, data alignment, etc.). Then FFTW figures out the most per-
formant decomposition of the desired transform maximizing the execution
speed. This process can be guided and adjusted for other attributes (e.g.
numerical stability). The library has been extensively benchmarked by the
author for this thesis. The results are presented in chapter 7.

Real-valued input data

In audio processing, the input data and filter coefficients are usually real-
valued. TheN -point DFT (Eq. 2.31) is a complex-valued transformDFT(N) :
CN →CN , mapping N complex input values x(n) ∈ C to N complex DFT
coefficients X(k) ∈ C. For the case that all N input values are real x(n) ∈ R,
the corresponding DFT spectrum X = DFT (N){ x(n) } holds the Hermitian
symmetry [74]

X(k) = X(N−k) (2.39)

Hence, the full N -point DFT spectrum can be reconstructed from C complex-
conjugate symmetric (CCS) DFT coefficients, where

C =

⌈
N + 1

2

⌉
=

{
N
2

+ 1, N even
N+1

2
, N odd

(2.40)

Real-data FFT algorithms exploit these symmetries and compute roughly
twice as fast as their complex-valued counterparts. An N -point real-to-
complex (R2C) FFT maps N real-valued samples to C DFT coefficients (Eq.
2.40). An N -point complex-to-real (C2R) IFFT is the corresponding inverse
transform.
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Figure 2.7.: Memory layout of complex-conjugate symmetric
N -point real-data DFT spectra

Since all x(n) ∈ R, the first DFT coefficient X(0) =
∑N−1
n=0 x(n)Wn·0

N (DC
offset) is always real-valued, too. In case the transform size N is an even
number, the central DFT coefficient X(N/2) is purely real valued as well.
Figure 2.7 shows the commonly used interleaved memory layout for complex-
conjugate symmetric (CCS) DFT spectra. The zero imaginary parts can be
dropped, resulting in the most compact representation, which is known as
packed format [1]. With respect to symmetry, a real-data DFT effectively
maps N floating point elements to N floating point elements (bijection). In
the following the number of arithmetic operations required for spectra convo-
lution of two real-valued DFT spectra is analyzed. A coarse estimate arises
from the observation that only C complex-conjugate symmetric coefficients
have to be multiplied, requiring 6C operations

TCMUL-CCS(N) = 6C =


6
(
N
2

+ 1
)

= 3N + 6 N even

6
(
N+1

2

)
= 3N + 3, N odd

(2.41)

Looking into detail, all purely real-valued pairs of coefficients X(0)·H(0) and
X(N/2) · H(N/2) for even N , can be multiplied using a single arithmetic
operation, saving a couple of instructions

TCMUL-CCS(N) =


6
(
N
2
− 1
)

+ 2 = 3N − 4 N even

6
(
N+1

2
− 1
)

+ 1 = 3N − 2, N odd
(2.42)

This precise statement complicates the theoretical analysis of algorithms, as
conducted in the preceding chapters. The following simplification is often
preferred

TCMUL-CCS(N) ≈ TCMUL

(
N

2

)
= 3N (2.43)

For reasonably large N this is a close estimate. For N=128 the relative error
is 1.05% (384/380) and N=1024 it is 0.13% (3072/3068).
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2.5.3. Symmetric filters

Sequences with an even or odd symmetry have DFT spectra which are either
entirely real-valued or purely imaginary (Eq. 2.44 and 2.45) [74]. The general
complex-valued the spectral convolutions simplify in these case, which allows
saving operations. Input signals in audio processing are usually real-valued,
but they do usually not inhere these symmetries. Their DFT coefficients
are therefore complex-conjugate symmetric, but in general complex-valued.
Neither the real nor the imaginary parts do completely vanish. In contrast,
some types of filters hold the contemplated symmetries and allow further
arithmetic simplifications. For symmetric respectively antisymmetric real-
valued length-N impulse responses h(n) ∈ R the following relations hold

h(n) = h(N − n) even

DFT(N)c s H(k) real (Im{H(k)} = 0) (2.44)

h(n) = −h(N − n) odd

DFT(N)c s H(k) imag. (Re{H(k)} = 0) (2.45)

A class of filters that satisfies these properties are causal generalized linear
phase FIR filters [74]. In acoustic virtual reality they are for instance used in
the form of linear-phase wall-impedance filters in room acoustic simulation
methods or as headphone equalization filters.

For the case that the impulse response is real and even, the spectral con-
volutions can be realized using just two multiplies (Eq. 2.46) instead of
six operations per DFT coefficient. Accordingly, for an odd symmetry an
additional change of sign is necessary (Eq. 2.47).

(a+ bi)c = ac+ bci (2 multiplies) (2.46)

(a+ bi)di = −bd+ adi (2 multiplies, 1 negation) (2.47)

Exploiting these symmetries in practice is hindered by the following con-
straints: the necessary zero padding (cp. Sec. 2.5.1) must be realized so
that the symmetry properties (Eq. 2.44 or 2.45) are maintained. Otherwise,
complex-valued DFT coefficients appear in H(k). This can be assured by
zero-padding on both sides and claiming that h(0) = 0. However, the savings
in the arithmetic allow marginal speedups only, as the spectral convolutions
demand little computation only (see figure 4.4). In partitioned convolution
techniques the FFTs play a less dominant role and more computation falls
back to spectral convolutions. Here however, the symmetry properties are
sacrifized by the partitioning of the impulse response. Symmetries of a com-
plete (unpartitioned) filter (symmetric or antisymmetric) do not translate
into symmetries in the subfilters, thus making the simplifications unapplica-
ble. In conclusion, only little computational savings can be expected for the
case of symmetric filters.
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Computational complexity

This thesis considers several fast convolution methods which are based on
the FFT. As this chapter aims the comparison of general fast convolu-
tion concepts, one representative FFT-based convolution technique had to
be selected. Chosen was the basic method in Fig. 2.6, implemented with
real-valued FFT transforms and making use of the previously discussed sym-
metries. With these considerations, the computational costs for FFT-based
convolution in Eq. 2.37 are refined to the following function

TCONV-FFT(K) := 2TFFT-R2C(K) + TCMUL-CCS(K) + TIFFT-C2R(K) (2.48)

As before, the transform size K must hold condition 2.37 in order to achieve
linear convolution, as it is desired. An N×N linear convolution (N = 2k)
is computed with a transform size of 2N points. FFTs are computed using
the real-data split-radix FFT by Johnson and Frigo [50]. It is assumed that
the inverse FFT has the same number of operations. Spectral convolutions
account for the number of operations in Eq. 2.42. Table 2.2 lists the number
of arithmetic operations for the basic operations (FFTs, spectral multipli-
cations) and the entire algorithm. The data is completed by the costs of a
direct linear convolution in the time-domain (Eq. 2.3). It can be seen, that
the major computational load falls back on the FFTs, while spectral convo-

Length
N

Real-data
split-radix
FFT, IFFT
(Eq. in [50])

Complex
multiplies
(Eq. 2.42)

FFT-based
convolution
(Eq. 2.48)

Direct
convolution
(Eq. 2.11)

1 2 1 7 1
2 6 8 26 5
4 22 20 86 25
8 70 44 254 113

16 198 92 686 481
32 514 188 1,730 1,985
64 1,270 380 4,190 8,065

128 3,022 764 9,830 32,513
256 7,014 1,532 22,574 130,561
512 15,962 3,068 50,954 523,265

1,024 35,798 6,140 113,534 2,095,105
2,048 79,334 12,284 250,286 8,384,513
4,096 174,150 24,572 547,022 33,546,241

Table 2.2.: Arithmetic complexity of N×N linear convolutions implemented
using the FFT (Fig. 2.6) and by direct convolution (Eq. 2.3)
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lutions make up for a minor part only. Until the length N = 16 the direct
convolution requires less operations. Then the FFT approach takes the lead.
Vast savings due to the lower complexity class O(N logN) ⊂ O(N2) become
apparent for larger N . For N = 4096 the FFT approach is > 60 times more
efficient than the direct convolution. The improved Karatsuba convolution
(variant 2) (section 2.4.2) outperforms the FFT-convolution for small sizes
N < 128. But also for sufficiently large N , the FFT method clearly wins
(O(N logN) ⊂ O(N log2 3)). For N = 4096 the Karatsuba technique (2) is
≈5.3 times less efficient.

2.5.4. Partial DFTs

The majority of FFT algorithms is designed and optimized to compute com-
plete transforms, including all input and output points. Particularly in con-
volution algorithms, it often occurs that only a subset of the input or output
points of a transform are of interest. Input samples and filters are often
zero-padded to match the transform size. By considering only the nonzero
elements in the FFT algorithm, arithmetic operations could be saved over
computing a complete transform. Computing a K-point DFT from only
L < K nonzero input samples, is known as a partial input DFT. In practice,
an FFT is often computed of blocks of samples from which half are zero
L = N/2. These cases are illustrated in Fig. 2.8. They occur frequently in
techniques for computing running convolutions. A detailed study of these
method is given in chapter 4. This is typically the case for the input data
in Overlap-Add (OLA) running convolutions and the transformation of sub-
filters in partitioned convolution methods. It is referred to as a half-input
FFT in the following. The case when only a subset of output points from
an inverse FFT is needed, is referred to as a partial output IDFT. This case
often occurs in OLS running convolution algorithms, where part of the IDFT
results are discarded. The case when one half of an IFFT is desired is called a
half-output IDFT in this work. Specialized algorithms for fast partial trans-
forms could thereby turn out to be beneficial for speeding up the convolution.

x0(n)

N/2

x1(n)

N/2

N

(a)

x0(n)

N/2

0

N/2

N

(b)

x1(n)

N/2

0

N/2

N

(c)

Figure 2.8.: Block decomposition of a signal into two halves
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In this section, techniques for partial transforms are reviewed and discussed.
The examination is based on partial FFTs, for which most concepts have
been developed. The techniques reviewed here can be applied to several
other transforms as well (e.g. NTTs), which share common mathematical
properties (e.g. decomposition) and algorithmic origins (e.g. divide-and-
conquer designs). Particular attention is paid to the benefit of these rather
specialized algorithms in today’s times of highly optimized, general purpose
FFT libraries.

Goertzel algorithm

The Goertzel algorithm [41, 21, 13, 74] is a method allowing to compute
individual coefficients of a DFT or IDFT, independent of each other. The
algorithm is more efficient than the direct computation of a DFT coefficient
X(k) in Eq. 2.31. The starting point is to substitute part of the Fourier kernel
W j
N in Eq. 2.31 by the variable z. The summation of a single DFT coefficient

X(k) can be understood as evaluating the polynomial p(z) = x(0)z0 + · · ·+
x(N − 1)zN−1 in the point p(z = W k

N ) = X(k). The principle behind the
Goertzel algorithm is turning this computation into a recursive digital filter
(see Fig. 2.9). Firstly, Horners rule [93] is applied to evaluate p(z) efficiently.
The resulting sequence of nested terms can be rewritten in form of a linear
difference equation, defining a recursive filter. The samples x(n) are given
into the filter. After N filtering steps the output value y(n) equals the desired
DFT coefficient.

The straightforward derivation of the algorithm leads to the so-called first or-
der Goertzel algorithm, which involves a single feedback path with a complex
multiplication. This algorithm can be modified into a second-order Goertzel
algorithm [74], as shown in figure 2.9. This structure is computationally more
efficient by saving complex multiplications for real-valued input samples x(n).
The remaining complex multiplication with W−kN in the feed-forward branch
only needs to be evaluated in the final N th step [74] (marked gray).

The author analyzed the example code of second-order Goertzel algorithm
in [21] and found the number of operations for computing a single coefficient
X(k) of an N -point DFT to be 6N + 8. Consequently, the Goertzel algo-
rithm’s runtime to compute a complete N -point DFT is in O(N2). This im-
plies that the algorithm is only beneficial, when a very small number L� N
of DFT coefficients shall be computed. The break-even point, for that a com-
plete N -point FFT is cheaper to compute than an L-point Goertzel algorithm
can be roughly evaluated with N/ log2 N [74].

The author compared the second-order Goertzel algorithm’s number of op-
erations for real-valued inputs with a more recent real-data split-radix FFT
algorithm [50]. Given a practical transform size of N = 128, the Goertzel
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algorithm is only more efficient when computing a single DFT coefficient
(L = 1). Even for larger transforms N = 4096 the break-even point is L ≤ 3.
This renders the Goertzel algorithm unfeasible for partial transforms in fast
convolution algorithms.

Pruned FFTs

A more efficient strategy for computing partial DFTs can be directly de-
rived from fast Fourier transform algorithms. Markel [65] presented a tech-
nique based on the radix-2 decimation-in-frequency Cooley-Tukey FFT [24]
for computing partial FFT, either with partial input data or partial out-
put data. The computation on a FFT can be visualized using a flow graph
(e.g. figure 2.10 and 2.11). The intermediate FFT computations are often
referred to as butterflies [21], due to their crossed calculation paths. Com-
putational savings are for a partial DFT achieved by pruning the flow graph
and removing the computations of undesired values and computations that
involve ineffective zeros. Further savings arise from the fact, that with prun-
ing, several butterflies in an FFT flowgraph only need to be evaluated half,
if one of the two input values is zero. For L � N some butterflies in the
flowgraph may be completely dropped, if both of its inputs are zero. Skinner
[96] applied pruning to the DIT-FFT and improved Markel’s method further,
by reducing the number of twiddle factor multiplications in the first stages.
Sreevinas and Rao [103] described a combined FFT algorithm with both,
input and output pruning. The computational savings of a Markel pruned
FFT over a complete FFT are approximately n(l+2(1−2−(n−l)))−1−1 [65],
where N = 2n, L = 2l. The computational savings of both pruning concepts
are analyzed in [100] in detail.

Markel’s pruning [65] is illustrated in figure 2.10 in the example of an 8-point
half-input FFT. The second half of input samples is considered to be zero
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x(n) y(n)
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Figure 2.9.: First- and second-order Goertzel algorithms for
computing individual DFT coefficients [74]
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here x(n ≥ N/2) = 0, L = N/2. Savings in the algorithm are achieved in
the first butterfly, which only needs to be evaluated half. The remaining
flowgraph remains identical. The computational savings over a complete
FFT are 8 additions and 4 multiplications and thereby little. All 12 twiddle
factor multiplications remain. Figure 2.11 shows the corresponding Skinner
DIT-FFT. It saves as well 8 additions and 4 multiplications, but it requires
only 8 twiddle factor multiplications. Both examples illustrate, that the
computational savings for both algorithms are little. Further studies can be
found in [100], where pruning is compared to modern split-radix FFTs. The
authors conclude, that reasonable savings can only be achieved if a small
number of points L�N is considered. For L≥N/2 they advise to compute
full transforms instead.

A disadvantage of the pruning concepts is that they are essentially low-level
techniques which modify an FFT algorithm. This does not go well along
with current trends in FFT implementations and their extensive optimiza-
tion. All present major FFT libraries (FFTW, IPP, MKL, ACML) are de-
signed to compute full transforms and do not support pruning. Typically, a
highly-optimized full transform computed with such a library will outperform
a pruned FFT, that is derived by hand. The authors of FFTW [35] argue
that the moderate savings by pruning are disproportionate to the effort of
generating high-performance pruned implementations. They suggest not to
consider pruning unless 1% or even less of the input/output values is needed
[35]. A recent study [33] compares complete FFT to pruned FFT. Here,
vectorized high-performance FFTs were specifically created using code gen-
eration techniques. This includes half-input and half-output pruned FFTs.
The results of their practical benchmarks support the prior findings, that the
savings for half-input or half-output FFT are little.

Transform decompositions

An elegant, systematic and even computationally more efficient alternative to
pruning techniques are transform decompositions [100]. Based on a Cooley-
Tukey decimation-in-frequency (DIF) decomposition [24], a large DFT is
divided into several smaller DFTs using two-dimensional index mapping. The
partial input data needs to be multiplied with twiddle factors. Then, regular
complex FFTs are computed of these intermediate signals. The coefficients
of the complete DFT are obtained by selection. In the following, the method
by Sorensen and Burrus [100] is outlined.
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Figure 2.10.: Flow graph of an 8-point radix-2 decimation-in-frequency (DIF)
input pruned3 FFT [65]
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input pruned3 FFT [96]

3The second half of the input is zero x(n≥4) = 0
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Transform decomposition requires a transform size N that can be factored
into N = P · Q (P,Q ∈ N). Then an index mapping of the following form
can be defined

n = P · n1 + n2 n1 ∈ {0, . . . , Q− 1}, n2 ∈ {0, . . . , P − 1} (2.49)

k = k1 +Q · k2 k1 ∈ {0, . . . , Q− 1}, k2 ∈ {0, . . . , P − 1} (2.50)

Let x(n) now be the length-N sequence of which an N -point DFT X(k) shall
be computed. Substituting the indices n, k in the definition of the DFT (Eq.
2.31) by the mapping in Eq. 2.50 yields [100]

X(k1 +Qk2) =

P−1∑
n2=0

Q−1∑
n1=0

x(Pn1 + n2)W
(Pn1+n2)(k1+Qk2)
N (2.51)

=

P−1∑
n2=0

[
Q−1∑
n1=0

x(Pn1 + n2)W
(Pn1+n2)k1
N

]
Wn2k2
P (2.52)

The outer sum in Eq. 2.52 can be read as an P -point DFT

Xk1(k2) =

P−1∑
n2=0

xk1(n2)Wn2k2
P (2.53)

of a signal xk1(n2), that is defined by the inner loop

xk1(n2) =

Q−1∑
n1=0

x(Pn1 + n2)W
(Pn1+n2)k1
N (2.54)

A benefit is that Eq. 2.53 forms a DFT of a reduced transform size P < N .
Note, that the inner sum does not form a Q-point DFT as it involves powers
of the N th root of unity WN , instead of WQ. Considering k1 as a variable
which runs from 0, . . . , Q−1 (Eq. 2.50), there are Q signals xk1(n2) and their
P -point DFT transforms Xk1(k2). From these the complete DFT spectrum
X(k) of the sequence x(n) is obtained by simple selection

X(k1 +Qk2) = Xk1(k2) ⇒ X(k) = XkmodQ

(⌊
k

Q

⌋)
(2.55)

The input signal x(n) is accessed in a block-wise pattern x(Pn1 + n2). It is
partitioned into Q blocks of length P . When using the method for computing
partial transforms, one chooses P,Q in a way, that only the first block (n1 =
0) contains values x(n2) 6= 0. In this case Eq. 2.54 simplifies to simple
twiddle factor multiplications

xk1(n2) = x(n2) ·Wn2k1
N (2.56)
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Computing a partial input transform consists of three steps: Firstly, the P
length-Q signals xk1(n2) are generated using (Eq. 2.56). Secondly, Q sep-
arate P -point DFTs are computed using regular FFTs, forming the spectra
Xk1(k2) (Eq. 2.53). In the third and last step X(k) is recombined by selec-
tion according to Eq. 2.55.

Transform decompositions allow the computation with partial inputs and
outputs. For L � N the computational savings compared to a complete
transform are immense. The technique clearly outperforms FFT pruning
[100]. Another huge advantage over the pruning concepts is, that transform
decompositions do not rely on modifications of the FFT algorithm. This is
a strong argument in times where highly optimized FFT libraries are widely
used. For a block-wise decomposition of the input x(n), the modified sub
signals in Eq. 2.54 will generally not vanish. This implies, that all Q FFTs
of length P need to be computed. Given some transform size N , there are
usually several possible combinations N = P · Q. However, the authors
[100] also point out that if L ≥ N/2, it is still more beneficial to compute a
complete split-radix FFT instead. These findings are consistent with prior
observations for pruning.

Conclusions

Partial transforms seem not to offer computational benefits, unless a very
limited number of input or output points is considered. Nevertheless, a po-
tential application could be the unpartitioned convolution of short sequences
with long sequences. Even if the transforms could be computed significantly
faster, still an unnecessarily large number of DFT coefficients would have
to be multiplied. Partitioned convolution methods (see chapter 3) overcome
both of these disadvantages and reduce the zero-padding as well as the spec-
tral convolutions to a minimum. In this context, half-input and half-output
transforms (see figure 2.8) are very often computed. But the results indicate
that if any computational savings can actually be achieved here, they are
marginal.

The next sections are devoted to the question, if real-valued transforms offer
computational benefits when realizing fast convolution with them.

2.5.5. Discrete Hartley Transform

An important transform in the history of digital signal processing is the
discrete Hartley transform (DHT). It has been proposed by Bracewell [16] as
the discretized version of the (continuous) Hartley transform. In the 1980s,
the DHT was conceived as an alternative to the DFT, because it is purely

44



2.5. Transform-based fast convolution

real-valued and avoids complex-valued arithmetic. The DHT is closely re-
lated to the DFT. Due to this immediate relation, many of the algorithmic
concepts for FFT apply for the DHT as well [101, 29] and similar fast Hartley
transform (FHT) algorithms exist [17, 101, 28]. This section discusses the use
of the FHT as an alternative to the FFT for implementing fast convolutions.

The discrete Hartley transform transforms a length-N real-valued sequence
x(n) = x(0), . . . , x(N−1) into N real DHT coefficients, defined by [101]

x(n)

DHT(N)c s X(k) =

N−1∑
n=0

x(n) cas
(

2π
nk

N

)
(2.57)

X(k)

DHT −1
(N)s c x(n) =

1

N

N−1∑
k=0

X(k) cas
(

2π
nk

N

)
(2.58)

‘cas’ denotes the cosine-and-sine function, also known as the Hartley kernel

cas(x) = cos(x) + sin(x) =
√

2 cos
(
x− π

4

)
(2.59)

It consists of cosines, shifted by 45◦ and scaled by the factor
√

2. The DHT
is a linear operator and can be interpreted as matrix-vector product with
an N×N transform matrix. Apart from a scale factor N−1, the DHT is
its own inverse DHT −1

(N) = N−1DHT(N). The Hartley kernel cas(2π nk
N

)

does not form primitive N th roots of unity in R and as a consequence of the
results by Burrus [3], the DHT does not satisfy the strict cyclic convolution
property (CCP) [28]. Nevertheless, circular convolution has an elegant and
simple formulation in the DHT domain.

Circular convolution

For two length-N sequences x(n), h(n) with DHT spectra X(k) = DHT(N)

{x(n)}, H(k) = DHT(N){h(n)} the circular convolution x(n) ~ h(n) can be
expressed in the DHT domain using the following relation [16, 28]

y = x~ h
DHTc s Y = X(k) ·Heven(k) + X(−k) ·Hodd(k) (2.60)

Heven(k) and Hodd(k) correspond to the even respectively odd part of the
DHT spectrum H(k). Inserting these definitions yields the expanded form

Y (k) =
1

2

[
X(k) · (H(k)+H(N−k)) +X(N − k) · (H(k)−H(N−k))

]
(2.61)
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For the first DHT coefficient Y (0) the Eq. 2.61 simplifies to Y (0) = X(0) ·
H(0). The paired additions H(k) +H(N − k) and H(k)−H(N − k) require
2N operations. Unless the filter h is modified, they can be precomputed
once, saving additional operations. Then, the circular convolution in DHT
domain consumes 1+3(N −1) = 3N −2 operations. This equals the number
of operations for circular convolution using the DFT for odd transform sizes
N (Eq. 2.42). For even transform sizes N the DFT method consumes two
fewer operations. Symmetric or anti-symmetric filters h(n) cause the even
part Heven(k) respectively odd part Hodd(k) to vanish, thus saving operations
(cp. section 2.5.3).

Conclusions

The DHT formulation of circular convolution (Eq. 2.61) is not cheaper
to realize than with real-data DFTs when symmetries are exploited (Eq.
2.42). The number of (real) multiplication operations is actually identi-
cal [28]. Unless the even and odd parts in Eq. 2.60 are given, the DHT
technique is slightly more expensive, due to the necessary paired additions
H(k) + H(N − k), H(k) − H(N − k). Eq. 2.61 might be easier to vec-
torize than Eq. 2.34, as the purely real-valued pairwise multiplications are
free from dependencies between real and imaginary parts as for complex
multiplications. Nowadays, this argument is weakened by highly advanced
instruction sets (e.g. SSE, AVX) which include mixed add-sub instructions
as well as horizontal single-instruction multiple-data (SIMD) instructions.
Moreover, for large DHT the paired additions do not hold the principle of
data locality, which might influence the performance. It is questionable if
the real-valued spectral convolutions have any computational benefit over
the complex-valued in FFT-based convolution on current processors.

The strongest impact in performance has however the transform itself (most
computation). It has been shown in the 1980s that FHT are marginally slower
than real-data FFT algorithms [102]. Duhamel and Vetterli [28] suggest to
prefer FFT-based convolution instead, also reasoned by the fact that the
FFT has more general applications and has a greater importance. Maybe
because of this, FHTs received less attention than FFT algorithms. The
benchmarks on the test system (see section 7.4) revealed that fast Hartley
transforms (FHTs) computed using FFTW are considerably slower than real-
data FFTs. It is therefore concluded that FHT-based convolution does not
form an alternative to FFT-based convolution nowadays.
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2.5.6. Discrete Trigonometric Transforms

On the basis of cosine and sine kernels a variety of discrete transforms can
be defined, which all have real-valued spectra coefficients [78]. This class
of transforms became known as discrete trigonometric transforms (DTTs).
Well-known examples are the different discrete cosine transforms (DCTs)
and discrete sine transforms (DSTs). They slightly differ in their transform
kernels with respect to the (assumed) symmetries of the input sequence.
These differences matter in applications of the transforms. In particular
the DCT-II is a fundamental tool in image and video compression (JPEG
image coding and MPEG video coding standards). The DCT-IV plays an
important role for lapped orthogonal transforms and serves as a basis for the
modified discrete cosine transform (MDCT). The MDCT is widely used in
audio compression techniques (MP3, Ogg Vorbis, Dolby Digital AC-3 and
Advanced Audio Coding).

Discrete trigonometric transforms are closely related to the discrete Fourier
transform (DFT). They can be derived from DFTs of symmetrically ex-
tended sequences [18]. Hence, one possibility to compute them is by using
FFT algorithms [36, 81]. Fast native algorithms for DTT have been topic of
intensive research in the last 30 years. Many papers on the topic exist in the
literature–for software, but also direct hardware implementations. In the face
of the extent, a formal definition of the multitude of DTTs is skipped here.
An overview on the field can be found in the textbook by Britanak, Yip and
Rao [18]. For all DTTs fast O(N logN) algorithms exist. Much of the theory
on computing fast Fourier transforms applies for the computation of DTTs
as well: from classical radix-2 approaches to mixed-radix algorithms for com-
posite transform sizes, to pruning techniques. All current high-performance
libraries can compute the common DTT types (e.g. DCT-II and DCT-IV).
FFTW [34] supports the largest variety of DTTs, covering the DCTs and
DSTs of types I-IV.

Symmetric convolution

A motivation for considering linear filtering using these transforms is to re-
alize fast convolution in real-valued arithmetic. Another argument is, that
the input data might already be in the DTT domain (e.g. DCT-II coeffi-
cients of a JPEG image). Unfortunately, none of the DTTs holds the general
cyclic convolution property (CCP) (Eq. 2.34). As for the discrete Hartley
transform, the transform kernel is not composed from powers of primitive
N th roots of unity and hence the transform can not have the CCP [3]. But a
point-by-point convolution multiplication property (CMP) [66] of the form

x(n) ~̃ h(n) c s T −1
c

{
Ta{x(n)} × Tb{h(n)}

}
(2.62)
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can be derived for special convolution operators, called symmetric convolu-
tion [66], denoted here by ~̃. Eq. 2.62 marks a generalization of the CCP.
(Selecting ~̃ = ~, Ta,b,c = DFT results at the CCP in Eq. 2.34). Symmetric
convolution is particularly suited for filtering impulse responses which inhere
symmetries, like for instance linear-phase filters. Filter kernels in image pro-
cessing often have this property and make DTT-based fast convolution an
interesting approach for the 2-D linear filtering of images [67].

Symmetric convolution operators are defined over symmetric periodic se-
quences (SPS), which inhere certain symmetries (whole-sample or half-sample
symmetry or anti-symmetry) [66]. Each symmetric convolution operator as-
sumes certain symmetries for the left- and right-hand-side operand, resulting
in a large variety of 40 feasible types operators [66]. Each operator is thereby
associated with two specific forward transforms Ta, Tb and a backward trans-
form T −1

c (cp. Eq. 2.62). Martucci [66] provides formulations of symmetric
convolution for all of the 16 types of discrete trigonometric transforms (eight
DSTs and eight DCTs). Several authors proposed methods to realize lin-
ear and circular convolution based on symmetric convolution, for instance
[66, 131, 49, 81]. These approaches are shortly introduced in the following.

Linear convolution

Martucci [66] proposes a method to realize linear convolution of two se-
quences x(n) ∗ h(n) using symmetric convolution in the DTT domain—for
all possible types and combinations of transforms. His approach relies on
prior zero-padding of the sequences at both sides (left and right). Consider-
ing DFT-based linear convolution, undesirable time-aliasing occurs when the
transform is undersized and periodic continuations of the convolved output
overlap in time. This defines conditions for the necessary transform size (see
Eq. 2.18). A similar phenomenon can occur for DTT-based convolution:
Here, the linear convolution is corrupted, when symmetric extensions of the
sequences fold back into the range of desired output samples (fold-back alias-
ing). Hence, similar conditions on the transform size exist for DTT-based
symmetric convolution [66, 49], with the addition, that proper zero-padding
on both sides is required. The different symmetries slightly affect the amount
of zero-padding by one to two samples. Ito and Kiya [49] examine linear con-
volution using the DCT-II as forward and the DCT-I as backward transform
(Ta,b=DCT -II, T −1

c =DCT -I in Eq. 2.62)

s(n) ∗ h(n) =

R
{
DCT -I−1

{
DCT -II{ P1{x(n)} } × DCT -II{ P2{h(n)} }

}}
(2.63)

48



2.5. Transform-based fast convolution

Again, P1,P2 correspond to padding operators and R to a rectangular win-
dow operator, selecting the valid output samples. Ito and Kiya [49] closely
review the necessary zero-padding for achieving linear convolution. Their
results show that a full M×N -linear convolution using Eq. 2.63 requires at
least a transform size of

K >
3(M+N−1)

2
(2.64)

The paper includes a very brief comparison of the computational costs to
FFT-based linear convolution, stating that their DCT-based method could
outperform FFT-based linear convolution. Unfortunately, these parts lack a
proper description of the circumstances. Nor are the sizes of operands clearly
introduced, neither are actual numbers of operations considered (only run-
time models). Their results are picked up later for performance comparisons.
Because linear convolution can be realized based on symmetric convolution,
the input-partitioning techniques Overlap-Add and Overlap-Save can be ap-
plied to DTT-based convolution as well. Zou, Muramatsu and Kiya [131]
discuss implementations of partitioned convolution in conjunction with DTT
filtering.

Circular convolution

Reju, Koh and Soon [81] derive DTT-formulations of circular convolution by
decomposing the DFT into corresponding cosine and sine transforms (using
Euler’s formula). Their frequency-domain formulation of a N -point circular
convolution contains a combination of cosine and sine transforms [81]

s(n) ~ h(n) =

1

4
C̆−1

1

{
ξ(k)

(
C̆2{s(n)} × C̆2{h(n)} − S̆2{s(n)} × S̆2{h(n)}

)}
+ (2.65)

1

4
S̆−1

1

{
S̆2{s(n)} × C̆2{h(n)}+ C̆2{s(n)} × S̆2{h(n)}

}
Here, C̆1, S̆1, C̆2, S̆2 correspond to DTTs of symmetrically extended length-
2N sequences, decimated by two. Each can be computed using a 2N -point
DTT. Their spectra contain 2N real-valued DTT coefficients, from which half
are zero. That implies that each spectral convolution in Eq. 2.65, denoted by
×, can be realized using N real multiplies. ξ(k) = δ(k)+1 is a simple scaling
factor for the first coefficient. Suresh and Sreenivas [107] further improved
the method in [81], by using the DFT of the impulse reponse in combination
with DCTs/DSTs (types I and II). Their method saves a DST transform
in case of symmetric impulse responses (e.g. linear phase filters). Also the
number of operations for the spectral convolution is slightly reduced.
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Computational complexity

In the following the DCT-convolution method in [49] is compared to real-data
FFT-based convolution (section 2.5.2) in the example of a 256×256-linear
convolution. The FFT-convolution is implemented using two 512-point real-
to-complex FFTs, one 512-point complex-to-real IFFT [50] and 257 complex-
valued multiplications of symmetric DFTs coefficients (cp. section 2.5.2).
For simplicity it is assumed that an IFFT consumes the same number of
operations as a forward FFT of the same size. In total the FFT approach
requires 3·7014+257·6=22584 operations. For the DCT approach (Eq. 2.63)
the minimal transform size is K > 3(256+256−1)/2 (Eq. 2.64). Here, the
next larger power-of-two K = 1024 is selected. All DCT-II transforms are
computed using the recent method of Shao and Johnson [94]. Again for sim-
plicity, it is assumed that a DCT-I can be computed with the same number
of operations as a DCT-II (in practice it might compute slower [36]). The
DCT-convolution [49] requires two 1024-point DCT-II transforms and one
1024-point DCT-I transform to be computed, each costing 18698 operations.
The spectrum multiplication makes up for 1024 real-valued multiplications.
Altogether this DCT approach results in 3·18698+1024=57118 operations.
This is 2.53 times more than the FFT approach, which demands 22584 op-
erations. Yet with respect to sheer spectral convolutions, the DCT method
is faster, consuming only 1024 operations instead of 1542 operations for the
FFT approach.

Conclusions

Realizing the spectral convolution by real-valued arithmetic saves some op-
erations over the complex-valued arithmetic, required for the DFT method.
This is contrasted by the signficantly increased costs in computing the trans-
forms, whose sizes are also enlarged by the requirement to incorporate further
zero-padding to prevent fold-back aliasing. A head-to-head comparison of
recent real-data FFT [50] and fast DCT algorithms [94][95] reveals, that an
N -point real-data FFT is still faster than an N -point DCT of type II, III, or
IV. In practice, this gap widens. The conducted benchmark for FFTW3 [36]
disclosed, that DCTs and DSTs compute significantly slower than real-data
FFTs (see chapter 7.4). In particular the DCT/DST of type I compute even
slower with FFTW [36].

It is concluded, that for real-time audio FIR filtering, DTT-based fast con-
volution can not outperform DFT-based approaches on general purpose pro-
cessors. However, DTT techniques might be beneficial, if the input data is
already within the DTT domain or when DTT hardware transformers are
available, that allow rapid computations of the transforms.
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2.5.7. Number Theoretic Transforms

The discrete Hartley transform and discrete trigonometric transforms avoid
complex-valued arithmetic, but do not have a general cyclic convolution prop-
erty (CCP). Moreover, these transforms are still based on cosines and sines,
which require a floating-point arithmetic. This section discusses an alter-
native number theoretic approach which has the CCP and can be realized
entirely in integer arithmetic: number theoretic transforms (NTTs). This
type of transform was derived in the 1970s as generalized discrete Fourier
transform defined over other algebraic structures [75]—in particular finite
integer rings or fields. The NTT can be used to implement circular and
hence linear convolution in the similar way as with the FFT [4]. Thereby it
allows an exact convolution, free of round-off errors. NTTs have very elegant
implementations in hardware and simplified circuitry. This has been a main
area of its applications. Software implementations however are rare. In this
respect, the above cited advantages seem not to pay-off equally. Besides their
favored properties, NTTs come also along with several implications on the
dynamic range, word lengths and filter lengths. Opposed to the FFT, these
aspects require detailed attention in applications. The pitfalls are conquered
by decomposing larger convolutions into more suitable small convolution (e.g.
Agarwal-Cooley algorithm [5] in section 2.6.2). The usage of NTTs is not
limited to signal processing. It also serves as a fundamental tool for fast
integer multiplication algorithms [87].

This section discusses NTT-based convolution as an alternative to FFT-based
convolution in the light of real-time filtering on standard processors. The lit-
erature on NTT is exhaustive and quite specific. Only a very brief overview
is given. General information on the transform, its properties and imple-
mentation can be found in the textbooks by Blahut [13] and Nussbaumer
[73]. Details on its historic evolution can be found in [12]. Gudvangen [44]
contributed a recent paper discussing its application in audio processing.

Definition

A number theoretic transform (NTT) has the following structure [3, 73]

x(n)
NT Tc s X(k) =

N−1∑
n=0

x(n)αnk mod M (2.66)

X(k)
NT T −1s c x(n) = N−1

N−1∑
k=0

X(k)α−nk mod M (2.67)

Eq. 2.66 defines a N -point forward NTT and Eq. 2.67 the corresponding
inverse NTT. Substituting α = e−2πi/N in Eq. 2.66 results in the discrete
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Fourier transform (Eq. 2.31). The NTT however is defined over finite rings
or fields of integers. All calculations are carried out in ZM = Z/MZ =
{0, . . . ,M−1}, the set of integers modulo M ∈Z.

Negative signal amplitudes as in conventional signed integer quantization are
encoded by introducing a positive offset M/2. Given that |x(n)| < M/2 this
representation is unambiguous. The NTT spectrum X(k) also consists of
integer numbers X(k) ∈ ZM . The NTT coefficients do not have a similar
meaning of frequency, magnitude or phase, like for DFT coefficients.

There is not one specific NTT, as for instance the length-N DFT. The term
NTT summarizes many discrete transforms of the structure in Eq. 2.66, 2.67.
In order to use a number theoretic transform for fast convolution, it must
hold the cyclic convolution property x(n)~h(n) = NT T −1{ NT T {x(n)}×
NT T {h(n)} } and the transform must be computable in O(N logN). For
these requirements to be met, the parameters α,N,M must be chosen ac-
cording to certain criteria, from which most important conditions are briefly
reproduced here. For a thorough review the reader is referred to [3, 73].

• αN ≡1 mod M must be an order-N root of unity in ZM . This condi-
tion determines possible (maximal) transform sizes N . Given that M
is prime, the transform size must hold N | (M − 1).

• If the modulus M is composite (non-prime), α must fulfill
∀n = 1, . . . , N−1 : gcd(αn−1,M) = 1 relatively prime.

• The inverse NTT transform in Eq. 2.67 is defined, if the multiplicative
inverse N−1 exists in ZM . For prime M this is always the case, as ZM
is a field.

Due to their common structure, fast NTT algorithms are derived in similar
ways like FFT algorithms. For the sake of computational efficiency, the
transform length N should be a highly composite number, as for the FFT.
Targeting hardware implementations, α should be defined in a way, that its
powers αnk can be computed with low complexity (e.g. few digits in their
binary representation allowing for simplified circuits). The same holds for
the reduction to the modulus M , which in particular should not be odd [3].
Two important classes of NTTs are Mersenne number transforms (MNTs)
and Fermat number transforms (FNTs).

Mersenne Number Transforms

By using Mersenne numbers M = 2p−1 (p∈N prime) as moduli for the NTT
defines the Mersenne number transform (MNT) [3, 73]. The elegance of this
transform arises when using simple roots α ∈ {−2,+2}. A particular advan-
tage of MNTs are the simple implementation of their arithmetic in hardware.
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2.5. Transform-based fast convolution

Additions modulo 2p − 1 can be realized by applying little modifications to
standard hardware adder units. Multiplications with αnk being powers of two
can be realized using bit shifting. Hence, the computation of the transform
does not require hardware multiplications units. Unfortunately, the MNT
retains the CCP for simple α ∈ {−2,+2} for just two choices of transform
lengths N ∈ {p, 2p} [73]. By definition p is prime and hence also 2p is little
composite (it can only be divided by two). This prevents the application
of fast divide-and-conquer algorithms, making the computation of the MNT
comparably slow.

Fermat Number Transforms

Fermat primes M = Fn of the form Fn = 22n

+ 1 (n ∈ N) have proven as
a better choice for the modulus. Using a Fermat number as the modulus
M = Fn for the NTT defines the Fermat number transform (FNT) [3, 73].
Only the first five Fermat numbers are known to be prime: F0 = 3, F1 =
5, F2 = 17, F3 = 257, F4 = 65537. Comprehensive review of the choice of
root α, transform length N and modulus M and their relations can be found
in [4], [73] and [44]. In the face of the large extend of the theory, only the
most important results are briefly outlined here. The FNT is superior to
the MNT in several aspects: It can be shown that the FNT can implement
transform sizes N | 2n+2, which in hardware only require multiplications by
powers of two (bit-shifting) and additions. Hence, it is much more flexible in
respect to possible transform lengths N . Particularly the fact that it allows
highly composite transform sizes (powers-of-two) enabled the use of highly
efficient algorithms (e.g. Cooley-Tukey methods). When implementing the
FNT on a machine, one has to select a word length for the integer calculations
(e.g. b ∈ {8, 16, 32, 64} on general purpose processors). Agarwal and Burrus
[4] show, that for the most efficient cases (α = 2), the maximal transform is
Nmax = 2b. For example, 32-bit integer arithmetic allows realizing fast cir-
cular convolution using the FNT for a maximal transform size of Nmax = 64
points. For most signal processing applications in acoustic virtual reality
this is too short. Several strategies have been proposed to overcome this
limitation [11], including Chinese remainder decomposition techniques (see
[44]), multi-dimensional index mapping (see 2.6.1 and Agarwal-Cooley algo-
rithm in section 2.6.2) as well as partitioned convolution [4]. Another reason
for the need of these decompositions arises from the limitation in dynamic
range. For the sake of a correct convolution result, numeric clipping (aliasing
in amplitudes) must be avoided, when performing the calculations modulo
M . Given a certain word length b this constraint can additionally limit the
maximal lengths for the sequences to be convolved, making an additional
partitioning necessary [4, 44].
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Conclusions

Number theoretic transforms have been an intensive field of research, includ-
ing a large number of publications over several decades. Yet they did not
reach the level of popularity as the FFT. Gudvangen [44] recently discussed
the NTTs in relation to audio processing. Whereas several authors consid-
ered ASIC and FPGA implementations of the FNT (list of references in [44]),
only little is known about its performance in software implementations on
current general-purpose processors (desktop processors or mobile processors).
Gudvangen [44] concludes that software implementations of the NTT might
not be competitive, due to the required modulo arithmetic and unusual word
lengths that do not match those typical processors (e.g. 16-/32-/64-bit).
Whilst in the 1970s it has been shown that the NTT can outperform an FFT
(e.g. [4, 5]), there seems to be no recent study comparing the performance of
the NTT in software to established FFT libraries. Also few NTT software im-
plementations are available (for instance the Finite Transform Library (FTL)
[22]). It is doubtful that these have the same level of technical maturity as
FFT libraries, making a meaningful comparison difficult.

2.6. Number theoretic convolution techniques

Number theory played an important role in the evolution of digital signal pro-
cessing [68]. Many FFT algorithms and also convolution techniques make use
of this mathematical field and its tools. The NTT discussed in the preceding
section is an example. A particular important tool is the chinese remain-
der theorem (CRT), which dates back to the fifth century. Its applications
brought up new perspectives on problems, from which many successful al-
gorithms have been derived. These advancements can mostly be found in
the form of decomposition schemes. When a large problem instance is de-
composed into subsets of easier solvable problems, the CRT is often used to
reassemble the complete solution from the partial solutions. An application
of the CRT over integer rings are index-mappings. These serve as the basis
for many FFT algorithms (e.g. Cooley-Tukey [24], prime-factor algorithm
[42, 109]). Burrus [20] showed up their application in directly decompos-
ing DFTs as well as circular convolutions. Circular convolutions of large
composite sizes can thereby be split up into small (prime-size) circular con-
volutions (e.g. a 7-point circular convolution). Nesting these techniques in
conjunction with optimal short convolution templates allows gaining efficient
algorithms for small to medium sizes (e.g. Agarway-Cooley algorithm [5]).
An application of the CRT over polynomial rings is the Winograd short cir-
cular convolution algorithm [73]. This algorithm makes use of the polynomial
product formulation (see section 2.3) and reduces the polynomial product to
lower-degree products in a set of factorial rings. Eventually the complete
polynomial is recombining using the CRT.
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The aim of this section is to review these decomposition concepts as alterna-
tives to the standard concept of partitioned convolution, which is discussed
afterwards. The central focus lies on the real-time applicability. The concepts
are briefly outlined here, primarily targeting the discussion of the methods
considering this aspect. For further details on number theoretic techniques
the reader is referred to the textbooks by Blahut [13] and Nussbaumer [73].

2.6.1. Multidimensional index mapping

A technique of fundamental importance in FFT algorithms is multi-
dimensional index mapping. The principle idea is to substitute a univariate
index variable n by an equivalent mathematical formulation consisting of sev-
eral variables n1, n2, . . . , nP . Thereby one dimensional indices are mapped
to multi-dimensional tuples and vice versa

n↔ (n1, n2, . . . , , nP ) (2.68)

This can be thought of as arranging the elements of a vector in the form of a
matrix. In the following the considerations are limited to the two dimensional
case n ↔ (n1, n2). A thorough introduction to the technique, including the
number theoretic background, can be found in [73, 21, 13]. An essential
condition is that the mapping is unique. This can only be achieved if the
number of elements N ∈ N is not prime and can be factored into N = N1·N2

(trivially N1, N2 > 1). A useful mathematical formalism for such mappings
is the linear equation [20, 21]

n = 〈K1n1 +K2n2〉N with constants K1,K2 ∈ N0 (2.69)

Two important cases are distinguished. Given that gcd(N1, N2) = 1 coprime,
a so called prime-factor map (PFM) can be constructed. This mapping is
the basis for the Good-Thomas prime-factor FFT. If N1 and N2 have a
common factor (gcd(N1, N2) > 1) only a common-factor map (CFM) is re-
alizable. Cooley-Tukey FFTs are derived by applying this mapping to the
DFT in time and frequency [21, 13]. Conditions for uniqueness and the
choices of parameters K1,K2 are discussed in [20]. Moreover, Burrus [20]
pointed out the use of index-mapping for decomposition of circular convo-
lutions and presented how a large one-dimensional circular convolution can
be decomposed into several smaller circular convolutions along other dimen-
sions. This makes this decomposition technique worth the consideration as
an alternative to partitioned convolution. The results in [20] are outlined
and the application to real-time filtering is discussed.
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0 1 2 3 4 5 6 7 8 9 10 11

0 3 6 9

4 7 10 1

8 11 2 5

⇒

N=12 elements

N2=4 columns

N1=3 rowsx(n) = x(n1,n2) =

Figure 2.12.: Example 2-D index map for N = 12 elements: n ≡ 4n1 + 3n2

mod 12 (N1 =3, N2 =4,K1 =4,K2 =3)

Decomposition of circular convolutions using index mapping

Applying the index mapping Eq. 2.69 to both indices n → (n1, n2) and
k → (k1, k2) in the definition of circular convolution Eq. 2.12 results in

ỹ(n) =

N−1∑
k=0

x〈n− k〉N · h(k)
2.69
==⇒

ỹ(n1, n2) =

N1−1∑
k1=0

N2−1∑
k2=0

x〈K1n1+K2n2−K1k1−K2k2〉N · h(K1k1+K2k2)

=

N1−1∑
k1=0

N2−1∑
k2=0

x〈n1−k1, n2−k2〉N · h(k1, k2) (2.70)

Eq. 2.70 is a two dimensional N1×N2 convolution. It becomes a true two-
dimensional circular convolution only if the mapping is cyclic along both
dimensions. This case is desired, as then a two 2-D circular convolution can
be computed using a set of shorter lengths 1-D circular convolutions along
the rows respectively columns. Necessary conditions therefore are [20]

gcd(N1, N2) = 1 (2.71)

K1 = αN2, K2 = βN1 (α, β ∈ N0) (2.72)

Uniqueness of the mapping furthermore requires that

gcd(α,N1) = 1 and gcd(β,N2) = 1 (2.73)

The resulting mapping is a prime-factor map (PFM) [19]. It is an application
of the chinese remainder theorem over integer rings [20]. A typical choice is
K1 = N2,K2 = N1. This mapping is illustrated in an example for twelve
elements in figure 2.12.
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0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

x(n) =

x(n1,n2) =

0 3 6 9

4 7 10 1

8 11 2 5

x(n1,n2) =

(1) n=‹4n1+n2›12 (2) n=‹4n1+3n2›12 (PFM)

0 9 6 3

4 1 10 7

8 5 2 11

x(n1,n2) =

(3) n=‹4n1+9n2›12 (CRT)

periodic only in n1 periodic in n1 and n2 periodic in n1 and n2

Figure 2.13.: Example 2-D index maps for N=12 elements and their
distribution of elements: (1) row-major order, (2) PFM,
(3) PFM matching the chinese remainder theorem (CRT)

Applicability for real-time processing

Decomposing large circular convolutions using the reviewed approach could
be beneficial for real-time filtering. For instance for linear filtering of short
input blocks with long filters, as occuring for real-time FIR filtering with
room impulse responses. Also possible, it is computationally inefficient to
process such convolutions with large FFT transforms in an unpartitioned
way (details are found in chapters 3 and 5). The index-mapping technique
can be applied to this problem by interpreting the desired linear convolution
as a circular convolution (incorporating zero-padding) and then splitting it
into several shorter circular convolutions. The quintessential point is, that
for a block-wise real-time filtering, the response on the first input block must
be computed immediately, in order to avoid unwanted latency.

The index-mapping technique shall be compatible with block-partitioned in-
put sequence. Figure 2.13 illustrates this for the prior example. Ideally, the
input blocks (white, light gray, dark gray) become rows or columns in the
2-D representation, as in case (1). Then the 2-D circular convolution can be
computed for each row respectively column separately. An initial response of
the filter can be computed independently from the subsequent convolutions.
Unfortunately, this is not possible. Example (1) is only periodic in one di-
mension and hence the decomposition in 2.70 cannot be applied. The results
would be incorrect.

Figure 2.13 shows two further maps, which are compatible and fulfill the
postulated conditions in Eq. 2.71-2.73. Here it can be seen, that original
block decomposition gets lost after the mapping. The samples are quasi-
chaotically scattered. This has the consequence, that all row respectively
column circular convolutions have to be performed at once, when the partial
filter response of the first input block (white) is required.
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Any row or column major layout would require that K1 = 1 or K2 = 1. As
N1, N2 > 1 and α, β > 0 this is impossible. The index mapping technique in
conjunction with circular convolution allows to decompose large convolutions
into short convolutions. Therefore, it can be used as a basis for divide-
and-conquer algorithms. Unfortunately, it does not allow to distribute the
computations over time for real-time processing.

2.6.2. Agarwal-Cooley convolution algorithm

The previously discussed decomposition allows deriving fast convolution tech-
niques directly. Given that the length N is highly composite (many coprime
factors), a large convolution can be eventually computed from many tiny
circular convolutions. Due to the conditions of the PFM, all of these need
to have different and coprime sizes. For example can a circular convolution
of length N = 315 = 32 · 5 · 7 be implemented just using circular convolution
of the length 5, 7 and 9. Agarwal and Burrus [3] proposed to compute such
short circular convolutions using optimal short convolution templates, which
can be derived by hand or using the Toom-Cook algorithm (in section 2.4.1)
or the Winograd technique (in the succeeding section 2.6.3). The authors
compared the arithmetic complexity to FFT-based convolution. Using opti-
mized short convolutions, their method could save arithmetic operations over
the FFT method for small sizes N < 128. They also discuss implementations
incorporating the NTT. Agarwal and Cooley [5] refined this technique and
provided several improvements and combined short and long convolution al-
gorithms. They examined the implementation of longer convolutions using
Fermat number transforms (see section 2.5.7). The Agarwal-Cooley convo-
lution algorithm marks an interesting theoretical result, as it requires less
operations than a comparable FFT-base convolution for sizes N < 420. How
these theoretical results translate in practice today is hard to judge. Even
the authors [5] pointed out the difficulty of a fair comparison, as the NTT
favors specific hardware (cp. conclusions of section 2.6.2). It is doubtful
that the algorithm could outperform FFT convolution for the cited sizes on
modern general purpose processors. Moreover, the results indicate that FFT
convolution seems to be the most performant known technique for longer
filters.

2.6.3. Winograd convolution algorithm

Winograd [126] proposed the use of the CRT for polynomial rings for com-
puting circular convolutions. This technique is referred to as the Winograd
(short) circular convolution algorithm [21, 13]. It provides the tight bound
Ω(N) for the number of multiplications required to compute an N -point cir-
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cular convolution. Although its number of multiplications is minimal, the
number of additions is increased, making the algorithm only efficient for
short convolutions [13]. The Winograd algorithm therefore is not of pri-
mary interest as an alternative method for computing long convolutions. Its
concept is briefly outlined here, aiming the discussion of applicability as a
divide-and-conquer scheme for real-time filtering. Details on its derivation
and implementation can be found in the textbook by Blahut [13].

Decomposition of circular convolutions using polynomial moduli

An N -point circular convolution can be realized by reducing the correspond-
ing polynomial product modulo zN− 1 (Eq. 2.16 section 2.3)

y(n) = x(n) ~ h(n) =̂ Y = X ·H mod M = zN− 1 (2.74)

Now the polynomial modulus M ∈ R[z] is factored into Q > 1 factors M(z) =
M0(z) · · ·MQ−1. All factor polynomials Mi have deg(Mi) < deg(M), more
precisely deg(M) =

∑
Mi. Instead of computing product Y = X ·H mod M

in R[z]/M directly, the input polynomials (sequences) are first reduced mod-
ulo the factors Mi, then products of lower degrees are computed locally,
modulo Mi

X ≡ X0, H ≡ H0 ⇒ Y0 ≡ X0 ·H0 mod M0 (2.75)

...

X ≡ XQ−1, H ≡ HQ−1 ⇒ YQ−1 ≡ XQ−1 ·HQ−1 mod MQ−1 (2.76)

Each line in Eq. 2.75-2.76 corresponds to an independent circular convolution
of the form xi(n) ~ hi(n) of length deg(M) + 1. Finally, the complete poly-
nomial Y can be reconstructed (modulo M) from all previously computed
Y0, . . . , YQ−1 using the CRT for polynomial rings.

The Winograd short circular convolution algorithm is an abstracted tech-
nique. Like the Toom-Cook algorithm it is not constructed for actual se-
quences with given sample values, but derived symbolically. Effectively, it
results in a sequence of terms, which allow to evaluate a circular convolu-
tion with less terms than the direct formula (Eq. 2.12). The factors of the
modulus M = zN − 1 are uniquely determined cyclotomic polynomials [73],
which have simple coefficients that are mostly +1,−1. Hence the residues
modulo Mi in Eq. 2.75-2.76 can be implemented using simple additions and
subtractions. The CRT reconstruction can be handled similarly, without
multiplications and only using post-additions. Finally, it is remarked, that
the products in Eq. 2.75-2.76 do not represent circular convolutions by them-
selves. It follows from the unique factorization of zN − 1 and the fact that
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only the first cyclotomic polynomial has the form z0 − 1. Consequently, the
algorithm can not be used for decomposing long circular convolutions into
shorter circular convolutions.

2.7. Summary

This section reviewed the FFT as a reference method for fast convolution
and discussed potential alternatives. The most important fast convolution
techniques known today were regarded. The objective was to assess their
computational performance and usability for real-time filtering in acoustic
virtual reality. The following conclusions are summarized.

Direct convolution is only advised for very short filters. The break-even point
where FFT-convolution becomes more efficient was identified with N ≈ 32
here. This matches prior observations [21, 130]. In practice, the performance
of time-domain filters is strongly impacted by vectorization, the memory ac-
cess pattern and cache utilization [48]. Thus, the exact break-even point
can only be found by benchmarking and comparing matured implementa-
tions. For shorter filters, interpolation-based methods might be an alterna-
tive. Here, nested techniques, like the Karatsuba convolution, can theoret-
ically outperform FFT-based techniques for larger problem sizes and shift
the break-even point a little further (64 < N < 128). Within the class of
transform-based convolution techniques, the FFT could be identified the best
method on general purpose computers. This is to a large degree reasoned by
today’s high performance libraries, which allow for a very fast computation
in practice.

Real-valued transforms have been considered in theory to avoid the need of
a complex-valued arithmetic. Here, the DHT and the set of DTT have been
considered as alternatives to the FFT for implementing linear filtering. Un-
fortunately, these transforms do not provide simple point-by-point spectral
convolutions, as the DFT does. Eventually, it turns out that the complex-
ity is not reduced by real-valued transforms. The conducted benchmark
revealed, that the transforms computed significantly slower then compara-
ble real-data FFT. These performance losses over the FFT are substantial,
as the transforms itself consume the major part of the computation. Given
general purpose processors, there is a clear disadvantage in using these trans-
forms for convolution. This might be different on devices where hardware
transformers are available.

An interesting alternative to the DFT could be the NTT, which can be seen
as a generalized DFT. Its advantages are a numerically exact convolution
entirely based on integers and simplified circuitry when it is implemented
in hardware. These have little relevance for acoustic virtual reality realized
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using of-the-shelf computers. Firstly, round-off errors are not considered
problematic in current Virtual Reality (VR) applications. Secondly, as the
hardware is given, the required modulo operations in NTTs have to be im-
plemented in software. This might be a substantial drawback with respect
to the FFT. Actually, no recent performance comparisons between the NTT
and FFT can be found for common processors. Further divide-and-conquer
convolution algorithms can be derived from number theory. Multidimen-
sional index-mapping, allows computing large circular convolutions by a set
of shorter circular convolutions. Unfortunately, these decomposition result in
unfavorable dependencies, making it impossible to stretch the computations
over time. Hence, the technique cannot serve as an alternative to partition-
ing, which is reviewed in the next chapter.
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Partitioned convolution methods split the input samples and/or the filter im-
pulse responses into blocks and define a semantically equivalent convolution
on the basis of sub convolutions of these parts. These techniques are mostly
applied to divide linear convolutions. A partition is thereby commonly as-
sociated with decomposition into blocks, i.e. connected sequences of samples
or filter coefficients that are neighboring in time. In several publications the
term segmented convolution is used as a synonym for partitioned convolu-
tion. This work distinguishes between these two terms. Here, a segment is
considered as a uniform sub partition (see chapter 6).

Partitioned convolution is a divide-and-conquer technique. Particularly in
real-time processing, it is not only beneficial, but also necessary to split a
large linear convolution into several shorter ones. As input signals are of
indefinite lengths here, they need to be processed in blocks of samples. The
availability of input blocks thereby depends on the actual runtime. This
requires realizing the FIR filtering block by block in the form of running
convolutions. Aiming at a low processing latency, partial output results of
filtering procedure have to be provided in the meantime. By making use
of the well-known Overlap-Add (OLA) or Overlap-Save (OLS) scheme, all
previously discussed fast convolution techniques can be adapted to suit this
purpose. However, remarkable computational saving can also be achieved
by splitting the filter into several sub filters. In order to fully exploit these
circumstances, specific partitioned convolution algorithms are needed. These
are examined in chapter 5 and 6. In comparison to a large, unpartitioned
filter, the set of shorter sub filters can be realized with a much higher com-
putational efficiency. The computational savings are immense.

Many of the previously discussed fast convolution algorithms found on the
divide-and-conquer principle and compute longer convolutions by decompos-
ing them into shorter ones. This raises the question, if these concepts can
be directly applied to derive fast real-time filtering techniques. Block-wise
decompositions are favored in real-time processing, because they allow dis-
tributing the computation over the runtime, with respect to the availability
of input blocks and requirements of intermediate output blocks. Number the-
oretic strategies, for instance decomposing circular convolutions using multi-
dimensional index mapping (see section 2.6.1 or the Winograd algorithm), do
not hold this property. Some interpolation-based techniques make implicit
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use of partitioning the sequences. The Karatsuba convolution algorithm is
real-time capable [47].

This chapter introduces the basic principles of partitioned convolution, which
can be applied in two ways: input partitioning and filter partitioning. The
OLA and OLS technique for computing running convolutions are presented.
Filter partitions are formally defined and the resulting filter structure is in-
troduced. Finally, a classification of convolution algorithms is presented,
which marks the guideline for the subsequent chapters of this thesis.

Motivation

For a transform-based linear convolution it would be desirable, that the input
sequences of lengths M and N could be represented with an identical number
of elements in the frequency-domain (mathematically speaking a bijection):
for example, realizing a 1024×128 linear convolution using a 1024-point and
a 128-point DFT spectrum. For each sequence on its own this is possible
(e.g. real-data DFT in section 2.5.2). However, due to the mathematical
background (diagonalization of circulant square matrices, see section 2.5.1),
this is not possible. The discrete spectra must be compatible and of the same
size N . That enforces zero-padding to achieve linear convolution as desired
for audio filtering (see section 2.3).

FFT-based linear convolution methods deliver the highest efficiency (least
computation per filtered output sample), when the input signal and filter have
matching lengths M ∼ N . This case is in this work referred to as balanced
convolution problem. Here, viable transform sizes K ≥M+N−1 ≈ 2M = 2N
can be chosen close to the sequence lengths M,N . As a result, the amount
of zero-padding is minimal and the sequences are represented by the shortest
possible DFT spectra with a minimal number of DFT coefficients.

If both lengths M,N strongly differ (M�N or M�N), comparably large
transforms must be computed of relatively short sequences, involving exten-
sive zero-padding. Moreover, the DFT spectra are bloated, increasing the
computation for spectral convolutions unnecessarily. Considering the exam-
ple of filtering a three-minute long audio file with a room impulse response
of 1-second duration, these disadvantages become clear. Given a sampling
rate of 44.1 kHz, two sequences of lengths M = 3 · 60 · 44100 = 7938000 and
N = 44100 needed to be convolved. This would not only require the compu-
tation of a very large FFT, which is rather cache-inefficient. Also would the
1 s-filter have to be padded with at least 7938000−1 zeros.

Using partitioned convolution, a large unbalanced convolution problem can
be broken up into several smaller more balanced convolutions, which can
be computed with much higher computational efficiency on their own. The
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approach is beneficial for both, offline and real-time convolution. Moreover,
the technique is not limited to transform-based convolution. But particularly
transform-based convolution can heavily exploit these schemes by reusing
many previously transformed spectra.

Partitioning can be applied to the input signal, as well as the filter impulse
response. In the following these two cases are reviewed in more detail.

3.1. Input partitioning

The first approach is partitioning the input signal. Let x(n) be a signal of
(potentially) indefinite length (n ≥ 0). A uniform partitioning of x(n) is a
decomposition into a sequence of finite-length sub signals x0(n), x1(n), . . .
called blocks, which all have an equal block length B

x(n) =
∑
i≥0

xi(n−Bi)
(0≤n<B, i ≥ 0) (3.1)

xi(n) = RB{ x(n+Bi) }

Given that x(n) has a finite length M , there are
⌈
M
B

⌉
blocks xi(n). If M

is not a multiple of B, the final block is zero-padded to match the length
B. Audio streams in real-time signal processing have indefinite lengths and
thereby an indefinite number of blocks. Nevertheless, a distinct first block
x0(n) always exists, at the point in time that the streaming started.

Real-time running convolutions are always computed using a uniform input
partitioning, because in real-time audio streaming the block length is fixed
and does not vary over time. Fast offline convolution could theoretically
benefit from differently sized input blocks. However, many transform-based
fast convolution algorithm gain their efficiency from reusing the spectra of
already transformed blocks. Thereby, a uniform partitioning of signal and fil-
ter allows the largest extent of reusing spectra, which are all of the same size.
These relations will be more closely reviewed in chapter 5. Non-uniformly
partitioned input signals, with block lengths that vary over time, are uncom-
mon in audio processing.

3.1.1. Running convolutions

The linear convolution of a partitioned input signal as in Eq. 3.1 can be
implemented using unpartitioned convolutions with the help of two well-
known techniques: the Overlap-Add (OLA) and Overlap-Save (OLS) method
[21, 74]. Both methods on their own are first of all independent from a
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3. Partitioned convolution techniques

Figure 3.1.: Overlap-Add convolution illustrated as a matrix product [21]

filter partitioning. They can be used with linear convolution, but are mostly
applied in conjunction with circular convolution (e.g. FFT techniques). Here,
only the basic principles are briefly summarized. The two techniques are later
combined with FFT-based implementations in section 4.1 in chapter 4 and
reviewed in detail.

Overlap-Add

The Overlap-Add (OLA) method originates from the input partitioning.
Each length-B input block xi(n) is convolved with the length-N impulse re-
sponse h(n), producing overlapping partial output signals yi(n) = xi(n)∗h(n)
of the lengthB+N−1. As the latter exceeds the block length (B+N−1 > B),
the overlapping N − 1 samples, must be added to the final result y(n). This
leads to the name Overlap-Add. The method can be visualized using the
matrix-vector product formulation of linear convolution [21]. Figure 3.1
shows an example of an 8× 5 linear convolution. Thereby, the Overlap-Add
method splits the convolution matrix vertically [21]. These sub matrices
can then be multiplied with the sub vectors of the input. The sub matri-
ces contain 4× 5 convolution matrices and additional blocks of zeros (above
or below), which realize the delay. Here, the two partial length-7 results
overlap in three samples (marked dark gray). Note, that the output is not
partitioned. Technically, the full result can be computed using two 4 × 5
linear convolutions plus three additions for the overlap.

66



3.1. Input partitioning

Figure 3.2.: Overlap-Save convolution as a matrix product [21]

Overlap-Save

The Overlap-Save (OLS) method is designed the other way round: It starts by
partitioning the output signal and then formulating appropriate convolutions
to obtain these non-overlapping output blocks from overlapping ranges of
input samples. Again, the method can be nicely illustrated using the matrix-
vector product [21], as shown in figure 3.2. The Overlap-Save method splits
the convolution matrix horizontally. Each output block results from the
multiplication of a sub matrix with the (unpartitioned) input vector. As the
output blocks do not overlap, the extra additions as for the OLA method
fall apart. Each output block is composed from the turn-off transient of
the preceeding input block and the turn-on transient of the current input
block. Considering an N -tap direct-form FIR filter (as in figure 3.3), the
turn-on transients are produced from the new input samples, while the turn-
off transients result from previous N−1 input samples, which are still stored
in the accumulators.

In the OLS method, the sub convolutions are defined on overlapping regions
of the input samples. Other than for the OLA method, the sub matrices
here do form linear convolution matrices. The output blocks are obtained by
computing three 8× 5 linear convolutions and by selecting only the last four
samples of each sub convolution. The name of the method results from the
fact, that only a subset of outputs from each sub convolution are stored or
saved into the final output.
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h8

z
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x(n)

y(n)

Figure 3.3.: An unpartitioned 9-tap direct-form FIR filter

3.2. Filter partitioning

A second approach is to decompose a large FIR filter by partitioning its
impulse response. This is referred to as filter partitioning. Opposed to input
partitioning, which is usually predefined and fixed, filter partitioning can
be realized in many different ways and can be thought of as a parameter.
The way the filters are partitioned, defines different classes of convolution
algorithms.

3.2.1. Filter partitioning scheme

The principle of filter partitioning is illustrated in figure 3.6. A length-N filter
impulse response is decomposed into P sub filters of length N0, · · · , NP−1.
It is claimed, that all sub filters cover the length of the original filter

P−1∑
i=0

Ni = N (3.2)

Sometimes the strict match (=) is relaxed to simple coverage (≥) incorpo-
rating zero-padding

P−1∑
i=0

Ni ≥ N (3.3)

Each sub filter impulse response hi(n) relates to a connected interval nfirst
i ≤

n ≤ nlast
i of filter coefficients in the filter h. All sub filters are neighboring in

time
∀0≤ i<P−1 : nfirst

i+1 = nlast
i + 1 (3.4)

This implies, that all sub filters must adjoin and that no filter coefficients can
be left out by the partition. In other words, the partition is a decomposition
into blocks. For convenience two variables are defined.
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3. Partitioned convolution techniques

h(n)

h0(n) h1(n) h2(n) hP-1(n)

length(h0)=N0 length(hP-1)=NP-1

Original impulse response

Sub filters

offset(h0) offset(hP-1)

Figure 3.6.: General filter partitioning scheme

The sub filter length (the number of filter coefficients) is denoted by

length(i) := Ni = nlast
i − nfirst

i + 1 (3.5)

The position of the sub filter within the original impulse response is

offset(i) := nfirst
i =

∑
j<i

Nj (3.6)

A sub filter impulse response hi(n) is obtained by extracting Ni coefficients
from the filter h(n)

hi(n) = RNi{ h(n+ offset(i)) } (3.7)

The original filter h(n) is assembled from all sub filters using the relation

h(n) =

P−1∑
i=0

hi(n− offset(i)) (3.8)

For reasons which are explained in chapter 6, only ordered decompositions are
meaningful, in which the sub filter lengths form a non-decreasing sequence

N0 ≤ N1 ≤ · · · ≤ NP−1 (3.9)

A filter partition, symbolized by P, can be formally written down as a
sequence of sub filter lengths

P = ( N0, . . . , NP−1 ) (3.10)

Sub filter lengths ∀i : Ni ∈ S are selected from a set of feasible sub filter
lengths S. It is usually determined by the convolution algorithm and mostly
a true subset of the natural numbers, for instance powers-of-two with certain
limits.
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3.2. Filter partitioning

Classification of filter partitions

A filter is called unpartitioned when P = 1. If a partition consists of multiple
sub filters of the same size ∀i, j : Ni = Nj , it is called a uniform partition.
Otherwise, it is called a non-uniform partition. Due to the order in Eq. 3.9,
any non-uniform partition is assembled from uniform sub partitions. These
are referred to as segments of the partition.

3.2.2. Filter structure

Inserting the block decomposition in Eq. 3.8 into the linear convolution in
Eq. 2.3 yields

y(n) = x(n) ∗ h(n)

3.8
= x(n) ∗

[ P−1∑
i=0

hi(n− offset(i))
]

(3.11)

=

P−1∑
i=0

[[
x(n) ∗ δ(n− offsethi(n))

]
∗ hi(n)

]
(3.12)

=

P−1∑
i=0

[[
x(n) ∗ hi(n)

]
∗ δ(n− offsethi(n))

]
(3.13)

Writing the delays in Eq. 3.11 as convolutions with time-shifted unit impulses
yields Eq. 3.12. As convolution is commutative, the delays can be shifted as
in Eq. 3.13.

Eq. 3.13 defines the typical block diagram of partitioned FIR filters. This is
illustrated with an example, by partitioning 9-tap FIR filter in figure 3.3 into
three 3-tap filters. The resulting partitioned FIR filter networks are depicted
in Fig. 3.4-3.5. All sub filters are arranged in a parallel structure and are fed
with the same input signal. The total output is added up from all sub filter
outputs. Each sub filter branch must be delayed according to the offset of
the sub filter in the whole impulse response. The necessary delays for each
sub filter branch can be realized in various ways: pre-delays (as in Fig. 3.4),
post-delays (as in Fig. 3.5) or combinations of both. Correctness holds as
long as each sub filter branch accumulates its designated delay, according to
the offset of its associated filter part. In software, delays are realized by read
or write positions on buffers.

For the sake of clarity, the decomposition concept is visualized here using
time-domain FIR filters. The true potential filter partitioning is exploited
by realizing the sub filters with appropriate fast convolution techniques.
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Figure 3.7.: Classes of convolution algorithms with and without partitioning

3.3. Classification of partitioned convolution algorithms

Guiding the further study of algorithms in this thesis, the author introduces
a classification of convolution methods. Three different types of partitions
were introduced in section 3.2.1. An unpartitioned filter, denoted by 0. A
uniformly partitioned and a non-uniformly partitioned filter, abbreviated by
UP and NUP. Applying these three types for both operands, the signal and
the filter, results in a set of nine combinations which are listed in figure 3.7.
Each class is written as a pair ( · S, · F), where the first element corresponds
to the partitioning of the signal and the second to the partitioning of the
filter. This classification groups algorithms by their use of a block-wise split-
ting of the operands. Many other classifications are imaginable, for instance
based on the fast convolution paradigm or algorithmic complexity classes.
The choice depends on the objective and point and view. Here, real-time
processing is in the focus, for which the partitioning marks a cornerstone
and leads to quite different algorithmic approaches.

The class (0S, 0F) summarizes methods which do not facilitate a block-
decomposition, neither of the signal nor of the filter. This includes CRT-
based techniques, like the Winograd convolution algorithm (section 2.6.3)
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3.3. Classification of partitioned convolution algorithms

and the PFM index-mapping technique (section 2.6.1). Considering the
transform algorithms as black boxes, the class also includes all basic (un-
partitioned) transform-based methods in chapter 2.

Block-based real-time audio processing introduces a uniform partitioning of
the input signals. All relevant methods for this area are hence found in the
second column of figure 3.7 (marked gray). Conversely, that does not imply
that all methods within these classes are actually real-time capable. Not all
Toom-Cook algorithms (section 2.4.1) suit low-latency real-time processing
[47]. An exception is the Karatsuba algorithm which belongs to the class
(UPS,UPF).

The research in this thesis focuses on the three classes (UPS, 0F), (UPS,UPF)
and (UPS,NUPF) in conjunction with transform-based fast convolution.
FFT-based convolution algorithms for each class are presented. Their prop-
erties for real-time filtering in acoustic virtual reality are discussed. The
analysis of their computational complexity is of particular interest. The run-
time complexity classes are derived.

Everything besides the central column in figure 3.7 is not suitable for real-
time filtering with a low latency. However, methods in these classes can be
useful for offline filtering, where latency is irrelevant. Due to the commu-
tativity of convolution, signal and filter can be arbitrarily swapped, if it is
beneficial. In this respect, only three classes have not been considered so
far: (0S, 0F), (0S,NUPF), (UPS,UPF) and (NUPS,NUPF). From the study
of the real-time methods in the next chapters it follows, that non-uniform
partitions are only beneficial in the context of real-time processing, where
a processing with low latency is desired. Even if the latency is irrelevant
(offline convolution), a partitioning in both operands is mostly still advan-
tageous (e.g. memory locality, improved cache utilization). These offline
filtering techniques perform most efficient, when the reuse of previously com-
puted spectra is maximized. Hence, the class (UPS,UPF) covers also these
applications. However, as offline convolution lies not in the focus of this work,
a detailed study of optimal parameters for these cases is not conducted.
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4. Elementary real-time FIR filtering using
FFT-based convolution

This section discusses the application of FFT-based fast convolution for real-
time FIR filtering. In order to process the consecutive blocks of the in-
put stream, the basic FFT convolution method (introduced in section 2.5.2)
is combined with the Overlap-Add and Overlap-Save schemes (see section
3.1.1). This chapter reviews methods which belong to the class (UPS, 0F) in
figure 3.7. They do not partition the filter impulse response and process it
as a whole. Firstly, different algorithms for time-invariant filtering are intro-
duced. Then their computational complexity is analyzed and the limitations
of methods with unpartitioned filters are identified. Important aspects like
time-variant filtering or multiple inputs or outputs are first developed at these
conceptually simple techniques here. Later they are extended to uniformly
and non-uniformly partitioned convolution methods.

4.1. FFT-based running convolutions

In the following a real-time FIR filtering problem is regarded, as it has been
defined in section 1.3. A single channel audio stream x(n), provided and pro-
cessed in length-B blocks x0(n), x1(n), . . . , is filtered with an N -tap impulse
response h(n). The transform size K is introduced as a third parameter. Two
separate workflows are distinguished. The filter processing involves all steps
to convert the time-domain impulse response into a frequency-domain rep-
resentation. Stream processing describes all computations filtering one input
block, producing one output block. The algorithmic complexity is regarded
in two measures

• T stream(B,N,K) marks the computational costs for filtering a single
sample of the stream.

• T ftrans(B,N,K) states the costs for transforming the complete length-N
filter, so that it can be used in the corresponding convolution algorithm.

Depending on the type of examination, both cost functions can be purely
analytic (theoretic number of arithmetic operations) or based on measured
performance data (average number of CPU cycles on the target machine, see
chapter 7).
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4. Elementary real-time FIR filtering using FFT-based convolution

4.1.1. Overlap-Add

Firstly, the FFT-based running convolution using the Overlap-Add scheme
is presented. The resulting algorithm is visualized in figure 4.1. It works as
follows

• The next length-B input block is zero-padded to length-K
and transformed using a K-point FFT .

• The length-N impulse response is zero-padded to length-K
and transformed using a K-point FFT.

• The input and filter DFT coefficients are pair-wisely multiplied
(spectral convolution)

• The result is transformed back into the time-domain using a K-point
IFFT. It forms a partial convolution result of length B+N − 1, which
is buffered.

• The length-B output block is added up from the overlapping partial
results (Overlap-Add step).

The transform size K must be chosen sufficiently large to avoid time-aliasing
(cp. Eq. 2.18)

K ≥ B +N − 1 (4.1)

For the sake of clarity, all partial output signals are stored separately in figure
4.1. In actual implementations, all partial outputs are accumulated in a single
output buffer. It must be large enough to store at least B +N − 1 samples.
Leaving the filter transformation out of consideration, the algorithm has the
following computational cost per filtered output sample

T stream
OLA-FFT(B,N,K) :=

1

B

[
TFFT(K) + TCMUL(K) + TIFFT(K) + (4.2)

TADD(B +N − 1)
]

Note, that the number of extra additions depends on the filter length N . For
long filters they can cause a significant computational overhead.

4.1.2. Overlap-Save

Figure 4.2 illustrates the corresponding Overlap-Save algorithm. The method
is similar to the OLA approach in the way the filter is transformed and the
spectral convolution is computed. But it differs in the following aspects:
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4.1. FFT-based running convolutions

• The input FFT is computed from aK-point sliding window of the input.
Before the transformation, the previous contents are shifted B samples
to the left and the next length-B input block is stored rightmost.

• From the output of the K-point IFFT, the K − B leftmost samples
are time-aliased and therefore discarded. The B rightmost samples are
saved into the output block.

The periodicity of the transform allows to implement the OLS method in
different ways. The algorithm can be modified by circular shifting of the
buffers (input or filter), altering the positions where data is written into
the input buffer and filter buffer and read from the output buffer. Shift
operations on the sliding window can be minimized by using larger ring
buffers for the input samples. Then actual shifts (copy operations) only have
to be performed in the event of buffer wraps. By cyclic shifting of the filter
buffer, the valid output block can be moved to the leftmost position. This
can be an advantage, when partial inverse transforms shall be computed.

The computational complexity per output sample of the OLS algorithm is

T stream
OLS-FFT(B,N,K) :=

1

B

[
TFFT(K) + TCMUL(K) + TIFFT(K)

]
(4.3)

The filter transformation consists of a single K-point FFT for both methods

T ftrans
OLA-FFT(B,N,K) = T ftrans

OLS-FFT(B,N,K) := TFFT(K) (4.4)

In principle, both methods require the same number of FFTs, IFFTs and
complex-valued multiplications. A slight advantage of the OLS over the OLA
approach is, that it avoids the extra additions for the overlapping samples.

4.1.3. Computational complexity

The complexity classes of the methods are analyzed by inserting the theoret-
ical costs of the operations (see section 7.4.1) into the cost functions defined
above. Therefore, the transform size is chosen the smallest possible value
K = B+N+1 (Eq. 4.1). FFTs and IFFTs of length K are assumed to have
a runtime of the general form kK log2 K, with a constant k∈R+ (details see
section 7.4).

T stream
OLS-FFT(B,N,K=B+N+1) =

1

B

[
2kK log2 K + 6K

]
=

1

B

[
2k(B+N+1) log2(B+N+1) + 6(B+N+1)

]
(4.5)
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4.1. FFT-based running convolutions
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4. Elementary real-time FIR filtering using FFT-based convolution

The asymptotic runtime is now regarded as a function of the filter length
N . Assuming the block length B to be a fixed constant, Eq. 4.5 reduces to
the functional form ε1((N + ε2) log2(N + ε2) + ε3N) with constants ε1, ε2, ε3.
Without formal proofs, the following complexity classes hold for a constant
block length B

T stream
OLA-FFT(B const., N,K=B+N+1)

T stream
OLS-FFT(B const., N,K=B+N+1)

T ftrans
OLA-FFT(B const., N,K=B+N+1)

T ftrans
OLS-FFT(B const., N,K=B+N+1)

 ∈ O(N logN) (4.6)

This result is counter intuitive. FFT-based convolution is widely favored over
time-domain filtering because it is significantly faster. However, the latter
has a runtime complexity per filtered sample of O(N) (Eq. 2.10). From
O(N) ⊂ O(N logN) it follows, that a filter length N must exist, for which
time-domain filtering becomes more efficient than the presented basic FFT-
based approach. This break-even point is enormously large and way beyond
all practical problem sizes. For a realistic FFT constant of k = 1.7, the
number of operations in Eq. 4.5 exceeds Eq. 2.10 for filter lengths N > 1023.
Note, that this result only holds for FFT-based convolution without filter
partitioning. Methods, that partition the filter, break these boundaries and
their complexity per filtered sample lies in the class O(N) or even lower (see
chapters 5 and 6).

The filtering costs of the Overlap-Add approach lie in the same class
O(N logN), as the extra additions are only linear in N . Trivially, the filter
transformation for both algorithms has the runtime complexity of the FFT.
These complexity classes hold as well for implementations with all other fast
transforms introduced in chapter 2, which are computable in O(N logN)
time.

Eq. 4.5 indicates that the computational costs per filtered sample are nearly
anti-proportional to the block length B for large N . In other words, doubling
the block length will approximately halve the costs. Note, that the latency
is not determined by the block length alone, but also by buffering and the
hardware. Accepting more latency generally lowers the computational costs.

4.1.4. Transform sizes

The choice of transform size for the FFTs is critical for the performance of
both algorithms. Simply taking the smallest possible size K = B + N − 1
will diminish the performance in the majority of cases (see section 7.6).
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4.1. FFT-based running convolutions

A common choice is selecting the next larger power-of-two

K = min{ 2i ≥ B +N − 1 | i ∈ N } (4.7)

The best results are achieved by optimizing the transform K to minimize the
computational costs

Kopt = argmin
K
{ T (B,N,K) | K ≥ B +N − 1 } (4.8)

where T (B,N,K) is a cost function (model) of the considered algorithm.
Given a performance profile of a given machine (see chapter 7), Eq. 4.8 is
evaluated for all considered transform sizes (e.g. 1–65.536) and the optimal
transform size Kopt is found. On current computers, this optimization pro-
cedure is usually a matter of milliseconds. Depending on the application, the
costs of the stream processing or filter processing can be selected. Mostly
the costs of the stream processing (Eq. 4.2 and 4.3) are regarded, as a fil-
tering free of dropouts has higher importance than faster filter updates. The
influence of the transform size is deeper examined in the following section.

4.1.5. Performance

The computational costs of both algorithms are examined for different com-
binations of block lengths B (corresponding to latencies) and filter lengths
N . The cost functions in Eq. 4.2, 4.3 and 4.3 are evaluated with the perfor-
mance profile of the test system (see chapter 7). Real-data transforms are
used and only complex-conjugate symmetric DFT coefficients are stored and
processed, yielding the modified cost function

T stream
OLS-RFFT(B,N,K) :=

1

B

[
TFFT-R2C(K) + TCMUL

(⌈K+1

2

⌉)
+

TIFFT-C2R(K)
]

(4.9)

Figure 4.3 shows the costs for the streaming filtering over the filter length
N , for a fixed block length of B = 128 samples. The costs are measured as
the (average) number of CPU cycles per filtered output sample. Solid lines
correspond to optimized transform sizes (Eq. 4.8) and dotted lines to power-
of-two transform sizes (Eq. 4.7). The latter become comparably inefficient,
when B +N − 1 just exceeds a power-of-two. By considering arbitrary FFT
sizes a relatively even curve of the computational costs is achieved. However,
the curves are not exactly smooth. This is not measurement noise, but the
results of the the fact, that, depending on the actual transform size, very
different decomposition strategies are employed within the FFTs. For small
filter lengths, the difference between OLA and OLS is marginal. Towards
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4. Elementary real-time FIR filtering using FFT-based convolution

longer filters it becomes significant. Figure 4.4 shows the distribution of
computational costs for the OLS algorithm. It can be clearly seen, that the
major computation is spent on fast Fourier transforms, whereas the spectral
convolution consume only a fraction of the runtime. This allows the conclu-
sion, that major savings are achieved on side of the transforms. The spectral
convolutions have a minor impact on the algorithms’ performance.

Figure 4.5 depicts costs per output sample for the OLS method for the block
lengths 128, 256, 512 and 1024. Again, the costs are derived from the bench-
marked data of the test system (see chapter 7). As expected, larger block
lengths (corresponding to more latency) reduce the computational effort for
the filtering. In order to identify the magnitude in savings, the relative
speedups (reduction in costs), when changing from a short reference block
length B = 128 a large block length, are plotted in figure 4.6. Doubling the
block length from B = 128 to B = 256 samples nearly halves the costs. A four
times larger block length B = 512 demands a little bit less than a quarter of
the effort. An eight-fold block length B = 1024 reduces the computation by
about a factor of 7-8. These ratios hold for sufficiently long filters N > 6000.
For shorter filter lengths the savings for larger block lengths are less articu-
lated. The observations show a good agreement with the theoretical results
in section 4.1.3.

While the block length B showed a strong impact on the computational load
per filtered sample, it does only marginally affect the cost for transforming the
filters into the frequency-domain. Figure 4.7 depicts the number of total CPU
cycles for a single filter transformation of lengths N and several block lengths
B. Here, the transform sizes have been optimized for the stream processing,
as described in section 4.1.4. An opposite effect can be observed for the filter
transformations: Larger block lengths require slightly larger transforms (Eq.
4.1) to be computed and can moderately increase the computational costs.

Finally, the computational costs of the methods are compared to direct time-
domain filtering. An N -tap direct-form FIR filter requires N multiplies and
N − 1 additions (Eq. 2.10) per output sample, regardless of the block length
B. Therefore, the latter was assumed to have a computation time per output
sample TTDL(N) = TMUL(N) + TADD(N). For long filters, this simple cost
model is representative. However, it might not be accurate for short filters
N < 64, as advanced implementation techniques (e.g. efficient vectorization
and code templates) are neglected. For block-based FFT-convolution the
costs depend on the block length B. The computational savings were assessed
for the typical block lengths listed above. Figure 4.8 shows the prognosed
speedups of FFT-based running convolution over the time-domain filtering.
Even for short block lengths B the reduction in complexity is immense and
in the range 7− 11×.
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4.1.6. Conclusions

• Performance: Unlike for time-domain filtering, the computational
costs of the FFT-based OLA and OLS running convolution algorithm
depends on the block length B. For typical parameters of real-time ap-
plications, the FFT-based running convolution algorithms clearly out-
perform simple time-domain FIR filters by several magnitudes. The ex-
act break-even points between time-domain and frequency-domain pro-
cessing require a careful inspection of mature implementations of both
techniques. Asymptotically however, time-domain filtering is faster,
due to a lower complexity class.

• Distribution of costs: In FFT-based OLA/OLS convolution algo-
rithms, the largest part of the runtime (typically more than 90%) is
spent on computing fast Fourier transforms.

• Transform sizes: By limiting transform sizes K on powers-of-two,
filter lengths N can be found for which the OLA/OLS algorithms’ per-
formance is approximately halved (in particular when B+N−1 just
exceeds a power-of-two). This holds for the stream processing and the
filter transformations. Hence, OLA/OLS convolution (without filter
partitioning) can be significantly accelerated by also considering non-
power-of-two FFT sizes. The optimal transform size can be found by
inspection.

• Cost vs. latency: The computational costs of stream processing in
OLA/OLS convolution are related almost anti-proportionally to the
block length. For filter lengths N < 6000 taps, these ratios become
more dense (shorter block lengths are comparably less computationally
expensive).
In contrast, filter transformations become computationally cheaper for
smaller block lengths. Given a filter lengths N<6000 the dependency
on the block length can be significant. Towards longer filters N>6000,
the influence alleviates.

4.2. Filters with multiple inputs and outputs

So far, linear time-invariant (LTI) systems with a single input and a single
output (SISO) have been regarded. Transform-based convolution can be eas-
ily extended to implement single-input multiple-output (SIMO), multiple-
input single-output (MISO) and multiple-input multiple-output (MIMO)
real-time FIR filters as well. A multiple-input multiple-output (MIMO) real-
time FIR filter is considered in the following as a system with P inputs and
Q outputs. Each of the inputs can be connected with an output over an in-
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4.2. Filters with multiple inputs and outputs

termediary FIR filter. hi→j(n) denotes the finite impulse response of length
Ni→j connecting the ith input and jth output. It is assumed, that all in-
put and output streams share a common sampling rate fS and streaming
block length B. For real-time audio processing these assumptions hold, as
the streaming is typically driven by a single audio device. In the following
it is regarded how these types of FIR filters can be realized computationally
efficient using FFT-based convolution.

The principle idea is to transform input and output blocks only once. Then,
only the spectral convolutions have to be computed for each filter path be-
tween an input and an output. An input spectrum can be addressed by
multiple outputs. Several filter paths joining in an output are realized by
summation of the computed DFT spectra. As the transforms consume the
most computation (see Fig. 4.4), significant computational savings can be
achieved. A requirement is that all input and output blocks and filters are
transformed, using a common transform size K. As the filters hi→j(n) can
vary in their lengths Ni→j , the condition to prevent time-aliasing in the
outputs (Eq. 4.1) must hold for all of them

K ≥ B +
(

max
i, j

Ni→j
)
− 1 (4.10)

Two cases are of particular interest: Firstly, the case that a single input
channel is filtered with two separate impulse responses. Secondly, the re-
versed case, when two separate input signals are filtered with the same filter
impulse response. In the following it is reviewed, how complex-valued trans-
forms allow accelerating the processing in these cases. These results can also
be applied to filter with more than two inputs or outputs.

4.2.1. Dual channel convolutions

Zölzer [130] presents how the convolution of two real-valued signals can be
accomplished using an equivalent complex-valued formulation. Let x0(n)
and x1(n) be two real-valued length-K signals. They are combined into a
complex-valued signal x(n), where x0(n) forms the real part of x(n) and
x1(n) the imaginary

x(n) = x0(n) + ix1(n) with
x0(n) = Re{x(n) }
x1(n) = Im{x(n) }

(4.11)

The K-point DFT transforms of these signals hold

X0(k) = DFT(K){x0(n) }
X1(k) = DFT(K){x1(n) }

⇒
X(k) = DFT(K){x(n) }

= X0(k) + iX1(k)
(4.12)

87



4. Elementary real-time FIR filtering using FFT-based convolution

From the combined DFT spectrum X(k) the DFT spectra X0(k), X1(k) of
the real and imaginary parts can be recovered, using the following relations
(for details refer to [130])

X0(k) =
1

2

[
X(k) +X(K−k)

]
X1(k) = − i

2

[
X(k)−X(K−k)

]
(4.13)

The relations 4.11 and 4.13 make it possible to compute two K-point real-
data DFTs by using just a single complex-valued K-point FFT. Based on
the combined spectrum X(k), two circular convolutions y0(n) = x0(n)~h(n)
and y1(n) = x1(n) ~ h(n) of two separate signals x0(n), x1(n) with a single
signal h(n) can be realized simulataneously [130]

x(n) = x0(n) + ix1(n) (4.14)

X(k) = DFT(K){ x(n) }, H(k) = DFT(K){ h(n) } (4.15)

Y (k) = X(k) ·H(k) (4.16)

y(k) = DFT −1
(K) { Y (k) } (4.17)

y0(n) = Re{ y(k) }, y1(n) = Im{ y(k) } (4.18)

Such a processing is of particular interest for binaural synthesis, where a
single monaural source signal is filtered with two head-related impulse re-
sponse (HRIR) filters. Note, that for this dual channel convolution the sep-
aration in Eq. 4.13 is not required. It should be remarked here, that two
independent convolutions x0(n) ~ h0(n), x1(n) ~ h1(n) cannot be realized
using simple complex-multiplications as in Eq. 4.16. This can be seen from
[x0(n)+ix1(n)]~[h0(n)+ih1(n)] = [x0(n)~h0(n)−x1(n)~h1(n)]+i[x0(n)~
h1(n)+x1(n)~h0(n)] 6= [x0(n)~h0(n)]+i[x1(n)~h1(n)]. Linear convolutions
x0(n) ∗ h(n), x1(n) ∗ h(n) of sequences with lengths M0,M1 and N , can be
achieved by appropriate zero-padding, similar to the explanations in Sec. 2.3.
The condition for the transform size K then reads K ≥ max(M0,M1)+N−1
(cp. Eq. 2.18).

The costs for stream processing of the dual channel technique are derived
from the operations in Eq. 4.14-4.18. Steps 4.14 and 4.18 do not require extra
operations and are just interleaved memory accesses. The input transform in
4.15 is complex-valued. Step 4.16 requires N complex-valued multiplies (no
symmetries). The inverse transform in 4.17 is as well complex-valued. This
resulting costs are

T stream
OLS-CFFT(B,N,K) :=

1

B

[
TFFT-C2C(K)+TCMUL(K)+TIFFT-C2C(K)

]
(4.19)
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Performance

In theory, a length-N complex-data FFT is slightly more expensive than two
real-data FFTs of the same length: TFFT-C2C(N) / TFFT-R2C(N)> 2. This
is found by inspecting the arithmetic counts of the recent split-radix algo-
rithms [50] for transform sizes N > 2. In practice however, the situation is
different: the benchmarks disclosed, that a single complex-data FFT com-
putes a little bit faster than two real-data transforms (see chapter 7). An
average ratio TFFT-C2C(N) / TFFT-R2C(N) ≈ 1.79/0.97 = 1.85 can be identi-
fied, by inspecting table 7.2. The potential of the dual channel convolution
technique is examined in the following. Figure 4.9 shows the resulting
stream processing costs on the test system. The block length is B = 128
and power-of-two transform sizes K were selected according to Eq. 4.7. The
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4. Elementary real-time FIR filtering using FFT-based convolution

black line corresponds to the dual channel technique using complex-valued
transforms (Eq. 4.19). The dotted line represents the cost of two parallel
single-channel running convolutions implemented using real-data transforms
(Eq. 4.9). The speedup is plotted in figure 4.10. For short lengths N ≤128
the speedup is approximately 1.56×, until for length N≥16384 it converges
to the factor 1.03.

From these observations a clear conclusion can be drawn. Given that two
signals need to be filtered with one impulse response or the opposite case,
that one signal is filtered with two impulse responses, the dual channel tech-
nique has a definite benefit. This holds in particular for shorter filters, where
the largest savings can be achieved. For very long filters the speedup is min-
imal. Such long filters are mostly implemented with partitioned convolution
algorithms.

4.3. Filter networks

This section discusses how assemblies of FIR filters (introduced in chapter
1, section 1.3) can be realized efficiently using OLA/OLS FFT-based fast
convolution. The idea is to realize both types of arrangements entirely in
the frequency-domain. This is motivated by the following potential savings:
In parallel arrangements of filters, the number of transforms can be reduced
by reusing the input spectrum and by summing up the output spectra. In
sequences of filters, the inverse transform of the last filter is followed by a
forward transform of the next one. Both principles can not be used without
precautions for the transform size. The necessary conditions are derived and
reviewed in the following.

The partitioned input signal x(n) is filtered with M different filters which
are either aligned sequentially or in parallel. The M filters are assumed
having finite-length impulse responses h(0)(n), . . . , h(M−1)(n) of lengths
N0, . . . , NM−1. The OLA/OLS convolution is again performed using fast
Fourier transforms of size K. All impulse responses remain unpartitioned
and are processed as a whole. Afterwards, the computational performance is
examined in examples.

Sequential filters

Given a sequential arrangement of the filters h(0)(n), . . . , h(M−1)(n) as in
figure 1.1(b), the M impulse responses can be merged into a single filter h(n).
This is achieved by time-domain convolutions or spectrum multiplications in

90



4.3. Filter networks

the frequency-domain.

h(n) = h(0)(n) ∗ · · · ∗ h(M−1)(n) = ∗
i
h(i)(n) (4.20)

sc sc sc sc

H(k) = H(0)(k) · · · · · H(M−1)(k) =
∏
i

H(i)(k) (4.21)

Following section 2.2 the merged filter h(n) has an accumulated length of

N = ( . . . ((N0+N1−1)+N2−1) + . . . NM−1−1)

=
(∑

i

Ni
)
−M + 1 (4.22)

An alias-free linear convolution is only guaranteed, if the transform size meets
the condition

K ≥ B +
(∑

i

Ni
)
−M (4.23)

This inequality is obtained by inserting Eq. 4.22 into Eq. 4.1. With both
methods, OLA and OLS, a cascade of filters can simply be realized by multi-
plying the input spectrum X(k) consecutively with all filter spectra H(i)(k)

Y (k) = X(k) ·H(0)(k) · · · · ·H(M−1)(k) (4.24)

= X(k) ·H(k) (4.25)

When using Eq. 4.24, the M spectrum multiplications are directly performed
in the context of the audio streaming. In contrast, Eq. 4.25 first merges all
filters together and then performs only a single spectrum multiplication in the
context of stream processing. The number of total spectrum multiplications
remains identical, but computational load is shifted away from the time-
critical processing of the audio stream to the less prioritized filter update
context.
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4. Elementary real-time FIR filtering using FFT-based convolution

Parallel filters

A parallel assembly of the M filters has the sum impulse response

h(n) = h(0)(n) + · · · + h(M−1)(n) =
∑
i

h(i)(n) (4.26)
sc sc sc sc

H(k) = H(0)(k) + · · · + H(M−1)(k) =
∑
i

H(i)(k) (4.27)

The length N of the accumulated filter h(n) is determined only by the longest
impulse response in the summation

N = max{N0, . . . , NM−1} (4.28)

Hence, the condition for alias-free linear convolution of the parallel filters is

K ≥ B + max{N0, . . . , NM−1} − 1 (4.29)

As before, two variants of implementation exist

Y (k) = (X(k) ·H(0)(k)) + · · ·+ (X(k) ·H(M−1)(k)) (4.30)

= X(k) ·H(k) (4.31)

Eq. 4.30 is the direct implementation, requiring M spectrum multiplications
and M − 1 spectrum additions. Eq. 4.31 uses the accumulated impulse
response and requires only a single spectrum multiplication. Again, this
shifts away computation from the stream processing into the filter updates.
Moreover, there is also a difference in the computational effort, as spectrum
multiplications are more expensive than spectrum additions.

Performance

Both types of structures can be conveniently incorporated into frequency-
domain convolution, where they are mapped to multiplications or additions
of filter spectra. Thereby, multiple costly forward and inverse transforms can
be saved. Actually, only a single forward and inverse transform is required
for each processed block. On the other hand, the new conditions for the
transform size (Eq. 4.23 and Eq. 4.29) enforce the use of larger transforms, at
least for sequential filters. An obvious conclusion on the combined approach
can not be drawn here. For a sound comparison, the computational costs have
been evaluated for the test system. This comparison includes an individual
implementation of all filters and the presented combined frequency-domain
techniques. The examination has been carried out with the OLS scheme and
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transform sizes have been specifically optimized (similar to Eq. 4.8). As
there are lots of possible combinations of short and long filters, two classes
of cases have been selected. Firstly: Arrangements of two, three and four
equally-sized 128-taps filters. Secondly: Combinations of a 128-tap filter with
longer filters of 256, 512 and 1024 taps.

Table 4.1 shows the results for sequential filters and table 4.2 for parallel
assemblies. The observations can be summarized as follows:

• By implementing filter structures directly in the frequency-domain, the
computational effort for the sheer filtering (streaming processing) can
be lowered, often significantly.

• In case of sequential filters, the filter transformations become more
expensive. In this respect, an individual implementation is computa-
tionally cheaper in total. Given that not all filters are time-varying,
this gap increases even more.

• Sequences of filters can be significantly accelerated by implementing
them in the frequency-domain, with respect to filtering only (streaming
processing).

• Parallel assemblies of filters can be accelerated even more, by the order
of several magnitudes.

• For most real-time applications, it will be beneficial to implement
shorter sequences of filters and an arbitrary number of parallel filters
in the frequency-domain. An individual inspection is advised, when
filters are exchanged with very high rates and also in cases when not
all filters in the structure are time-variant.

4.4. Filter exchange strategies

This section regards possibilities for implementing a time-varying FIR filter-
ing, by exchanging the filters in a FFT-based fast convolution. The general
description of the problem was given in section 1.3 in chapter 1. Issues of
parameter crossfading [53] are not addressed here. It is remarked, that these
techniques can be united with fast convolution techniques (e.g. HRTF in-
terpolation in the DFT domain) and offer potential computational benefits.
However, such combined approaches are very application-specific and hence
not taken into consideration. Here, the focus lies on the efficient implemen-
tations of output crossfading, which is introduced below. Different imple-
mentation strategies are presented. The increase in computational costs for
a time-varying filtering compared to a static filtering are evaluated.
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4.4. Filter exchange strategies

Output crossfading

For simplicity it is assumed, that a filter exchange h0(n) → h1(n) happens
within a single length-B block, here denoted as x(n). Over the time span of
the filter exchange, this signal block is filtered with both impulse responses,
resulting in two intermediate output signals

y0(n) = x(n) ∗ h0(n) and y1(n) = x(n) ∗ h1(n) (4.32)

In order to smooth out potential discontinuities, both intermediate output
signals are crossfaded using envelopes fout(n) and fin(n) within the first
L ≤ B points

y(n) =

{
y0(n) · fout(n) + y1(n) · fin(n) if n < L

y1(n) otherwise
(4.33)

The length L of the crossfade is application specific. Typical values in binau-
ral synthesis are between 8 and 32 samples. For time-varying filtering with
room-impulse responses, L can be longer and even L = B. The envelopes
fin(n), fout(n) are defined for values 0≤ n < L. fout(n) is a non-increasing
sequence and realizes the fade out. fin(n) is non-decreasing and used to fade
in. It is claimed, that the envelopes preserve a constant amplitude

fout(n) + fin(n) = 1 (0≤n<L) (4.34)

Otherwise, the continuous output stream would be modulated, causing audi-
ble artifacts. From Eq. 4.34 it follows, that fin(n) is given by 1−fout(n) and
vice versa. Two examples of envelope functions used for audio rendering are

Linear fout(n) = 1− n

L
fin(n) =

n

L
(4.35)

Cosine-square fout(n) = cos2
(πn

2L

)
fin(n) = sin2

(πn
2L

)
(4.36)

Both functions hold fout(0) = fin(L) = 1 and fout(L) = fin(0) = 0. Seman-
tically, the first output sample y(0) = y0(0) is taken from exclusively and
the sample y(L) = y1(L) already belongs to the destination signal (see Eq.
4.33).

4.4.1. Time-domain crossfading

The crossfade in Eq. 4.33 can be incorporated into the OLS running convolu-
tion algorithm in figure 4.2. Two separate running convolutions are computed
side by side. The crossfade is realized afterwards in the time-domain. The
resulting algorithm, in the following named variant (1), is depicted in figure
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4. Elementary real-time FIR filtering using FFT-based convolution

4.11. Obviously, the transformed input spectrum can be reused, saving an
unnecessary second input FFT. An additional spectral convolution and in-
verse transform are required, compared to the time-invariant OLS filtering
algorithm in figure 4.2. The L-sample crossfade of the output samples de-
mands 2L multiplies and L additions. The computational costs per filtered
output sample for the complete time-varying OLS algorithm are

T stream
OLS-FFT-TV1(B,N,K) =

1

B

[
TFFT(K) + 2TCMUL(K) + 2TIFFT(K) +

2TMUL(L) + TADD(L)︸ ︷︷ ︸
Length-L crossfade

]
(4.37)

The second convolution branch can be realized using the dual channel con-
volution technique introduced in section 4.2.1. This leads to computational
benefits in practice, but not in theory. The later theoretical analysis considers
two complex-to-real IFFTs.

The costs for a time-varying filtering are mainly increased over those of a
time-invariant filtering by the required second inverse transform. It can be
avoided, by filtering the L samples of y0(n) using a direct running convolution
in the time-domain (Eq. 2.2). This requires L multiplies and L−1 additions
for each of the L partial output samples. In the following, this strategy is
regarded as variant (2). The computational costs of the approach are

T stream
OLS-FFT-TV2(B,N,K) =

1

B

[
TFFT(K) + TCMUL(K) + TIFFT(K) +

L · (TMUL(N) + TADD(N − 1))︸ ︷︷ ︸
N-tap time-domain filter

+

2TMUL(L) + TADD(L)︸ ︷︷ ︸
Length-L crossfade

]
(4.38)

In principle, the L samples of y0(n) can be computed using any fast convo-
lution technique from chapter 2. A separate L×N linear FFT-convolution
is mostly disadvantageous. Indeed, it can be implemented with a smaller
transform size K′ ≥ L+N − 1. But if L� N , K′ will be marginally shorter
than K ≥ B +N − 1. These savings by the shorter FFTs will probably not
compensate for necessary input K′-point FFT.

Performance

Both above mentioned strategies are evaluated for varying filter lengths N
with a block length B = 128 and a crossfade length L = 32. The results
are shown in table 4.3. The third column lists the computational costs per
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4.4. Filter exchange strategies

output sample for a static (time-invariant) filtering as in figure 4.2. Columns
four and five consider the extended algorithm (Eq. 4.37) in figure 4.11. From
column five it can be seen that time-varying filtering demands 50-60% more
computation than a time-invariant filtering. The last two columns list the
data for the combined approach with time-domain filtering (Eq. 4.37) Obvi-
ously, it is not beneficial to filter the L = 32 samples of y1(n) directly using
a TDL. These disadvantages are emphasized for larger L. Summarizing,
the costs for exchanging a filter increase significantly. In face of that only
L additional samples must be filtered, the cost would ideally increase by a
factor of (B + L)/L only (neglecting the crossfade itself). In the example
this is (128 + 32)/128 = 25%.

4.4.2. Frequency-domain crossfading

The author proposed a method that integrates the time-domain crossfading
in Eq. 4.33 directly into the DFT domain [123]. The benefit is that the second
inverse transform in the algorithm in figure 4.11 is saved and computational
costs for the time-varying filtering can be lowered further. However, the
technique applies only to the OLS scheme and has constraints on the block
length B and transform size K. Moreover, the crossfade needs to span over
a complete output block L = B. The concept in [123] is generalized here. Its
computational savings are analyzed.

Eq. 4.33 can be expressed in the DFT domain as follows

y(n) = y0(n) · fout(n) + y1(n) · fin(n) (4.39)

sc sc sc

Y (k) = Y0(k) ~ Fout(k) + Y1(k) ~ Fin(k) (4.40)

Crossfading the two signals y0(n), y1(n) in the time-domain corresponds to
the K-point circular convolution of their DFT spectra Y0(k), Y1(k) with the
DFT transforms Fout(k), Fin(k) of the fade envelopes fout(n), fin(n). The aim
is to implement these two complex-valued circular convolutions efficiently.
More precisely, with a number of arithmetic operations less than the accord-
ing second inverse FFT in strategy 1. Therefore, the spectra Fout(k) and
Fin(k) must be maximally sparse and contain only a few non-zero coeffi-
cients. The envelopes defined in Eq. 4.35 and 4.36 have broadband spectra.
This degenerates the frequency-domain fading to a complexity of O(K2) and
renders the approach worthless.

The contribution of [123] is to employ the zone of discarded output samples
in the transform-based OLS convolution. The principle is illustrated in figure
4.13. The samples in here can have arbitrary values, as they are discarded
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4.4. Filter exchange strategies

0 K−B K−1
0

1

Discarded

(a) Fade out within range of saved output samples

0 K−B K−1
0

1

Discarded

(b) Fade in within range of saved output samples

Figure 4.13.: Periodically extended fade functions for P = 2. The B right-
most points realize the fade out or fade in of the length-B output
block. The other K−B points fall within the OLS discard zone
(marked gray).

and do not affect the convolution results. This allows extending the fading
functions into a periodic form, which have very few DFT coefficients. For the
sake of simplicity, in the following the OLS technique is modified so that the
valid output samples are found at the beginning of the output buffer. This
is achieved by cyclically shifting the zero-padded filter before its transforma-
tion. Particularly suited are the cosine-square envelopes in Eq. 4.36. They
are now extended over the value range 0 ≤ n < K

f̃out(n) = sin2

(
πnP

K

)
=

1

2
− 1

2
cos

(
2πnP

K

)
(4.41)

f̃in(n) = cos2

(
πnP

K

)
=

1

2
+

1

2
cos

(
2πnP

K

)
(4.42)

The integer P ∈ N determines the number of covered sinusoidal periods in
the interval 0 < n < K. A strict necessity is that the right-most B samples
coincide with a half of a sinusoidal period of the envelopes (cp. Fig. 4.13).
This requires the transform size K to be an integer multiple of double the
block length B

2B | K ⇒ P =
K

2B
∈ N (4.43)

As stated above, the technique requires that the crossfade is performed over
a entire length-B output block (L = B). In this case f̃out(n) and f̃in(n) cover
P = K/2B one or several complete periods of the cosine within the range
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4. Elementary real-time FIR filtering using FFT-based convolution

0 ≤ n < K. Then, the envelopes in Eq. 4.36 are obtained by extracting the
B right-most points

fout(n) = RB{ f̃out(n+K−B) } (4.44)

fin(n) = RB{ f̃in(n+K−B) } (4.45)

The K-point DFT spectra of f̃out(n) and f̃in(n) are simple and elegant

F̃out(n) = DFT(N){ f̃out(n) }

= −K
4
δ〈k + P 〉K +

K

2
δ〈k〉K −

K

4
δ〈k − P 〉K (4.46)

F̃in(n) = DFT(N){ f̃in(n) }

=
K

4
δ〈k + P 〉K +

K

2
δ〈k〉K +

K

4
δ〈k − P 〉K (4.47)

They contain only three non-zero coefficients, which are all real-valued. The
DFT spectra of the continued envelopes for the case K = 4B, P = 2 (figure
4.13) are

F̃out,in(k) = K
[

1
2

0 ∓ 1
4

0 . . . 0 ∓ 1
4

0
]

(4.48)

Inserting Eq. 4.46 and Eq. 4.47 into the K-point circular convolutions in
Eq. 4.40 results in

Y (k) = Y0(k) ~ F̃out(k)︸ ︷︷ ︸
=Fout{ Y0(k) }

+Y1(k) ~ F̃in(k)︸ ︷︷ ︸
=Fin{ Y1(k) }

(4.49)

=− K

4
Y0〈k + P 〉K +

K

2
Y0〈k〉K −

K

4
Y0〈k − P 〉K+

K

4
Y1〈k + P 〉K +

K

2
Y1〈k〉K +

K

4
Y1〈k − P 〉K

=
K

2

[
Y0〈k〉K + Y1〈k〉K +

1

2
[Y1〈k + P 〉K − Y0〈k + P 〉K+

Y1〈k − P 〉K − Y0〈k − P 〉K ]
]

(4.50)

The frequency-domain fading can be interpreted as operators Fout,in working
on DFT spectra (cp. figure 4.12). The arithmetic scheme is depicted in figure
4.14 for the example K = 4B. Eq. 4.50 requires twelve arithmetic operations
per DFT coefficient: three complex-valued additions, two complex-valued
subtractions and one complex-by-real multiplication. The constant K/2 can
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4.4. Filter exchange strategies

X k-3 X k+3X k-1 X k+1

K/2

X k-2 X k X k+2

± K/4 ±K/4

Y k-2 Y k+2Y k-1 Y k+1Y k Y k+3Y k-3

Figure 4.14.: Computation scheme of DFT domain fade operators Fout,in

for the case that K = 4B

for instance be hidden in the filter spectrum. The arithmetic complexity of
the crossfading implemented in the frequency-domain is

TFD-CROSSFADE(K) = 3TADD(2K) + 2TSUB(2K) + TMUL(2K) = 12K (4.51)

Note, that for complex-conjugate symmetric DFT spectra only C = d(K +
1)/2e coefficients must be processed. Figure 4.12 illustrates the final algo-
rithm. After both fade operators have been applied to the intermediate DFT
spectra, the results are summed up in the DFT domain and transformed
back in the time-domain using a single IFFT. The total computational costs
of the algorithm with frequency-domain crossfading are

T stream
OLS-FFT-TV3(B,N,K) =

1

B

[
TFFT(K) + 2TCMUL(K) +

TFD-CROSSFADE(K) + TIFFT(K)
]

(4.52)

Table 4.4 lists the performance data of the proposed time-varying filtering
method, which is labeled as variant (3). A comparison with table 4.3 reveals
the computational benefit of the method. Here, the increase in costs for a
time-varying filtering range only between 17-34%. This is a strong improve-
ment over the time-domain crossfading algorithms presented before, which
were 50-60% more expensive. The last two columns in table 4.4 show, that
the frequency-domain crossfade operation in Eq. 4.50 is less expensive than
an inverse transform. An advantage of the presented technique is, that it is
conceptually simple and it can nicely be integrated into time-invariant con-
volution algorithms (cp. figures 4.2 and 4.12). However, it is not as flexible
as time-domain approaches, which allow arbitrary crossfade lengths L. If this
is eventually a disadvantage in practical applications (e.g. audio rendering,
spatial sound reproduction) remains a topic for future studies.
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4.5. Summary

4.5. Summary

Real-time FIR filtering can be easily implemented by combining FFT-based
convolution with the Overlap-Add (OLA) or Overlap-Save (OLS) technique.
The resulting algorithms are conceptually simple. The input-to-output la-
tency can be adjusted by the block length of the audio stream. It is often
misconceived, that a low latency would require short transforms, which is
not true. The presented techniques prove the opposite. Real-time filtering is
not hindered as long as the necessary computations can be executed within
the given time budget. Also favorable is the constant distribution of the
computational load. Each block of the stream is processed with the same
operations.

Even these simple FFT-based real-time filtering concepts can hugely reduce
the computational effort over simple time-domain filters. With respect to
the number of arithmetic operations per output sample, the OLS technique
is slightly more efficient. These differences become significant for long fil-
ters only. Much relevance has the choice of the transform size. In certain
cases, the restriction on power-of-two transform sizes can almost double the
computational costs. Other FFT sizes should be taken into account.

As the input data is typically real-valued, both presented convolution tech-
niques are often implemented with real-data FFTs and IFFTs, which saves
half the number of complex-valued multiplications. When multiple signals or
filters are processed, complex-data transforms can offer advantages. This is
particularly interesting for MIMO filters with multiple inputs and outputs.
Both, the OLA and OLS method, allow applying partial transforms in sim-
ilar ways. The filter transformation can be computed using a K-point FFT
from a partial input of N < K points. Following the results in section 2.5.4,
this is only beneficial if N � K is reasonably small compared to K. Usually
this is not the case, which makes savings questionable (see conclusions in
section 2.5.4). The processing of input blocks in the OLA method can be
accelerated by computing the K-point input FFT from only B points. The
output IFFT however, must be fully computed. In the OLS method, only
B points of the K-point output IFFT are actually required. But here, the
K-point input FFT (sliding window) must be fully computed and cannot be
pruned. Summing up, the savings by partial FFTs can be expected only for
long filters N � B. Accelerating the transforms does not change the size
of the DFT spectra, which are still large. Far greater computational savings
than for partial transforms are achieved by filter partitioning techniques (see
chapter 5 and 6).
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4. Elementary real-time FIR filtering using FFT-based convolution

Assemblies of filters (cascades or parallel branches) can be realized directly
in the frequency-domain, saving costly fast Fourier transforms. However,
this might increase the necessary transform sizes. Still, there is mostly a
computational benefit in this strategy. The costs of the stream filtering are
usually lowered, whereas the filter transformations become slightly more ex-
pensive. For parallel FIR filters the computational savings can top several
magnitudes. By merging the individual filters together, parts of the compu-
tation can also be taken away from the time-critical stream filtering context
and shifted into the autonomous filter updates.
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5. Uniformly partitioned convolution
algorithms

This chapter deals with fast convolution algorithms in the class (UPS,UPF),
that use a uniform partitioning of the signal and filter impulse response. By
their own, these algorithms enable highly efficient implementations of short to
medium size FIR filters. Moreover, they serve as fundamental building blocks
in enhanced algorithms for long FIR filters, which use a non-uniform filter
partitioning. In principle, the sub filters in a uniform filter partition can be
implemented with any fast convolution approach (cp. chapter 2). However,
especially transform-based fast convolution techniques greatly benefit from
a uniform filter partitioning. Spectra of input blocks can be reused for all
sub filters, strongly reducing the number of forward and inverse transforms in
these algorithms. The considerations in this chapter are based on FFT-based
implementations. They also apply to other transform-based approaches.

The chapter is organized as follows: Firstly, a standard algorithm for uni-
formly partitioned convolution is introduced, which uses a fixed transform
size K = 2B of twice the block length B. The properties and computational
costs of this algorithm are reviewed and the savings over algorithms that do
not partition the filter impulse response are analyzed. Secondly, the stan-
dard uniformly partitioned convolution algorithm is generalized, aiming the
comprehensive study of the class of uniformly partitioned methods, including
their limitations. The enhanced algorithm supports independent partition-
ings for the signal and filter, as well as uncommon transform sizes (e.g. non
powers-of-two). The algorithmic framework is developed and the dependen-
cies of the above stated parameters are examined. Finally, the potential of
the method is compared to regular approaches. The remainder of the chapter
reconsiders aspects of MIMO systems, assemblies of filters and time-varying
filtering in conjunction with uniformly-partitioned convolution algorithms.

5.1. Motivation

Unpartitioned fast convolution techniques, which have been regarded in chap-
ter 4, are an efficient solution for real-time FIR filtering with short filters,
whose lengths N are close to the streaming block length B. Transform-
based fast convolutions without filter partitions become inefficient, when the
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Figure 5.1.: Example of FIR filtering with a uniformly
partitioned impulse response

block length B and filter length N get out of balance N � B. The root
of this problem is found in the increasing amount of zero-padding, needed
to prolong input blocks of length B and filter of length N to the transform
size K ≥ B + N − 1. More efficient algorithms can be derived, by split-
ting the large filter into several smaller ones, which on their own, are more
balanced to the block length than the original filter. From this perspective,
filter partitioning (section 3.2) is used as a real-time capable decomposition
concept. This decomposition would already be beneficial on its own. A fur-
ther groundbreaking advantage of a uniform filter partitioning arises when
transform-based convolution is used as the foundation. Then the number
of costly transforms can be reduced to a minimum, resulting not only in a
massive reduction of the computational effort, but also in a lower asymptotic
runtime complexity.

The methods discussed in this chapter distinguish from previous methods.
The elementary algorithms introduced in chapter 4, considered partitioning
only in one operand—the signal. For offline processing, both operands can
be interchanged, due to the commutativity of convolution. Still, this would
consider partitioning exclusively in one operand—either signal or filter. In
contrast, the algorithms discussed in this chapter use a uniform partitioning
in both operands—signal and filter. Thereby, the block lengths of signal and
filter must not necessarily have the same granularity.
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5.1. Motivation

History

The idea of processing large signals or filters by decomposing them into
smaller blocks can be found in the original publication by Stockham [105].
He referred to partitioning by the term ‘sectioning ’ and pointed out the
computational advantages with the example of a partitioned OLA convolu-
tion. A main benefit is a strongly reduced transform size K, which becomes
independent of the filter length N . The next important milestone were al-
gorithms, which reused previously computed FFTs and accumulated the sub
filter results directly in the frequency-domain. The consequence is a massive
reduction in the number of transforms. Essentially, these algorithms require
only a single forward and inverse transform per processed input block. The
original source of this concept is hard to trace back and presumably, these
‘tricks’ were known and applied before. A technical paper by Kulp in 1988
[59] introduced this concept for fast real-time FIR filtering. It motivated the
reuse of input spectra as well as summation in the frequency-domain. The
ideas in [59] can be found in many succeeding papers on fast convolution: The
works by Soo and Pang [98, 99], published by the end of the 1980s, present
a similar approach in the context of adaptive filters, called multidelay block
frequency domain adaptive filters (MDFs). They empirically analyze the
runtime complexity and point out the computational savings over an unpar-
titioned processing. The realization of delays in the frequency-domain was
later referred to as a frequency-domain delay-line (FDL) [37]. Torger and
Farina [112] describe a PC-implementation of uniformly partitioned FFT-
based OLS convolution for 3-D sound rendering and reproduction. It gives
an insight into the distribution of runtime to the different operations (FFTs,
spectral convolutions). Their work is closely related to the open-source con-
volution engine BruteFIR [111]. Opposed to the implementation by Kulp
[59], it avoids a FDL by alternatively accumulating the partial convolution
result in a circular frequency-domain buffer. The computational complex-
ity remains unaffected. In a succeeding paper, Armelloni et al. [8] present
a DSP implementation of the same algorithm. Wefers and Berg [118] con-
tributed an implementation of uniformly-partitioned convolution on graphics
processing units (GPUs) and measured the performance. All non-uniformly
partitioned convolution techniques known to the author are assembled from
uniformly-partitioned methods [39, 31, 37, 9].

The parameters of a uniformly partitioned convolution algorithm must meet
specific conditions, in order to realize the processing entirely in the frequency-
domain. A common choice is a sub filter size L, which is twice the block length
B. Most of the above cited works found on these parameters and implement
the partitioned filtering via FFT-based OLS convolution. This algorithm is
referred to as standard uniformly partitioned Overlap-Save (UPOLS) in this
thesis. If this strategy minimizes the computational effort of the filtering, is
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5. Uniformly partitioned convolution algorithms

examined in this chapter. In [124], the author considered the use of arbitrary
transform sizes (other than powers-of-two). The results indicated potential
savings for long filters, but also supported the hypothesis, that the standard
UPOLS method is computationally close-to-optimal for short to medium
size filters. This early publication still neglected an important aspect for
the frequency-domain realization, the realizability of sub filter delays. A
general study of the class of uniformly-partitioned algorithm is presented in
this chapter and the necessary conditions for the individual parameters are
derived.

5.1.1. Uniform filter partitions

The algorithms in this chapter use a uniform partitioning of the filter impulse
response. Figure 5.1 illustrates their general structure in an example. The
length-N filter h(n) is partitioned into sub filters h(i)(n) of equal length
L > 0. The filter length N is usually given and a sub filter length L is
selected as a parameter. Then the number of sub filters P ∈N results in

P =

⌈
N

L

⌉
(5.1)

An exact match L ·P = N is not strictly necessary. The partitioning must
at least cover the length of the original filter: L· P ≥ N . For the case that
L·P > N exceeds the destination length N , the impulse response is simply
zero-padded. From section 3.2 it follows, that the offset of the sub filter of
index n is

offset(n) = n·L (n = 0, . . . , P−1) (5.2)

In other words, the branch of the sub filter of index n in the partition must
be delayed by n·L samples. All sub filter delays are multiples of the sub filter
size.

5.2. Standard algorithm

Probably the most common uniformly-partitioned convolution method in
real-time audio processing uses FFT-based Overlap-Save convolution. The
standard algorithm implements a uniform filter partitioning based on FFT-
convolution and combines it with the Overlap-Save method to filter consec-
utive audio streams. Figure 5.2 shows a block diagram of the algorithm,
which is explained in the following. It filters a uniformly-partitioned input
signal, provided in blocks of B samples, with a filter impulse response of N
taps and outputs the results as well in length-B blocks. The two parameters
(B,N) of the algorithm are the block length B and filter length N . The
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5.2. Standard algorithm

number of sub filters follows from Eq. 5.1. Figure 5.2 shows the variant
for real-valued input data, which uses real-data transforms and makes use
of symmetric DFT spectra (see section 2.5.2). This variant is examined in
the following. The technique works similarly with complex-valued input data
and complex transforms as reviewed in section 4.2.1.

Transform size

The standard algorithm uses a fixed transform size K = 2B of twice the
block length B. This allows allocating a maximum of K−B+1 = 2B−B+1 =
B+1 filter coefficients to each DFT period, without causing time-aliasing (see
section 2.5.2). However, the method only uses sub filters of length L = B and
leaves one sample free. This might sound negligible, but is of fundamental
importance: By choosing L = B, the delays of the sub filter branches, as well
as the accumulation of the sub filter results, can be realized entirely in the
frequency-domain. The theoretical framework behind this is closely reviewed
in section 5.3 As B is mostly a power of two, the FFTs of length K = 2B is
one as well and can be computed with maximal efficiency.

Delay-lines and accumulation in the frequency-domain

The standard technique uses the same granularity B = L in the signal and
filter partition. This allows realizing the delays of all sub filters directly in
the frequency-domain. Each input block is transformed into the frequency-
domain only once and the DFT spectrum is reused for all sub filters af-
terwards. The summation of sub filter results is realized in the frequency-
domain as well, by simple addition of DFT spectra. Consequently, only a
single inverse transform is necessary, in order to obtain a block of output
samples. Significant computational savings are achieved, as the number of
costly transforms is reduced to a minimum. Instead of computing individual
FFTs and IFFTs for each sub filter, it is sufficient to compute a single FFT
and IFFT for each input and output block.

The technique of realizing sub filter delays in the frequency-domain became
known as a frequency-domain delay-line (FDL) [59]. An FDL is nothing else
but a shift-register of spectra. For the arrival of a new length-B block, the
FDL elements (spectra) are shifted by one slot. Afterwards, the new block
is transformed and its spectrum is stored in the first slot of the FDL. Conse-
quently, the FDL can only implement delays nB (n∈N0), which are multiples
of the block length B. This affects the filter partitioning. A necessary con-
dition to perform the processing entirely in the frequency-domain is that the
sub filter length matches the block length L = B.
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5.2. Standard algorithm

The algorithm consists of two separate workflows: The partitioning and
transformation of the filter impulse response and the processing of the blocks
(frames) of the audio stream.

Filter processing

1. The length-N is split into P = dN/Be length-B sub filters.

2. Each sub filter is zero-padded to length 2B and transformed using a
2B-point real-to-complex FFT. Hence, each sub filter is described by
B + 1 complex-conjugate symmetric DFT coefficients.

Stream processing

1. The input buffer acts as a 2B-point sliding window of the input signal.
With each new input block, the right half of the input buffer is shifted
to the left and the new block is stored in the right half.

2. All contents (DFT spectra) in the FDL are shifted up by one slot.

3. A 2B-point real-to-complex FFT is computed from the input buffer,
resulting in B+1 complex-conjugate symmetric DFT coefficients. The
result is stored in the first FDL slot.

4. The P sub filter spectra are pairwisely multiplied with the input spectra
in the FDL. The results are accumulated in the frequency-domain.

5. Of the accumulated spectral convolutions, an 2B-point complex-to-real
IFFT is computed. From the resulting 2B samples, the left half is
discarded and the right half is returned as the next output block.

5.2.1. Computational complexity

The computational costs for the real-valued implementation of the standard
UPOLS algorithm in figure 5.2 are now derived. The filter transformation
consists of P length-2B real-data FFTs

T ftrans
UPOLS(B,N) := P · TFFT-R2C(2B) =

⌈
N

B

⌉
· TFFT-R2C(2B) (5.3)

Memory transactions and zero-padding are not regarded here. In applica-
tions they can be reduced or even dropped using suitable implementations.
Inserting the theoretical cost model of an FFT (introduced in section 7.4.1),
with a proportionality constant k, the runtime complexity of the filter trans-
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5. Uniformly partitioned convolution algorithms

formation results at

T ftrans
UPOLS(B const., N) =

⌈
N

B

⌉
k2B log2(2B) (5.4)

= αN +O(1) (with α const.)

Here, the righthand-side term depends just on the block length B and is
constant. Hence, the runtime complexity of the filter transformation lies in

T ftrans
UPOLS(B const., N) ∈ O(N) (5.5)

The cost per filtered output sample (stream processing) is given by

T stream
UPOLS(B,N) :=

1

B

[
TFFT-R2C(2B) + TIFFT-C2R(2B) + (5.6)

TCMUL(B+1) + (P−1) · TCMAC(B+1)
]

The first B+1-point CMUL operation overwrites the accumulation buffer.
Hence, only the succeeding P − 1 spectral convolutions need to be added up
and realized using CMACs. Applying inserting the theoretical costs (arith-
metic operations) from section 7.4.1 yields

T stream
UPOLS(B,N) =

1

B

[
4kB log2(2B) + 6(B+1) + 8(P−1)(B+1)

]
(5.7)

=
1

B

[
4kB log2(2B) + 6(B+1) +

8

(⌈
N

B

⌉
− 1

)
(B+1)

]
(5.8)

In sake of a quantitative analysis, it is assumed that B+1 ≈ B and the ceiling
function is replaced by the upper bound dN/Be−1 < N/B

=
1

B

[
4kB(1 + log2 B) + 6B + 8B

N

B

]
(5.9)

= 4k log2 B + 8
N

B
+ 4k + 6 (5.10)

= α logB + β
N

B
+O(1) (5.11)

(with α = 4k/ log 2, β = 8)

This general asymptotic cost function holds for all fast O(N logN) trans-
forms. Note, that the logarithmic term α logB, which originates from the
FFTs, is independent of the filter length N and therefore accounts as fix
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5.2. Standard algorithm

costs. Apart of an offset, the progression of the costs (Eq. 5.11) is linear,
with the slope N/B. Consequently,

T stream
UPOLS(B const., N) ∈ O(N) (5.12)

Although larger block lengths B increase the costs for FFTs, they also lower
the slope N/B and thereby the computational costs over the filter length
N . The same complexity classes hold for uniformly partitioned Overlap-
Add (UPOLA) algorithms as well. The filter transformation is identical for
both. The stream processing is increased only by a linear term for adding
up the overlapping samples. Where for a fixed block length B the stream
processing of the unpartitioned OLA/OLS running convolutions have a time-
complexity in O(N logN) (Eq. 4.6), the uniform filter partition lowers the
complexity class to O(N) (Eq. 5.12). It should be pointed out, that this
is the same class as for a time-domain FIR filter (Eq. 2.10). However, the
uniformly partitioned algorithms require a much lower number of arithmetic
operations, as it is examined in the following.

5.2.2. Performance

Figure 5.3 shows the computational costs per filtered output for standard
UPOLS algorithm (solid lines) in comparison to the unpartitioned OLS
method (dotted lines) on the test system. The relative speedup of UPOLS
over regular OLS is separately plotted in figure 5.4. The computational sav-
ings are significant and they increase over the filter length. Only for very
short filters N <B the unpartitioned method can outperform the standard
UPOLS technique. This is due to the fact, that the standard UPOLS uses
a fixed transform size of K = 2B. For very short filters N < B, the un-
partitioned OLS can use a smaller transform size, which lowers the costs.
As soon as N ≥ B, the uniformly-partitioned algorithms were observed to
be faster. For longer filters the speedup reaches the order of several mag-
nitudes. The UPOLS method offers the largest acceleration for small block
lengths B. Figure 5.7 plots the distribution of computation over fast trans-
forms and complex-valued multiplications and additions. The results differ
to regular OLS convolutions (without filter partitioning) in figure 4.4. With
increasing filter lengths, the major share of the runtime is spent on spectrum
multiplications and accumulations. fast Fourier transform consume a fixed
number of cycles, independent of the filter length N . Figure 5.5 shows the
computational costs for the filter transformation. Here it can be seen, that
the multiple small FFTs required for UPOLS are more expensive, than the
single large filter FFT in regular OLS.
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block length for different filter lengths
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5. Uniformly partitioned convolution algorithms

Table 5.1 gives a more detailed comparison of the costs of both approaches:
filtering with an unpartitioned versus uniformly-partitioned filter. Two ex-
amples of short (N=384) and medium (N=3968) lengths filters are consid-
ered. The evaluation uses the theoretical costs. Therefore, combinations of
filter lengths N and block lengths B are chosen, that match with power-of-
two transform sizes K. For smaller filter lengths, the filter transformation of
a partitioned impulse response is a little more expensive than for the unpar-
titioned method. However a break-even point exists and for sufficiently long
filters (N > 214) the filter partitioning actually saves costs. With respect to
the costs of pure filtering it is significantly faster in any case. For very short
filters the uniform method effectively becomes an unpartitioned convolution
(just a single sub filter) and the costs are equal. It achieves its computational
savings mainly in the transforms. A uniform partitioning allows reducing the
FFT size to the expense of more arithmetic operations needed for the spectral
convolutions. The examples disclose how filter partitioning helps gaining effi-
ciency by turning unbalanced convolution into several smaller balanced ones.
This is even the case for very short filters (e.g. HRIR processing).

5.2.3. Conclusions

• A uniform filter partition allows computing FFT-based running con-
volutions in linear runtime O(N) over the filter length N . This is
asymptotically faster than FFT-techniques without filter partitioning.
These methods have a time complexity per filtered output samples in
O(N logN).

• The transform size K is small and determined by the block length B.
It is however independent of the filter length N .

• Each length-B input block is represented by K = B+1 symmetric DFT
coefficients, regardless of the filter length N . The partitioned length-N
impulse response is fully described by

⌈
N
B

⌉
(B + 1) = N + O(1) DFT

coefficients.

In other words, a uniformly-partitioned convolution represents signal
and filter by independent numbers of spectral coefficients, which are
proportional to the sizes B,N of the operands. They overcome the
weakness of elementary methods for the case of unbalanced convolution
problems (cp. section 2.5.2).

• The computational costs for stream filtering with UPOLS convolution
are several magnitudes lower than for (unpartitioned) OLS. This is rea-
soned by the reuse of previously computed spectra and the accumula-
tion of sub filter outputs in the frequency-domain. The costs lower with
increasing block lengths B. The speedup OLS→UPOLS has a logarith-
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5.2. Standard algorithm

mic progression and depends also on the block length B. It is larger for
shorter block lengths B, when the algorithm computes small FFTs. On
the test systems, UPOLS outperforms OLS by factors of 3.5 × −10×
for filter lengths N >6000 and block lengths B∈{128, 256, 512, 1024}.
Only for filter lengths N<B, the choice of non-power-of-two transform
sizes makes the (unpartitioned) OLS more efficient than the standard
UPOLS, which is fixed to power-of-two transform sizes. This limitation
can be overcome using the generalized GUPOLS algorithm, introduced
in section 5.3.

• The filter transformation of UPOLS requires more computational effort
than the simple OLS approach. For unpartitioned methods it just con-
sists of a single larger FFT. Uniformly-partitioned techniques require a
multitude of small FFTs, which are in sum a little more expensive. On
the test system, the computational effort was increased in the range of
10−50% (speed up 0.6−0.9×) for filter length N > 6000. The relative
increase in costs is larger for smaller filters and relatively independent
of the block length B. However, when only few filter coefficients shall
be changed, the uniformly-partitioned methods do not require a full
transform to be computed, making them much more efficient.

• Compared to OLS, the UPOLS algorithms compute fewer transforms
and spend more computation on spectral convolutions. Yet for short
filters N<10·B, fast Fourier transforms still consume the dominant part
of the runtime. For medium sized filters N ∼ 6000, the computation
time is roughly shared between FFTs and spectrum multiplications.
Spectrum accumulations (additions) contribute only a minor part. To-
wards longer filters, the main part of computation shifts to spectrum
multiplications.
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5. Uniformly partitioned convolution algorithms

5.3. Generalized algorithm

The study of unpartitioned OLS convolution in section 4.1 unveiled the po-
tential of transform sizes other than powers of two for speeding up the con-
volution. In the literature a common approach to uniformly-partitioned con-
volution can be found: The starting point is typically the block length B,
which is chosen with respect to the latency requirements. The impulse re-
sponse is then split into sub filters of the same length L = B. In other words,
both input signal and filter are uniformly partitioned with the same gran-
ularity. An excellent choice is a transform size K of twice the block length
K = B + L = 2B. As B is typically a small power of two, so is K and
the transforms compute highly efficient. The only two parameters of this
standard algorithm are the block length B and filter length N .

Nevertheless, it is possible to use different granularities B 6= L within one
convolution algorithm. This section introduces a generalized uniformly-
partitioned Overlap-Save (GUPOLS) convolution, for which the sub filter size
L and transform size K can be varied. In line with the generalizations, the
relations between the parameters (B,N,L,K) are firstly examined. With re-
spect to a complete frequency-domain realization, only specific combinations
of parameter are feasible. Several possibilities are presented and discussed.
Afterwards, the generalized uniformly-partitioned Overlap-Save is presented
and its computational costs are evaluated. Finally, it is examined if the
generalized technique offers a benefit over the standard UPOLS method.

5.3.1. Conditions for frequency-domain processing

Uniformly-partitioned algorithms outperform methods without filter parti-
tions by reducing the number of transforms and the transform sizes as well.
Key to these improvements is, that the complete sub filter processing can be
entirely realized in the frequency-domain. This includes the delays for sub
filters and the summation of their outputs. The summation in the frequency-
domain is trivial. It only requires that all sub filters are implemented with
the same transform size. The critical point is, that the sub filter delays can
be realized in the frequency-domain as well. An FDL can only realize de-
lays which are multiples nB of the block length B. A general possibility to
realize sample-wise delays d is given adding d zeros in the front of the sub
filter impulse response. In case of transform-based convolution, it must be
made sure, that the prolonged sub filters still fit the transform period and
time-aliasing is avoided.
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5.3. Generalized algorithm

Sub filter delays

A partitioned input stream with the block length B ∈ N and a uniform filter
partition consisting of sub filters of the size L are considered in the following.
The block length B ≥ 1 and sub filter length L ≥ 1 may be freely chosen.
Given a filter of length N , the impulse response is split into P sub filters
with

P =

⌈
N

L

⌉
(5.13)

Then the delay of the mth sub filter is mL samples (0≤m<P ) (Eq. 5.2).
These sub filter delays mL are now expressed by a block-multiple delay nB,
which can be realized by an FDL, plus a remainder delay d<B, which is less
than one block:

0 · L = n0 ·B + d0 ⇒ n0 = 0 d0 = 0

1 · L = n1 ·B + d1 ⇒ n1 =

⌊
L

B

⌋
d1 = mod(L,B)

2 · L = n2 ·B + d2 ⇒ n2 =

⌊
2L

B

⌋
d2 = mod(2L,B)

...
...

...

m · L = nm ·B + dm ⇒ nm =

⌊
mL

B

⌋
dm = mod(mL,B) (5.14)

Each of these lines can be interpreted as an integer division with remainder.
The block-multiples nm and remainders dm are given by

nm =

⌊
mL

B

⌋
(5.15)

dm = mL− nmB = mL−
⌊
mL

B

⌋
B = mod(mL,B) (5.16)

dm ∈ {0, . . . , B−1} (5.17)

The multiples nm correspond to the block-multiple delays, which can be
implemented using an FDL. In particular, nm marks the FDL slot from where
the mth sub filter takes its input spectrum. The remainder dm corresponds
to the delay portion, which cannot be realized by means of the FDL. It
is here implemented by left-side padding of the sub filter impulse response.
The block multiples nm form a non-decreasing sequence n0≤n1≤ . . .≤nm,
whereas the remainders dm are not ordered in general.
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5. Uniformly partitioned convolution algorithms

All remainders dm are multiples of the greatest common divisor of L and B

∀m ∈ N : ∃k ∈ N : dm = k · gcd(L,B) (5.18)

This is an indirect consequence of Bézout’s identity

mL = nB + d

⇔ mL− nB = d

⇔ ∃l, b ∈ N : (ml − nb)︸ ︷︷ ︸
∈N

· gcd(L,B) = d

with l =
L

gcd(L,B)
, b =

B

gcd(L,B)
, L,B ∈ N

Maximal remainder delays

The remainder delays are of great importance for practical implementations
and especially the choice of viable transform sizes, which will be studied
in the next sections. Before, the actual values of dm and specifically the
maximal possible sub filter delay max{dm} are further studied here.

Given the choice of (L,B), the occurring remainder delays dm can be com-
puted using Eq. 5.16. This is done iteratively, for an increasing number of
sub filters. The results for the first k sub filters are united into the set of sub
filter remainder delays of order k, that is defined as follows

Dk :=
⋃
m≤k

{dm} = { mod(mL,B) | 0 ≤ m ≤ k
}

(5.19)

Eventually, for some maximal order kmax, this construction converges
Dkmax = Dkmax−1 and only previously found delays will reoccur. The first
sub filter never requires any delay d0. As the remainders di form a periodic
sequence, it follows that the first element repeated is the initial element d0.
Hence the maximal order kmax ∈ N can be identified as the smallest integer
kmax > 0 that solves the congruence kmaxL ≡ 0 mod B

kmax =
lcm(L,B)

L
=

B

gcd(L,B)
(5.20)

Given a block length B and a uniform filter partition consisting of P length-L
parts, the maximal remainder sub filter delay can be found as follows:
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5.3. Generalized algorithm

• For a number of filter parts P < kmax, all P individual delays dm must
be computed using Eq. 5.16 and inspected

dmax = max{ d0, d1, . . . , dP−1 } (5.21)

• As soon as P ≥ kmax, all possible sub filter delays dm of the form in
Eq. 5.18 occurred. Hence the maximal delay is the largest multiple of
dmax · gcd(L,B) < B, given by

dmax = B − gcd(L,B) (5.22)

Examples

The established relations are now examined at two examples. The first exam-
ple considers a block length B = 32 and sub filter size L = 35. The multiples
nm and remainders dm have the form

nm =

⌊
m · 35

32

⌋
dm = mod(m · 35, 32) (5.23)

Table 5.2 shows their values for m = 0, . . . , 35. As B and L are rela-
tively prime (gcd(35, 32) = 1), the maximal order (Eq. 5.20) is kmax =
B/ gcd(35, 32) = 32. For m = 32 the remainder delay 0 reappears for the first
time. The maximal remainder (Eq. 5.22) dmax = B−gcd(L,B) = 32−1 = 31
occurs in the 22nd sub filter (m = 21). The dashed lines indicate overflows
modulo the block length B. The FDL slots 11, 23, 34, . . . are skipped. The
example also illustrates, that the actual maximal sub filter delay dmax de-
pends on the number of filter parts P , unless P > kmax. A filter of N = 128
taps would be partitioned into P = d128/35e = 4 sub filters. Then, the set
of sub filter remainder delays would be D3 = {0, 3, 6, 9} and the maximal
sub filter delay dmax = 9. The maximal delay for a 512-tap filter, that is
partitioned into P = d512/35e = 15 parts, is dmax = 30 (found for i = 10).
Any filter with P ≥ 31 sub filters incorporated the maximal remainder delay
dmax = 31.

In the second example also a block length of B = 32 is regarded, but the sub
filter length here is L = 36. All delay values are printed in table 5.3. Here B
and L are not relatively prime and have a common divisor gcd(36, 32) = 4. As
a result, there are only 7 different remainders dm ∈ {0, 4, 8, 12, 16, 20, 24, 28}.
The remainders dm are cyclic with a period of kmax = 32/ gcd(36, 32) =
32/4 = 8. The overall maximal remainder delay is dmax = 32−gcd(36, 32) =
28.
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5. Uniformly partitioned convolution algorithms

m nm dm m nm dm m nm dm m nm dm
0 0 0 9 9 27 18 19 22 27 29 17
1 1 3 10 10 30 19 20 25 28 30 20
2 2 6 11 12 1 20 21 28 29 31 23
3 3 9 12 13 4 21 22 31 30 32 26
4 4 12 13 14 7 22 24 2 31 33 29
5 5 15 14 15 10 23 25 5 32 35 0
6 6 18 15 16 13 24 26 8 33 36 3
7 7 21 16 17 16 25 27 11 34 37 6
8 8 24 17 18 19 26 28 14 35 38 9

Table 5.2.: Sub filter delays for the example of B = 32, L = 35

m nm dm m nm dm m nm dm m nm dm
0 0 0 9 10 4 18 20 8 27 30 12
1 1 4 10 11 8 19 21 12 28 31 16
2 2 8 11 12 12 20 22 16 29 32 20
3 3 12 12 13 16 21 23 20 30 33 24
4 4 16 13 14 20 22 24 24 31 34 28
5 5 20 14 15 24 23 25 28 32 36 0
6 6 24 15 16 28 24 27 0 33 37 4
7 7 28 16 18 0 25 28 4 34 38 8
8 9 0 17 19 4 26 29 8 35 39 12

Table 5.3.: Sub filter delays for the example of B = 32, L = 36

Summary

Given a block length B, a sub filter size L and a number of sub filters P ,
the following statements hold

1. All sub filter delays are block length-multiples ⇔ B | L
In this case all sub filter remainder delays vanish (∀i : di = 0)

2. Sub filter remainder delays occur (∃i : di > 0) ⇔ B - L
They have the form di ≡ k · gcd(L,B) mod B (k∈N)

3. The maximal sub filter remainder delay dmax = max{ d0, d1, . . . , dP−1 }
1. is found by inspecting all di, if P < B/ gcd(L,B)

2. is given by dmax = B − gcd(L,B), in case that P ≥ B/ gcd(L,B)
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5.3. Generalized algorithm

5.3.2. Procedure

The generalized uniformly-partitioned Overlap-Save (GUPOLS) convolution
algorithm is outlined in figure 5.9. The analysis of its computational costs are
found in sections 5.3.5 and 5.3.6. The considerations are carried out for the
OLS variant. However, the algorithm can be realized using OLA as well. The
generalized algorithm has many similarities to the standard algorithm, which
was introduced in the preceding section. In the following the algorithmic
procedure is explained and differences to the standard method are pointed
out.

Filter processing

The main difference to the filter processing in the standard algorithm (section
5.2) is that necessary sub filter remainder delays are incorporated by left-side
zero-padding of the sub filter impulse responses.

1. The length-N is split into P length-L sub filters.

2. Each length-L sub filter impulse response is padded with di leading
zeros to incorporate the remainder delay di of the sub filter.

3. Additional K − L− di zeros are padded rightmost to reach the length
K.

4. The result is transformed using a K-point real-to-complex FFT. The
DFT spectrum of each sub filter is described by d(K+1)/2e complex-
conjugate symmetric DFT coefficients.

Stream processing

The processing of the audio stream differs in two significant aspects from
the standard algorithm (section 5.2): First, the input and output buffers
have the length K. Input and output length-B blocks are written and read
right-most. Second, for the spectral convolutions each filter part spectrum is
multiplied with a specific input spectrum in the FDL. The input spectrum
(FDL slot) is selected by the block-multiple sub filter delay ni. Depending
on the choice of parameters (B,L,K), not every FDL slot is addressed for a
spectrum multiplication.

1. The input buffer acts as a K-point sliding window of the input signal.
With each new input block, its content is shifted B samples to the left
and the new length-B block is stored right-most.

2. All contents (DFT spectra) in the FDL are shifted up by one slot.
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5.3. Generalized algorithm

3. A K-point real-to-complex FFT is computed from the input buffer,
resulting in d(K+1)/2e complex-conjugate symmetric DFT coefficients.
The result is stored in the first FDL slot.

4. All P sub filter spectra are multiplied pairwisely with correspond-
ing input spectra in the FDL and the results are accumulated in the
frequency-domain. The ith filter spectrum is multiplied with the in-
put spectrum stored in the FDL slot ni, where ni is the block-multiple
delay of the ith sub filter.

5. Of the accumulated spectral convolutions, a K-point complex-to-real
IFFT is computed. From the resulting K samples, the K−B left-most
samples are discarded and B right-most samples are returned as the
next output block.

5.3.3. Utilization of the transform period

The results from section 5.3.1 are now applied to obtain criteria for feasible
parameters for generalized algorithms with a uniform partitioning of the
signal and filter. (B,N) are in the following considered as given constraints.
The sub filter size L and transform size K are free parameters.

The transform period of K points is shared by three entities, as illustrated
in figure 5.10

• B points are reserved for the B-sample input blocks

• L points are allocated with filter coefficients

• D additional zeros are incorporated

The extra margin D ≥ 0 opens the possibility to realize delays in sample
granularity within the circular convolution, as motivated in section 5.3. Fol-
lowing the explanations in section 2.5.2, one further sample can be allocated
while maintaining correct results and avoiding time-aliasing

K = B + L+D − 1 (K,B,L∈N0, D∈N) (5.24)

DFT period 

K points 

B L

Input

samples

Filter

coefficients

D

Zeros

for delays

Figure 5.10.: Exploitation of the DFT transform period
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5. Uniformly partitioned convolution algorithms

Here, equality is claimed, as any oversizing accounts for D. Eq. 5.24 is
fundamental for the GUPOLS algorithm and its solutions are examined in
the following. The essential point is to choose (K,B,L) in a way, that the
maximal occurring remainder delay dmax can be realized within the margin
D ≥ dmax

K ≥ Kmin = B + L+ dmax − 1 (5.25)

Only in this case the method can be entirely realized in the frequency-domain.
All other solutions are not of interest, because they cannot be realized ef-
ficiently. Indeed, sub filter delays can also be realized in the time-domain.
But in this case additional transforms are necessary.

5.3.4. Parameters

An instance of the GUPOLS algorithm has four parameters: the block length
B, the filter length N , the sub filter length L and the transform size K.
They can be described by a quadruple (B,N,L,K). B and N are typically
preconditions. Based on their predefined values, L and K are chosen then.
Feasible choices of parameters for the algorithm are examined in this section.

Full utilization

One possibility is to utilize the DFT period (Fig. 5.10) to the maximum.
The K-point period just allocated with B input samples and the remaining
space is used to store L filter coefficients

K
!
= B + L− 1 ⇔ L = K −B + 1, D = 0 (5.26)

This strategy avoids additional zero-padding (D=0). Following section 5.3.1
this implies, that the only realizable sub filter delays must be multiples of
the block length L = nB, implemented using the FDL. These conditions can
now be combined into a solution for feasible transform sizes K

L = nB
5.26
= K −B + 1 ⇒ K = B(n+ 1)− 1 (n ≥ 1) (5.27)

For full utilization of the transform period, the transform size K must satisfy
condition 5.27. This allows realizing the necessary sub filter delays directly
in the frequency-domain by using an FDL. If condition 5.27 is not met,
remainder delays dm > 0 occur and sub filter results must first be individually
transformed back into the time-domain, in order to realize the necessary
delays there. This however, would make the approach very inefficient, as
each sub filter would require an independent IFFT and the summation in
the frequency-domain would not be possible anymore. The form of Eq. 5.27
has certain implications.
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5.3. Generalized algorithm

Block
length Transform size K = B(n+ 1)− 1
B n = 1 n = 2 n = 3 n = 4

32 63 (32 ·7) 95 (5·19) 127 (127) 159 (3·53)
64 127 (127) 191 (191) 255 (3·5·17) 319 (11·29)
128 255 (3·5·17) 383 (383) 511 (7·73) 639 (32 ·71)
256 511 (7·73) 767 (13·59) 1023 (3·11·31) 1279 (1279)
512 1023 (3·11·31) 1535 (5·307) 2047 (23·89) 2559 (3·853)

Table 5.4.: Feasible transform sizes4 K for full utilization of the DFT period
(Eq. 5.27)

Typical block lengths in real-time audio processing are small powers of two,
like B ∈ {32, 64, 128, 256, 512}. Table 5.4 shows possible transform sizes K
for these block lengths, according to Eq. 5.27. Their prime factorization
is written in brackets. All sizes are odd, most sizes contain larger prime
factors and several are primes. This makes the FFTs compute rather slowly
compared to highly composite sizes (e.g. powers of two, see section 7.6).
In case that the application allows adapting the block length (latency), the
transform size can be postulated to be a power of two and feasible block
lengths are found by solving the following equation

K
!
= 2m (m∈N)

5.27⇒ 2m = B(n+ 1)− 1 (n ≥ 1) (5.28)

Besides the trivial, but meaningless B = 1, Eq. 5.28 has also solutions of
practical relevance: Some examples are (K = 128, B = 43, L = 2 · 43 = 86),
(K = 512, B = 57, L = 8 · 57 = 456) and (K = 4096, B = 241, L = 16 · 241 =
3856). These might be worth a consideration in hardware design, where the
B is not a fixed constraint. However, for typical power-of-two block lengths,
a full utilization of the transform period is for practical reasons unfavorable
in uniformly-partition transform-based convolution algorithms. The required
odd-length or prime-size FFTs compute comparatively slow (cp. section 7.4).

Standard algorithm

This disadvantage can be overcome by spending a margin D = 1 of one extra
sample. The standard algorithm introduced in section 5.2 makes use of this
approach. It founds on a sub filter size L = B together with a transform size

4Their prime factorization is written in brackets
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K = 2B of twice the block length B. From Eq. 5.24 it directly follows that

K = B + L+D − 1 ⇒ 2B = B +B +D − 1 ⇒ D = 1 (5.29)

Even if it is not used to implement any delay in the algorithm, this extra
element is vital in order to realize the method entirely in the frequency-
domain.

Power-of-two solutions

Further important solutions which prove very useful in practice, can be found
by keeping the margin of a single sample. Inserting D = 1 into Eq. 5.27 yields
solutions of Eq. 5.24

L = nB, D = 1
5.24⇒ K = B(n+ 1) (n ≥ 1) (5.30)

Here the sub filter size L and the transform size K are multiples of the
block length B. For standard power-of-two block lengths B = 2b (b∈N) the
resulting transform size K is highly composite and the transforms compute
fast. In case that n = 2i − 1(i∈N) it is also a power of two. Given a power-
of-two transform size B = 2b and power-of-two block length K = 2n (n ∈
N, n > b), the largest possible sub filter size is

L = K −B = 2n − 2b (5.31)

Because 2b | (2n − 2b) = 2b(2n−b − 1)⇒ B |L, this method works entirely in
the frequency-domain. In contrast to the standard algorithm, this approach
allows using larger sub filter sizes, resulting in less sub filters, while computing
power-of-two transforms only.

General solutions

So far, two types of strategies have been reviewed which found on specific as-
sumptions: Realizations without any remainder delays (D=0) and solutions
incorporating a single sample delay reserve (D=1). Now, more general con-
ditions are derived for cases with arbitrary L and K. Thereby, the problem
is addressed as follows: A sub filter size 1 ≤ L ≤ N is selected and then fea-
sible transform sizes K for this choice are determined. Note, that for L = N
the algorithm results in an unpartitioned filter. A minimal transform size
K ≥ Kmin exists (Cond. 5.10), which is affected by the maximal remainder
delay dmax.

For a given block length B and filter length N , the set F(B,N) of feasible
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parameter combinations (B,N,L,K) is defined as

F(B,N) :=
⋃

1≤L≤N

{
(B,N,L,K) | K ≥ Kmin(B,N,L)

}
(5.32)

It is constructed by iterating over all possible sub filter sizes 1 ≤ L ≤ N .
For each triple (B,N,L) a minimal transform size Kmin exists. Hence, all
quadruples (B,N,L,K≥Kmin) are feasible parameter combinations for the
GUPOLS algorithm.

For sufficiently long filters N , which are partitioned into at least P ≥
B/ gcd(L,B) sub filters (Eq. 5.20) the maximal remainder delay is known
directly dmax = B− gcd(L,B) by Eq. 5.22. This upper boundary is a neces-
sary condition for any short filter. Inserting it into Eq. 5.25 yields a general
condition for (L,B)

K ≥ 2B + L− gcd(L,B)− 1 (K,B,L∈N0) (5.33)

However, condition 5.33 is not sharp when P < B/ gcd(L,B). Then the
individual sub filters must be regarded and dmax must be computed using Eq.
5.21. Potentially, the minimal transform size might be smaller then stated
by Cond. 5.25, because less margin D for the delays is actually needed. An
example which makes this clear is (N = 1024, B = 128, L = 136), where P =
d1024/136e = 8 and kmax = 128/ gcd(128, 136) = 128/8 = 16. The general
boundary (Eq. 5.22) results at dmax = 128 − 8 = 120, where the inspection
(Eq. 5.21) of the eight sub filters unveils dmax = {0, 8, 16, 24, 32, 40, 48, 56} =
56. Cond. 5.33 states that a minimal transform size K ≥ 2·128+136−8−1 =
383 is needed, but in fact K ≥ 128 + 136 + 56 − 1 = 319 is feasible (Cond.
5.25). Only for N ≥ 16 · 128 = 2048 Cond. 5.33 is sharp.

Optimal solutions

The main interest in the GUPOLS convolution algorithm, is reasoned by
its potential of lowering the computational effort over the standard UPOLS
algorithm, by allowing arbitrary sub filter sizes and transform sizes. There-
fore, the parameters for the GUPOLS algorithm are optimized similar to the
transform size for the unpartitioned methods in section 4.1.4. Here, the op-
timization consists of two parameters. The sub filter length L and transform
size K. The cost model is a function T (B,N,L,K) of four variables. The
first two variables B and N are constraints to the optimization. The optimal
solution is found within the set of feasible parameters as follows

(L,K)opt = argmin
(L,K)

{ T (B,N,L,K) | (B,N,L,K) ∈ F(B,N) } (5.34)
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As a cost function the stream processing costs are typically used. It is not
necessary to construct sets of feasible solutions in the forehand. Instead,
algorithm 1 presents a strategy which computes viable parameters during
the optimization. The outer loop iterates over all possible sub filter lengths
L. The choice of L determines the number of sub filters P . Then the max-
imal sub filter remainder delay is computed. Within the range of possible
transform sizes all solutions are inspected and the best is memorized.

Data: Block length B, filter length N
Result: Sub filter size Lopt, transform size Kopt

copt =∞
for L = 1 to N do

P =

⌈
N
L

⌉
dmax = max{ mod(mL,B) | 0≤m<P }
Kmin = B + L+ dmax − 1
Kmax = 2dlog2Kmine

for K = Kmin to Kmax do
c = cost(B,N,L,K)
if c < copt then

copt = c
Lopt = L
Kopt = K

end

end

end

Algorithm 1: Brute-force optimization algorithm for the
GUPOLS algorithm

5.3.5. Computational costs

The computational costs for the GUPOLS algorithm are derived similarly
like in section 5.2. Again, an implementation using real-data transforms is
considered. Disregarding memory copies and zero-padding, a single filter
transformation consists of P length-K real-data FFTs.

T ftrans
GUPOLS(B,N,L,K) := P · TFFT-R2C(K) =

⌈
N

L

⌉
· TFFT-R2C(K) (5.35)

The frequency-domain delay-line slot selection is just a simple lookup oper-
ation, which can be neglected. Hence, the cost for filtering a single sample
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of the audio stream results in

T stream
GUPOLS(B,N,L,K) :=

1

B

[
TFFT-R2C(K) + TIFFT-C2R(K) + (5.36)

TCMUL

(⌈K+1

2

⌉)
+(⌈N

L

⌉
−1
)
· TCMAC

(⌈K+1

2

⌉) ]
For any sub filter 0 ≤ m < P there must be a solution to realize its required
branch delay mL by an FDL delay nB (n ∈ N) plus some extra delay d
(0 ≤ d < B).

∀m ∃n, d : mL = nmB + dm (0≤m<P, nm∈N, 0≤dm<B) (5.37)

5.3.6. Performance

The performance of the GUPOLS algorithm was evaluated using the bench-
mark data of the test system and compared to the costs of the standard
UPOLS method. The optimal choice of parameters (L,K) was selected for
every problem (B,N) according to Eq. 5.34.

Figure 5.11 shows the stream processing costs over the filter length N for
several block lengths B. In order to clarify these results, figure 5.12 shows the
relative speedup between the UPOLS and GUPOLS method. The following
observations were made:

For the case of very short filters N < B, the GUPOLS is superior to standard
UPOLS, because it allows the use of shorter transform sizes K<2B. These
can lower the computational costs per output sample over UPOLS, with a
fixed transform size K = 2B. A maximal speedup of 1.7 was found for the
block length B = 1024. Considering the example of B = 128 and N = 16,
the standard UPOLS with a transform size K = 256 consumes 42.2 cycles
per output sample. Here, the optimized GUPOLS selects a transform size of
K = 144, resulting in 29.6 cycles per output sample. This corresponds to a
speedup of 1.42. However, it should be considered, that a 16-tap filter might
be faster to implement using a matured time-domain implementation (e.g.
vectorized TDL, Karatsuba technique in section 2.4.2). The savings for very
short filters should therefore not be overrated.

Within a wide interval of filter lengths, the optimized GUPOLS algo-
rithm chooses the parameters L = B and K = 2B of the standard
UPOLS technique. This was observed for power-of-two block lengths B ∈
{128, 256, 512, 1024}. This proves evidence, that the standard UPOLS con-
volution is indeed the computationally optimal solution for these ranges of
filter lengths. For the block length B = 128 the interval of filter lengths,
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where both techniques match, is 82 ≤ N ≤ 2944. Until the number of
P = 23 sub filters, K = 2B remains the optimal transform size. Given
longer block lengths, this span even widens. For the block length B = 512
the interval is 386 ≤ N ≤ 15872, covering up to P = 27 sub filters. The
range of filter lengths in which both algorithms match is surprisingly large.
This has consequences for non-uniformly partitioned convolution algorithms.
In these techniques the number of sub filters within segments is often even
lower. In other words, the advantages of a non-uniformly partitioned convo-
lution founding on GUPOLS instead of UPOLS are little. Only for relatively
long filters N > 25 ·B, the choice of parameters differs from regular UPOLS.
Here, the optimized GUPOLS technique makes use of larger sub filter lengths
L, which flatten the cost curves. The break-even filter lengths N for which
this takes place depends on the block lengths B. The largest relative speed
up GUPOLS→UPOLS is achieved for small block lengths. In the example
of B = 128, N = 32768 the GUPOLS is about a factor of 1.5× more efficient
than regular UPOLS.

Filter transformations are as well accelerated by the use of smaller trans-
form sizes K within the same ranges of filter lengths N , as stated above.
Figure 5.13 shows the costs of filter transformations for the UPOLS and
GUPOLS methods. Additionally, figure 5.14 plots the relative speedups
GUPOLS→UPOLS for the filter transformations. Again, the speedup de-
pends on the block lengths and does not exceed factor two.

The most important insight is the observation, that in all optimized GUPOLS
parameters the maximal remainder delay is zero. For cases where N > B,
the transform size K was always a multiple of the block length B. More-
over, the sub filter size L was a multiple of the block length B here. This
can be identified in figure 5.15 and 5.16, which show the sub filter sizes L
and transform sizes K for the optimized GUPOLS methods. The concept
of realizing sample-wise delays by shifting the sub filter impulse responses
is eventually not beneficial. The optimal solution (B,N,L,K) selects the
shortest possible transform sizes K, with respect to the efficiency of the fast
Fourier transforms. Unless the filter length is very short N � B, the optimal
solutions found on the strategy K = nB, L = K − B, D = 1 (n ∈ N) (Eq.
5.30 and 5.31), which was regarded in section 5.3.4. It is concluded as a rule
of thumb, that for B < N < 20 ·B the standard UPOLS technique is optimal
or near-to-optimal.
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Figure 5.11.: GUPOLS versus UPOLS convolution on the test system:
Computational costs of stream processing
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Figure 5.13.: GUPOLS versus UPOLS convolution on the test system:
Computational costs of a filter transformation
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5.3.7. Conclusions

• This section introduced a generalization of uniformly-partitioned
Overlap-Save convolution, called GUPOLS. The proposed method in-
cludes both prior algorithms: (Unpartitioned) OLS and the standard
UPOLS technique. Given an optimal choice of parameters, it is never
slower than any of both methods.

• Optimized GUPOLS can outperform standard UPOLS with respect
to the computational costs for sheer filtering (stream processing) in
two cases: very short filters N < B, where it effectively becomes an
unpartitioned OLS convolution. Here, the speedup can reach factor two
(N → 1). Nevertheless, time-domain filters or short linear convolution
algorithms (e.g. Karatsuba technique) should be considered for N �
B, which can be even faster. On the other hand, for sufficiently long
filters, which exceed lengths of approximately N > 20·B, the GUPOLS
technique makes use of other transform sizes K 6=2B and adapted sub
filter sizes L > B. Here the speedup over UPOLS of up to 50% was
observed (B = 128, N ≤ 32768). Short block lengths B benefit more
from the additional degrees of freedom in GUPOLS.

• For filter lengths in the interval of approximate B < N < 20 · B,
the optimized GUPOLS technique actually converges to the standard
UPOLS algorithm with a fixed transform size K = 2B and fixed sub
filter size L = B. Consequently, for most filter lengths N of practical
relevance, the standard method marks the computationally optimal
solution. This holds in particular for its applications in non-uniformly
partitioned convolution algorithms, which are discussed in chapter 6.

• Surprisingly, optimized GUPOLS turned out to completely avoid
the use of sub filter remainder delays. For N < 32768 and B ∈
{128, 256, 512, 1024} not a single counterexample was found.

• The set of optimal transform sizes and sub filter sizes is very limited.
Unless N <B, both are typically powers of two or small multiples of
these.

• As a rule of thumb, the transform sizes should be chosen K = nB, a
multiple of the block length B. As the latter is usually a power-of-two,
the multiple K = nB computes rather efficient (e.g. 640 = 10 · 64).
The sub filter length L should be chosen to fill the remaining space
L = K −B.
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5.4. Multi-dimensional convolutions

Uniformly-partitioned convolution can be regarded from yet another per-
spective. Technically, the input signal x(n) is partitioned into length-B
blocks xi(n) and the filter h(n) into length-L sub filters with impulse re-
sponses hi(n). This partitioning can be interpreted as a special case of multi-
dimensional index mapping (cp. section 2.6.1) applied to linear convolution
[47]. From this interpretation originate further advances, which are briefly
outlined in the following.

The one-dimensional entities s(n), h(n) (with a single index n) are mapped
to a two-dimensional representation xi(n), hi(n) indexed by two variables
i, n. For the sake of simplicity, the considerations here are based on run-
ning convolutions using the standard UPOLS method (L = B,K = 2B).
Burrus [20] and Hurchalla [47] provide a more general derivation of the tech-
nique, founding on finite-length operands. A central aspect is, that in the
uniformly-partitioned frequency-domain convolution algorithm, each of these
partitioned entities is represented by an individual spectrum

xi(n)→ Xi(k), hi(n)→ Hi(k) and Yi(k)→ yi(n) (5.38)

In other words, there is a one-to-one association between blocks respectively
sub filters and spectra. The definition of the spectra Xi(k), Hi(k) and ex-
traction of the output block yi(n) depends on the scheme used (OLA or
OLS). The spectral processing in uniformly-partitioned convolution algo-
rithms consists of spectral convolutions and accumulations (see figure 5.2
and 5.9). Mathematically, this can than be formalized as follows

Yi(k) =

P−1∑
n=0

Xi−n(k) ·Hn(k) (5.39)

Obviously, Eq. 5.39 marks a 1-D linear convolution, formulated on complete
spectra instead of samples. Each spectral product (·) by itself corresponds
to a circular convolution. In this respect, Eq. 5.39 effectively realizes a
two-dimensional convolution. Or to put it in other words, a convolution al-
gorithm with uniform partitioning of both operands can be interpreted as
a two-dimensional convolution. The decomposition of circular convolutions
[20] in section 2.6.1 is a similar method. Here however, the mapping requires
to be circular in both dimensions, which lead to incompatibility with real-
time processing (details see section 2.6.1). Eq. 5.39 however, is a mixture
of a linear convolution (sum) and circular convolution (spectra product).
Hurchalla [47] outlined potential of this insight, which lies in the fact, that
these two-dimensional convolutions can be implemented with fast convolu-
tions along both dimensions. The previously reviewed algorithms (standard
UPOLS and GUPOLS), evaluate Eq. 5.39 naively (direct convolution). As
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P is typically short, Eq. 5.39 can be implemented using a fast short linear
convolution algorithm. This can further reduce the algorithmic complexity
of uniformly-partitioned techniques. However, not any short convolution al-
gorithm is actually suitable. Hurchalla [47] reviews suitable candidates of
short linear convolution algorithms and verified, that the nested Karatsuba
technique (see section 2.4.2) conforms with real-time processing. The magni-
tude in computational savings has not been examined in detail and remains
an open research topic.

5.5. Filter with multiple inputs or outputs

The presented uniformly-partitioned convolution algorithms can be extended
to multiple input and outputs, following the considerations in section 4.2.
Applications are found in MIMO FIR filters with medium size filters (e.g.
1k-4k taps). Typical examples are multi-channel reproduction systems, like
crosstalk cancellation [62] and ambiophonics [112]. The results in section
5.2.2 showed, that a fast convolution with a uniform filter partitioning is
superior over simple concepts without filter partitioning. For these lengths
of filters the computational savings reach several magnitudes.

An essential criterion for MIMO UPOLS filters is, that all inputs and out-
puts use a common transform size K. In this case all intermediary filters
hi→j(n), connecting inputs and outputs, are compatible and share common
transforms. For the standard UPOLS algorithm, the transform size remains
K = 2B. The lengths of the impulse responses hi→j(n) only affects the
number of length-B sub filters. Each input is associated with its own FDL.
The number of elements in each of these FDLs is determined by the maximal
number of sub filters for all outgoing filters hi→j(n). Each output is a point
of superposition, followed by a single inverse transform. In total, a M -input
N -output filter can be realized using M forward FFTs and N inverse FFTs.
These can be real- or complex-valued, as discussed in section 5.2.

The dual-channel technique introduced in section 4.2.1 applies for uniformly-
partitioned methods as well. Two independent channels or two independent
filters can be processed by using complex-valued FFTs. The relative speedup
of this strategy is less pronounced compared to the prior algorithms which
do not partition the filter impulse responses. This is the case, because rela-
tively little time is spent on computing fast Fourier transforms in uniformly-
partitioned algorithms (cp. figure 4.4 and figure 5.7). An explicit evaluation
of the computational benefits of MIMO UPOLS filters over single-channel
UPOLS convolution is not conducted here. The savings of a combined im-
plementation are less distinct for the above mentioned reasons.
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5.6. Filter networks

Uniformly partitioned frequency-domain filters can be connected and ar-
ranged in sequential or parallel structures (see figure 1.1(b) and 1.1(d)) sim-
ilar to (unpartitioned) OLA and OLS running convolutions, as regarded in
section 4.3. Again, it is a possibility to merge the impulse responses and con-
volve the input stream with a single cumulative filter. Like discussed before,
this can be disadvantageous in the case of time-varying filtering with high up-
date rates. Particularly, when different filters are updated asynchronously, it
might be computationally cheaper to implement the filters separately. Nev-
ertheless, there is still room for improvements. Joyo and Moschytz [51] dis-
cussed the general possibilities to realize assemblies of uniformly partitioned
filters directly in the frequency domain. The motivation is to save costly for-
ward and inverse transforms once more. Figure 5.7 illustrates, that FFTs are
not as dominant as in unpartitioned filtering concepts. Thus the potential
savings are less articulated for assemblies of uniformly-partitioned filters.

The uniformly-partitioned convolution algorithms introduced before is a di-
rect application of the theory developed in section 5.6. UPOLA and UPOLS
are parallel assemblies of OLA respectively OLS filters. A parallel arrange-
ment of multiple uniformly partitioned convolutions can be seen as a simple
extension to the regular UPOLA and UPOLS algorithms. In the following
it is assumed, that all filters in the assembly use a common block length B
and a standard transform size K = 2B. The individual filters can be either
UPOLA or UPOLS convolutions, but they can not not be mixed. Then input
blocks are identical to all parallel filters and can thus be reused. The same
accords for the summation of the parallel branches which can be realized
before the inverse transform. The transform sizes are not affected by the
additional parallel branches. This is due to the fact that all uniform sub
filters have equal lengths. Only the number of sub filters is influenced by
the lengths of the individual impulse responses. The computational savings
arise from the reduced number of FFTs and IFFTs. For multiple parallel
short to medium size filters the advantages of a combined frequency-domain
implementation can be significant.

Sequential arrangements of uniformly-partitioned filters are more compli-
cated. Pairs of inverse-forward transforms are found in such cascades. For
two reasons they cannot simply be dropped. Firstly, the overall transform
size must be sufficiently large and respect Eq. 4.23. Joining n ∈ N sepa-
rate UPOLA/UPOLS filters, each with a sub filter length L = B, requires
a combined transform size of K ≥ B + nB − 1. Multiples K = nB of the
block length B are a reasonable choice for the transform size (cp. section
5.3.4). As the block length is typically a power-of-two, FFTs of these sizes
compute with a high efficiency (cp. section 7.6). Secondly, the input data of
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the subsequent convolutions must be conditioned depending on the scheme
used. For the OLA scheme this requires to select only the first B samples
from the 2B − 1 point valid output samples. In the time-domain this corre-
sponds to the multiplication with a rectangular window. Unfortunately, the
corresponding DFT spectrum of this window is not sparse (cp. section 4.4)
and thus does the frequency-domain implementation require a full K-point
complex-valued circular convolution in O(N2). The OLS requires the same
complexity. Hence, it is indispensable to enlarge the transform size. There
is no general finding whether an individual or combined implementation of
sequential uniformly partitioned convolutions is preferable for the sake of a
higher computational efficiency. This demands an individual inspection of
the actual case and depends on the block lengths, filter lengths and number
of cascaded filters.

5.7. Filter exchange strategies

All techniques for exchanging filters, introduced in section 4.4, can be ap-
plied to convolution algorithms with uniformly-partitioned filter impulse re-
sponses. Exchanging the filter in the elementary methods required the ex-
ecution of a second spectral convolution (see figure 4.11). For the UPOLS
technique this results into a second convolution branch, where all sub filter
convolutions are executed with a second filter and accumulated into a sec-
ond frequency-domain accumulation buffer. For the time-domain crossfading
technique (see section 4.4.1) a second inverse transform is required, as for the
unpartitioned OLS algorithm. In UPOLS convolution, the second IFFT is
shorter (K = 2B) and has thus less impact on the increase in computation.
In contrast, the spectral convolutions consume a larger share of the computa-
tion and the time-varying filtering doubles their effort. The frequency-domain
implementation of crossfading presented in section 4.4.2 can be seamlessly
integrated into the standard UPOLS convolution algorithm. The crossfad-
ing operation is executed on the two frequency-domain accumulators of the
two spectral convolution branches. Like before, the technique saves the sec-
ond inverse transforms. However, as the impact of this is comparably little,
the computational savings of the frequency-domain technique will be not as
emphasized as for unpartitioned filters.

Table 5.5 gives an overview about the computational costs of different vari-
ants of the UPOLS algorithm. For different combinations of block length B
and filter length N , it lists the stream processing effort in cycles per output
sample. The performance data was computed using the benchmark profile
of the test system. By comparing table 5.5 with tables 4.3 and 4.4 for the
elementary methods the following observations can be summarized: The rel-
ative increase in computational effort, when switching from a time-invariant
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to a time-varying filter is larger for the UPOLS convolution. This holds for
both methods, the time-domain (TD) crossfading and the frequency-domain
(FD) crossfading. The reason therefore can be found in the fact, that the
spectral convolutions make up for a comparably large share of the runtime
in UPOLS. In contrast, they consume only a fraction of the computation
in the regular OLS algorithms. However, it is important to keep in mind,
that the filtering itself is by magnitudes cheaper than with the elementary
techniques, which do not facilitate a filter partitioning.

Table 5.5 also lists convolutions with large block lengths B, which are not
relevant for real-time UPOLS convolution, as the block lengths result in un-
acceptable latencies (e.g. B = 8192). Nevertheless, these cases occur in
real-time partitioned convolution techniques with non-uniform filter parti-
tions. If in contrast smaller crossfade lengths L � B are considered, it
might be worth to consider an autonomous convolution for the overlapping
output samples, as discussed in section 4.4. In the face of the lengths of the
sub filters (e.g. N > 8k) these should be implemented with an independent
fast convolution. For the case L�B�N , these convolutions are highly un-
balanced, making the computational advantages of such separate realizations
questionable.

5.8. Summary

This chapter introduced transform-based running convolution algorithms
that partition a length-N filter impulse response into uniform sub filters
of length L ≤ N . This strategy is advantageous for the following reasons:
Firstly, the length-L sub filters on their own are generally more balanced
than the original filters (typically L� N). Elementary techniques, like clas-
sical FFT-based convolution [105], represent both operands of length B and
N by a common number of K≥B+N−1 frequency-domain coefficients. The
uniform filter partition breaks this boundary and allows representing each
operand independently, with a number of coefficients proportional to its size.
Secondly, in particular the implementation of uniformly-partitioned filters
with transform-based fast convolution techniques allows a dramatic reduc-
tion of the number of transforms in the algorithm. These savings are possible,
when the delays of sub filter branches along with the accumulation of sub
filter results can be realized entirely in the frequency-domain. In this case
the runtime complexity class per output sample of these techniques is O(N)
and thereby asymptotically lower than for the elementary transform-based
running convolution techniques, which lie in O(N logN) per output sample.
The different complexity classes are reasoned by the fact that the number
of forward and inverse transforms is fixed for each processed block and in-
dependent of the filter length N . Not only the computational complexity
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5.8. Summary

is asymptotically lower, but also the number of operations. Even for mod-
erate filter lengths, the UPOLS filtering outperformed the elementary OLS
running convolution by several magnitudes. And hence, the computational
savings over simple time-domain filters are enormous.

The ever-important property for these computational advantages is, that the
sub filter delays mL (m∈N) can be realized in the frequency-domain using a
frequency-domain delay-line (FDL). Therefore, they must be multiples nB
(n∈N) of the block length B of the audio stream. In principle both partitions,
signal and filter, can be realized using different granularities B 6= L (block
lengths B and sub filter sizes L). However, specific conditions must be met,
so that the complete algorithm can be realized in the frequency-domain.

The straight-forward standard UPOLS approach chooses the same granular-
ity for both axis B = L and realizes the convolution with a transform size
of K = 2B. The presented generalization of the algorithm (GUPOLS) for-
mulates the framework for arbitrary solutions. Its parameters are the block
length B, filter length N , sub filter size L and transform size K. The con-
straints and couplings of these four variables have been examined in detail.
The general solutions are more complicated and demand careful considera-
tions. Several strategies to choose feasible parameter sets (B,N,L,K) have
been reviewed, including the brute-force optimization. The motivation in
this research was verification of the standard UPOLS technique. The results
revealed, that for large ranges of filter lengths N , the popular UPOLS con-
volution technique with standard parameters L=B and K = 2B is indeed
optimal or near-to-optimal. The potential of non-power-of-two transform
sizes is much lower for these uniformly-partitioned convolution algorithm,
than for simple concepts (see chapter 4).

Filters with multiple inputs and outputs (MIMO), as well as filter networks
can be implemented using uniformly-partitioned convolution methods. Com-
pared to elementary algorithms, the computational savings of a combined
frequency-domain implementation are less pronounced, but still significant.
Previously discussed concepts of time-varying filtering can be nicely inte-
grated into convolution methods that make use of a uniform filter partition.
It turned out, that the frequency-domain crossfading approach presented in
section 4.4.2 is as well beneficial for the UPOLS technique. Like for com-
bined implementations of filter networks, the transforms play a less dominant
role as in elementary algorithms (see chapter 4). In contrast, a performant
implementation of the spectral convolution is very important for uniformly-
partitioned convolution.
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6. Non-uniformly partitioned convolution

This chapter considers running convolution algorithms which partition the
filter impulse response into non-uniform sub filters of varying sizes. These
algorithms constitute the class (UPS,NUPF). The key principle of these
techniques lies in the implementation of later sub filters in the impulse re-
sponse with larger block lengths, without sacrificing the real-time properties.
This approach significantly lowers the computational effort of the real-time
FIR filtering once more and results in an even lower asymptotic runtime
complexity. The computational savings are groundbreaking for artificial re-
verberation using FIR filters (convolution reverbs) and build an important
foundation for FIR-based real-time auralization of reverberant spaces. Non-
uniformly partitioned convolution algorithms are assembled from several uni-
formly partitioned convolution algorithms. Consequently, much of the the-
ory of uniformly partitioned convolution applies to these algorithms as well.
However, non-uniformly partitioned convolution techniques are more com-
plex than uniformly-partitioned methods. This is reasoned by the fact, that
many sub convolutions need to be executed in parallel in accordance with
timing dependencies. The most important parameter of these algorithms is
the non-uniform filter partitioning. It strongly affects the algorithms’ prop-
erties, like the computational effort, the sheer realizability in real-time, the
distribution of the computational load over the runtime and the filter ex-
changes.

This chapter is structured as follows: Firstly, non-uniformly partitioned con-
volution techniques are motivated based on the findings of the prior chapters.
A non-uniform filter partitioning scheme is introduced and important termini
are defined. State-of-the-art algorithms are revised, including their algorith-
mic properties and implementation strategies. The computational costs and
runtime complexities are analyzed and compared to prior methods. The
main part of the chapter is dedicated to non-uniform filter partitions and
their algorithmic optimization. Pitfalls of the optimization in prior publi-
cations are outlined and an advanced optimization technique is presented,
which allows obtaining practicable partitions. Finally, concepts like MIMO
filters, filter structures and time-variant filtering are reconsidered in the light
of non-uniformly partitioned convolution.
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Figure 6.1.: Example of FIR filtering with a non-uniformly
partitioned impulse response

6.1. Motivation

All previously regarded frequency-domain convolution techniques revealed
a dependency between their computational effort per filtered sample and
the latency, in form of the block length B. For both classes of algorithms,
OLA/OLS without filter partitioning, as well as UPOLA/UPOLS featuring
a uniform filter partitioning, a simple and general statement can be made:
Less input-to-output latency, realized by a smaller stream block length, in-
creases the computational costs. A roughly anti-proportional relationship
between the block length B and the computational costs of the filtering can
be observed, given that the filters are sufficiently long (cp. figures 4.6,5.6
and 5.8).

Reconsidering the general filter partitioning scheme in figure 3.6, the fol-
lowing important observation can be stated: A sub filter hi(n), placed at
offset(i) in the impulse response, contributes to the overall filtering output
not before the number of offset(i) samples has been processed. This is easy
to see by considering the corresponding TDL. Hence, the sub filter can be
processed with a different block length then this of the audio stream. The
input samples can be buffered and repacked to a larger granularity. As long
as the computation of the sub filter is finished within offset(i) samples, the
required results are ready in time and can be added into the overall output.
The essential point is, that the total input-to-output latency of the filtering
remains unaffected. Different regions of an impulse response can be realized
using several independent partitioned convolutions that process the data in
different block sizes. The initial part of the impulse response needs to be pro-
cessed with the block length B of the audio stream. Towards later parts of
the impulse response larger block lengths are employed. The larger the block
lengths get, the more the computational effort per filtered output sample
decreases.
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6.2. History

The origin of non-uniformly partitioned convolution dates back to the early
1990s. The concept of exploiting a non-uniform filter partitioning for real-
time FIR filtering can presumably be credited to two dutch researchers,
Egelmeers and Sommen. They published the principle idea implementing
sub filters of varying sizes using different block lengths in a conference paper
in November 1994 [30]. This work considers implementations on DSPs. It
defines non-uniform filter partitions and introduces the general structure of
a non-uniformly partitioned convolution as depicted in the block diagram
in figure 6.1. Sub filters are implemented using the standard FFT-based
UPOLS method, reviewed in chapter 5. The computational complexity is
regarded by means of real multiplications only. The authors consider the
example of a medium size filter (N = 4000) implemented with a very small
block length (B= 4). Five specific filter partitions are regarded. Their new
approach proved to be about 16 times more efficient than standard UPOLS
convolution for the stated example. Later, in December 1996, an extended
work was published in an IEEE journal [31]. This extended version of the
original paper also addressed aspects of adaptive filtering. Interestingly, the
original manuscript of this paper was submitted by December 1993. This
might be an indication, that non-uniformly partitioned convolution could be
their invention.

A little bit later, Gardner presented a non-uniformly partitioned convolution
method for low latency filtering, at a conference in November 1994 [38]. This
work was published later in 1995 as a journal paper [39] and this particular
paper became a widely-known reference for non-uniformly partitioned con-
volution. Gardner [38] does not include a reference to the work by Egelmeers
and Sommen [38], which was published just three months earlier. Presum-
ably, both parties invented their concepts independently. Also, the work by
Gardner [38] differs from the Egelmeers’ and Sommen’s paper in several as-
pects: It also considers DSP implementations and also includes a strategy for
achieving (almost) no input-to-output latency. The implementation founds
on standard UPOLS as well. In the paper Gardner proposes a non-uniform
filter partitioning scheme for arbitrary filter lengths. The paper also includes
a false hypothesis, that the strategy of the most rapid increase in sub filter
sizes results in the lowest computational costs. However, Gardner correctly
points out the worst-case load-distribution of this approach, which renders
it worthless in practice. A main contribution of the work is a practical non-
uniform filter partitioning scheme, assembled from power-of-two sub filters,
which are repeated twice before a larger sub filter size is selected. This
strategy avoids unfavorable timing-dependencies and is practical.
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6. Non-uniformly partitioned convolution

Subsequent works considered non-uniformly partitioned convolution for re-
alizing artifical reverberation [71, 2] (convolution reverbs) and introduced
further filter partitions. Müller-Tomfelde’s paper [71] from 1999 focuses on
general purpose processors (no DSPs) and discusses aspects of the imple-
mentation. Later further authors addressed the rather complex real-time
implementations of non-uniform convolution algorithms [76, 9]. The main
challenge lies in the parallel implementation of asynchronously executed sub
convolutions. Battenberg and Avizienis [9] regarded scheduling strategies
on multi-core machines. Müller-Tomfelde [72] considered the problem of
time-varying filtering with non-uniformly partitioned convolutions and pro-
posed two strategies for filter exchanges in these algorithms. Recently, GPU-
implementations of non-uniformly partitioned convolution were examined
[82]. Primavera et al. [76] incorporated psycho-acoustic aspects to artificial
reverberation implemented using partitioned convolution. The work applies
a concept conceived by Yang et al. [128] to non-uniformly partitioned con-
volution algorithms. Computational savings are achieved by reducing the
complexity of spectral convolutions by exploiting perceptual thresholds.

The choice of filter partition is not a trivial issue. A paper [37] by Garćıa
in 2002 marks an important milestone. It presented an optimization tech-
nique for finding the filter partition with the least computational complex-
ity. In this respect it is of theoretical importance, showing up the limits of
the class of non-uniformly partition convolution algorithms. Garćıa formu-
lated the construction of partitions in a state-space (weighted directed acyclic
graph (DAG)), which can be effectively searched for the best path using the
Viterbi algorithm within. Whilst the number of feasible filter partitions
grows exponentially over the filter length, the optimization algorithm finds
solutions in polynomial runtime (PTIME). Unfortunately, the results are far
from practical. Wefers and Vorländer [121] pointed out the worst-case load
distribution of cost-optimal filter partitions. They examined the relations be-
tween the computational costs and scheduling flexibility that a non-uniform
filter partition provides. Furthermore, they presented techniques to obtain
real-time capable partitions, which deliver a significant computational ad-
vantage over the method by Gardner [39]. Recently, the concept of arbitrary
transform sizes and a more general framework of non-uniformly partitioned
convolution has been suggested by the author in [122].

6.3. Non-uniform filter partitions

This section refines the definition of general filter partitions for the non-
uniform case and introduces further important terms. In section 3.2, a filter
partition was defined as a tuple P = (N0, . . . , NP−1 ) (Eq. 3.10). The ele-
ments Ni correspond to the length of the sub filters hi(n) of the partition.
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6.3. Non-uniform filter partitions

Altogether they cover a total length N =
∑
Ni (Eq. 3.2). The sub filter

lengths form a non-decreasing sequence Ni ≤ Ni+1 (Eq. 3.9). Small sub fil-
ters are needed in the beginning of the impulse response in order to minimize
the input-to-output latency. Afterwards, they are increased for lowering the
computational complexity. Sometimes, it is beneficial to repeat a sub filter
before selecting a longer one, in order to facilitate the reuse of DFT spectra
(cp. section 5.2). A consequence of the ascending order is, that sub filters of
equal lengths Li = Lj are neighboring. Such sequences of equally sized sub
filters are grouped into filter segments. In other words, a filter segment is
nothing else than a uniform sub partition. Moreover, any non-uniform filter
partition is assembled from such uniform sub partitions.

Frequency representation

All practical non-uniformly partition convolution algorithms realize these
segments using uniformly-partitioned convolution techniques (UPOLA or
UPOLS). In this respect, it is convenient to regard non-uniform filter parti-
tion from another perspective: The focus lies on the filter segments and their
parameters, instead of the individual parts of the partition. It is convenient to
write down a non-uniform filter partition using the frequency representation
of partitions in number theory [7]. The term frequency has to be understood
by its number theoretic definition, that is the number of repetitions of a spe-
cific part. Instead of enumerating the individual parts of a partition (as in
Eq. 3.10), all segments are enumerated by their sub filter lengths Li together
with their frequencies Pi (also called multiplicity). A partition consisting of
M segments is than written down in the following format

P = ( LP0
0 , . . . , L

PM−1

M−1 ) (6.1)

The sub filter lengths Li∈S are selected from a set of feasible sub filter sizes
S. They form the non-decreasing sequence

∀ 0≤ i<M : Li ≤ Li+1 (6.2)

The frequencies Pi ∈ N0 can in principle be arbitrarily chosen. For that the
resulting convolution algorithm is real-time capable, they must obey certain
causality conditions, which are described in section 6.4.3. Figure 6.2 visual-
izes the introduced filter partitioning scheme. The notions defined in section
3.2 are now reformulated for the frequency representation in Eq. 6.1.

151
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Impulse response of N filter coefficients

L0 L0 L1 L1 LM-1 LM-1

P0 parts P1 parts PM-1 parts

Segment 0 Segment 1 Segment M-1

Figure 6.2.: Non-uniform filter partitioning scheme. A filter impulse response
is decomposed into a sequence of uniform sub partitions, referred
to as filter segments.

The offset of the ith filter segments is the accumulated length up to the ith

segment, given by

offset(i) :=
∑
j<i

LjPj (6.3)

The total covered filter length of the partition is

N = offset(M) =

M−1∑
i=0

LiPi (6.4)

6.4. Basic algorithm

All non-uniformly partitioned convolution algorithms have a common root:
They originate from the filter partitioning introduced in section 3.2 in chapter
3. On the top-level they have a common block diagram, which is depicted in
figure 6.3. As before, the audio stream is processed in blocks of B samples.
Each length-B input block is stored in a time-domain buffer. This buffer
has two purposes: Firstly, it is used to accumulate input samples and repack
them into blocks of larger granularity, serving the sub convolutions of the dif-
ferent filter segments. Secondly, by storing previous input data it also allows
postponing the computation of these sub convolutions. Its size (capacity) is
chosen accordingly to these purposes. Typically, it is implemented as a ring
buffer. Each filter segment is realized using an independent uniformly parti-
tioned convolution. The ith filter segment consists of Pi length-Li sub filters,
which are implemented using individual block lengths Bi. The results of all
sub convolutions are finally overlap-added in the time-domain. The mix-
ing buffer is dimensioned similar to the input buffer and also implemented
as a ring buffer. The sub convolutions are subject to timing dependencies.
Usually, a scheduler plans and manages their execution and ensures that
all required partial outputs are ready within the deadlines. Some partition-
ing schemes can be realized using a static execution plan. More details of
these aspects are discussed in section 6.8. Before a filter impulse response
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6. Non-uniformly partitioned convolution

can be used with a non-uniform convolution method, it must first be trans-
formed into a frequency-domain representation. Therefore, it is decomposed
according to the filter partitioning scheme. Then, the sub filter impulse re-
sponses are transformed by the uniformly partitioned convolution algorithms
used to implement the segments. Further details on a time-varying filtering
are given in section 6.11. Different termini are found in the literature on
non-uniform filtering techniques. It is referred to as non-uniformly parti-
tioned Overlap-Add (NUPOLA) or non-uniformly partitioned Overlap-Save
(NUPOLS) convolution, depending on the convolution scheme used for the
segments. These notions are as well used in [76]. Garćıa [37] uses the term
‘multiple-FDL convolution’ for algorithms with freely adjustable partitions.

During the filtering, each sub filter (filter segment) processes the entire input
stream x(n), but in different granularities (block lengths Bi). Depending on
its block length Bi, a segment computes more or less frequently in time, with
a rate of computation given by

fi = fs/Bi [Hz] (6.5)

Segments implemented with small block lengths compute more frequently.
Their computational complexity is comparably little. In contrast, later seg-
ments realized using large block lengths compute less often. Their compu-
tation however can be extensive and even exceed the limited time budget
B/fS of the audio stream. Such computations must therefore either be im-
plemented autonomously, in independent threads, or decomposed into several
procedural steps of smaller computational complexity. The very first segment
is always processed directly in the audio stream callback routine. To result
at minimal input-to-output latency, this leading segment of the partition
must use the same block length as the audio stream (see section A.1 in the
appendix)

B0 = B (6.6)

6.4.1. Standard parameters

Almost all known non-uniformly partitioned convolution algorithms [31,
39, 71, 37, 76, 9] implement the sub filters (segments) using conventional
UPOLA/UPOLS convolutions, as introduced in section 5.2. Their block
lengths, sub filter lengths and transform sizes are depending as follows:

(1) Bi = Li (6.7)

(2) Ki = 2Bi = 2Li (6.8)
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6.4. Basic algorithm

Typically, all sub filter block lengths Bi, including the audio stream block
length B, are restricted to powers-of-two [31, 39, 37]

(3) B,Bi ∈ { 2i | i∈N } (6.7),(6.8)
=⇒ Li,Ki ∈ { 2i | i∈N } (6.9)

This is not only reasonable for the fast computation of the transforms. The
order in Eq. 6.2 implies, that all entities Bi and Li are multiples of the audio
stream block length B

(4) Bi=2p, Bi+1 =2q (p, q∈N)
(6.2)
=⇒ p ≤ q (6.6)

=⇒ B | Bi (6.10)

(5) B | Bi
(6.7)
=⇒ B | Li

(6.3)
=⇒ B | offset(i) (6.11)

In particular the relations in Eq. 6.11 greatly simplify the scheduling of sub
convolutions, as the next section will show.

6.4.2. Computational complexity

The computational costs of a non-uniformly partitioned convolution algo-
rithm are derived from the block diagram in figure 6.1. As each parallel sub
convolution processes the complete audio stream, the overall computational
costs are made up from the costs of all sub filters. Additionally, the sub filter
results must be accumulated into the overall output signal. This requires
an extra addition per output sample for each sub filter. The computational
overhead of the scheduling of the sub convolutions is usually left out of the
consideration. In the following a standard implementation with conventional
UPOLS convolutions is regarded.

Let P = ( LP0
0 , . . . , L

PM−1

M−1 ) be a non-uniform filter partition. The compu-
tational costs (per output sample) of the stream processing are given by

T stream
NUPOLS(P) :=

M−1∑
i=0

(
T stream

UPOLS(Bi, Li ·Pi) +
TADD(Bi)

Bi

)
(6.12)

The term T stream
UPOLS(Bi, Li·Pi) corresponds to the costs per sample for an UPOLS

convolution with equal block length and sub filter length Bi = Li, consist-
ing of Pi parts. TADD(Bi)/Bi expresses the additional costs per sample for
overlap-adding the segments’ results into the global output. This portion is
often neglected. A filter transformation of the complete length-N impulse
response h(n) requires to transform all sub filter impulse responses hi(n)

T ftrans
NUPOLS(P) :=

M−1∑
i=0

T ftrans
UPOLS(Bi, Li ·Pi) (6.13)
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6. Non-uniformly partitioned convolution

A very important property of both cost functions is, that they are separable.
Let T be synonymous for the two cost functions (Eq. 6.12 or 6.13) and let
the expression T (LPi

i ) correspond to the elements in their right-hand side
sums. Then both functions fulfill

T (P) = T (LP0
0 ) + · · · + T (L

PM−1

M−1 ) (6.14)

Analyzing both cost functions, two key factors of the computational costs
can be identified: Firstly, the underlying uniformly partitioned convolution
of choice (responsible for the sub filter costs TUPOLS). Any improvements
here, lower the computational costs of the non-uniform method as well. Sec-
ondly, the filter partition P. The choice of a suitable non-uniform partition is
not trivial and subject of the subsequent considerations. Before the computa-
tional costs of non-uniformly partition convolution techniques are evaluated,
different filter partitioning techniques are reviewed first.

6.4.3. Timing dependencies

The non-uniform filter partition introduces timing dependencies for the sub
filter convolutions. Points in time exist, when a sub filter can begin its com-
putation (availability of input samples) and when its computation has to be
finished (deadline for output samples), in order to assemble the overall convo-
lution output. The computation of the corresponding sub filter convolutions
has to be finished within these limited time intervals, otherwise partial re-
sults are missing in the overall output. Given the case that the admissible
time interval exceeds the actual computation time, the processing of the sub
filter can be shifted along the time axis. The amount of flexibility thereby
is considered as the clearance and formalized in the next paragraphs. The
timing-dependencies with result for a partition can be visualized by diagrams,
as exemplary shown in figure 6.4.

Some partitions can even inhere in insufficient time spans and are thus not
realizable in real-time. A non-uniform partition is only real-time compliant if
it fulfills fundamental conditions, which guarantee, that all involved sub filter
computations can be finished in time. Egelmeers and Sommen [30] derived
such conditions first, for a sample-wise processing. The time scale in their
work is quasi-continuous and can be measured in seconds, clock cycles or
samples t∈R+.

This work focuses on block-based processing, where the events in audio pro-
cessing align with a quantized times tn = nT + T0 (see section A.1). The
offset T0 of the scale is irrelevant for the subsequent timing dependencies
and can be dropped. Consequently, it is sufficient and convenient to describe
times just by stream cycles n instead of a times tn. Actual computation times
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Figure 6.4.: Timing dependencies for the non-uniform Gardner partition
P = ( [B]2, [2B]2, [4B]2, [8B]1 )

are not considered. It is assumed that the clearance is sufficiently large, so
that each sub convolution can be computed in the given time span.

The derivation of timing dependencies was published by the author in [121].
The considerations here are developed in a more general way, also regarding
individual iterations of the sub convolutions. First, these general dependen-
cies are derived for arbitrary filter partitions. Afterwards, the results are
limited to the standard parameters, expressed in Eq. 6.7-6.11, as found in
[121].

General dependencies

Let P = ( LP0
0 , . . . , L

PM−1

M−1 ) be a filter partition consisting of M ∈N0 seg-
ments. In the following the filter segment of index 0≤ i<M is regarded. It
is assumed that this segment LPi

i is implemented using an arbitrary block
length Bi. Furthermore, let the index m∈N0 denote the mth iteration (execu-
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6. Non-uniformly partitioned convolution

tion) of the sub convolution. In order to make things easier understandable,
this index begins with 1 (m↔ mth execution).

The segment can start its computation the mth time, as soon as mBi input
samples have been accumulated. This holds for cycles with an index k which
fulfills the following inequality

mBi ≤ (k+1)B (m ∈ N0, k ∈ N) (6.15)

According to the semantics defined in section A.1 in the appendix, (k+1)B
input samples have been provided in the cycle k of the audio stream. Solving
Eq. 6.15 for the smallest possible value of k, determines the first cycle for
which the mth computation can start. This defines the point in time

avail(m)(i) :=

⌈
m
Bi
B

⌉
− 1 (6.16)

Trivially, the first segment implemented with the stream block length B0 =B
can compute every cycle. Given that B | Bi, the ceiling function can be
omitted. In this case the computation can start exactly every mth cycle. In
other words, if B -Bi the result is an irregular availability, which can lead to
an uneven load distribution.

The deadline for a sub convolution is defined as the point in time, when the
output of a sub filter contributes to the overall result. Here, the computation
of the sub filter must strictly be finished. This includes the overlap-and-add
step in the final output. This definition of the deadline has the advantage of
being independent of the computation time, which it does not account for.

The point in time (measured in samples) when the segment LPi
i contributes to

the overall convolution the first time, is determined by its position offset(i)
(Eq. 6.3) in the impulse response. Recall, that all sub filters process the entire
audio stream, but with different granularities (block lengths Bi). Hence, the
mth computation of the segment i contributes to the output (m−1)Bi samples
later. For a sample-wise processing (cp. [30]), the offset defines the deadline

offset(i) + (m−1)Bi (6.17)

The considered block-based processing aligns with the stream cycles, not
individual samples. Applying Eq. A.2 translates Eq. 6.17 from the index
of samples into the index of cycles. This defines the deadline for the mth

computation of the segment as

deadline(m)(i) =

⌊
offset(i) + (m− 1)Bi

B

⌋
(6.18)

Given that the block length B divides the numerator in Eq. 6.18, the floor
function can be dropped. In this case the deadlines form a uniformly-spaced
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sequence in time. Otherwise the pattern of deadlines is irregular.

The admissible time span for the mth computation of the ith segment is the
span from the first point in time, when the computation can be performed
to the point in time, when it must have been performed. It is defined as the
difference in cycles

clearance(m)(i) = deadline(m)(i)− avail(m)(i) (6.19)

The term ‘clearance’ was favored by the author for a specific reason: It
indicates the tolerance in time for the computation of a filter segment. A
zero-clearance (clearance(m)(i) = 0) marks a tight fit in time. Here, the
input data is available just within the same cycle that the output samples
must be provided (deadline(m)(i) = avail(m)(i)). The computation time
of the segment is therefore pinned to a single cycle and cannot be shifted
to a later point in time. Zero-clearances mark critical timing dependencies.
Positive clearances (deadline(i) > avail(i)) allow for a deferred computation
and provide more flexibility to the scheduling of sub convolutions.

The maximal number of cycles, that the mth computation of the segment
can stretch over is

timespan(m)(i) = deadline(m)(i)− avail(m)(i) + 1 (6.20)

= clearance(m)(i) + 1 (6.21)

Standard parameters

Running the sub filters with standard parameters, as defined in Eq. 6.7-6.11
simplifies the above stated timing measure significantly. All events for the
computation of sub filters align with the processing of the stream. The ceiling
and floor functions can be dropped, as the numerators in Eq. 6.16 and Eq.
6.18 are dividable by B. Both, the possible start times and deadlines, repeat
every Bi/B cycles and are hence uniformly-spaced over time. Consequently,
the clearance of each segment becomes independent of the actual iteration
m. This result in particular simplifies the scheduling of sub convolutions
enormously. For the sake of simplicity, the iteration index m is omitted from
the other two terms as well. The following simplified timing dependencies
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6. Non-uniformly partitioned convolution

can be summarized for choice of standard parameters defined in Eq. 6.7-6.11

avail(i) = B−1Bi − 1 = B−1Li − 1 (6.22)

deadline(i) = B−1offset(i) (6.23)

clearance(i) = deadline(i)− avail(i)

= B−1

[(∑
j<i

LjPj
)
− Li +B

]
(6.24)

The unit of all three measures are cycles, starting from 0. They can be easily
converted back into the scale of samples by multiplying them with B. Unless
outlined, all subsequent considerations are based on the definitions in Eq.
6.22-6.24.

6.4.4. Causal partitions

Negative values clearance(i) < 0 signalize, that the computation of
the segment has to be finished before the input data becomes available
(deadline(i) < avail(i)). Filter partitions containing segments with this
property can thus not be realized under real-time conditions. They are re-
ferred to as non-causal partitions and are not of practical interest.

Definition: A filter partition P = ( LP0
0 , . . . , L

PM−1

M−1 ) is causal, if and only
if all of its segments satisfy ∀0≤ i<M : clearance(i) ≥ 0.

Combining this condition with the inner term in the right-hand side of Eq.
6.24 yields

clearance(i) ≥ 0
(6.24)⇐⇒

(∑
j<i

LjPj

)
− Li +B ≥ 0 (6.25)

⇐⇒ Li ≤
(∑
j<i

LjPj

)
+B (6.26)

Eq. 6.26 provides a fundamental rule for the construction of causal filter

partitions. Let P = ( LP0
0 , . . . , L

PM−1

M−1 ) be a causal filter partition consisting

of M segments. Then P can be extended to a partition P ′ = ( LP0
0 , . . . , LPM

M )

with M + 1 segments, by appending a further segment LPM
M . Condition 6.26

states, that P ′ is causal if and only if the appended segment has a sufficiently
small sub filter length Li. In other words, condition 6.26 limits the growth of
the sub filter lengths Li over the filter length N . It is further worth pointing
out, that if a partition P is causal, the causality is preserved by increasing its
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6.4. Basic algorithm

multiplicities Pi arbitrarily. The contrary however does not hold. Reducing
the multiplicity Pi of a segment in P may violate the causality.

6.4.5. Canonical partition

The fastest possible increase in sub filter lengths is achieved by claiming
equality in condition 6.26. This instantaneously implies that all clearances
will be zero. Then a unique partition for every filter length N can be con-
structed as follows: Let S be a set of viable sub filter sizes Li ∈ S and
furthermore let B ∈ S. The first segment is chosen L0 = B,P0 = 1 as
usual. Then parts are appended successively, until the length N is reached.
Thereby, each sub filter length Li ∈ S is maximized according to condition
6.26. Given, that no Li ∈ S fulfills condition 6.26, the multiplicity Pi−1 of
the preceeding segment is increased until such an Li ∈ S is found. With
respect to the selection of S the construction is unique for a filter length N .
Such a non-uniform filter partition is referred to as the canonical partition of
length N and S.

Considering sub filter lengths Li ∈ S = {B, 2 · B, 22 · B, 23 · B, . . . } (power-
of-two multiples of the audio stream block length B), a unique construction
of the following form is found

L0 = B

L1 = L0 +B = 2B

L2 = L0 + L1 +B = 4B

L3 = L0 + L1 + L2 +B = 8B

...

LM =

(M−1∑
i=0

2iB

)
+B = 2MB (6.27)

This defines a non-uniform filter partition of the form

Pcanon =
(

[B]1, [2B]1, . . . , [2kB]1
)

(k∈N) (6.28)

Each segment consists of a single part only (Pi = 1). Hence, the overall
number of individual filter parts is minimal. This can easily be shown by
proof with contradiction. However, the number of filter segments is not
necessarily minimal. A counter example is the uniform partition, which only
consists of a single segment.
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Figure 6.5.: Schedule of the sub convolutions in a canonical partition.

A canonical partition, as defined in Eq. 6.28, has the following attributes

avail(i) = B−1(2iB)− 1 = 2i − 1 (6.29)

offset(i) =

i−1∑
j=0

2jB = B(2i − 1) (6.30)

deadline(i) = B−1offset(i) = 2i − 1 (6.31)

clearance(i) = deadline(i)− avail(i) = 0 (6.32)

timespan(i) = clearance(i) + 1 = 1 (6.33)

The canonical partition embodies the principle of the most rapid increase in
sub filter sizes. One could presume, that this strategy results in the lowest
computational costs. It is shown later, that this is not the case and that
partitions with a lower computational complexity exist. As each segment
consists of only a single part, the corresponding sub convolution is essen-
tially unpartitioned and does not facilitate the reuse of DFT spectra. Worse
though, the canonical partition implies a worst-case load distribution. Fig-
ure 6.6(a) shows the occurring computational load (required CPU cycles) for
the individual cycles of the audio processing. Computations can not be dis-
tributed along the time axis (zero clearances) and all sub filter convolution
can superpose in certain cycles. The results in distinct load peaks, which
severely limit the maximal performance.
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6.4. Basic algorithm

6.4.6. Gardner’s partitioning scheme

The above stated drawbacks of the canonical partition make it completely
impractical. Gardner [39] pursued the concept of the most rapid increase in
sub filter sizes and brought it to the level of practicality, by introducing a
couple of modifications. His partitioning scheme is outlined in the following
and its properties are discussed. However, the later results by Garćıa [37]
showed that the principle does not guarantee a minimal-cost decomposition,
as mistakenly supposed by [39]. In his work, Gardner [39] regards a mixed
strategy to achieve an even lower latency: The leading sub filter is imple-
mented using a sample-wise time-domain FIR filter (e.g. in DSP hardware).
As the focus lies on the block-processing here, these aspects are left out of
the considerations.

In order to overcome the inevitable implications of zero-clearances, each seg-
ment is implemented with a multiplicity of two, instead of one. Only the last
segment may have a multiplicity of one or two. This results in non-uniform
filter partitions of the following form

PGardner =
(

[B]2, [2B]2, . . . , [2k−1B]2, [2kB]l
)

(k∈N, l∈{1, 2}) (6.34)

In this work such partitions are referred to as Gardner partitions. The
(block-based) sub filters are staggered in powers-of-two, with parameters
Li = 2iB,Pi = 2, PM−1 ∈ {1, 2}. The segments of a Gardner partition have
the following properties

avail(i) = B−1(2iB)−1 = 2i−1 (6.35)

offset(i) =

i−1∑
j=0

2 · 2jB = B

i−1∑
j=0

2j+1 = B(2i+1 − 2) (6.36)

deadline(i) = B−1offset(i) = 2i+1 − 2 (6.37)

clearance(i) = deadline(i)− avail(i) = 2i+1−2−2i+1 = 2i−1 (6.38)

timespan(i) = clearance(i) + 1 = 2i (6.39)

The design principle of this partitioning scheme is, that each sub convolu-
tion is granted a admissible time span for its computation, that equals the
block length of the sub convolution. A clearance of zero indicates that the
computation can maximally span over a single cycle. Accordingly, a clear-
ance of k cycles corresponds to a maximal admissible computation time of
(k+1)B/fS . Assuming, that the computation of each segment can be evenly
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Figure 6.6.: Computational load per stream cycle for two partitions on the
test system

.

distributed over this admissible time span, the load distribution of the Gard-
ner algorithm becomes uniform. This is visualized in figure 6.6(b). The costs
increase until cycle 15, from which on all segments continuously compute in
parallel. Comparing this result to the uneven load distribution of a canonical
partition in figure 6.6(a), the importance of scheduling flexibility for the sub
convolutions becomes obvious. However, achieving an even load distribution
as in figure 6.6(b) on an actual system is difficult. Splitting up the convolu-
tion of a larger sub filter into several portions of similar computational effort
is challenging, e.g. due to the mixture of different operations (FFTs and
spectral convolutions). These implementation-specific issues are addressed
in section 6.8.
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6.5. Optimized filter partitions

6.5. Optimized filter partitions

The preceding sections introduced several non-uniform filter partitions and
examined their properties. Schemes, like Gardner’s partitioning [39], follow
a certain design principle and define a formal way of decomposing a filter
impulse response of arbitrary length N . However, numerous different possi-
bilities of partitioning a filter exist. All of these have different computational
costs and properties. Given a cost function T (P), the partition can be iden-
tified that minimizes the computational costs. However, this does usually
not result in a satisfactory solution. Optimality is always subject to the
postulated optimization goals. Particularly for non-uniform filter partitions,
multiple aspects must be carefully considered. A partition which results in
the lowest computational costs is worthless if it cannot be realized in real-time
(e.g. a non-causal partition). Even if it can be realized and the computa-
tional costs are minimal, the load distribution can be so unfavorable, that a
partition with larger computational effort is actually more practical.

This section reviews approaches to obtain non-uniform filter partitions as
solutions of an optimization problem. First, the formal optimization prob-
lem is introduced. Afterwards, the optimization algorithm by Garćıa [37]
is presented. This algorithm facilitates dynamic programming to solve the
problem in polynomial runtime. It is shown, that the resulting minimal-cost
partitions inhere no clearances and are practically unfavorable. Finally, en-
hancements to the optimization algorithm are presented, which allow consid-
ering further aspects in the optimization procedure, like timing dependencies
and scheduling of sub convolutions.

6.5.1. Optimization problem

In the following, the search for an optimal non-uniform filter partition is
regarded as a formal optimization problem. Let F denote a set of feasi-
ble non-uniform partitions. For the standard NUPOLS technique (cp. Sec.
6.4.1), this is usually the set of all causal partitions consisting of sub filters,
whose lengths Li are powers-of-two (Eq. 6.9). Let T : F → R+ be a cost
function for the partitions in F . This is typically the costs per output sample
T stream

NUPOLS(P) (Eq. 6.12), that result from a specific partition P. Usually, the
interest lies in the minimal possible costs, defining the following minimiza-
tion problem: The optimal filter partition Popt ∈ F is defined as the one
that minimizes the function T (P)

costopt := min
P∈F

T (P) Popt := argmin
P∈F

T (P) (6.40)
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6. Non-uniformly partitioned convolution

6.5.2. Optimization algorithm

In 2002, Garćıa [37] presented a formalism to represent the construction of
filter partitions by states in a discrete state-space. This allows mapping the
set of feasible partitions to a weighted directed acyclic graph (DAG). The
optimization problem is thereby reformulated as a shortest-path problem,
that can be efficiently solved using the Viterbi algorithm [93] in polynomial
runtime. The principle is briefly reproduced here. For deeper explanations,
the reader is referred to [37].

State-space representation

The state-space representation in this thesis is based on Garćıa’s origi-
nal representation [37] with a few modifications. These are necessary, as
Garćıa’s work considers a sample-wise processing, as Gardners approach [39].
This manifests in a slightly different formulation of the causality condition
Li ≤ offset(i). Conceptually, both mappings are similar. Additionally in this
thesis, states are represented by triples of integers, including also the offset
as a variable. Figure 6.7 visualizes the construction process of a non-uniform
filter partition as suggested in [37]. One has to imagine a pointer, which
iterates over the filter length in steps of the block length B. In Fig. 6.7
this pointer (zone) is marked with gray background. With each iteration,
the previous partitions are combined into partitions of larger lengths. Ver-
tically separated areas (≥B,≥ 2B, · · · ) correspond to the iterations in the
construction. After the nth iteration, partitions of length nB or longer have
been constructed.

Each state thereby corresponds to a sub filter placement in a partition. States
are labeled in the form of triplets (N.S.Q). All three variables are interpreted
as multiples of the block length B. N marks the right margin (end) of the
sub filter (×B). This corresponds to the offset of any succeeding sub filter.
S denotes the length of the sub filter (×B). Q marks the fraction of the
sub filter (half, fourth, eighth, etc.), that coincides with the current pointer
range (marked gray). The state (7.4.3) corresponds to a sub filter of length
4B, whose third quarter aligns with the pointer region and its right margin
is located at 7B. The initial state of the DAG is (1.1.1) and describes the
trivial partition (B1). Figure 6.8 shows the resulting DAG (without weights)
for filter lengths N≥7B.
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Transitions

Three types of possible transitions between states can be identified

1. Continuation of a sub filter: (N.X.Q)→ (N.X.Q+1) with Q < X

2. Repetition of preceding sub filter: (N.X.X)→ (N+X.X.1)

3. Transition to a longer sub filter: (N.X.X)→ (N+Y.Y.1) with Y >X

The causality condition in Eq. 6.26 can then be expressed by means of the
state variables

clearance(i) = B−1offset(i) − B−1Li + 1 ≥ 0 (6.41)

m m
clearance(i) = N − S + 1 ≥ 0 (6.42)

Consequently, the DAG representing causal partitions, does not contain
states (N,N,Q), as these violate condition 6.42. Moreover, the principle
of causality (see section 6.3) only affects the transition of type 3. Transitions
of type 1 and 2 can always be performed without restrictions.

Weights

Each transition in the DAG is attributed with the costs of the correspond-
ing extension. In the following, the weights are derived from the compu-
tational costs per output sample of the non-uniformly partitioned Overlap-
Save (NUPOLS) algorithm, defined in Eq. 6.13 and more specifically Eq. 5.6.
The evaluation of costs is thereby separated according to the construction
process and regarded for each transition.

The initial state (1, 1, 1) represents a segment consisting of a single element
only. Its computation involves a forward and inverse FFT, a spectral convo-
lution and final overlap-add step in the NUPOLS algorithm

1

B

[
TFFT(2B) + TCMUL(B + 1) + TIFFT(2B) + TADD(B)

]
(6.43)

Trivially, any ε-transition of type 1 does not affect the costs. Repetitions of
type 2 correspond to an increase of a segment, which already existed. The
additional effort is a further spectral convolution and accumulation

1

B
TCMAC(B + 1) (6.44)

Any transition to a larger sub filter Bi = Y ·B (type 3) opens a new segment
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of this length, resulting in costs

1

Bi

[
TFFT(2Bi) + TCMUL(Bi + 1) + TIFFT(2Bi) + TADD(Bi)

]
(6.45)

As each partition corresponds to a path in the DAG, its costs are accumulated
from the weights of all edges on this path.

Viterbi algorithm

The optimal partition problem can be solved using dynamic programming
(DP), because the cost function is separable (see Sec. 6.4.2) and thus fulfills
Bellmann’s principle of optimality [25]. The optimal partition can thus be
found using the Viterbi algorithm [93] in polynomial runtime (PTIME). De-
tails on the implementation specifically for the optimal partition problem are
given in [37]. The algorithm needs to store the states of only two iterations
(current and next), keeping the memory footprint manageable. Memorizing
all the states is impossible, due to the exponentially growing memory re-
quirements. First, the Viterbi algorithm tracks down the optimal sequence
to a final state of the desired target length N . This also determines only
the minimal costs, but not the complete partition. Afterwards, back tracking
[93] is applied to determine also the optimal partition itself, which is pro-
vided as a sequence of states. The author created and benchmarked a C++
implementation of the optimization algorithm. The execution times range
from seconds to minutes on a standard PC for all relevant problem sizes
(e.g. filters up to 10 s of reverberation time). The results of the optimization
procedure are discussed in the following.

6.5.3. Minimal-load partitions

In essence, minimal-load partitions facilitate the principle of the most rapid
increase of sub filter lengths, but by fully utilizing the potential of the FDL.
The increased multiplicities prove, that the latter is actually exploited. In
contrast to canonical partitions and Gardner’s partitioning scheme, not all
possible power-of-two sub filter lengths are involved. Instead, minimal-load
partitions select even larger sub filter lengths for a next segment, as soon
as the savings on an FDL are exhausted. Still, this solution results in zero
clearances for most of the segments. This result was published by the author
in [121].

The complete list of minimal-load partitions for a block length B ∈
{128, 256, 512} and filter length B≤N ≤ 512k are printed in sections A.2.1,
A.2.2 and A.2.3 in the appendix. From these results, the following properties
of minimal-load partitions can be summarized.
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6. Non-uniformly partitioned convolution

• Sub filters of length Li up to 64k are involved, but not longer.

• Sub filters multiplicities range up to 32, proving that the FDL concept
is extensively utilized.

• At maximum four filter segments are used, but not more.

• A uniform partitioning marks the optimal solution if the filters are not
too long. This roughly holds within the range 20B ≤ N ≤ 30B.

• For typical filter length in artificial reverberation, a three segment lay-
out is optimal. If the block lengths get longer, a two segment partition
is sufficient.

• The majority of filter segments have zero-clearances. This always holds
for leading segments. Exceptions are only found in later segments.
Shorter block lengths (latencies) emphasize the problem.

Particularly the last observation is very important. It marks a common prop-
erty of minimal-load partitions, not only in practical examinations (bench-
marks), but also for theoretical runtime complexities (see [121]). The zero-
clearances in minimal-load partitions render them unusable in practice, due
to a similarly unfavorable load distribution as for the canonical partition (cp.
Fig. 6.6(a)). In other words, a minimal-load partition for a filter length N
requires the least number of operations, but its computation load is badly
distributed. In fact, the resulting load peaks form the bottleneck for the
computation. An optimization only aiming at the least computational effort
does not produce usable results. This proves evidence, that the optimiza-
tion must carefully consider further aspects. The following section describes
strategies to accomplish this. The analysis of the computational load is found
in section 6.6.

6.5.4. Practical partitions

The author proposed a solution to the problem in [121], which is shortly
outlined in the following. For the detailed study of the results the reader is
referred to [121]. The basic idea is to enforce certain minimal clearances for
all possible segments. This can be seen as a restriction of the set of feasible
solutions F . Then the optimizer decides on the optimal partition within this
restricted search space.

Search space restrictions

Instead of allowing all causal (i.e. realizable) partitions, further restrictions
are introduced. They are methodically similar to the causality condition (Eq.
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6.26) and limit the increase in sub filter lengths during the construction of
partitions. The result is a specification of required minimal clearances. For
each potential filter segment LPi

i a minimal clearance can be postulated

clearance(i) ≥ clearancemin(i) (6.46)

These conditions are transformed into restrictions on states in the DAG con-
struction, similar to Eq. 6.41,6.42. Not only the minimal clearance can
be specified, but also minimal and maximal multiplicities for the segments
(details see [121]).

Restrictions

Introducing restrictions on the search space, usually increases the compu-
tational costs. The minimal clearance conditions prevent the optimization
to select larger sub filters early in the construction (at the beginning). In
a minimal-load partition the sub filter length is increased, if this minimizes
the computational costs. On the contrary, minimal clearance conditions can
shift such decisions to later points in time. As there are only two design
choices—repetition of a sub filter or selection of a longer one—the minimal-
clearances thus increase the multiplicities over those in minimal-load parti-
tions. According to the considerations in section 6.4.3, these do break the
causality, but increase the clearances and thus the scheduling flexibility. A
general relationship is observed in section 6.6: The more scheduling flexibil-
ity a non-uniform filter partition inheres, the higher are its costs compared
to the minimal-load partition. Which restrictions are necessary depends on
the actual implementation. Section 6.8 addresses these issues. Section 6.12
draws some conclusions on meaningful restrictions for the application of room
acoustic auralization.

The author proposed two example restriction sets with practical relevance in
[121], which are explained in the following:

1. Each filter segment LPi
i is granted at least B · timespan(i) ≥ Li (cp.

Eq. 6.21) for its computation. Expressed in clearances this reads:
clearancemin(i) ≥ Li/B − 1. This strategy follows the same principle
as Gardner’s approach [39] does (see Sec. 6.4.6), but explicitly allows
FDLs to be exploited.

2. This strategy is inspired by observations in practice. Segments of sub
filter lengths 2B and 4B are enforced a computation time span of at
least two cycles. Segments of sub filter lengths 8B . . . 64B are granted
four cycles. All other segments are ensured a time span of eight cycles.
These rules are less restrictive than strategy 1. The first segment is
only allowed a multiplicity in the range 2 ≤ P0 ≤ 4. This condition
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has the following function: First segments have to be processed within
the time-limited audio callback. In order to enable a large number of
channels to be processed, the individual costs per channel shall not
be too large. Otherwise the maximal possible number of channels is
limited. Hence, it is beneficial to keep the multiplicity small. On the
other hand, the multiplicity shall not be too low either, because in this
case there is no clearance for the succeeding segment. These aspects
become very important in parallelized implementations where all other
segments are computed in background threads (cp. Sec. 6.8).

The optimal partitions for both variants are summarized in sections A.2.4 and
A.2.5 in the appendix. The impact of the restriction on the computational
effort are examined in section 6.6.

6.6. Performance

The computational costs of the standard NUPOLS are examined for the
introduced non-uniform filter partitions. The costs for a partition P are
found by evaluating Eq. 6.12 respectively Eq. 6.13 with the benchmarks of
the test system (see Ch. 7). Costs for the stream processing are measured as
before, by the number of CPU cycles per filtered output sample. The effort
for filter transformations is accounted by the total number of CPU cycles.

Non-uniform vs. uniform partitioning

First, general comparisons between the non-uniformly and uniformly par-
titioned methods are conducted. These comparisons consider the optimal
minimal-load partitions (see Sec. 6.5.3) for the NUPOLS technique. Fig-
ure 6.9 shows the resulting computational effort for both approaches (non-
uniform=solid lines, uniform=dashed lines) over the filter length N . Like
before, several different block lengths B are regarded. The following observer-
ations can be made: Non-uniform techniques have a different and logarithm-
like progression of the costs. Doubling the filter length does not double the
computational costs any more. The block length influences the costs much
less and not with the previously observed anti-proportional behavior. It ex-
ists a certain filter length, from which a non-uniform partition is actually
used. For smaller filter lengths, both methods converge into a uniform par-
titioning. These distinct filter lengths can be identified in the list of optimal
minimal-load partitions in the appendix (see Sec. A.2.1, A.2.2 and A.2.3).
A uniform-partitioning turned out optimal when the filter length does not
exceed 20− 30× the audio stream block length.
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Figure 6.12 shows the relative speedup, between the UPOLS and NUPOLS
technique. This speedup grows over the filter length N and depends as well
on the block length B. In particular for low-latency filtering, the savings by
non-uniform partitioning are notably. Considering a room impulse response
of 100,000 taps and a stream block length B = 128, the NUPOLS filtering
outperforms the UPOLS approach by a factor of approximately 10. For a
longer block length B = 1024 the savings drop a factor of about 2. It can
be seen, that non-uniformly partitioned techniques are asymptotically faster
than uniformly-partitioned approaches.

Figure 6.12 examines the dependency of the block length and computational
costs of the NUPOLS methods. It depicts the relative speedup, when switch-
ing from the reference block length B = 128 to a larger one. The results
strongly differ from the observed behavior for the UPOLS technique in fig-
ure 5.6. The costs of a non-uniformly partitioned convolution are much less
influenced by the block length. Only for filters of lengths of approximately
N < 50, 000 taps, the change to a larger block causes a significant reduction
of the costs (up to a factor of 2.2). For very long filters, the advances by
using an eight-fold block length manifest in a speedup ≈ 1.3. Whereas in
contrast, a uniform-partitioning would deliver about an eight-fold speedup.

The computational effort of the filter transformation is shown in figure 6.11.
Here, a different observation is made: Transforming a non-uniformly parti-
tioned filter is more expensive than transforming a uniformly partitioned one.
For very long filters (e.g. 400,000 taps), the transformation for the NUPOLS
method can be about 30-40% more expensive than for the UPOLS technique.
It is worth mentioning, that the additional expenses are little for short fil-
ter lengths. When different parts of the impulse response are exchanged
asynchronously (see Sec. 6.12), the additional expenses do not impact the
performance to the same extent. Like before, the filter transformation for
both approaches is only marginally affected by the block length.

Finally, figure 6.15 visualizes how the computational costs in the NUPOLS
are constituted. Compared to the UPOLS technique (see figure 5.7), fast
transforms play a much more important role. In the NUPOLS algorithm,
FFTs make up the majority of computations, whereas in the UPOLS tech-
nique they mark fixed costs, independent of the filter length. From this
observation it can be concluded, that the performance of non-uniformly par-
titioned convolution is strongly affected by the performance of the fast Fourier
transforms.
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Figure 6.9.: NUPOLS versus UPOLS convolution on the test system:
Computational costs of stream processing
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Figure 6.15.: Distribution of streaming filtering costs in NUPOLS convolu-
tion for the block length B = 128 on the test system.

Choice of filter partitions

The impact of the non-uniform filter partition on the computational effort
is examined in the following. Figure 6.13 shows the costs for the stream
filtering for different partitioned convolution methods. Therefore, a block
length B = 128 is considered. The quasi-linear costs of uniformly-partitioned
UPOLS convolution (Sec. 5.2) are marked dashed black. The non-uniform
canonical partition (Sec. 6.4.5) used with standard NUPOLS convolution
is the solid black curve. The lower bound is provided by the minimal-load
partition (Sec. 6.5.3), marked in red. Gardner’s partitioning (Sec. 6.4.6) is
represented by the orange curve. The two practical partitions introduced in
Sec. 6.5.4 correspond to the green (variant 1) and blue curve (variant 2).

The first observation is that Gardner’s adaptions to the canonical partition
lower the computational costs and do not increase it, as one might presume.
The lowered number of transforms, due to the increased multiplicities, turns
out to be beneficial. This example shows, that the strategy of the most rapid
increase in sub filter sizes does not mark the computationally cheapest so-
lution. The second observation is that the costs can be enormously lowered
once more by the optimized minimal-load partition. It is almost twice as
efficient as Gardner’s partitioning scheme. However, the comparison is not
fair, as minimal-load partitions lack any practicality. The practical parti-
tions inhere more scheduling flexibility, which increases their computational
costs over the lower boundary of the minimal-load partitions. Less restrictive
rules (variant 2) lead to a minor increase in costs. Enforcing more freedom
for the scheduling of sub convolutions (variant 1) increases the computa-
tional costs. Summing up, the filter partitioning itself marks a fundamental
and important parameter for the class of non-uniformly partitioned convolu-
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6. Non-uniformly partitioned convolution

tion techniques. The benchmark-based and guided optimization procedure
described in section 6.5.4 is very beneficial.

6.7. Complexity classes

The observed computational savings of non-uniformly partitioned convolu-
tion over uniformly partitioned convolution is now analyzed in more detail,
by deriving the theoretical runtime complexities of the NUPOLS technique.
Such a general examination can hardly be conducted based on algorithmicly
derived partitions (like minimal-load partitions). A formal partition scheme
is necessary. Here, the canonical partition was selected, as it features a simple
structure and also acts as an upper bound for the computational complexity
(see Fig. 6.13). Complexity classes found for this partition thus also hold for
the other partitioning strategies.

Let N denote the total length of the M -segment canonical partition Pcanon =(
[B]1, [2B]1, . . . , [2M−1B]1

)
, defined in Eq. 6.28. N is found by summation

of sub filter lengths Li (Eq. 6.27)

N = B

M−1∑
i=0

2i = B(2M − 1) (6.47)

Solving Eq. 6.47 for the number of segments M yields

M = log2

(
N

B
+ 1

)
(6.48)

For the usual case that N � B and that B is a fixed constant, M can be
approximated by

M = log2

N

B
+O(1) (6.49)

The computational costs of each segment [2iB]1 are found by evaluating
the cost function of the standard UPOLS algorithm in Eq. 5.10 with the
parameters Ni = Li = 2iB,Pi = 1

T stream
UPOLS(2iB, 2iB) = 4k log2

(
2iB

)
+ 8

(
2iB

2iB

)
+ 4k + 6 (6.50)

= 4k
(

log2 B + i+ 1
)

+ 14 (6.51)

This result is inserted into the accumulated costs in Eq. 6.12.
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The additive term TADD(Bi)/Bi is substituted with 1.

T stream
NUPOLS(M) =

M−1∑
i=0

(
T stream

UPOLS(2iB, 2iB) + 1
)

=

M−1∑
i=0

(
4k
(

log2 B + i+ 1
)

+ 15
)

= 4k

M−1∑
i=0

i + 4kM
(

log2 B + 1
)

+ 15M

= 2kM(M − 1) + 4kM
(

log2 B + 1
)

+ 15M

= 2kM2 + 2kM + 4kM log2 B + 15M (6.52)

These costs are still a function of the number of segments M . In order to
relate them to the filter length N , the approximation in Eq. 6.49 is inserted

T stream
NUPOLS(N) = 2k log2

2

N

B
+ 2k log2

N

B
+

4k log2

N

B
log2 B + 15 log2

N

B
(6.53)

The asymptotically dominant term in Eq. 6.53 is log2
2 N/B. This follows

from ∀x∈R, x>2: log2 x>1⇒ (log2 x)2> log2 x. Again, all applied approxi-
mations have an error boundedO(1). Without a formal proof, the complexity
class of the streaming processing of the canonical partition implemented with
standard parameters yields

T stream
NUPOLS(B const., N) ∈ O(log2 N) (6.54)

Gardner’s NUPOLS algorithm [39] lies within the same complexity class.
This follows from the observation, that the canonical and the Gardner parti-
tion only differ in the multiplicities of the parts. Hence, Gardner’s partition
can maximally double the number of spectral convolutions, but not even the
overall costs. Minimal-load partitions, introduced in section 6.5.3, have even
lower operation counts. Consequently, Eq. 6.54 manifests as an upper bound
for all three types of partitions (canonical, Gardner and minimal-load). How-
ever, it is an open question if this bound is sharp or minimal-load partitions
are asymptotically cheaper. The most important result of this section is,
that non-uniform filtering in O(log2 N) (Eq. 6.54) is asymptotically faster
than uniformly partitioned methods in O(N) (Eq. 5.12). Eq. 6.53 also un-
veils a different dependency of the costs on the block length B, as for prior
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algorithms. The common term log2 N/B introduces a logarithmic influence
of the block length. In other words, halving the block length B results in
an additive component, but not in a multiplicative one. This effect can be
observed in figure 6.12.

The computational costs for the filter transformation are derived similarly.
Each part in the canonical partition is repeated only once (Pi = 1). Hence,
a complete filter transformation consists of M forward FFT of the padded
sub filter impulse responses. According to Eq. 5.3 the costs are given by

T ftrans
NUPOLS(M) =

M−1∑
i=0

T ftrans
UPOLS(2iB, 2iB) =

M−1∑
i=0

k2i+1B log2

(
2i+1B

)

=

M−1∑
i=0

k2i+1B
(
i+ 1 + log2 B

)

This formula is seperated and simplified using the two identities A.4 and A.6
found in the appendix

= 2kB

M−1∑
i=0

i2i︸ ︷︷ ︸
=M2M−2M+1+2

+ 2kB(1 + log2 B)

M−1∑
i=0

2i︸ ︷︷ ︸
=2M−1

= 2kB(M2M − 2M+1 + 2)+

2kB(1 + log2 B)(2M − 1) (6.55)

Inserting the approximate M = log2(N/B) (Eq. 6.49) yields

= 2kB

(
N

B
log2

N

B
− 2

N

B
+ 2

)
+

2kB(1 + log2 B)

(
N

B
− 1

)

= 2kN log2

N

B
− 4kN + 4kB + 2kN

− 2kB + 2kN log2 B − 2k log2 B

= 2k
[
N log2

N

B
+ (N−1) log2 B −N +B

]
(6.56)
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The major term in Eq. 6.56 is N log2(N/B), which concludes the complexity
class of a complete filter transformation for the canonical partition (without
formal proof)

T ftrans
NUPOLS(B const., N) ∈ O(N logN) (6.57)

Transforming a filter for non-uniformly partitioned convolution is hence
asymptotically more expensive than for a uniform partition, which requires
O(N) operations (Eq. 5.5).

6.8. Implementation

Uniformly partitioned convolution algorithms, reviewed in chapter 5, are
conceptually simple and easy to implement. As the same operations are car-
ried out for each processed block of the audio stream, the load distribution
is even. Non-uniformly partitioned techniques in contrast, are significantly
more complex and harder to implement. The challenge lies in the execution
of the sub convolutions with respect to their timing dependencies. On multi-
processor machines, featuring several processors or cores, the distribution of
these tasks is hardened by the necessary thread synchronization. This sec-
tion discusses the implementation of non-uniformly partitioned convolution
techniques and outlines recent approaches.

Scheduling

Schematic partitioning approaches, like Gardner’s partitioning, result in a
periodic scheduling pattern of the sub convolutions. Given a filter parti-
tion, an execution plan can be created a-priori and then hard-coded into
the convolution software. In general, such approaches are reasonable, if the
conditions of the processor do not vary (e.g. exclusive use, constant clock
rate) and if the filtering parameters are not subject to frequent changes (e.g.
fixed number of channels, sampling rate, block length and filter length). A
deterministic scheduling is of primary interest in DSP solutions.

Applications in acoustic virtual reality are characterized by a time-varying fil-
tering, with dynamically changing parameters. This does not only include the
filter impulse responses themselves. Over the runtime of a real-time auraliza-
tion, channels are added or removed and parts of the filter impulse responses
are updated individually and with different rates. Moreover, the individual
channels might be filtered with impulse responses of different lengths. The
computing resources of the machine might be shared with other parts of the
software (e.g. simulation methods) and are not reserved exclusively for the
signal processing. In these circumstances, a static execution plan for the
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sub convolutions is disadvantageous and cannot adapt the changing runtime
conditions.

The solution is a flexible scheduling of the sub convolutions during the run-
time. Such a dynamic scheduling was first advocated by Gardner [39]. Most
subsequent publications use a similar concept [71, 9, 76, 121]. The scheduling
is typically realized in the following way: Each individual sub convolution
is represented by a convolution task, which encapsulates the according chan-
nel, filter segment and additional parameters (e.g. filter update, cross-fading
parameters). Tasks are created directly within the stream processing call-
back (interrupt), when new input blocks of data are provided. Given the
availability of the input data for the next execution of a sub convolution, a
new task is issued and stored in the scheduling list (task queue). Tasks are
usually attributed with additional metadata, like the read/write positions
on the input/output buffers and their execution deadlines, etc. The leading
segment in the partition is computed directly within the callback. Other
tasks in the list are managed by the scheduler and executed asynchronously
(e.g. in individual threads). The scheduling list itself can be implemented as
a queue, multi-level queue or priority queue.

The main challenge lies in the correct execution of all tasks within their
deadlines. A common approach is to categorize the sub convolution tasks
and treat them with different priorities. Gardner [39] presented a scheduling
approach for a three-segment partition (B2, [2B]2, [4B]1/2), with three differ-
ent task categories: high, medium and low. All initial segments are of high
priority and executed directly within the stream processing callback without
interruption. This is a common approach for all non-uniformly partitioned
techniques (e.g. [39, 71, 9, 76]). The other tasks (medium and low) have dif-
ferent priorities. In each streaming cycle a fixed number of tasks from these
two categories are serviced. Low priority tasks of later segments, which re-
quire more computation, can be interrupted (preemption). A specialty of
Gardner’s methods is, that at no point in time two tasks of the same sub
filter exist. In other words, new tasks of a segment are issued just in the
cycle when the preceding task of this segment reached its deadline. This
property makes the scheduling conceptually simple. In contrast to Gardner’s
scheduling, which is still relatively fix, Battenberg and Avizienis [9] realize
a fully dynamic scheduler, implementing an earliest deadline first heuristic.
This means, that tasks of later segments may receive a higher temporary
priority and be boosted in their execution, given that their deadline is ap-
proaching. The scheduling is affected by further aspects which are discussed
in the following.
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Preemption

A challenge of non-uniformly partitioned convolution on single-core proces-
sors is to ensure that sub convolutions of larger granularity do not block the
execution flow of higher priority tasks. For long filters, the largest segments
in a partition can consume a significant computation time. A single FFT or
IFFT can compute relatively long in comparison to the available time budget
or even exceed it. A wrong scheduling decision can cause priority inversion
for the tasks, violently disturb the sensitive execution. In these cases manual
preemption of the sub convolution tasks is strictly advised to keep the individ-
ual work packages at a fine granularity. The term ‘manual ’ means breaking
down the sub convolutions into their computation steps by hand and not by
the operating system (OS). This requires a significant programming effort,
but is reported to improve the performance and stability significantly [9].
The execution of a sub convolution can be suspended after each individual
operation (FFT, spectral convolutions, IFFT, etc.) Simple operations, like
spectral convolutions and accumulations, can easily be decomposed further.
With respect to the distribution of costs (see Sec. 6.6), this already allows
breaking a large amount of computation into easier manageable units.

Subdivision of transforms

Fast transforms are usually computed using high performance libraries, which
execute the full transformation at once. They do not allow an interrupted
computation of FFTs and IFFTs, which can be suspended and finished later
on. A solution to this problem is a manual decomposition of the trans-
forms. Hurchalla [47] presented, how a large FFT respectively IFFT is de-
composed into a sequence of short length transforms, using the decimation-
in-frequency (DIF) scheme (see Sec. 2.5.2). These shorter transforms can
be computed block-by-block, delivering sub sets of the DFT coefficients,
which can be immediately processed. The technique is referred to as ‘time-
distributed FFT’. It allows a nearly constant workload [9] over the individ-
ual cycles. Hurchalla [47] points out, that the computational overhead is
relatively little. Examinations by Battenberg and Avizienis [9] indicate a
significant benefit of the technique in single-core implementations.

Multi-processor systems

Bulky sub convolutions are usually much less of a problem on multi-processor
systems, where several processing threads serve the sub convolutions. Even
if one of the worker threads is occupied longer over the duration of multiple
stream cycles, the execution of the other tasks does not stagnate in the mean-
time and continues in parallel. The difficulties on multi-processor systems
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lie in the inter process communication between the different worker threads.
A detailed discussion of the implementational aspects of non-uniformly par-
titioned convolution on multi-processor systems is found in [9]. Battenberg
and Avizienis [9] consider multi-core implementations on standard PCs and
address the sub convolution scheduling on conventional operating systems.
Here, the thread synchronization mechanisms themselves consume a signifi-
cant runtime. Getting it wrong, can cause severe losses in the computational
efficiency [9]. Lock contention, is a particular issue on multi-core implementa-
tions with a multitude of worker threads, when conventional synchronization
concepts are used (e.g. thread conditions, mutexes, semaphores, etc.) The
limitations can be overcome using atomic operations [9]. A further question
is, how to assign the individual sub convolutions to the available processors
or cores. Battenberg and Avizienis [9] examined two strategies for multi-
channel filters: Each core processes an individual channel and each core is
assigned a specific segment and processes all channels for this segment. They
report, that the latter strategy performs significantly better.

6.9. Filters with multiple inputs and outputs

The regarded non-uniformly partitioned methods can easily be extended to
serve multiple inputs and outputs, as it was possible for UPOLA/UPOLS
MIMO filters (see section 5.5). This is due to the principle, that a non-
uniformly partitioned convolution is assembled from uniformly-partitioned
sub filters (see figure 6.1). Several applications for large-scale MIMO FIR
filters can be shown up: Considering time-invariant filtering, they are an
essential tool for room acoustic equalization and the electro-acoustical en-
hancement of the reverberation in a room [79]. Such systems implement an
FIR filtering matrix. M microphones are placed within the room of interest.
Their signals xi(n) are filtered and artificially enhanced with additional re-
verberation. The resulting cues yi(n) are played back into the room using N
loudspeakers. In the most general manner, each of the M ·N filtering paths
between a microphone and loudspeaker can have an individual filter impulse
response hi→j(n). As before, a combined approach for such filters is appeal-
ing. In real-time room acoustic auralization [64, 92] they have an application
for time-varying MIMO FIR filtering. Binaural rendering techniques gen-
erate a two-channel signal from a mono signal. Computation can be saved
here, by transforming the signals of each virtual sound source only once.
In contrast to uniformly-partitioned approaches, multiple FFTs of different
transform sizes are computed from the same input samples. Several sound
paths can superpose at a virtual listener (receiver). Here, a potential im-
provement is the summation in the frequency-domain. This motivation gets
greatly emphasized for auralizations with sound transmission [119]. Under
these circumstances, not one, but multiple filtering pathes can exist between
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6.9. Filters with multiple inputs and outputs

a virtual source and receiver. This encourages the research of specialized
MIMO filter for these applications.

A non-uniformly partitioned MIMO filter typically utilizes a common filter
partition for all of its filter paths hi→j(n), similar to multi-channel non-
uniformly partitioned convolutions [39, 9]. Advantageously, this also implies
a common scheduling pattern for all of the sub filter convolutions. Further-
more, this increases the possibilities of reusing transform input spectra (e.g.
matching transform sizes). The use of different partitions would be reason-
able, if the individual filters hi→j(n) require different filter update parameters
(cp. section 6.11). However, for the above stated reasons, this complicates
the problem.

Let it be assumed that all filters hi→j(n) use the same filter partition P. In
this case, a unified implementation can realize individual input buffers (as in
figure 6.1) for each input and reuse all computed DFT spectra (of different
granularities Ki) for all connected uniformly-partitioned segments. Thereby
the number of input FFTs is reduced and so are the computational costs.

In uniformly-partitioned methods, the superposition of multiple filter paths
at outputs can be efficiently realized in the frequency-domain as well. This
is possible due to the fact, that all sub filters make use of the same transform
size K. A similar approach is not directly applicable for the outputs in a
non-uniformly partitioned MIMO filter, as here the individual sub filters use
different transform sizes Ki. Consequently, their results need to be overlap-
added in the time-domain (see figure 6.1). Fortunately, an accumulation of
the sub filter results in the frequency-domain can be realized segment-wise,
before the final overlap-add in the cumulative output buffer. This requires a
synchronous scheduling of sub convolution for all sub filters of all filter paths
hi→j(n).

The resulting non-uniform MIMO convolution algorithm is briefly outlined:
Each input is attributed with an independent input buffer for storing and
repacking the input samples. It is combined with a transformer, that pro-
vides the input spectra in the required granularities Ki. Each output is
implemented with the frequency-domain accumulation buffers and inverse
transforms for each segment of the partition (see figure 5.2), followed by the
final time-domain overlap-add step of the non-uniform convolution (see fig-
ure 6.1). Superposing sub filter results are accumulated at the output-side
for each segment. Then, each filter path hi→j(n) between an input and an
output only requires to perform a series of partitioned spectral convolutions,
which are controlled in the usual way, using sub convolution tasks.
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6. Non-uniformly partitioned convolution

Also in non-uniformly partitioned techniques, a large share of the computa-
tion falls back to fast transforms. This indicates the benefit of the proposed
MIMO technique. A detailed examination is skipped here, due to the com-
plexity of parameters (e.g. numbers of inputs and outputs, filter partitioning,
latencies, etc.).

6.10. Filter networks

For real-time filtering with long FIR filters, non-uniformly partitioned con-
volution became the primary tool. Some applications demand assemblies of
these already complex FIR filters. Again, an example is found in acoustic
virtual reality: the real-time auralization of buildings including the simula-
tion of sound transmission. Such scenarios are very complex and typically
tackled using a discretization in space (portal paradigm) [104, 119], which
limits the number of sound propagation paths to a manageable, finite num-
ber. Wefers and Schröder [119] describe the occurring sound paths between
sources and receivers in form of a directed acyclic graph (DAG). Using a
rule set, this DAG is transformed into the corresponding filtering network,
that realizes the audio rendering. Sections of air-borne sound propagation
are thereby described by RIRs. Sequential topologies (e.g. room-portal-
room) result in cascades of filters. Several parallel propagation paths join in
the interconnection joints (portals). The technique presented in [119] first
merges these networks into their equivalent impulse responses (facilitating
Eq. 4.20 and Eq. 4.26 in section 4.3) and then performs the audio ren-
dering, using conventional single-input single-output (SISO) non-uniformly
partitioned convolution. A unified frequency-domain approach for these net-
works would be desirable, but is hindered by several problems. These are
outlined in the following paragraphs. The problem of sequential or parallel
assemblies of non-uniformly partitioned convolutions seems not to be consid-
ered in the literature so far. This section regards assemblies of these filters
and discusses potential solutions and pitfalls.

Uniformly-partitioned frequency-domain filters, like UPOLA and UPOLS
(see chapter 5), use the same block length and transform size for all of their
sub filters. This makes it possible to connect them directly the frequency-
domain (see section 5.6). In contrast, non-uniformly partitioned convolution
processes the sub filters with different block lengths and transform sizes. The
spectra are not compatible among the sub filters, as they have different sizes.
This requires to accumulate the results of all sub filters in the time-domain,
as shown in figure 6.1.

An example of a parallel assembly of partitioned filters is shown in figure
6.16(a). For simplicity, the block diagram is written in the time-domain.
Note, that both filters (dotted square) share a common partitioning. All
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6. Non-uniformly partitioned convolution

sub filters hi(n) and h′i(n) have the same lengths and equal branch delays
D1, D2. The composite structure rearranged, by joining all sub filters of
common delays (figure 6.16(b)). This layout consists of parallel uniformly
partitioned filters, which can be effectively realized in the frequency-domain
(see section 4.3). A further simplification is achieved by adding all parallel
sub filter impulse responses hi(n), h′i(n) (see figure 6.16(c)). This reduces the
number of spectrum multiplications and accumulations in the filter segments.
Depending on the application, this can also be done for a subset of the
segments, as illustrated in figure 6.16(d).

A sequential arrangement of filters is more difficult: Figure 6.17(a) illustrates
an example of a cascade of non-uniformly partitioned filters. The essential
point in this block diagram is, that each sub filter hi(n) of the first filter
contributes to the intermediate signal y(n). Hence, this point of superposi-
tion y(n) can not simply be removed, as done in figure 6.17(b). In essence,
each sub filter of the first partitioned filter influences the input of each sub
filter of the second partitioned filter. Consequently, both block diagrams in
figure 6.17 (top and bottom) are not equivalent. The realization of cascades
of NUPOLS or non-uniformly partitioned Overlap-Add (NUPOLA) filters
depends on an computationally efficient method to the accumulation of sub
filter results (as for y(n)). The challenge lies in the fact that the samples
are accumulated and provided in different granularities (transform sizes).
Gardner [39] pointed out the possibilities of computing a larger DFT spec-
trum from already known shorter DFT spectra of blocks neighboring in time.
Given, that all accumulations could be carried out on DFT spectra of the
smallest size, his approach could be used to accelerate the redistribution after
the accumulation. Still, the large granularity DFT spectra would have to be
decomposed into sequences of smaller DFT spectra first. It remains an open
scientific question, if such an approach can be realized with computational
benefit.

Summing up, the implementation of networks of non-uniformly partitioned
filters in the frequency-domain is partially possible. A mandatory require-
ment is a common filter partition. Parallel assemblies of non-uniformly par-
titioned frequency-domain filters can be realized conceptually simple, with-
out only minor adaptions. This matches the results for unpartitioned and
uniformly-partitioned filters (see sections 4.3 and 5.6). For sequential ar-
rangements it is hard to obtain a computational benefit from a frequency-
domain implementation. The pivot point is identified in the efficient realiza-
tion of the sub filter accumulations, as discussed above. It might be a better
option to replace a cascade of NUPOLS or NUPOLA filters by an equivalent
single, combined filter, as discussed in section 4.3. Aware of the extent, a
detailed examination of the computational costs is not carried out here. The
proposed implementation strategies should be carefully examined for a given
application.
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6.11. Filter exchange strategies

Müller-Tomfelde [72] was presumably the first who addressed the exchange
of filters in non-uniformly partitioned convolution algorithms. The findings
of his paper are briefly reproduced in the following. Generally, the filter
exchange is subject to a trade-off between a coherent transition and the re-
sponse time (exchange latency). Müller-Tomfelde [72] introduced two strate-
gies which align with these two possibilities. Figure 6.18 illustrates both
strategies in four examples, in style of [72]. A 4-segment Gardner partition is
considered. The time axis has a grid of length-B blocks. Black dots denote
triggers for the exchange, dark gray hatched areas correspond to crossfade
regions, light gray backgrounds mark intervals, where both filters (old and
new) are computed in parallel.

Example 6.18(a) shows a coherent filter exchange. The filter exchange can
be triggered for all segments instantaneously. Fortunately, all segments com-
pute in the next cycle and the transition spans over a single cycle. This
example marks the best case, as the response and transition time are lit-
tle. In example 6.18(b) the same filter exchange is trigger one cycle later in
time. Unfortunately, the next coherent execution of all segments happens
eight cycles later and thus the response time is maximally long, marking the
worst-case. The individual segments must be triggered at later points in time
in order to achieve a coherent transition. For the strategy of a coherent ex-
change, the transistion time is constant and can be adjusted by the crossfade
length, whereas the response time can fluctuate and depend on the actual
trigger time.

Examples 6.18(c,d) illustrate an asynchronous filter exchange. For this strat-
egy all segments are always triggered immediately. In 6.18(c) the exchange
takes place in-order, in other words it moves along the impulse response.
Nevertheless, the complete transition is not continuous and in-between it
starves (light gray). This can be overcome by choosing larger crossfades for
the longer segments. In comparison to the examples 6.18(a,b), the response
time is low (only one cycle), whereas the transition time is longer. In ex-
ample 6.18(d) the same exchange is triggered two cycles later in time. Here,
the consequence is a slightly reduced transition time. It can be summarized,
that an asynchronous filter exchange results in a constant response time, but
an unpredictable transition time, which can in the worst-case be as long as
the longest segment.

These examples considered the Gardner partitioning (see section 6.4.6),
which is characterized by a periodic execution pattern of the sub convo-
lutions. Other partitioning schemes do not necessarily have this property.
This can affect the filter exchange capabilities as well. Following the general
theoretical considerations in section 6.4.3, the use of power-of-two sub filter
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6.12. Real-time room acoustic auralization

lengths Li is advised for a coherent filter exchange. In this case the points in
time, where all segments execute in parallel are narrowly spaced (small least-
common-divisor). A worst-case choice mark relatively prime sub filter lengths
Li (large least-common-divisor), resulting in very long worst-case response
times. These considerations make clear, that also the filter exchange should
be considered in the optimization process of an impulse response.

6.12. Real-time room acoustic auralization

This section discusses the use of non-uniformly partitioned convolution algo-
rithms for the real-time audio rendering with room impulse responses (RIRs).
The considerations are based on the following example case: A reverberation
time of 2.0 s , a sampling rate of 44100 Hz and a streaming block length of
B = 128 samples. The destination filter length is N = 88200 taps. This
example matches typical parameters in auditory environments (e.g. of a
concert hall). Again, the performance is studied for the test system. Let
it be assumed, that the early reflections can be computed using the image
source model in 30 ms and that a ray-tracing procedure for the diffuse decay
consumes 500 ms in total. The throughput (simulations per second) for the
image source filter is 33.3 Hz and 0.5 Hz for the ray-tracing. For compari-
son, a uniformly-partitioned convolution is regarded. The standard UPOLS
algorithm partitions the filter into 690 length-128 sub filters. Each filtered
output sample consumes 2018 CPU cycles. A filter transformation of the
entire impulse response takes approximately 700µs . The advantage of the
algorithm is its uniform load distribution. A disadvantage is that the entire
computation falls into the time critical audio callback. The filter update rate
of 345 Hz widely exceeds the throughput of the GA simulations.

The corresponding non-uniform minimal-load partition is Popt = ( 1287 10247

819210 ), covering 89984 taps. The NUPOLS algorithm, operated with this
partition, has an total cost of 204.1 CPU cycles per filtered sample. This is
9.9× more efficient than uniform convolution. However, all segments in this
partition have zero clearance, resulting in a highly unfavorable load distri-
bution of the algorithm. An alternative partition with suitable scheduling
flexibility is needed. The optimized partition of strategy 1 (see Sec. 6.5.4)
is P = ( 1282 2564 10248 819210 ). The partition is visualized in figure 6.19.
It does not differ too much from the minimal-load partition. The design
principle lowered the multiplicity of the leading segment, which shifts away
the computation from the time-critical audio callback into the background
threads. This requires to use a fourth intermediate segment 2564. The re-
maining partition is rather similar to the minimal-load solution. Operating
the NUPOLS algorithm with P requires 240.4 CPU cycles per sample. This
increases the costs by 18%, but is still 8.4× more efficient than a uniform
partition.
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6.12. Real-time room acoustic auralization

Table 6.1 lists the properties of P and its segments in detail. The parti-
tion allows a flexible scheduling. The segments 2-4 have to be computed
within time spans of two, four respectively twelve cycles. Only 19% of the
computation (first segment) are spent in the audio callback.

An entire filter transformation demands about 1030 µs of computation time,
about 50% more than for a uniform partitioning. However, the examination
of each segment reveals, that the individual transformation runtimes are neg-
ligibly short compared to the simulation times. The filter updates exceed the
simulation throughput. This allows to implement a coherent filter exchange,
with respect to the different parts of the impulse response. The direct sound
(HRIR) aligns with the leading segment and should be exchanged as fre-
quently as possible. The time span of the early reflections, roughly the first
50-80 ms after the direct sound impulse [116], corresponds to the first 2000-
3500 taps at the given sampling rate. Thus early reflections are associated
with the segments 2564 and 10248. These span over time range of 29-215
ms in the impulse response, which even exceeds the range 50-80 ms assumed
above. The last segment 10248 covers all remaining filter coefficients after
215 ms . In a real-time auralization, the parts of the impulse response are
simulated asynchronously in parallel [64, 91, 120]. The given partitions allow
to update the direct sound filter coefficients with 344.5 Hz and a latency of
≤2.9ms . The rate for early reflections is determined by the third segment
with a block length of B2 = 1024. It allows updating the filter with 43.1 Hz.
For the update of the early reflection filter a coherent filter exchange is ad-
vised, keeping the transition time short. The latency of a coherent exchange
is bound by 23.2 ms . The diffuse reverberation tail of the impulse response
is dealt with separately. It falls within the segments three and four. Here the
maximal update rate is 5.4 Hz resulting from the block length B3 = 8192. A
coherent exchange of the segments three and four would result in worst-case
exchange latency of 186 ms , which is significant. This suggests to update
the diffuse decay part asynchronously.

The considered example impressively illustrates the enormous speedup of a
non-uniform partitioning. However, it also illustrates how various aspects
influence the optimal choice of partition. Unfortunately, only little is known
about meaningful parameters for real-time auralization, in particular the
perception and audibility of the filter exchange strategies. These aspects
remain an important topic for future research.
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6. Non-uniformly partitioned convolution

6.13. Perceptual convolution

All previously discussed convolution algorithms are exact, apart from
floating-point round-off errors. They compute the output signal of a lin-
ear filter precisely, without approximations. For several applications it is
questionable if such a high level of accuracy is actually needed, or if a less
accurate filtering allows a reduction of the computational costs. This par-
ticularly applies for room acoustics and artificial reverberation. Here, parts
of the simulation algorithms are non-deterministic and based on stochastic
processes. Recent research indicates, that the simulation effort can be low-
ered by a surprising degree, without affecting the perceived quality in virtual
environments [90]. The properties of human hearing should be considered in
the convolution algorithm as well.

Recently, perceptual measures were incorporated into fast convolutions for
the sake of a reduced computational complexity of the filtering. Lee et al.
[61] proposed a novel technique for artificial reverberation using FIR fil-
ters, referred to as fast perceptual convolution. Their approach exploits the
frequency-dependency of the reverberation time in room acoustics [60]. In
typical rooms, the high-frequency energy of the sound field decays faster (e.g.
due to frequency-dependent absorption). Higher frequencies are attenuated
stronger, which results in shorter reverberation times than for lower frequen-
cies. A uniform filter partition of a RIR can be seen as a discrete-time
short-time Fourier transform (STFT) without overlap and rectangular win-
dow. For RIRs it can be observed, that higher frequencies in DFT spectra
of later sub filters get more and more attenuated, the later the sub filter is
placed.

Lee et al. regard partitioned frequency-domain convolution techniques with
a uniform partitioning of an RIR (UPOLA, UPOLS) and explicitly consider
an offline processing with large block lengths (e.g. B = 4096). Their tech-
nique truncates the spectral convolutions of sub filters, by only considering
DFT coefficients with significant energies above the threshold of hearing.
This significantly reduces the number of complex-valued multiplications and
accumulations, which in uniformly-partitioned algorithms makes up for a
large part of the computation. In their examples and listening tests the
authors drop 60% of the spectral convolutions without a loss in perceived
audio quality. They state speed up of the overall RIR convolution in the
range of 30%. Primavera et al. [76] applied the concept by Lee et al. [61]
to non-uniformly partitioned convolution for real-time filtering. They ex-
amined both techniques, UPOLS and NUPOLS, with three room impulse
responses of different reverberation times. For a uniform partitioning they
observed slightly larger speedups than those reported by Lee et al. [61]. For
a non-uniform partitioning, the achieved total speedup due to psychoacoustic
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enhancements reached up to approximately 30%. Their results also showed
the tendency, that the savings drop for the cases of small block length (lower
latency) and long room impulse responses.

Perceptual convolution is a promising concept, allowing for significant
speedups of the FIR filtering in room acoustic auralization. However, the
methods are relatively new and in an early stage of research. An issue of the
originally proposed fast perceptual convolution techniques [61, 76] is that the
truncation thresholds are based on the filter impulse responses only. For the
application in virtual environments with room acoustic, it is important to
consider the magnitudes of the input and resulting output DFT coefficients
as well. The actual perceptual thresholds would presumably allow for an
even larger reduction of complex-multiplications. In order to consider ab-
solute thresholds of hearing, the sound pressure levels at the listener’s ears
must be considered, which asks for a fully calibrated auralization system with
a correct representation of levels.

6.14. Summary

This chapter considered fast algorithms for computing running convolutions
by partitioning the filter impulse into sub filters of varying lengths. These
non-uniformly partitioned techniques are motivated by the observation, that
the computational costs of the filtering are reduced by selecting larger block
lengths. Given a causal partition of the impulse response, the sub filters can
be realized with growing block lengths, without sacrificing a low input-to-
output latency. This allows a massive reduction of the computational costs,
even if the number of fast transforms increases.

The construction of filter partitions is subject to conditions. In order to pre-
serve the real-time compliance of the convolution, the sub filter length cannot
increase too fast. Their growth is limited by causality conditions. Gardner
[39] was mistaken in his assumption, that a most rapid increase in sub fil-
ter sizes would lead to the minimal computational costs. His partitioning
scheme does not exploit the potential of frequency-domain delay-lines (FDLs)
within the uniformly partitioned filter segments of a partition. The mini-
mal computational costs, achieved by model-based optimization of the par-
tition, are almost twice as efficient as Gardner’s approach. On the contrary,
they are not of practical relevance and serve as an interesting theoretical
bound only. The runtime complexity lies within the class O(log2 N), making
non-uniformly partitioned convolution techniques asymptotically faster than
uniformly-partitioned ones in O(N).

The choice of partition is not trivial and influenced by several aspects. The
issue of minimal-load partitions are their critical timing dependencies. Even
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if they have the least accumulated costs (numbers of operations), the com-
putational is very poorly distributed over the runtime. The cause of this
problem is absence of flexibility in the execution of the sub filter convolu-
tions, which concentrates their computation at distinct points in time. The
consequence are load peaks, which eventually become a bottleneck for the
real-time processing. Less rigid timing dependencies allow the sub convo-
lutions to be shifted along the time, leveling out the load distribution. A
certain minimal flexibility can be enforced during the optimization. More
scheduling flexibility increases the computational costs. Still, a large com-
putational benefit is gained over Gardner’s method by specific optimization
of the partitioning. Many aspects must be considered thereby, including the
computing platform (single-core vs. multi-core), the underlying implemen-
tation (preempted and/or time-distributed), the required latency and filter
exchange parameters.

The concepts of uniformly-partitioned MIMO filters apply to non-uniformly
partitioned convolution as well. This is reasoned by the fact, that a non-
uniform convolution is composed from uniform sub convolutions. The same
accords for parallel assemblies of non-uniform filters. Cascades however, are
difficult to implement. A time-varying filtering is once more influenced by
the filter partition. The two opposing factors are response time versus tran-
sition time. The larger block lengths involved in the algorithms, effectively
lower the achievable filter update rates. Recently, perceptive measures have
been incorporated into convolution algorithms used for artificial reverbera-
tion. These techniques allow a further reduction of the computational costs.
What meaningful quality parameters are for this type of FIR filtering (e.g.
parameters for a time-varying filters, perceptional thresholds) has not been
examined in depth and remains a topic for future research. This also holds
for the implementation of the techniques on different hardware and software
platforms. On standard PCs they allow an impressive performance, building
a foundation for the real-time auralization with comprehensive simulations
of the room acoustic.
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A central aspect of this thesis is the research of convolution algorithms with
respect to their computational complexity. The different algorithms are char-
acterized by a variety of parameters (e.g. block lengths, filter lengths, trans-
form sizes, filter partitions, etc.). Subject of the research is not only how
to select these parameters in an adequate way, i.e. minimizing the compu-
tational load, but also to understand their dependencies, in order to draw
general conclusions. A purely theoretical analysis of the algorithms rarely
provides objective statements on the actual performance of an algorithm on
a machine.

This chapter introduces a benchmark-based approach to model the computa-
tional complexity of convolution algorithms with respect to the target hard-
ware. A dedicated test system is introduced, on which all examinations were
conducted. The requirements for the benchmark method are outlined and
the measurement procedure is explained in detail. Fundamental arithmetic
operations and different discrete transforms were measured and compared
in their execution speeds. The validity and accuracy of the techniques is
verified. The relations between the computational costs in theory and prac-
tice are analyzed. Special attention is paid to the computation of the fast
Fourier transform for arbitrary sizes. It is shown, that transforms of other
sizes than powers of two can be computed efficiently, making them worth the
consideration in the convolution algorithms.

7.1. Benchmark-based cost models

The formal description of an algorithm, its runtime and space complexity,
does rarely provide an accurate statement on its performance on an actual
machine. The number of required instructions or clock cycles on a proces-
sor is not only determined by the overall number of arithmetic operations
of an algorithm. Early hardware, for instance, executed multiplications sev-
eral times slower than additions. As a consequence, these operations were
often distinguished in the analysis of algorithms. In many cases, algorithms
have been optimized mainly with respect to the number of multiplications.
Improvements in hardware design evened out this imbalance between the ba-
sic arithmetic operations, which nowadays have similar, if not equal costs.
With the introduction of the cache hierarchy, the memory requirements of
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an algorithm became more and more important and the data sizes could
heavily impact the performance. As long as the data fitted the caches, the
computation was fast. After exhaustion of the cache limits the execution
speed tumbled. Advances like pipelining, which came along with branch
prediction, further contributed the discrepancy that an algorithm performs
differently on paper than on an actual machine. The practical comparison
of algorithms and implementation variants, requires qualitative statements.
Unfortunately, the resulting performance of an algorithm on a target ma-
chine is hard to derive from the theoretical descriptions alone. In spite of
these difficulties, it is necessary to appropriately assess the computational
performance of signal processing algorithms on practical hardware. Actual
runtimes, clock cycles or numbers of instructions on a target machine must
be considered. A simple and accurate solution to the problem is to bench-
mark (measure) an algorithm and its variants for parameters of interest on
the target machine. Unfortunately, the vast number of feasible parameter
combinations makes a comprehensive study often unhandable.

This thesis introduces a hybrid semi-empirical approach, benchmark-based
models, which combines basic measurements with analytic models of the com-
putational costs. The foundation are measurements (benchmarks) of basic
operations and functional building blocks on a target system. Based on these
measures, cost models (mathematical formulas) are defined, that allow pre-
dicting the complexity of algorithms, that are assembled from these basic
operations. Reasoned by the influences discussed above, this can only work
to a certain degree. An essential requirement are representative benchmarks.
Many signal processing algorithms, including fast convolution algorithms,
follow the programming paradigm of stream processing. They are character-
ized by a high density of arithmetic operations, a relatively uniform mem-
ory access pattern and comparatively few context-sensitive branch decisions.
In contrast, tree-based search algorithms (e.g. binary space partitioning in
Geometrical Acoustics), have few arithmetic operations and highly context-
dependent branching, making them difficult to model, using the presented
approach.

All practical examinations in this thesis were done on a dedicated test system.
Its hardware and software configuration is introduced in the following.

7.2. Test system

Hardware

The test system is a standard desktop computer with an Intel Core2 Quad
Q6600 quad-core processor, clocked at 2405 MHz. This CPU supports the
SSE1, SSE2 and SSE3 instruction sets for vectorization. Each of the four
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CPU cores has 256 kB of exclusive level-2 cache available. Each processor
(4 cores on a die) has shared access to 8 MB of level-3 cache. Both CPUs
are interconnected using a QPI bus. The system is equipped with 4 GB of
DDR3 RAM.

Software

The operating system is Microsoft Windows 7 SP1 (64-Bit). The code is writ-
ten in C++ und built using Microsoft Visual C++ 2010 SP1. Release mode
binaries are generated with the following compiler settings: complete opti-
mization, full function inlining, 16-Byte memory alignment and fast floating-
point arithmetic. 32-Bit floating points are commonly used as the data type
for all considered operations. Basic arithmetic operations (e.g. complex-
valued multiplications) are implemented by the help of the Intel Performance
Primitives (IPP) library version 7.0, utilizing the vectorization capabilities
of the processor. Discrete transforms (including the FFT, DST, DCT and
DHTs) are computed using FFTW version 3.3.3. For the sake of scientific
research, the FFTW library is favored for several reasons: Its design and
internal structure is well-documented [36] and its source code is available to
the public [34]. It supports widest range of discrete transforms (including
DHTs and DTTs). Moreover its internal state can be inspected, like the
actual implementation strategy for a given FFT.

7.3. Benchmark technique

As mentioned afore, the aim is to predict or forecast the resulting computa-
tional complexity of a convolution algorithm on a target machine. If this pre-
diction is sufficiently accurate, the properties of the algorithm can be studied
on by a semi-empirical runtime model of the algorithm. Absolute measures
(CPU cycles or runtimes) are primarily interesting when comparing different
machines or different high performance libraries. For the optimization of con-
volution algorithms, the focus also lies on the cost relations between different
operations. With respect to fast Fourier transform (FFT)-based fast convo-
lution, the computational costs of FFT transforms versus complex-valued
multiplications and additions are most important. If, for instance, an FFT
is comparably cheap to compute with respect to a complex-valued multi-
plication, the optimal convolution strategy might favor more FFTs, saving
multiplications and vice versa.

Two types of benchmarks were conducted for the research in the thesis.
Firstly, measurements of the runtimes of basic arithmetic operations (e.g.
complex-valued multiplys) and discrete transforms (e.g. FFT variants).
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These are the building blocks for the convolution algorithms. Secondly,
measurements of the runtimes of complete convolution algorithms assembled
from these basic operations. These measurements were used to validate the
semi-empirical cost models. The benchmark requirements, the measurement
procedure and the storage of results are presented in the following.

7.3.1. Performance profiles

A complete benchmark consists of a series of single measurements, which
spread along several operations and different problem sizes of interest. Each
single measurement considers a specific operation (e.g. an in-place real-data
FFT) with a specific problem size (e.g. the transform size). Depending
on the extent of the benchmark (number of operations, range of sizes), the
execution of a complete series of measurements can take several minutes to
several days. The catalog of measurement results forms a performance profile
of the target system. This profile is the foundation for the evaluation of cost
models and the optimization of convolution algorithms.

7.3.2. Measurement procedure

The validity, accuracy and robustness of the benchmarks is of great im-
portance. Ideally, basic operations should behave similarly when measured
individually or when they are integrated in a convolution algorithm. As
shown later, this is only possible to a certain degree, limiting the accuracy of
the cost model. Running a benchmark at different points in time (morning,
evening, next week) shall deliver the same results, given that the system is
in the same state (e.g. idling). Simply measuring a single operation just
once is not viable. Upon the very first function call, it is very likely, that
the required data is not in cache and the recorded runtime is not representa-
tive. Therefore, series of measurements are recorded and average values are
calculated from these.

Collective measurements

A common and widely-used approach is to measure the operation multiple
consecutive times in a loop, as defined in algorithm 2. The runtime of the op-
eration under test is then approximated by dividing the cumulative runtime
by the number of loop iterations. Typically, a fixed number of measurements
in the beginning is discarded for the aforementioned reasons. After these
preruns the runtimes converge and become stable.
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t1 = getTime();
for i = 1 to N do

runOperation();
end
t2 = getTime();
t = (t2 − t1)/N

Algorithm 2: Collective measurement

t =array 1 to N
for i = 1 to N do

t1 = getTime();
runOperation();
t2 = getTime();
t(i) = (t2 − t1)

end

Algorithm 3: Individual measurement

Individual measurements

In benchmarks with a fixed number of measurement iterations, the dura-
tion of the measurement depends on the complexity of the operation under
test. A short-length FFT might compute within 100 ns . So a 1000 iter-
ations span over approximately 100 µs . In contrast, a single long-length
FFT can require 100 µs and the iterations here span over 100 ms . As the
benchmark program executes a large number of single measurements consec-
utively, it will not be granted exclusive use of the processor. Depending on
the scheduling quantum of a multithreading operation system, the CPU is
taken away from the benchmark process every now and then. This happens
also on multi-core and multiprocessor machines and there is no way to pre-
vent this. In the meantime the execution of the benchmark is halted, while
the time measurement continued. Consequently, the collective runtime gets
polluted with false measurement values, due to thread context changes. The
values of these outliers strongly differ from the mean values and can cause
significant deviations in the final result. It was observed, that the number
of mismeasurements affects longer operations more than shorter operations.
Also measurements of short operations are affected by the problem. But due
to the longer execution time of whole loop, such measurements are more ex-
posed to thread changes. Consequently, longer running operations are more
affected by these outliers.

In order to overcome this problem each operation is measured individually
using algorithm 3. Each recorded runtime t(i) is stored in an array. An

201



7. Benchmarks

advantage is that this enabled post-processing of the sequence and its indi-
vidual samples. Outliers can be detected and removed from the sequence.
A downside is, that individual measurements demand an even more accu-
rate timing, than collective measurements. This asks for very high resolution
timers, which are regarded in the succeeding section. The method is cal-
ibrated by dropping the function call of the operation under test and just
measuring the start-stop times. This offset is later subtracted from every
measured time. In order to increase the accuracy for measurements of short
operations, without prolonging the execution of the full benchmark, a fixed
measurement duration of 100 ms was chosen. Blocks of individual measure-
ments are executed and concatenated until this time budget is exhausted.

7.3.3. High resolution timing

Small operations, like adding two length-64 vectors or computing an 64-point
FFT, compute within a low number of processor cycles. At modern clock
rates, this results in very short runtimes on the range of several ten to a
few hundred nanoseconds. Measuring such operations accurately demands
timing with the highest precision. Even high resolution timers provided by
today’s operating systems proved not to be sufficient. On the test system
for instance, the QueryPerformanceCounter function delivered an effective
resolution of 425 ns (2.35 MHz timer frequency).

The most precise time source available are time-stamp counters (TSCs) in
the processor cores. A TSC is a 64-bit integer register that is incremented
every CPU cycle. These registers must be used with precautions. Out-of-
order processors can reorder the stream of instructions for faster execution.
Timer queries must be strictly prevented from being shifted in the code. This
was achieved using an enforced in-order CPUID instruction. Each core has
an individual time-stamp counter; time-stamp counters along cores are not
synchronized. The benchmark was fixed to a single core. Modern proces-
sors adjust their frequency by demand (CPU frequency scaling). In order
to measure time with the TSC, such clock changes must not occur during
a measurement, otherwise the results are faulty. Frequency scaling was de-
activated during the execution of the benchmark. The TSC timing delivers
the consumed number of CPU cycles. Dividing this number by the CPU fre-
quency results in the runtime. For the sake of comparing practical measures
with theoretic results, CPU cycles are more convenient than runtimes, which
depend on the processor’s clock rate.
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7.3.4. Initial behavior

In a sequence of consecutive measurements, even when executed on the same
data, the first couple of samples do not reflect the transient behavior of the
operation of interest. Especially the very first measurement has a runtime
much higher than the eventual average value. This can have several causes:
Mainly, the data on which the operations are computed might not be cached
yet and cache-misses prolong the execution. The branch prediction of the
processor might not yet be adapted to the executed code of the operation.
Also the I/O characteristics of the benchmark process might change when
the actual measurement starts and the OS needs some time to adapt the
process scheduling.

By inspection of a large variety of different operations and problem sizes, it
was revealed that the runtime converges close to the average runtime value
after 2-3 measurement iterations. In face of the fact, that several 10,000 to
100,000 individual measurements are performed for the total measurement
of one operation and size, the fixed number of ten preruns was selected as
a safe and reasonable number. From each measurement performed, the first
ten samples are discarded and not considered in any later statistic evaluation.

7.3.5. Transient behavior

For a fair comparison, all operations must be measured by equal means,
regardless if they have very small or long runtimes. A challenge for small op-
erations is the necessary timer resolution (see section 7.3.3). Benchmarks of
longer operations become affected by the OS scheduling. In the worst-case,
the OS takes the CPU away from the benchmark thread during a measure-
ment. The benchmark thread will regain the CPU a significant time later.
A consequence is a wrong, heavily increased measurement value. These out-
liers must be filtered from the sequence of measurements. The probability
that an individual measurement gets interrupted by a thread context change
increases with the computation time of the operation under test. On a mul-
tithreading OS such effects can not be prevented, even when the system
contains several independent CPUs or cores and the benchmark is executed
with real-time priority. The target system had 42 processes and 552 active
threads running (e.g. device driver threads, GUI threads, background tasks,
etc.) Even when the system is idling (0% CPU load), these threads will get
the CPU every now and then, and cause outliers.
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7.3.6. Outlier detection

Fortunately, outliers can be reliably detected. First, the raw sequence
t(0), . . . , t(N−1) is trimmed by the prerun values and then the arithmetic
mean value µ = N−1∑ t(i) and standard deviation σ = [N−1∑(t(i) −
µ)2]1/2 are computed. For a predefined ratio S, all values t(i) that are below
or equal the threshold t(i) ≤ µ + Sσ are selected as valid samples, forming
a sequence t′(0), t′(1), . . . , t′(M−1). Values t(i) > µ + Sσ above this limit
are discarded as outliers. A too little threshold S removes tolerable samples
from the sequence. The threshold S may not be too large either, as for a
noisy sequence too many faulty samples are regarded as valid. Empirical
examinations showed, that a ratio S = 3 is a good compromise for a large
variety of runtimes—ranging from short to long operations. In all examined
cases, the threshold selected > 99% of the samples as valid. Figure 7.1 shows
a histogram of the distributions of sample values for the measurement of a
65536-point real-data FFT. Obviously, measurement samples in the bench-
mark process are not normally distributed. Regarding the mean value µ, the
lower interval [0, µ) always contained less samples than the upper interval
[µ, µ+Sσ]. The following interpretation can be used: For each operation
and size there must exist a deterministic lower bound for the runtime, which
relates to the number of instructions of the code, the processor and mem-
ory architecture, etc. Generally speaking, the actual runtime on the system
results can be understood as the minimum runtime plus additional distur-
bances (noise), caused by the effects discussed above. The minimum runtime
is measured infrequently, as regularly the execution is non-optimal and sub-
ject to delays. Very strong disturbances (outliers) are very unlikely either.
Typical stochastic properties of measurement sequences are shown for three
examples in table 7.1. Eventually, each measurement has to be represented
by a single value. Therefore the arithmetic mean value µ∗ = M−1∑ t′(i)
of the outlier-filtered sequence is calculated and stored in the performance
profile. These mean values are thus later used in the evaluation of the cost
functions.

7.3.7. Robustness

Considering that a benchmark of the same operation of identical size is exe-
cuted several times over, the results should be very similar without significant
variations. It should be regardless, if the benchmark is executed several min-
utes, hours or days later. The performance measures must be reproducible
and the benchmark process shall be robust. Therefore, a prerequisite is that
the target system is in a comparable state for all times the benchmark is per-
formed. It may not be idling for one run, where at another point it has some
background load. However, when these preconditions are met, any larger
variances indicate a faulty benchmark procedure.
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Figure 7.2.: Mean runtimes of 100 separately executed
benchmarks of a 1024-point FFT

The presented benchmark method has been verified for robustness for sev-
eral operations and sizes. While ensuring that the system was idle, the same
operation and size has been benchmarked a 100 times over. The resulting
deviations were surprisingly small. Figure 7.2 illustrates this with the ex-
ample of the 1024-point real-data FFT.This sequence has a min-max span
∆ = 7.9 ns , a mean value µ = 3.335µs and standard deviation σ = 1.59 ns .
This corresponds to a relative standard deviation σ/µ ≈ 0, 24%. Similar re-
sults were found for other sizes, without any example of significant deviations.
This proved that the benchmark method is sufficiently robust.

7.4. Basic operations

All fast convolution algorithms involve fundamental arithmetic operations,
like additions, subtraction, multiplication and divisions. Rarely are these
binary operations are executed for two operands (scalars) only. In the ma-
jority of cases, the operands are vectors of the same number of elements
(e.g. blocks of samples or spectra). On modern processors these operations
can be vectorized (instruction-level parallelism), increasing the arithmetic
throughput. discrete Fourier transform (DFT)-based convolution methods
demand complex-valued arithmetic. Present general purpose processors do
not support complex-valued arithmetic natively. Hence, it has to be real-
ized by sequences of elementary real-valued arithmetic operations. In recent
years, the SIMD support (e.g. SSE1-SSE5, AVX, AVX2, etc.) advanced
over time. Particularly, complex-valued multiplications benefit from these
enhancements. Today, the theoretic number of arithmetic operations is only
an indicator for complexity of an operation. It typically fails to precisely pre-
dict the actual runtimes on a target machine. Single arithmetic operations
can not always translate into single instructions anymore. Nowadays, power-
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ful software libraries (e.g. Intel Performance Primitives) provide convenient
high-level arithmetic operations in software and programmers do not have to
hassle with the implementation (e.g. in assembly language) themselves. Of-
ten it is beneficial to use combined instructions, which realize two operators
at once. This increases the arithmetic density of the code and can save mem-
ory access instructions (load/store). In practice, these combined operations
often turn out to be faster than two individual operations. An operation of
particular importance for partitioned FFT-based convolution algorithms is
complex-valued multiply-accumulate (CMAC). It performs a complex-valued
multiplication and adds the result to a destination variable. The following
arithmetic operations are considered in this work.

• ADD: real-valued in-place vector addition
x(i) = x(i) + y(i) (x(i), y(i) ∈ R)

• MUL: real-valued in-place point-wise vector multiply
x(i) = x(i) · y(i) (x(i), y(i) ∈ R)

• CMUL: complex-valued in-place point-wise vector multiply
x(i) = x(i) · y(i) (x(i), y(i) ∈ C)

• CMAC: complex-valued in-place point-wise vector multiply-accumulate
x(i) = x(i) + y(i) · z(i) (x(i), y(i), z(i) ∈ C)

In-place operations are considered here. For reasonably large data, they are
often slightly faster than out-of-place operations, where the result is stored
in a different variable. All operations listed above were benchmarked on the
test system. They were realized using Intel’s Performance Primitives library
version 7.0 as vectorized in-place operations on 32-bit floating points. Unless
stated otherwise, real-valued operands are considered.

Figure 7.3 gives an overview about the computational complexity of the op-
erations on the target system. For an easier comparison, the diagram depicts
the average number of CPU cycles per point (divided by the transform size).
On the logarithmic-scale abscissa, the typical O(N logN) runtime of the
FFT shows up as a line, whereas the other O(N) operations are represented
by a constant value. The operations with the lowest costs are real-valued
arithmetic operations. Complex-valued operations are significantly more ex-
pensive. For sizes > 5k the complex-valued multiplications were ≈ 2.4×more
expensive than their real-valued counterparts. Function call and loop over-
heads penalize computation on small operands and cause a slight increase
in the costs per point. Yet in respect to fast Fourier transforms, the arith-
metic operations are comparably cheap. Here, the costs per point of short
FFTs of length N ≤ 512 are not strictly increasing, which contradicts the
theoretic behavior. The advantage of combined operations become directly
visible for the CMAC operation (which involved two real additions), which
is even cheaper than the sum of CMUL and ADD (the latter including only
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one real addition). The combined complex-valued multiply-add (CMAC) is
1.2− 1.6× faster than two individual operations. For larger sizes N > 4000
the speedup converged to ≈ 1.5×. For real-valued operations cache losses
begin affecting the performance for N ≈ 4k (16kB per operand) and increase
the computation time by a factor of ≈ 1.7. For complex-valued operations
this ‘step’ was identified at N ≈ 1.5k− 2k, resulting in ≈ 1.3× longer execu-
tion times.

Discrete transforms

The runtimes of a variety of discrete transforms has been benchmarked on
the test system, including

• Fast Fourier Transforms of complex data (FFT-C2C, IFFT-C2C)

• Fast Fourier Transforms of real data (FFT-R2C, IFFT-C2R)

• Fast Hartley Transforms (FHT)

• Fast Discrete Cosine Transforms (DCT1, DCT2, DCT3, DCT4)

• Fast Discrete Sine Transforms (DST1, DST2, DST3, DST4)

All of them are in-place transforms of 32-bit floating points. They were
computed using FFTW 3.3.3 and planned using the flag FFTW MEASURE.
The results for power-of-two transform sizes are shown in figure 7.4. Com-
putational costs are measured by the average number of CPU cycles divided
by the transform size. Obviously, there are large differences in execution
speeds between the different transforms. The transforms can be classified by
execution speed in ascending order:

1. Real-data FFTs/IFFTs (FFT-R2C, IFFT-C2R) compute fastest

2. Complex-data FFTs/IFFTs (FFT-C2C, IFFT-C2C) are between
≈1.25− 1.85× slower

3. Fast Hartley transforms (FHTs) are > 2× slower than real-data FFTs
for sizes ≥ 1k. For shorter sizes < 256 they can outperform complex-
data FFTs

4. Fast discrete cosine/sine transforms are even slower than FHTs
(observed order: DCT/DST-2 < DCT/DST-3 < DCT/DST-4
< DCT/DST-1. DCT/DST-1 transforms computed slowest5

and fall out of range in figure 7.4)

5See explaination in the FFTW3 manual
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In-place and out-of-place transforms had comparable execution times. For
small transform sizes, in-place transforms compute usually a bit faster. Out-
of-place transforms can be slightly faster for large sizes. There can be
marginal speed differences between a forward FFT and an inverse FFT.

7.4.1. Cost relations

The optimization of convolution algorithm is strongly affected by the rela-
tions of the costs of different operations. The cost ratio between FFTs and
spectral convolutions is thereby of particular importance. If the relative costs
between different operations are similar in theory and practice, it is probable
that theoretically optimal choices of parameters may perform well in prac-
tice. In order to compare these ratios, the costs of operations were described
using simple runtime models. Linear-time O(()N) operations using a run-
time function of the form T (N) = kN and fast O(N logN) transforms by a
term T (N) = kN log2 N . The constants k are regarded in the following.

All basic operations ADD, MUL, CMUL and CMAC have a linear runtime
in O(N), where N is the size of the vector operands (number of elements).
In theory they require the following number of (real-valued) arithmetic op-
erations

TADD(N) = TMUL(N) = N (7.1)

TCMUL(N) = 6N (7.2)

TCMAC(N) = TCMUL(N) + TCADD(N) = 8N (7.3)

Two complex numbers are added by separate addition of their real and imag-
inary parts, which requires two real additions. The product of two complex
numbers can be realized using six arithmetic operations, four real-valued
multiplications and a real-valued subtraction and a real-valued addition

(a+ bi) · (c+ di) = [ac− bd]︸ ︷︷ ︸
2 muls,1 sub

+ [ad+ bc]︸ ︷︷ ︸
2 muls,1 add

i (7.4)

An alternative form saves one multiplication at the cost of three further
additions/subtractions, resulting in seven operations

(a+ bi) · (c+ di) = [ ac︸︷︷︸
=T1

− bd︸︷︷︸
=T2

]

︸ ︷︷ ︸
2 muls, 1 sub

+ [(a+ b)(c+ d)− T1 − T2]︸ ︷︷ ︸
2 adds, 1 mul, 2 subs

i (7.5)

As the real operations require the same number of CPU cycles on most pro-
cessors, this form is not of an advantage anymore. Each operation FFTC2C,
IFFTC2C, FFTR2C and IFFTC2R has different constants k. Here, the con-
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7. Benchmarks

stants were obtained by curve-fitting the exact number of arithmetic opera-
tions of the split-radix FFTs by Johnson and Frigo [50]. For simplicity it is
assumed that an inverse FFT has the same costs as a forward FFT. In order
to obtain constants for the practical case, curve-fitting was as well performed
on the performance profile of the test system. Table 7.2 lists the runtime
constants k for all regarded operations, in theory and practice. For a better
distinction, two separate values are provided for the arithmetic operations,
with respect to the cache limits (see section 7.4). They illustrate the influence
of the effective caching in simple numbers. Complex and real multiplies have
in theory a relation of kCMUL/kMUL = 6/1 = 6. In practice however, the
ratio is approximately 2.82/1.17 ≈ 2.41. Here, complex-valued arithmetic
is in relation significantly cheaper. The ratio between real-data FFTs and
complex-valued multiplications is about kFFTR2C/kCMUL ≈ 1.68/6 = 0.28 in
theory. In practice however, the ratio is approximately 0.97/2.82 = 0.344.
The observed differences show, that the theoretical cost relations of the op-
erations do not necessarily apply on the target system.

7.5. Accuracy

The accuracy of the proposed semi-empirical benchmark-based cost model
was verified with a representative algorithm. The algorithm should involve a
meaningful number of elementary operations and not consist of a few func-
tion calls only. Simple OLA and OLS methods without filter partitioning
(see chapter 4) are hence rather unsuited for verifying the approach. Instead,
uniformly-partitioned FFT-based Overlap-Save (OLS) convolution (UPOLS)
was selected. This algorithm, introduced in section 5, involves a larger num-
ber of other basic operations, in particular CMAC. For short filters it con-
verges into the unpartitioned convolution algorithm and covers this case as
well. Moreover, the algorithm is the core of non-uniformly partitioned con-
volution techniques, which are used for efficient filtering with long impulse
responses.

A reference implementation of uniformly partitioned Overlap-Save (UPOLS)
was created and then benchmarked on the test system. The implementation
uses a standard transform size K = 2B of twice the block length and real-
data transforms. Using the previously introduced benchmark technique, the
average computation time for the stream processing of a single length-B block
was recorded. Afterwards, this measure was converted into CPU cycles and
divided by the block length N . This performance values were compared to
the prediction using the semi-empirical cost model.

The computational complexities per output sample for the measurement
and prediction are plotted in figure 7.5. The relative prediction error
(Tmeas.−Tpred.)/Tmeas. is shown in figure 7.6. Clearly, the accuracy of the
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7.6. Efficient FFTs

estimation depends on the data sizes of the operations and in particular the
block length B. Convolutions that involve small-sized elementary operations
(B ≤ 1k) are subject to larger prediction errors. Here, the prediction always
underestimates the costs. The relative deviations reach up to 17% towards
longer filters. It can be observed, that for short filter lengths N they are
significantly smaller. This is important to mention, because sub filters in
non-uniformly partitioned convolution algorithms have larger block lengths
B and comparably small lengths N . Thus, the prediction error is effectively
smaller for these algorithms. The assembly of these very small operations
in the convolution algorithm is stronger affected by low-level cache misses
and memory accesses. A close examination revealed, that even the combined
runtimes of a small FFT and inverse fast Fourier transform (IFFT) were a
little larger than the sum of runtimes of the independently measured oper-
ations. Also is the complex-valued multiply-accumulate (CMAC) operation
slightly slower, when integrated into the algorithm. This affects the slopes
of the graphs and the offset in the relative errors. Using a linear correction
term kN with a constant k the model could be matched to the measured
data quite well, resulting in lower errors. This indicates, that the errors stem
from the size of operands and their memory requirements. When elementary
operations of larger sizes (B ≥ 1k) are involved, longer computation times
occur and the prediction is very accurate. The total costs per sample are
nevertheless low, because they are divided by larger block lengths B.

It can be summarized, that the cost model reproduces the propagation of
the computational complexity quite well. Moderate prediction errors to the
actual runtimes occur in the case of small elementary operations (short block
length B and short filters N). The proposed cost model is conceptually
simple. It does not regard cache utilization and memory accesses. As seen
above, the influence of these factors can be relatively large, when the involved
operations are tiny (< 1000 CPU cycles). In this respect the overall results
are good. The model could be further improved by considering these factors
as well. However, the modeling of these influence factors is not trivial.

7.6. Efficient FFTs

The computation time of a fast Fourier transform strongly depends on the
transform size. Trivially, a large FFT computes slower than a shorter one.
But the operations per point (runtime divided by transform size) might be
less for the larger transform. Mainly the prime factors of the transform size
determine which decompositions are applicable within the FFT computation
(e.g. CFM or PFM, for details see section 2.5.2). This has a significant
impact on the runtime of an FFT. For instance, a 256-point (power-of-two)
real-data FFT has a runtime of 1.11 µs on the test system. For a transform
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7.6. Efficient FFTs

size of 257 (which is a prime) the same operation consumed 21.75 µs —which
is more than 20× slower. Fast O(N logN) FFT algorithms are available, also
for prime N . Precise mathematical formulas for the number of operations of
an FFT can be bulky (for example in [50]), which make it cumbersome to
use them for a theoretical analysis. Often the following simplified model is
favored for expressing the computational costs of an FFT

TFFT(N) = k ·N log2 N (k∈R const.) (7.6)

Here, the scaling factor k depends on the transform type. Note, that the form
in 7.6 neglects additive terms and can therefore not be exact. Restricted to
power-of-two sizes, it is however a good approximation with comparably little
errors for smaller N . Table 7.2 provides several values for the proportionality
constant k in theory and practice. The constant k can also serve as a measure
for the efficiency, by rearranging Eq. 7.6 and making it a function k(N) over
N

k(N) =
TFFT(N)

N log2 N
(7.7)

Eq. 7.7 puts the actual number of cycles in relation to theoretical run-
time complexity4. Small values of k indicate relatively low runtimes (high
efficiency) and vice versa. The most and least efficient transforms can be
determined by evaluating Eq. 7.7 for all measured runtimes TFFT(N) and by
selecting the smallest respectively largest values.

The runtimes of all common FFT types have been extensively benchmarked
on the test system. This included all sizes from 1 to 65536. Figure 7.7
shows the results of the real-data FFTs. The span in runtimes is wide.
Two cost functions (Eq. 7.6) with factors k = 1 and k = 40 have been
added as guidelines. Transforms of highly composite sizes, like 640 = 27 ·
5, compute very efficient. In contrast, prime-size FFTs have the longest
runtimes. Between these cases, the scaling factors can differ by a factor of
40. This proves evidence, that the computational complexity of an FFT can
in general not be expressed by Eq. 7.6 and the mathematical properties of
the transform size must be considered.

Table 7.3 list the top twenty most and least efficient transforms in the mea-
surements. Note, that this list contains the best and worst candidates in the
entire range of sizes within 1 ≤ N ≤ 65, 536. For a better overview, powers of
two are marked gray. The findings support the claim stated above. The sizes
of the most efficient real-data FFTs (left columns) contain powers-of-two as
a factor. Only the small primes 3 and 5 are found as additional factors, if
N is not a power-of-two. The most inefficient transforms are those of prime
sizes (right columns) and they should be avoided.

4The authors of FFTW use the reciprocal of k(N) as a performance measure [36]
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However, it can also be seen, that the list of most efficient transforms is not
assembled from power-of-two sizes exclusively. Inspecting table 7.4) provides
an answer. It shows the efficiency for power-of-two sizes only. A general
observation is, that for smaller transform sizes N → 1 the factor k(N) in-
creases and thus, the relative efficiency drops. The reason is presumed the
fixed function call overhead, which an relation becomes large for smaller
transforms with few instructions. For power-of-two transform size N ≥ 512,
the simplified cost function (Eq. 7.6) is a good approximation, as k(N) varies
only little.

A more detailed look on the performance is gained by counteracting the
general trend of efficiency decrease towards smaller transform sizes N . This
is achieved by inspecting sub ranges of the transform size and not the full
range at once, as in table 7.3. Table 7.5 list the three most efficient transforms
within such specific sub ranges. Here it can be seen, that indeed powers-of-
two are the first or second most efficient transforms in their groups.

Which transform size is actually worth the consideration can only be an-
swered in the context of an application. The preceding chapters showed,
that several convolution algorithms can strongly benefit from using untypi-
cal transform sizes, which are not powers of two.
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7.6. Efficient FFTs

Most efficient Least efficient

Size k(n) Prime factors Size k(n) Prime factors

1,280 0.910 ( 28 51 ) 37,549 38.629 ( 37,5491 )
20,480 0.916 ( 212 51 ) 33,377 38.652 ( 33,3771 )
2,048 0.925 ( 211 ) 38,053 38.784 ( 38,0531 )

768 0.927 ( 28 31 ) 40,193 38.800 ( 40,1931 )
2,560 0.930 ( 29 51 ) 43,961 39.169 ( 43,9611 )
1,024 0.953 ( 210 ) 42,391 39.297 ( 42,3911 )

25,600 0.953 ( 210 52 ) 39,251 39.387 ( 39,2511 )
4,096 0.958 ( 212 ) 52,813 39.417 ( 52,8131 )
1,920 0.960 ( 27 31 51 ) 53,441 39.446 ( 53,4411 )
3,072 0.960 ( 210 31 ) 41,729 39.621 ( 41,7291 )

49,152 0.961 ( 214 31 ) 56,113 39.795 ( 56,1131 )
64,000 0.961 ( 29 53 ) 50,101 39.992 ( 50,1011 )
3,200 0.962 ( 27 52 ) 45,641 40.019 ( 45,6411 )

15,360 0.963 ( 210 31 51 ) 32,971 40.282 ( 32,9711 )
1,536 0.964 ( 29 31 ) 41,077 40.436 ( 41,0771 )
2,400 0.964 ( 25 31 52 ) 37,409 40.981 ( 37,4091 )

10,240 0.969 ( 211 51 ) 36,073 41.030 ( 36,0731 )
65,536 0.972 ( 216 ) 34,231 41.161 ( 34,2311 )
46,080 0.973 ( 210 32 51 ) 63,127 41.337 ( 63,1271 )
32,768 0.977 ( 215 ) 58,451 43.302 ( 58,4511 )

Table 7.3.: Real-data FFTs with the highest and the lowest computational
efficiency for sizes the interval 1 ≤ N ≤ 65.536 (power-of-two
sizes are marked gray)

Size Efficiency Runtime [µs ] Size Efficiency Runtime [µs ]

8 5.524 0.055 1,024 0.953 4.057
16 2.981 0.079 2,048 0.925 8.659
32 1.986 0.132 4,096 0.958 19.58
64 1.615 0.258 8,192 1.021 45.20

128 1.524 0.568 16,384 0.995 94.86
256 1.189 1.012 32,768 0.977 199.6
512 1.010 1.935 65,536 0.972 423.6

Table 7.4.: Computational efficiency of power-of-two real-data FFTs
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7.7. Conclusions

7.7. Conclusions

The presented benchmark-based cost models assess the computational com-
plexity of algorithms with respect to an actual target system. This proved
necessary, as the relative costs of operations in practice differ from those in
theory. It is therefore advised to optimize the convolution algorithm based on
this data. A theoretically optimal choice of parameters may not be the best
choice in practice. The benchmark-based cost model reproduces the progres-
sion of costs quite well. However, its overall accuracy depends on the number
and size of involved operations. A limitation of the model is its simplicity,
neglecting aspects like for instance memory accesses and cache-utilization.
Particularly, when low-complexity operations are used, which only consume
a little number of cycles on the processor, side-effects like call overheads, loop
instructions and probably also the cache utilization of low-level caches affect
the quality of the cost prediction. In these cases, the sum of runtimes of the
individual operation underestimates the actual runtime on the machine. As
soon as the operations get more complex, the prediction becomes very accu-
rate. However, the overall quality of the model is considered sufficient for the
study and analysis of convolution algorithms composed from the enumerated
elementary operations. The accuracy of the cost prediction can be further
improved by enhancing the model or by partly substituting the predicted
costs with actual measurements. Whether this is possible depends on the
application and the number of parameter combinations.
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8. Conclusion

This thesis’ objective was the research of finite impulse response (FIR) fil-
tering technologies for applications in acoustic virtual reality. The consid-
erations aimed for standard processors and a block-wise audio processing
exclusively. The diverse requirements of the field (e.g. multiple channels,
time-varying filters) demand special algorithms. Conventional fast convo-
lution techniques must be adapted to serve for a real-time processing, oth-
erwise the processing delay might be unacceptably large. Among different
divide-and-conquer approaches, partitioned convolution was identified as the
strategy which accords real-time processing. It decomposes the operands
into interconnected sub sequences (blocks) along the time axis. This makes
it possible to compute parts of the filtering in accordance with the availabil-
ity of input samples. The latency can be kept low, which allows realizing
the short response times needed in virtual reality. Partitioned convolution
algorithms are mainly influenced by two factors: the underlying fast convolu-
tion technique and the partitioning of the operands. Both factors have been
carefully examined in this thesis.

8.1. Summary

The examination of the wide class of conventional convolution algorithms
in chapter 4 confirmed the status of FFT-based convolution as a reference
method. Realizing a fast convolution in the DFT domain is conceptually
simple. Benchmarks showed that current high-performance FFT algorithms
outperform potential alternative transforms. For short filters, interpolation-
based convolution techniques, like the Karatsuba algorithm, might turn out
as an alternative approach—benchmarks of matured implementations are
needed for further clarification. Similarly, the performance of number the-
oretic approaches implemented on general purpose processors is unverified.
At least in theory these methods could match up with the FFT. However, it
has also been shown, these algorithms can not outperform FFT-based convo-
lution for long filters. The conjunction of transform-based fast convolution
and partitioned convolution is particularly attractive. Huge computational
savings are achieved by implementing most of the processing in the frequency-
domain and using transforms economically.
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8. Conclusion

Partitioned convolution techniques are manifold and characterized by differ-
ent properties. Conventional fast convolution techniques are generally made
applicable for real-time filtering using the Overlap-Add (OLA) or Overlap-
Save (OLS) scheme. Technically, this already marks a partitioned convolu-
tion, as the input signal is processed in blocks of equal sizes. In the exami-
nations, an FFT-based OLS convolution allows speedups over a time-domain
FIR filter in the range of 5 − 80×, depending on the block length used.
Especially for regular OLA/OLS convolution (without filter partitioning) it
is advised to consider uncommon transform sizes, e.g. small multiples of
powers-of-two. Restricting the choice exclusively on powers of two can sig-
nificantly increase the computational costs. A time-domain processing should
only be considered in the case of very short filters of less than 32 taps. Here,
short linear convolution algorithms (e.g. the Karatsuba algorithm) might
still be faster.

Besides the already partitioned signal, the second operand, the filter, can be
partitioned as well. The partitioning of the filter marks a free parameter,
unlike the partitioning of the signal, whose block length is determined by
the latency requirements. Elementary techniques, which do not partition the
filters, suffer a common drawback: They become relatively inefficient for the
case that one operand is significantly longer than the other. Such unbalanced
convolutions often occur in acoustic virtual reality and particularly when
reverberation is realized using convolution. Partitioning can be interpreted
as a divide-and-conquer approach. By splitting the filter into uniform sub
filters, these on their own are more balanced and can be more efficiently
processed. In total, this allow a significant reduction of the computational
effort.

An essential improvement arises transform-based fast convolution is com-
bined with a uniform filter partitioning: Given, that signal and filter are
partitioned with the same granularity (the common choice), the sub filters
can be realized entirely in the frequency-domain. Each processed input and
output block needs to be transformed only once. The involved fast Fourier
transforms become independent of the filter length N , making the class of
methods asymptotically faster than the elementary techniques. For a 4000-
tap filter and block lengths in the range of 128-1024 samples, speedups be-
tween 2× −8× were identified on the test system. It is remarked, that the
uniform partitioning of the filter also moderately increases the computational
effort for transforming the impulse response.

The presented generalization of uniformly partitioned convolution supported
independent partitions in both operands to be realized with arbitrary trans-
form sizes. These further degrees of freedom were introduced for evaluating
the complexity bounds of uniformly partitioned convolution. It showed, that
the standard parameters (equal partitioning in both operands) indeed mark
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8.1. Summary

the optimal solution in many cases. As a rule of thumb, this holds for filter
lengths in the approximate range B ≤ N ≤ 20 · B. Given, that the block
length is a power of two (the usual case), power-of-two transforms mark the
best choice.

The computational costs for filtering with partitioned convolution techniques
depend on the block length of the audio processing and hence on the input-to-
output latency. For the classes of unpartitioned and uniformly-partitioned
filters, the relation is nearly anti-proportional, unless the filters are short.
This can be summarized in a simple statement: Halving the block length
(which does not necessarily mean that the latency is halved) doubles the
computational effort of the filtering.

The motivation for a non-uniform partitioning of the filter impulse response
originates from the observation, that later sub filters can be implemented
with longer block lengths. This once more allows a significant reduction
of the computational costs. Moreover, the steady increase of block lengths
results in a lower runtime complexity class. For the example case of two
seconds of reverberation time, the non-uniform techniques outperformed the
uniform approch by a factor of 10. For longer filters and short block lengths,
the savings get even larger.

However, these computational advances come at a price: Non-uniformly par-
titioned convolution required much more effort in its implementation. All
previously discussed methods feature a recurrent execution pattern, with
similar amounts of computation. In contrast, achieving an even load distri-
bution with non-uniformly partitioned convolution is not trivial. Also is the
filter exchange limited, which is of particular relevance in real-time aural-
ization. All these aspects are influenced by the partitioning, which marks
a key parameter of the algorithms. The strong point of Gardner’s parti-
tioning scheme is its practicality. However, it does not result in minimal
computational costs. Specifically optimized partitions fully exploit the spe-
cific properties of uniformly-partitioned convolutions (i.e. frequency-domain
delay-lines) and can almost half the effort over Gardner’s approach. A sheer
optimization for minimal algorithmic costs results in impractical partitions
with a worst-case load distribution. It was presented how the optimization
can be guided to obey a minimal flexibility for the scheduling of sub convo-
lutions. The increase in computational costs over the theoretical minimum
is moderate and still a huge leap forward. Considerations on the design
of non-uniform partitions for real-time room acoustics were conducted. A
good compromise between the requirements (computational effort, real-time
scheduling, time-varying filters) can be achieved.
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8. Conclusion

8.2. Guidelines

The findings of this thesis lead to the following guidelines for real-time
filtering in acoustic virtual reality. They are classified by aspects.

Performance

• Time-domain FIR filtering is only advised for very short filters. The
theoretical break-even point where FFT-based convolution becomes
faster is between 16-32 samples (cp. Tab. 2.1). In practice, this bound-
ary depends on the implementations.

• Short linear convolution algorithms (e.g. Karatsuba algorithm) out-
perform the naive time-domain approach. At least in theory, they are
an alternative to FFT-based convolution for filter length N ≤128 (cp.
Tab. 2.1). However, the performance of the Karatsuba technique is
unverified.

• The computational effort of all following algorithms depends on the
block length B (latency). Break-even points in filter lengths N are
expressed as multiples of B.

• Conventional Overlap-Add (OLA) or Overlap-Save (OLS) FFT-based
convolution is suggested for the case of very short filters N ≤ B. Here,
both schemes are similar in their performance. The simplicity of the
Overlap-Add (OLA)/Overlap-Save (OLS) algorithms is an argument
for using them for longer filters also. In this case non power-of-two
transform sizes should be considered. However, Overlap-Add (OLA)/
Overlap-Save (OLS) convolution without filter partitioning is signifi-
cantly less efficient than uniformly-partitioned techniques.

• Uniformly-partitioned convolution is the method of choice for short to
medium length FIR filters in the range B < N < 20 ·B. The standard
parameters (filter partition L= block lengthB, transform sizeK = 2B)
deliver an optimal or near-to-optimal performance for common power-
of-two block lengths B. Only given filters longer than N > 20 · B,
the use of individual optimized transform sizes and separate partitions
in signal and filter is beneficial. However, non-uniformly partitioned
techniques should be considered for these filter lengths, as they will
possibly deliver a better performance.

• For filters exceeding N > 20 · B . . .N > 20 · B a non-uniform filter
partitioning should be considered. The computational savings over
uniformly partitioned techniques grows over the filter length. This ac-
cords in particular for low-latency processing, as they increase strongly
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for towards short block length B. For artificial reverberation (e.g. fil-
ters of 500 ms . . . 2 s reverberation time) the savings can reach several
magnitudes (cp. Fig. 5.6).

Benchmark-based cost models proved sufficient to quantitatively assess the
algorithms’ computational costs. For precise, qualitative statements the ac-
tual algorithm should be benchmarked on the target machine.

Implementation

• Regular OLA and OLS convolutions are very simple technique which
can be implemented in a few lines of code. fast Fourier transforms
dominate the computation. Partial transforms deliver too little savings
compared to their implementational burden.

• Standard uniformly-partitioned convolution methods (UPOLA or
UPOLS) are conceptually simple algorithms, demanding a little more
effort in their implementation, which is greatly rewarded by the compu-
tational savings. The techniques compute short transforms only, which
consume a minor part of the computations only. Most of the compu-
tations are complex-valued multiplications and accumulations, which
strongly affect the algorithms’ performance.

• Non-uniformly partitioned convolution techniques requires significantly
more implementation effort and programmer skills. In principle, non-
uniformly partitioned Overlap-Add (NUPOLA)/non-uniformly parti-
tioned Overlap-Save (NUPOLS) convolution engines can be assembled
from uniformly partitioned Overlap-Add (UPOLA) or UPOLS units.
The difficulties of an implementation are the time-critical scheduling of
sub convolutions—in particular on multiprocessor systems. Gardner’s
partitioning scheme [39] is inheres relatively loose timing constraints
and results in a periodic scheduling. A time-invariant filtering can
be realized using a hard-wired, static execution plan for the sub con-
volutions. If the filtering is subject to changes (e.g. modification of
channels or filters) a dynamic scheduling is strongly suggested. For
the best performance—not only considering the load—the non-uniform
filter partition should be optimized using benchmarks. A hand-tuned
partitioning might be more economically considering the effort of this
procedure. Non-uniformly partitioned convolution should considered
with care, if an even distribution of the computational load is essential
or when a multi-threaded programming is impossible. The computa-
tion in these techniques is shared by FFTs and spectrum multiplications
and additions, making both important.

225



8. Conclusion

Latency

Apart from time-domain FIR filters, all regarded algorithms revealed a de-
pendency between their computational effort and the input-to-output la-
tency. For unpartitioned and uniformly-partitioned techniques an almost
anti-proportional relation was observed. Only non-uniformly approaches be-
have differently and show a logarithmic dependency. In other words, a lower
latency is achievable with these techniques at a relatively low cost.

The filter exchange latency is affected by the computation time for the filter
transformation. For most applications this runtime will be small compared
to other parts of the software. The partitioning of the filter increases the
costs of the filter transformation. However, it also opens the possibitliy for
parallelization.

The OLA/OLS respectively UPOLA/UPOLS methods allow frequent filter
updates with the frame rate of the audio stream. In non-uniformly par-
titioned methods the filter exchange is affected by the filter partition. It
can limit the maximum update rates and introduce additional latency. (see
section 6.11).

Filter networks

Networks of FIR filters, including filters with multiple inputs and outputs,
can be significantly accelerated. Such networks occur often in auralization
systems—e.g. multi-channel binaural synthesis, crosstalk cancellation fil-
ters or room acoustic audio rendering. Large computational savings can be
achieved by implementing most of the processing in the frequency-domain,
saving unnecessary transforms. Parallel structures are easy and straightfor-
ward to implement. Cascades of multiple FIR demand care: The transform
size must be chosen large enough to prevent time-aliasing in the assembly.
For sequences of non-uniformly partitioned convolutions no efficient solutions
are currently known. The problem can always be simplified, by replacing the
entire network or parts of it by their corresponding impulse responses. This
can become a disadvantage if parts of the network are frequently updated.
Actual applications demand an individual inspection. Stereo processing (in-
cluding binaural filtering) can be accelerated using complex-data fast Fourier
transforms.
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8.3. Outlook

The contribution of this thesis is the study of different techniques for real-
time filtering and their properties—in other words, the building blocks for
auralization systems. Yet, many questions remain open and mark the ori-
gin for future research in the field. This accords for elementary tools, the
algorithms themselves, but especially their integration in applications. Fur-
thermore, they need to be compared to different filtering concepts. This final
section tries do identify these important scientific questions.

First off is the general question of the technique to use: FIR filters or IIR
filters. Binaural synthesis for instance can be efficiently realized with in-
finite impulse response (IIR) head-related transfer function (HRTF) filters
of surprisingly little orders. These methods should be compared to FIR ap-
proaches based on short linear convolution techniques. Powerful FIR filtering
algorithms enable the physically-based auralization with simulated impulse
responses. Closed-loop filter structures, e.g. feedback delay networks, re-
produce the reverberation characteristic (in time and frequency), but fail to
reproduce the fine structure of an impulse response. Recent approaches, like
perceptual fast convolution, start moving into the direction of approximate
FIR filtering. This raises the question, if the often appreciated exactness
of FIR filters might exceed the requirements and is actually necessary. In-
teresting would be a head-to-head comparison of both classes of filters with
respect to the human perception in multi-modal environments, examining
the required quality (listening tests) and algorithmic complexity.

The possibility of simulating the reverberation of a space using FIR filters, is
mainly reasoned by highly efficient fast convolution techniques, in particular
non-uniformly partitioned methods. Few publications address the implemen-
tation of the latter on different computing architectures. How to achieve an
even load distribution with these algorithms has not been finally clarified.
Current concepts for dynamic scheduling the occurring sub convolutions fea-
ture a shortest-deadline-first approach, which does not necessarily even out
the load curve. The flexibility, inherent in the non-uniform partition, could
be further exploited in this respect. Especially the required amount of flex-
ibility should be examined in implementations. Parameters of non-uniform
filtering techniques for the application with room acoustic auralization need
further research. Open questions are for instance the necessary filter update
rates and influence of filter exchange strategies (coherent vs. asynchronous)
on the perception in an interactive auditory environment.
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Finally, after more than 60 years of research, the convolution algorithms
themselves still offer room for improvements. A promising concept is the
acceleration using multi-dimensional index mapping applied to linear convo-
lution. Uniformly-partitioned running convolutions can be interpreted as a
special case of two-dimensional convolutions. From this perspective, most
current concepts implement only the larger dimension in a fast way. Hur-
challa [47] presented how also the smaller dimension can benefit from using
fast short linear convolution techniques. This eventually closes the circle
around the methods introduced in chapter 2 and increases the importance
of short-length convolution algorithms (e.g. interpolation-based). Not all of
these methods confirm with a real-time processing. The computational sav-
ings need to be analyzed in more detail and suitable short convolutions have
to be found for uniformly-partitioned segments with larger multiplicities in
non-uniformly partitioned techniques.
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A.1. Real-time audio processing

Low-latency audio applications on modern computers (e.g. PCs, tablets,
mobile devices, game consoles) are realized by block-wise audio streaming.
Samples are exchanged with the audio hardware via interrupts (callbacks),
following the pull-model (audio driver calls application, not the other way
round). The audio device delivers and requests input and output samples of
a fixed sampling rate fS in units of blocks, with a fixed number of samples
B, known as the buffer size or just block length. An audio stream consists of
an indefinite number of length-B blocks (frames) x(i)(n) corresponding to a
quasi-continuous signal x(n). In other words, the signal x(n) is uniformly-
partitioned into length-B blocks.

Latency

For the signal processing, each recorded block of samples needs to be trans-
ported from the audio device (e.g. PCI card) to the central processing
unit (CPU) over the machines bus system. After the computations are fin-
ished, it is transferred back to the audio device for playback. Note, that
also for playback-only applications (e.g. sound synthesis) involve at least
this step. These intermediate steps introduce a delay, referred to as input-to-
output latency, symbolized by ∆TIO. Most bus systems (e.g. PCI, PCI-X)
realize data communication between multiple devices using use time-division
multiplexing (TDM) with a limited data size per bus transaction. Transmit-
ting and processing individual samples is possible, but would cause a signif-
icant overhead on the bus and the intermediate buffering stages. Moreover,
a consistent guaranteed bus access in the duration of samples (e.g. 21µs at
44100 Hz) is difficult to realize. Thus a block-based paradigm is much more
favorable in these circumstances.

The duration TB of a block and the block rate fB (number of blocks per
seconds) are defined as

TB =
B

fS
[s] fB =

fS
B

[s−1] TB =
1

fS
(A.1)

229



A. Appendix

Typically a double-buffering strategy is applied for the data exchange with
the audio hardware, which introduces an input-to-output latency ∆TIO >
2TB of at least two blocks. Additional latencies are contributed by the hard-
ware. They are significant and should not be neglected (e.g. 2.5 ms or
110 samples at 44100 Hz for AD/DA conversion and transmission for an
RME Hammerfall HDSP in a loopback experiment). Table A.1 provides
an overview about common block lengths and their corresponding rates and
durations.

Block lengths

First, the sampling rate is chosen with respect to the fidelity. A common
choice for audio applications is fS = 44100 Hz, covering the audible frequency
range of 20-20000 Hz. Secondly, the block length B it usually adjusted to
meet the latency requirements of the application. Typical block lengths are
small powers of two, e.g. B ∈ {32, 64, 128, 256, 512}. Internally within the
application, smaller or larger block lengths B′ can be used. Smaller block
lengths B′ < B can be used, as long as they subdivide the original block
B′ | B. Then each length-B block is processed by internally iterating over
multiple length-B′ blocks. However, this approach will not lower the over-
all latency and usually increase the computational costs, as the succeeding
chapters will show. On the other hand, a larger block length lowers the com-
putational load, but requires to accumulate multiple blocks and thus cause
additional delays. In order to keep the latency ∆TIO minimal, the samples
of the audio stream may not be processed in blocks larger than B samples.
Consequently, the first sub filter in a partitioned convolution is commonly
implemented using the streaming block length B (see chapters 5, 6). This
choice usually marks a fixed constraint. Finally, the latency can be decreased
by using a higher sampling rate fS , but also increases the computational load.

Semantic

The subsequent considerations demand a well-defined semantic of the block-
based processing. Generally, samples of a uniform sampling in time align
with a quantized time scale t ∈ { nT + T0 | n ∈ N }, determined by the
sampling rate fS and block length B. n = 0, 1, . . . marks the index of a
sample and starts with 0. T = 1/fS is the period length of a sample. T0

denotes an offset (start time of the stream) and is neglected for the subsequent
considerations. If the audio processing is performed block-wise, in blocks of
length B, the underlying time scale is t∈{ nTB + T0 | n∈N }. TB = B/fS
denoted the duration of a length-B block. Audio interrupts (callbacks) occur
at fixed times tn = nT + T0. Hence, k ∈ N is referred to as the stream cycle,
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Block Block Block
length duration rate
B TB = B/fS [s] fB = fS/B [s−1]

32 726 µs 1378.1 s−1

64 1.45 ms 689.1 s−1

128 2.90 ms 344.5 s−1

256 5.80 ms 172.3 s−1

512 11.61 ms 86.1 s−1

1,024 23.22 ms 43.1 s−1

2,048 46.44 ms 21.5 s−1

4,096 92.88 ms 10.7 s−1

8,192 185.76 ms 5.4 s−1

16,384 371.52 ms 2.7 s−1

Table A.1.: Block measures in real-time audio streaming
(sampling rate fS = 44, 100).

also starting with 0. Again, the start time of the streaming T0 is not of
importance.

Entering the first cycle (k= 0), the audio driver provides the first length-B
block of recorded input samples x0(n) and requests the first length-B block
y0(n) of output samples for playback. In the first cycle k = 0 for example, the
input samples x(0)(0), . . . , x(0)(B−1) are provided and the output samples
y(0)(0), . . . , y(0)(B−1) are requested. Accordingly, with in the cycle k, samples
with indices n in the range kB ≤ n < (k + 1)B are processed. The cycle k
in which the sample of index n falls into is given by

k =

⌊
n

B

⌋
(A.2)

The signal processing in a cycle must be finished before the next cycle begins.
The maximum computation time in each cycle is defined as Tmax Tmax =
TB − Tε. It may not exceed the duration TB of a block. Call overheads and
intermediate buffering consume additional time and require a safety margin
Tε which depends on the hardware and software. Typically, a stable operation
is possible with a margins in the range of 5-10%, meaning that about 90-95%
of the block duration TB can be spent on signal processing. If the time
budget Tmax is exceeded, then the audio device is not provided with the next
output samples in time, causing dropouts in the playback.
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A.2. Optimized non-uniform filter partitions

The following tables lists optimal partitions for the standard NUPOLS al-
gorithm on the test system. The optimization founds on benchmarks of all
involved operations described in chapter 7. The computational costs are
evaluated using the model in Eq. 6.12. The set of optimal filter partitions
was determined using the Viterbi algorithm, as described in section 6.5. The
results here can differ from those in prior publications [121], which found on
other sets of performance data. The first column is the desired target filter
length, followed by the computational costs of the optimal partition. The
costs are measured as (average) CPU cycles per filter output sample. In the
next column the actual optimal partition is written. The last column lists
the clearances (block-multiples) for all segments in this partition. The lists
are complete and cover all optimal partitions for all filter lengths B≤N≤220

in steps of B samples. Given that two filter length N ′ < N share the same
optimal partition, the length N ′ is skipped in the table.

A.2.1. Minimal-load partitions for the block length B=128

Filter
length N

Cost/sample Optimal partition
Popt

Segment
clearances

128 43.0 ( 1281 ) ( 0 )
256 45.8 ( 1282 ) ( 0 )
384 48.7 ( 1283 ) ( 0 )
512 51.6 ( 1284 ) ( 0 )
640 54.4 ( 1285 ) ( 0 )
768 57.3 ( 1286 ) ( 0 )
896 60.2 ( 1287 ) ( 0 )
1024 63.0 ( 1288 ) ( 0 )
1152 65.9 ( 1289 ) ( 0 )
1280 68.8 ( 12810 ) ( 0 )
1408 71.6 ( 12811 ) ( 0 )
1536 74.5 ( 12812 ) ( 0 )
1664 77.4 ( 12813 ) ( 0 )
1792 80.2 ( 12814 ) ( 0 )
1920 83.1 ( 12815 ) ( 0 )
2048 86.0 ( 12816 ) ( 0 )
2176 88.8 ( 12817 ) ( 0 )
2304 91.7 ( 12818 ) ( 0 )
2432 94.6 ( 12819 ) ( 0 )
2560 97.4 ( 12820 ) ( 0 )
2944 100.1 ( 1283 5125 ) ( 0 0 )
3456 102.7 ( 1283 5126 ) ( 0 0 )
3968 105.3 ( 1283 5127 ) ( 0 0 )
4480 108.0 ( 1283 5128 ) ( 0 0 )

232



A.2. Optimized non-uniform filter partitions

4992 110.6 ( 1283 5129 ) ( 0 0 )
5504 113.2 ( 1283 51210 ) ( 0 0 )
6016 113.5 ( 1287 10245 ) ( 0 0 )
7040 116.1 ( 1287 10246 ) ( 0 0 )
8064 118.7 ( 1287 10247 ) ( 0 0 )
9088 121.2 ( 1287 10248 ) ( 0 0 )
10112 123.8 ( 1287 10249 ) ( 0 0 )
11136 126.3 ( 1287 102410 ) ( 0 0 )
12160 128.9 ( 1287 102411 ) ( 0 0 )
13184 131.5 ( 1287 102412 ) ( 0 0 )
14208 134.0 ( 1287 102413 ) ( 0 0 )
15232 136.6 ( 1287 102414 ) ( 0 0 )
16256 139.1 ( 1287 102415 ) ( 0 0 )
17280 141.7 ( 1287 102416 ) ( 0 0 )
18304 144.3 ( 1287 102417 ) ( 0 0 )
19328 146.8 ( 1287 102418 ) ( 0 0 )
20352 149.4 ( 1287 102419 ) ( 0 0 )
21376 152.0 ( 1287 102420 ) ( 0 0 )
22400 154.5 ( 1287 102421 ) ( 0 0 )
23424 157.1 ( 1287 102422 ) ( 0 0 )
24448 159.6 ( 1287 102423 ) ( 0 0 )
25472 162.2 ( 1287 102424 ) ( 0 0 )
26496 164.8 ( 1287 102425 ) ( 0 0 )
27520 167.3 ( 1287 102426 ) ( 0 0 )
28544 169.9 ( 1287 102427 ) ( 0 0 )
29568 172.4 ( 1287 102428 ) ( 0 0 )
30592 175.0 ( 1287 102429 ) ( 0 0 )
31616 177.6 ( 1287 102430 ) ( 0 0 )
32640 180.1 ( 1287 102431 ) ( 0 0 )
33664 182.7 ( 1287 102432 ) ( 0 0 )
34688 183.7 ( 12815 204816 ) ( 0 0 )
40832 183.8 ( 1287 10247 81924 ) ( 0 0 0 )
41856 186.4 ( 1287 10248 81924 ) ( 0 0 8 )
49024 187.2 ( 1287 10247 81925 ) ( 0 0 0 )
50048 189.8 ( 1287 10248 81925 ) ( 0 0 8 )
57216 190.6 ( 1287 10247 81926 ) ( 0 0 0 )
58240 193.2 ( 1287 10248 81926 ) ( 0 0 8 )
65408 194.0 ( 1287 10247 81927 ) ( 0 0 0 )
66432 196.5 ( 1287 10248 81927 ) ( 0 0 8 )
73600 197.4 ( 1287 10247 81928 ) ( 0 0 0 )
74624 199.9 ( 1287 10248 81928 ) ( 0 0 8 )
81792 200.7 ( 1287 10247 81929 ) ( 0 0 0 )
82816 203.3 ( 1287 10248 81929 ) ( 0 0 8 )
89984 204.1 ( 1287 10247 819210 ) ( 0 0 0 )
91008 206.7 ( 1287 10248 819210 ) ( 0 0 8 )
98176 207.5 ( 1287 10247 819211 ) ( 0 0 0 )
99200 210.1 ( 1287 10248 819211 ) ( 0 0 8 )
106368 210.9 ( 1287 10247 819212 ) ( 0 0 0 )
107392 213.5 ( 1287 10248 819212 ) ( 0 0 8 )
114560 214.3 ( 1287 10247 819213 ) ( 0 0 0 )
115584 216.8 ( 1287 10248 819213 ) ( 0 0 8 )
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122752 217.7 ( 1287 10247 819214 ) ( 0 0 0 )
123776 220.2 ( 1287 10248 819214 ) ( 0 0 8 )
130944 220.9 ( 1287 102415 163847 ) ( 0 0 0 )
131968 223.4 ( 1287 102416 163847 ) ( 0 0 8 )
139136 224.4 ( 1287 10247 819216 ) ( 0 0 0 )
147328 224.6 ( 1287 102415 163848 ) ( 0 0 0 )
148352 227.1 ( 1287 102416 163848 ) ( 0 0 8 )
163712 228.3 ( 1287 102415 163849 ) ( 0 0 0 )
164736 230.8 ( 1287 102416 163849 ) ( 0 0 8 )
180096 232.0 ( 1287 102415 1638410 ) ( 0 0 0 )
181120 234.6 ( 1287 102416 1638410 ) ( 0 0 8 )
196480 235.7 ( 1287 102415 1638411 ) ( 0 0 0 )
197504 238.3 ( 1287 102416 1638411 ) ( 0 0 8 )
212864 239.4 ( 1287 102415 1638412 ) ( 0 0 0 )
213888 242.0 ( 1287 102416 1638412 ) ( 0 0 8 )
229248 243.1 ( 1287 102415 1638413 ) ( 0 0 0 )
230272 245.7 ( 1287 102416 1638413 ) ( 0 0 8 )
245632 246.8 ( 1287 102415 1638414 ) ( 0 0 0 )
246656 249.4 ( 1287 102416 1638414 ) ( 0 0 8 )
262016 250.6 ( 1287 102415 1638415 ) ( 0 0 0 )
263040 253.1 ( 1287 102416 1638415 ) ( 0 0 8 )
278400 254.3 ( 1287 102415 1638416 ) ( 0 0 0 )
279424 256.8 ( 1287 102416 1638416 ) ( 0 0 8 )
294784 258.0 ( 1287 102415 1638417 ) ( 0 0 0 )
295808 260.5 ( 1287 102416 1638417 ) ( 0 0 8 )
311168 261.7 ( 1287 102415 1638418 ) ( 0 0 0 )
312192 264.2 ( 1287 102416 1638418 ) ( 0 0 8 )
327552 265.4 ( 1287 102415 1638419 ) ( 0 0 0 )
328576 268.0 ( 1287 102416 1638419 ) ( 0 0 8 )
343936 269.1 ( 1287 102415 1638420 ) ( 0 0 0 )
344960 271.7 ( 1287 102416 1638420 ) ( 0 0 8 )
360320 272.8 ( 1287 102415 1638421 ) ( 0 0 0 )
361344 275.4 ( 1287 102416 1638421 ) ( 0 0 8 )
376704 276.5 ( 1287 102415 1638422 ) ( 0 0 0 )
393088 277.3 ( 1287 10247 81927 655365 ) ( 0 0 0 0 )
394112 279.9 ( 1287 10248 81927 655365 ) ( 0 0 8 8 )
401280 280.7 ( 1287 10247 81928 655365 ) ( 0 0 0 64 )
458624 281.1 ( 1287 10247 81927 655366 ) ( 0 0 0 0 )
459648 283.6 ( 1287 10248 81927 655366 ) ( 0 0 8 8 )
466816 284.4 ( 1287 10247 81928 655366 ) ( 0 0 0 64 )
524160 284.8 ( 1287 10247 81927 655367 ) ( 0 0 0 0 )
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A.2.2. Minimal-load partitions for the block length B=256

Filter
length N

Cost/sample Optimal partition
Popt

Segment
clearances

256 40.0 ( 2561 ) ( 0 )
512 42.7 ( 2562 ) ( 0 )
768 45.4 ( 2563 ) ( 0 )
1024 48.1 ( 2564 ) ( 0 )
1280 50.7 ( 2565 ) ( 0 )
1536 53.4 ( 2566 ) ( 0 )
1792 56.1 ( 2567 ) ( 0 )
2048 58.8 ( 2568 ) ( 0 )
2304 61.5 ( 2569 ) ( 0 )
2560 64.2 ( 25610 ) ( 0 )
2816 66.9 ( 25611 ) ( 0 )
3072 69.5 ( 25612 ) ( 0 )
3328 72.2 ( 25613 ) ( 0 )
3584 74.9 ( 25614 ) ( 0 )
3840 77.6 ( 25615 ) ( 0 )
4096 80.3 ( 25616 ) ( 0 )
4352 83.0 ( 25617 ) ( 0 )
4608 85.7 ( 25618 ) ( 0 )
4864 88.4 ( 25619 ) ( 0 )
5120 91.0 ( 25620 ) ( 0 )
5376 93.7 ( 25621 ) ( 0 )
5632 96.4 ( 25622 ) ( 0 )
5888 98.7 ( 2563 10245 ) ( 0 0 )
6912 101.3 ( 2563 10246 ) ( 0 0 )
7936 103.9 ( 2563 10247 ) ( 0 0 )
8960 106.4 ( 2563 10248 ) ( 0 0 )
9984 109.0 ( 2563 10249 ) ( 0 0 )
11008 111.6 ( 2563 102410 ) ( 0 0 )
12032 114.1 ( 2563 102411 ) ( 0 0 )
13056 116.7 ( 2563 102412 ) ( 0 0 )
14080 119.2 ( 2563 102413 ) ( 0 0 )
15104 121.8 ( 2563 102414 ) ( 0 0 )
16128 124.4 ( 2563 102415 ) ( 0 0 )
17152 126.9 ( 2563 102416 ) ( 0 0 )
18176 129.5 ( 2563 102417 ) ( 0 0 )
19200 132.0 ( 2563 102418 ) ( 0 0 )
20224 133.2 ( 2567 20489 ) ( 0 0 )
20480 135.9 ( 2568 20489 ) ( 0 1 )
22272 136.6 ( 2567 204810 ) ( 0 0 )
22528 139.2 ( 2568 204810 ) ( 0 1 )
24320 139.9 ( 2567 204811 ) ( 0 0 )
24576 142.6 ( 2568 204811 ) ( 0 1 )
26368 143.3 ( 2567 204812 ) ( 0 0 )
26624 145.9 ( 2568 204812 ) ( 0 1 )
28416 146.6 ( 2567 204813 ) ( 0 0 )
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28672 149.3 ( 2568 204813 ) ( 0 1 )
30464 150.0 ( 2567 204814 ) ( 0 0 )
30720 152.6 ( 2568 204814 ) ( 0 1 )
32512 152.8 ( 25615 40967 ) ( 0 0 )
32768 155.5 ( 25616 40967 ) ( 0 1 )
36608 156.2 ( 25615 40968 ) ( 0 0 )
36864 158.9 ( 25616 40968 ) ( 0 1 )
40704 159.6 ( 25615 40969 ) ( 0 0 )
40960 162.3 ( 25616 40969 ) ( 0 1 )
44800 163.0 ( 25615 409610 ) ( 0 0 )
45056 165.7 ( 25616 409610 ) ( 0 1 )
48896 166.4 ( 25615 409611 ) ( 0 0 )
49152 169.0 ( 25616 409611 ) ( 0 1 )
52992 169.7 ( 25615 409612 ) ( 0 0 )
53248 172.4 ( 25616 409612 ) ( 0 1 )
57088 173.1 ( 25615 409613 ) ( 0 0 )
57344 175.8 ( 25616 409613 ) ( 0 1 )
61184 176.5 ( 25615 409614 ) ( 0 0 )
65280 179.2 ( 2563 10247 81927 ) ( 0 0 0 )
66304 181.7 ( 2563 10248 81927 ) ( 0 0 4 )
73472 182.6 ( 2563 10247 81928 ) ( 0 0 0 )
74496 185.1 ( 2563 10248 81928 ) ( 0 0 4 )
81664 186.0 ( 2563 10247 81929 ) ( 0 0 0 )
82688 188.5 ( 2563 10248 81929 ) ( 0 0 4 )
89856 189.3 ( 2563 10247 819210 ) ( 0 0 0 )
90880 191.9 ( 2563 10248 819210 ) ( 0 0 4 )
98048 192.7 ( 2563 10247 819211 ) ( 0 0 0 )
99072 195.3 ( 2563 10248 819211 ) ( 0 0 4 )
106240 196.1 ( 2563 10247 819212 ) ( 0 0 0 )
107264 198.7 ( 2563 10248 819212 ) ( 0 0 4 )
114432 199.5 ( 2563 10247 819213 ) ( 0 0 0 )
115456 202.0 ( 2563 10248 819213 ) ( 0 0 4 )
122624 202.9 ( 2563 10247 819214 ) ( 0 0 0 )
123648 205.4 ( 2563 10248 819214 ) ( 0 0 4 )
130816 206.1 ( 2563 102415 163847 ) ( 0 0 0 )
131840 208.6 ( 2563 102416 163847 ) ( 0 0 4 )
139008 209.6 ( 2563 10247 819216 ) ( 0 0 0 )
147200 209.8 ( 2563 102415 163848 ) ( 0 0 0 )
148224 212.3 ( 2563 102416 163848 ) ( 0 0 4 )
163584 213.5 ( 2563 102415 163849 ) ( 0 0 0 )
164608 216.1 ( 2563 102416 163849 ) ( 0 0 4 )
179968 217.2 ( 2563 102415 1638410 ) ( 0 0 0 )
180992 219.8 ( 2563 102416 1638410 ) ( 0 0 4 )
196352 220.9 ( 2563 102415 1638411 ) ( 0 0 0 )
197376 223.5 ( 2563 102416 1638411 ) ( 0 0 4 )
212736 224.6 ( 2563 102415 1638412 ) ( 0 0 0 )
213760 227.2 ( 2563 102416 1638412 ) ( 0 0 4 )
229120 228.3 ( 2563 102415 1638413 ) ( 0 0 0 )
230144 230.9 ( 2563 102416 1638413 ) ( 0 0 4 )
245504 232.0 ( 2563 102415 1638414 ) ( 0 0 0 )
246528 234.6 ( 2563 102416 1638414 ) ( 0 0 4 )
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261888 235.8 ( 2563 102415 1638415 ) ( 0 0 0 )
262912 238.3 ( 2563 102416 1638415 ) ( 0 0 4 )
278272 239.5 ( 2563 102415 1638416 ) ( 0 0 0 )
294656 241.5 ( 25615 40967 327688 ) ( 0 0 0 )
294912 244.2 ( 25616 40967 327688 ) ( 0 1 1 )
298752 244.9 ( 25615 40968 327688 ) ( 0 0 16 )
327424 245.2 ( 25615 40967 327689 ) ( 0 0 0 )
327680 247.9 ( 25616 40967 327689 ) ( 0 1 1 )
331520 248.6 ( 25615 40968 327689 ) ( 0 0 16 )
360192 248.9 ( 25615 40967 3276810 ) ( 0 0 0 )
360448 251.6 ( 25616 40967 3276810 ) ( 0 1 1 )
364288 252.3 ( 25615 40968 3276810 ) ( 0 0 16 )
392960 252.6 ( 25615 40967 3276811 ) ( 0 0 0 )
393216 255.3 ( 25616 40967 3276811 ) ( 0 1 1 )
397056 256.0 ( 25615 40968 3276811 ) ( 0 0 16 )
425728 256.3 ( 25615 40967 3276812 ) ( 0 0 0 )
425984 259.0 ( 25616 40967 3276812 ) ( 0 1 1 )
429824 259.7 ( 25615 40968 3276812 ) ( 0 0 16 )
458496 260.0 ( 25615 40967 3276813 ) ( 0 0 0 )
458752 262.7 ( 25616 40967 3276813 ) ( 0 1 1 )
462592 263.4 ( 25615 40968 3276813 ) ( 0 0 16 )
491264 263.7 ( 25615 40967 3276814 ) ( 0 0 0 )
491520 266.4 ( 25616 40967 3276814 ) ( 0 1 1 )
495360 267.1 ( 25615 40968 3276814 ) ( 0 0 16 )
524032 267.4 ( 25615 40967 3276815 ) ( 0 0 0 )
524288 270.1 ( 25616 40967 3276815 ) ( 0 1 1 )

A.2.3. Minimal-load partitions for the block length B=512

Filter
length N

Cost/sample Optimal partition
Popt

Segment
clearances

512 40.9 ( 5121 ) ( 0 )
1024 43.5 ( 5122 ) ( 0 )
1536 46.2 ( 5123 ) ( 0 )
2048 48.8 ( 5124 ) ( 0 )
2560 51.4 ( 5125 ) ( 0 )
3072 54.0 ( 5126 ) ( 0 )
3584 56.6 ( 5127 ) ( 0 )
4096 59.3 ( 5128 ) ( 0 )
4608 61.9 ( 5129 ) ( 0 )
5120 64.5 ( 51210 ) ( 0 )
5632 67.1 ( 51211 ) ( 0 )
6144 69.8 ( 51212 ) ( 0 )
6656 72.4 ( 51213 ) ( 0 )
7168 75.0 ( 51214 ) ( 0 )
7680 77.6 ( 51215 ) ( 0 )
8192 80.3 ( 51216 ) ( 0 )
8704 82.9 ( 51217 ) ( 0 )
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9216 85.5 ( 51218 ) ( 0 )
9728 88.1 ( 51219 ) ( 0 )
10240 90.7 ( 51220 ) ( 0 )
10752 93.4 ( 51221 ) ( 0 )
11264 96.0 ( 51222 ) ( 0 )
11776 98.6 ( 51223 ) ( 0 )
12288 101.2 ( 51224 ) ( 0 )
12800 103.9 ( 51225 ) ( 0 )
13312 106.5 ( 51226 ) ( 0 )
13824 109.1 ( 51227 ) ( 0 )
14336 111.7 ( 51228 ) ( 0 )
14848 114.4 ( 51229 ) ( 0 )
15872 116.5 ( 5123 20487 ) ( 0 0 )
16384 119.2 ( 5124 20487 ) ( 0 1 )
17920 119.9 ( 5123 20488 ) ( 0 0 )
19968 121.7 ( 5127 40964 ) ( 0 0 )
20480 124.4 ( 5128 40964 ) ( 0 1 )
24064 125.1 ( 5127 40965 ) ( 0 0 )
24576 127.7 ( 5128 40965 ) ( 0 1 )
28160 128.5 ( 5127 40966 ) ( 0 0 )
28672 131.1 ( 5128 40966 ) ( 0 1 )
32256 131.9 ( 5127 40967 ) ( 0 0 )
32768 134.5 ( 5128 40967 ) ( 0 1 )
36352 135.3 ( 5127 40968 ) ( 0 0 )
36864 137.9 ( 5128 40968 ) ( 0 1 )
40448 138.6 ( 5127 40969 ) ( 0 0 )
40960 141.3 ( 5128 40969 ) ( 0 1 )
44544 142.0 ( 5127 409610 ) ( 0 0 )
45056 144.6 ( 5128 409610 ) ( 0 1 )
48640 145.4 ( 5127 409611 ) ( 0 0 )
49152 148.0 ( 5128 409611 ) ( 0 1 )
52736 148.8 ( 5127 409612 ) ( 0 0 )
56832 149.6 ( 51215 81926 ) ( 0 0 )
57344 152.2 ( 51216 81926 ) ( 0 1 )
65024 152.9 ( 51215 81927 ) ( 0 0 )
65536 155.6 ( 51216 81927 ) ( 0 1 )
73216 156.3 ( 51215 81928 ) ( 0 0 )
73728 159.0 ( 51216 81928 ) ( 0 1 )
81408 159.7 ( 51215 81929 ) ( 0 0 )
81920 162.3 ( 51216 81929 ) ( 0 1 )
89600 163.1 ( 51215 819210 ) ( 0 0 )
90112 165.7 ( 51216 819210 ) ( 0 1 )
97792 166.5 ( 51215 819211 ) ( 0 0 )
98304 169.1 ( 51216 819211 ) ( 0 1 )
105984 169.9 ( 51215 819212 ) ( 0 0 )
106496 172.5 ( 51216 819212 ) ( 0 1 )
114176 173.2 ( 51215 819213 ) ( 0 0 )
114688 175.9 ( 51216 819213 ) ( 0 1 )
122368 176.6 ( 51215 819214 ) ( 0 0 )
122880 179.3 ( 51216 819214 ) ( 0 1 )
130560 180.0 ( 51215 819215 ) ( 0 0 )
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131072 182.6 ( 51216 819215 ) ( 0 1 )
138752 183.4 ( 51215 819216 ) ( 0 0 )
139264 186.0 ( 51216 819216 ) ( 0 1 )
146944 186.8 ( 51215 819217 ) ( 0 0 )
147456 189.4 ( 51216 819217 ) ( 0 1 )
155136 190.2 ( 51215 819218 ) ( 0 0 )
155648 192.8 ( 51216 819218 ) ( 0 1 )
163328 193.6 ( 51215 819219 ) ( 0 0 )
163840 196.2 ( 51216 819219 ) ( 0 1 )
171520 196.9 ( 51215 819220 ) ( 0 0 )
172032 199.6 ( 51216 819220 ) ( 0 1 )
179712 200.3 ( 51215 819221 ) ( 0 0 )
180224 202.9 ( 51216 819221 ) ( 0 1 )
187904 203.7 ( 51215 819222 ) ( 0 0 )
188416 206.3 ( 51216 819222 ) ( 0 1 )
196096 207.1 ( 51215 819223 ) ( 0 0 )
196608 209.7 ( 51216 819223 ) ( 0 1 )
204288 210.5 ( 51215 819224 ) ( 0 0 )
204800 213.1 ( 51216 819224 ) ( 0 1 )
228864 213.1 ( 5127 40967 327686 ) ( 0 0 0 )
229376 215.7 ( 5128 40967 327686 ) ( 0 1 1 )
232960 216.5 ( 5127 40968 327686 ) ( 0 0 8 )
261632 216.8 ( 5127 40967 327687 ) ( 0 0 0 )
262144 219.4 ( 5128 40967 327687 ) ( 0 1 1 )
265728 220.2 ( 5127 40968 327687 ) ( 0 0 8 )
294400 220.5 ( 5127 40967 327688 ) ( 0 0 0 )
294912 223.1 ( 5128 40967 327688 ) ( 0 1 1 )
298496 223.9 ( 5127 40968 327688 ) ( 0 0 8 )
327168 224.2 ( 5127 40967 327689 ) ( 0 0 0 )
327680 226.8 ( 5128 40967 327689 ) ( 0 1 1 )
331264 227.6 ( 5127 40968 327689 ) ( 0 0 8 )
359936 227.9 ( 5127 40967 3276810 ) ( 0 0 0 )
360448 230.5 ( 5128 40967 3276810 ) ( 0 1 1 )
364032 231.3 ( 5127 40968 3276810 ) ( 0 0 8 )
392704 231.6 ( 5127 40967 3276811 ) ( 0 0 0 )
393216 234.3 ( 5128 40967 3276811 ) ( 0 1 1 )
396800 235.0 ( 5127 40968 3276811 ) ( 0 0 8 )
425472 235.3 ( 5127 40967 3276812 ) ( 0 0 0 )
425984 238.0 ( 5128 40967 3276812 ) ( 0 1 1 )
429568 238.7 ( 5127 40968 3276812 ) ( 0 0 8 )
458240 239.0 ( 5127 40967 3276813 ) ( 0 0 0 )
458752 241.7 ( 5128 40967 3276813 ) ( 0 1 1 )
462336 242.4 ( 5127 40968 3276813 ) ( 0 0 8 )
491008 242.8 ( 5127 40967 3276814 ) ( 0 0 0 )
523776 243.8 ( 51215 81927 655367 ) ( 0 0 0 )
524288 246.4 ( 51216 81927 655367 ) ( 0 1 1 )
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A.2.4. Practical partitions of variant 1 for the block length B=128

Filter
length N

Cost/sample Optimal partition
Popt

Segment
clearances

128 43.0 ( 1281 ) ( 0 )
256 45.8 ( 1282 ) ( 0 )
384 48.7 ( 1283 ) ( 0 )
512 51.6 ( 1284 ) ( 0 )
640 54.4 ( 1285 ) ( 0 )
768 57.3 ( 1286 ) ( 0 )
896 60.2 ( 1287 ) ( 0 )
1024 63.0 ( 1288 ) ( 0 )
1152 65.9 ( 1289 ) ( 0 )
1280 68.8 ( 12810 ) ( 0 )
1408 71.6 ( 12811 ) ( 0 )
1536 74.5 ( 12812 ) ( 0 )
1664 77.4 ( 12813 ) ( 0 )
1792 80.2 ( 12814 ) ( 0 )
1920 83.1 ( 12815 ) ( 0 )
2048 86.0 ( 12816 ) ( 0 )
2176 88.8 ( 12817 ) ( 0 )
2304 91.7 ( 12818 ) ( 0 )
2432 94.6 ( 12819 ) ( 0 )
2560 97.4 ( 12820 ) ( 0 )
2688 100.3 ( 12821 ) ( 0 )
2816 103.2 ( 12822 ) ( 0 )
2944 106.0 ( 12823 ) ( 0 )
3072 108.9 ( 12824 ) ( 0 )
3200 111.8 ( 12825 ) ( 0 )
3328 114.7 ( 12826 ) ( 0 )
3456 117.5 ( 12827 ) ( 0 )
3840 120.2 ( 12810 5125 ) ( 0 7 )
4352 122.8 ( 12810 5126 ) ( 0 7 )
4864 125.4 ( 12810 5127 ) ( 0 7 )
5376 128.0 ( 12810 5128 ) ( 0 7 )
5888 130.7 ( 12810 5129 ) ( 0 7 )
6400 133.3 ( 12810 51210 ) ( 0 7 )
6912 135.9 ( 12810 51211 ) ( 0 7 )
7424 138.5 ( 12810 51212 ) ( 0 7 )
7936 141.1 ( 12810 51213 ) ( 0 7 )
8448 143.8 ( 12810 51214 ) ( 0 7 )
8960 146.4 ( 12810 51215 ) ( 0 7 )
9472 149.0 ( 12810 51216 ) ( 0 7 )
9984 151.6 ( 12810 51217 ) ( 0 7 )
10496 154.3 ( 12810 51218 ) ( 0 7 )
11008 156.9 ( 12810 51219 ) ( 0 7 )
11520 159.5 ( 12810 51220 ) ( 0 7 )
12032 162.1 ( 12810 51221 ) ( 0 7 )
12544 164.8 ( 12810 51222 ) ( 0 7 )
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13056 167.4 ( 12810 51223 ) ( 0 7 )
13568 170.0 ( 12810 51224 ) ( 0 7 )
14080 171.9 ( 12822 102411 ) ( 0 15 )
15104 174.5 ( 12822 102412 ) ( 0 15 )
16128 177.0 ( 12822 102413 ) ( 0 15 )
17152 179.6 ( 12822 102414 ) ( 0 15 )
18176 182.2 ( 12822 102415 ) ( 0 15 )
19200 184.7 ( 12822 102416 ) ( 0 15 )
20224 187.3 ( 12822 102417 ) ( 0 15 )
21248 189.9 ( 12822 102418 ) ( 0 15 )
22272 192.4 ( 12822 102419 ) ( 0 15 )
23296 195.0 ( 12822 102420 ) ( 0 15 )
24320 197.5 ( 12822 102421 ) ( 0 15 )
25344 200.1 ( 12822 102422 ) ( 0 15 )
26368 202.7 ( 12822 102423 ) ( 0 15 )
27392 205.2 ( 12822 102424 ) ( 0 15 )
28416 207.8 ( 12822 102425 ) ( 0 15 )
29440 210.3 ( 12822 102426 ) ( 0 15 )
30464 212.9 ( 12822 102427 ) ( 0 15 )
31488 215.5 ( 12822 102428 ) ( 0 15 )
32512 218.0 ( 12822 102429 ) ( 0 15 )
33536 220.6 ( 12822 102430 ) ( 0 15 )
34560 223.1 ( 12822 102431 ) ( 0 15 )
35584 225.7 ( 12822 102432 ) ( 0 15 )
36608 227.9 ( 12810 5129 204815 ) ( 0 7 31 )
37120 230.5 ( 12810 51210 204815 ) ( 0 7 35 )
37632 230.8 ( 12822 102434 ) ( 0 15 )
38656 231.2 ( 12810 5129 204816 ) ( 0 7 31 )
39168 233.8 ( 12810 51210 204816 ) ( 0 7 35 )
40704 234.6 ( 12810 5129 204817 ) ( 0 7 31 )
41216 237.2 ( 12810 51210 204817 ) ( 0 7 35 )
42752 237.9 ( 12810 5129 204818 ) ( 0 7 31 )
43264 240.5 ( 12810 51210 204818 ) ( 0 7 35 )
44800 240.7 ( 12810 51221 40968 ) ( 0 7 63 )
45312 243.4 ( 12810 51222 40968 ) ( 0 7 67 )
48896 244.1 ( 12810 51221 40969 ) ( 0 7 63 )
49408 246.8 ( 12810 51222 40969 ) ( 0 7 67 )
52992 247.5 ( 12810 51221 409610 ) ( 0 7 63 )
53504 250.1 ( 12810 51222 409610 ) ( 0 7 67 )
57088 250.9 ( 12810 51221 409611 ) ( 0 7 63 )
57600 253.5 ( 12810 51222 409611 ) ( 0 7 67 )
61184 254.3 ( 12810 51221 409612 ) ( 0 7 63 )
61696 256.9 ( 12810 51222 409612 ) ( 0 7 67 )
65280 257.7 ( 12810 51221 409613 ) ( 0 7 63 )
65792 260.3 ( 12810 51222 409613 ) ( 0 7 67 )
69376 261.0 ( 12810 51221 409614 ) ( 0 7 63 )
69888 263.7 ( 12810 51222 409614 ) ( 0 7 67 )
73472 264.4 ( 12810 51221 409615 ) ( 0 7 63 )
73984 267.0 ( 12810 51222 409615 ) ( 0 7 67 )
77568 267.8 ( 12810 51221 409616 ) ( 0 7 63 )
78080 270.4 ( 12810 51222 409616 ) ( 0 7 67 )
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81664 271.2 ( 12810 51221 409617 ) ( 0 7 63 )
82176 273.8 ( 12810 51222 409617 ) ( 0 7 67 )
85760 274.6 ( 12810 51221 409618 ) ( 0 7 63 )
89856 276.2 ( 12822 102421 81928 ) ( 0 15 127 )
90880 278.8 ( 12822 102422 81928 ) ( 0 15 135 )
98048 279.6 ( 12822 102421 81929 ) ( 0 15 127 )
99072 282.2 ( 12822 102422 81929 ) ( 0 15 135 )
106240 283.0 ( 12822 102421 819210 ) ( 0 15 127 )
107264 285.6 ( 12822 102422 819210 ) ( 0 15 135 )
114432 286.4 ( 12822 102421 819211 ) ( 0 15 127 )
115456 288.9 ( 12822 102422 819211 ) ( 0 15 135 )
122624 289.8 ( 12822 102421 819212 ) ( 0 15 127 )
123648 292.3 ( 12822 102422 819212 ) ( 0 15 135 )
130816 293.2 ( 12822 102421 819213 ) ( 0 15 127 )
131840 295.7 ( 12822 102422 819213 ) ( 0 15 135 )
139008 296.5 ( 12822 102421 819214 ) ( 0 15 127 )
140032 299.1 ( 12822 102422 819214 ) ( 0 15 135 )
147200 299.9 ( 12822 102421 819215 ) ( 0 15 127 )
148224 302.5 ( 12822 102422 819215 ) ( 0 15 135 )
155392 303.3 ( 12822 102421 819216 ) ( 0 15 127 )
156416 305.9 ( 12822 102422 819216 ) ( 0 15 135 )
163584 306.7 ( 12822 102421 819217 ) ( 0 15 127 )
164608 309.2 ( 12822 102422 819217 ) ( 0 15 135 )
171776 310.1 ( 12822 102421 819218 ) ( 0 15 127 )
172800 312.6 ( 12822 102422 819218 ) ( 0 15 135 )
179968 313.5 ( 12822 102421 819219 ) ( 0 15 127 )
180992 316.0 ( 12822 102422 819219 ) ( 0 15 135 )
188160 316.8 ( 12822 102421 819220 ) ( 0 15 127 )
189184 319.4 ( 12822 102422 819220 ) ( 0 15 135 )
196352 320.2 ( 12822 102421 819221 ) ( 0 15 127 )
197376 322.8 ( 12822 102422 819221 ) ( 0 15 135 )
204544 323.6 ( 12822 102421 819222 ) ( 0 15 127 )
205568 326.2 ( 12822 102422 819222 ) ( 0 15 135 )
212736 327.0 ( 12822 102421 819223 ) ( 0 15 127 )
213760 329.5 ( 12822 102422 819223 ) ( 0 15 135 )
220928 330.4 ( 12822 102421 819224 ) ( 0 15 127 )
221952 332.9 ( 12822 102422 819224 ) ( 0 15 135 )
229120 333.8 ( 12822 102421 819225 ) ( 0 15 127 )
230144 336.3 ( 12822 102422 819225 ) ( 0 15 135 )
237312 337.1 ( 12822 102421 819226 ) ( 0 15 127 )
238336 339.7 ( 12822 102422 819226 ) ( 0 15 135 )
245504 340.5 ( 12822 102421 819227 ) ( 0 15 127 )
246528 343.1 ( 12822 102422 819227 ) ( 0 15 135 )
253696 343.9 ( 12822 102421 819228 ) ( 0 15 127 )
254720 346.5 ( 12822 102422 819228 ) ( 0 15 135 )
261888 347.3 ( 12822 102421 819229 ) ( 0 15 127 )
262912 349.9 ( 12822 102422 819229 ) ( 0 15 135 )
270080 350.7 ( 12822 102421 819230 ) ( 0 15 127 )
278272 351.8 ( 12810 51221 40969 1638414 ) ( 0 7 63 255 )
278784 354.4 ( 12810 51222 40969 1638414 ) ( 0 7 67 259 )
282368 355.2 ( 12810 51221 409610 1638414 ) ( 0 7 63 287 )
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294656 355.5 ( 12810 51221 40969 1638415 ) ( 0 7 63 255 )
295168 358.2 ( 12810 51222 40969 1638415 ) ( 0 7 67 259 )
298752 358.9 ( 12810 51221 409610 1638415 ) ( 0 7 63 287 )
311040 359.2 ( 12810 51221 40969 1638416 ) ( 0 7 63 255 )
311552 361.9 ( 12810 51222 40969 1638416 ) ( 0 7 67 259 )
315136 362.6 ( 12810 51221 409610 1638416 ) ( 0 7 63 287 )
327424 363.0 ( 12810 51221 40969 1638417 ) ( 0 7 63 255 )
327936 365.6 ( 12810 51222 40969 1638417 ) ( 0 7 67 259 )
331520 366.3 ( 12810 51221 409610 1638417 ) ( 0 7 63 287 )
343808 366.7 ( 12810 51221 40969 1638418 ) ( 0 7 63 255 )
360192 368.2 ( 12822 102421 81929 327688 ) ( 0 15 127 511 )
361216 370.8 ( 12822 102422 81929 327688 ) ( 0 15 135 519 )
368384 371.6 ( 12822 102421 819210 327688 ) ( 0 15 127 575 )
392960 372.0 ( 12822 102421 81929 327689 ) ( 0 15 127 511 )
393984 374.5 ( 12822 102422 81929 327689 ) ( 0 15 135 519 )
401152 375.3 ( 12822 102421 819210 327689 ) ( 0 15 127 575 )
425728 375.7 ( 12822 102421 81929 3276810 ) ( 0 15 127 511 )
426752 378.2 ( 12822 102422 81929 3276810 ) ( 0 15 135 519 )
433920 379.0 ( 12822 102421 819210 3276810 ) ( 0 15 127 575 )
458496 379.4 ( 12822 102421 81929 3276811 ) ( 0 15 127 511 )
459520 381.9 ( 12822 102422 81929 3276811 ) ( 0 15 135 519 )
466688 382.8 ( 12822 102421 819210 3276811 ) ( 0 15 127 575 )
491264 383.1 ( 12822 102421 81929 3276812 ) ( 0 15 127 511 )
492288 385.6 ( 12822 102422 81929 3276812 ) ( 0 15 135 519 )
499456 386.5 ( 12822 102421 819210 3276812 ) ( 0 15 127 575 )
524032 386.8 ( 12822 102421 81929 3276813 ) ( 0 15 127 511 )

A.2.5. Practical partitions of variant 2 for the block length B=128

Filter
length N

Cost/sample Optimal partition
Popt

Segment
clearances

128 43.0 ( 1281 ) ( 0 )
256 45.8 ( 1282 ) ( 0 )
384 48.7 ( 1283 ) ( 0 )
512 51.6 ( 1284 ) ( 0 )
768 88.5 ( 1282 2562 ) ( 0 1 )
1024 91.2 ( 1282 2563 ) ( 0 1 )
1280 93.9 ( 1282 2564 ) ( 0 1 )
1536 96.6 ( 1282 2565 ) ( 0 1 )
1792 99.3 ( 1282 2566 ) ( 0 1 )
2048 101.9 ( 1282 2567 ) ( 0 1 )
2304 104.6 ( 1282 2568 ) ( 0 1 )
2560 107.3 ( 1282 2569 ) ( 0 1 )
2816 110.0 ( 1282 25610 ) ( 0 1 )
3072 112.7 ( 1282 25611 ) ( 0 1 )
3328 115.4 ( 1282 25612 ) ( 0 1 )
3584 118.1 ( 1282 25613 ) ( 0 1 )
3840 120.7 ( 1282 25614 ) ( 0 1 )
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4096 123.4 ( 1282 25615 ) ( 0 1 )
4352 126.1 ( 1282 25616 ) ( 0 1 )
4608 128.8 ( 1282 25617 ) ( 0 1 )
4864 131.5 ( 1282 25618 ) ( 0 1 )
5120 134.2 ( 1282 25619 ) ( 0 1 )
5376 136.9 ( 1282 25620 ) ( 0 1 )
5632 139.5 ( 1282 25621 ) ( 0 1 )
5888 142.2 ( 1282 25622 ) ( 0 1 )
6144 144.9 ( 1282 25623 ) ( 0 1 )
6400 147.3 ( 1282 2564 10245 ) ( 0 1 3 )
7424 149.8 ( 1282 2564 10246 ) ( 0 1 3 )
8448 152.4 ( 1282 2564 10247 ) ( 0 1 3 )
9472 154.9 ( 1282 2564 10248 ) ( 0 1 3 )
10496 157.5 ( 1282 2564 10249 ) ( 0 1 3 )
11520 160.1 ( 1282 2564 102410 ) ( 0 1 3 )
12544 162.6 ( 1282 2564 102411 ) ( 0 1 3 )
13568 165.2 ( 1282 2564 102412 ) ( 0 1 3 )
14592 167.7 ( 1282 2564 102413 ) ( 0 1 3 )
15616 170.3 ( 1282 2564 102414 ) ( 0 1 3 )
16640 172.9 ( 1282 2564 102415 ) ( 0 1 3 )
17664 175.4 ( 1282 2564 102416 ) ( 0 1 3 )
18688 178.0 ( 1282 2564 102417 ) ( 0 1 3 )
19712 180.5 ( 1282 2564 102418 ) ( 0 1 3 )
20736 181.7 ( 1282 2568 20489 ) ( 0 1 3 )
20992 184.4 ( 1282 2569 20489 ) ( 0 1 5 )
22784 185.1 ( 1282 2568 204810 ) ( 0 1 3 )
23040 187.8 ( 1282 2569 204810 ) ( 0 1 5 )
24832 188.4 ( 1282 2568 204811 ) ( 0 1 3 )
25088 191.1 ( 1282 2569 204811 ) ( 0 1 5 )
26880 191.8 ( 1282 2568 204812 ) ( 0 1 3 )
27136 194.5 ( 1282 2569 204812 ) ( 0 1 5 )
28928 195.1 ( 1282 2568 204813 ) ( 0 1 3 )
29184 197.8 ( 1282 2569 204813 ) ( 0 1 5 )
30976 198.5 ( 1282 2568 204814 ) ( 0 1 3 )
31232 201.2 ( 1282 2569 204814 ) ( 0 1 5 )
33024 201.3 ( 1282 25616 40967 ) ( 0 1 3 )
33280 204.0 ( 1282 25617 40967 ) ( 0 1 5 )
37120 204.7 ( 1282 25616 40968 ) ( 0 1 3 )
37376 207.4 ( 1282 25617 40968 ) ( 0 1 5 )
41216 208.1 ( 1282 25616 40969 ) ( 0 1 3 )
41472 210.8 ( 1282 25617 40969 ) ( 0 1 5 )
45312 211.5 ( 1282 25616 409610 ) ( 0 1 3 )
45568 214.2 ( 1282 25617 409610 ) ( 0 1 5 )
49408 214.9 ( 1282 25616 409611 ) ( 0 1 3 )
49664 217.6 ( 1282 25617 409611 ) ( 0 1 5 )
53504 218.3 ( 1282 25616 409612 ) ( 0 1 3 )
53760 220.9 ( 1282 25617 409612 ) ( 0 1 5 )
57600 221.6 ( 1282 25616 409613 ) ( 0 1 3 )
57856 224.3 ( 1282 25617 409613 ) ( 0 1 5 )
61696 225.0 ( 1282 25616 409614 ) ( 0 1 3 )
61952 227.7 ( 1282 25617 409614 ) ( 0 1 5 )
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65792 228.4 ( 1282 25616 409615 ) ( 0 1 3 )
66816 230.3 ( 1282 2564 10248 81927 ) ( 0 1 3 11 )
69888 231.8 ( 1282 25616 409616 ) ( 0 1 3 )
75008 233.6 ( 1282 2564 10248 81928 ) ( 0 1 3 11 )
76032 236.2 ( 1282 2564 10249 81928 ) ( 0 1 3 19 )
83200 237.0 ( 1282 2564 10248 81929 ) ( 0 1 3 11 )
84224 239.6 ( 1282 2564 10249 81929 ) ( 0 1 3 19 )
91392 240.4 ( 1282 2564 10248 819210 ) ( 0 1 3 11 )
92416 243.0 ( 1282 2564 10249 819210 ) ( 0 1 3 19 )
99584 243.8 ( 1282 2564 10248 819211 ) ( 0 1 3 11 )
100608 246.4 ( 1282 2564 10249 819211 ) ( 0 1 3 19 )
107776 247.2 ( 1282 2564 10248 819212 ) ( 0 1 3 11 )
108800 249.7 ( 1282 2564 10249 819212 ) ( 0 1 3 19 )
115968 250.6 ( 1282 2564 10248 819213 ) ( 0 1 3 11 )
116992 253.1 ( 1282 2564 10249 819213 ) ( 0 1 3 19 )
124160 253.9 ( 1282 2564 10248 819214 ) ( 0 1 3 11 )
125184 256.5 ( 1282 2564 10249 819214 ) ( 0 1 3 19 )
132352 257.1 ( 1282 2564 102416 163847 ) ( 0 1 3 11 )
133376 259.7 ( 1282 2564 102417 163847 ) ( 0 1 3 19 )
140544 260.7 ( 1282 2564 10248 819216 ) ( 0 1 3 11 )
148736 260.9 ( 1282 2564 102416 163848 ) ( 0 1 3 11 )
149760 263.4 ( 1282 2564 102417 163848 ) ( 0 1 3 19 )
165120 264.6 ( 1282 2564 102416 163849 ) ( 0 1 3 11 )
166144 267.1 ( 1282 2564 102417 163849 ) ( 0 1 3 19 )
181504 268.3 ( 1282 2564 102416 1638410 ) ( 0 1 3 11 )
182528 270.8 ( 1282 2564 102417 1638410 ) ( 0 1 3 19 )
197888 272.0 ( 1282 2564 102416 1638411 ) ( 0 1 3 11 )
198912 274.5 ( 1282 2564 102417 1638411 ) ( 0 1 3 19 )
214272 275.7 ( 1282 2564 102416 1638412 ) ( 0 1 3 11 )
215296 278.3 ( 1282 2564 102417 1638412 ) ( 0 1 3 19 )
230656 279.4 ( 1282 2564 102416 1638413 ) ( 0 1 3 11 )
231680 282.0 ( 1282 2564 102417 1638413 ) ( 0 1 3 19 )
247040 283.1 ( 1282 2564 102416 1638414 ) ( 0 1 3 11 )
248064 285.7 ( 1282 2564 102417 1638414 ) ( 0 1 3 19 )
263424 286.8 ( 1282 2564 102416 1638415 ) ( 0 1 3 11 )
264448 289.4 ( 1282 2564 102417 1638415 ) ( 0 1 3 19 )
266496 289.7 ( 1282 25616 40968 327687 ) ( 0 1 3 35 )
279808 290.5 ( 1282 2564 102416 1638416 ) ( 0 1 3 11 )
280832 293.1 ( 1282 2564 102417 1638416 ) ( 0 1 3 19 )
299264 293.4 ( 1282 25616 40968 327688 ) ( 0 1 3 35 )
299520 296.0 ( 1282 25617 40968 327688 ) ( 0 1 5 37 )
303360 296.7 ( 1282 25616 40969 327688 ) ( 0 1 3 67 )
332032 297.1 ( 1282 25616 40968 327689 ) ( 0 1 3 35 )
332288 299.8 ( 1282 25617 40968 327689 ) ( 0 1 5 37 )
336128 300.4 ( 1282 25616 40969 327689 ) ( 0 1 3 67 )
364800 300.8 ( 1282 25616 40968 3276810 ) ( 0 1 3 35 )
365056 303.5 ( 1282 25617 40968 3276810 ) ( 0 1 5 37 )
368896 304.2 ( 1282 25616 40969 3276810 ) ( 0 1 3 67 )
397568 304.5 ( 1282 25616 40968 3276811 ) ( 0 1 3 35 )
397824 307.2 ( 1282 25617 40968 3276811 ) ( 0 1 5 37 )
401664 307.9 ( 1282 25616 40969 3276811 ) ( 0 1 3 67 )
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430336 308.2 ( 1282 25616 40968 3276812 ) ( 0 1 3 35 )
430592 310.9 ( 1282 25617 40968 3276812 ) ( 0 1 5 37 )
434432 311.6 ( 1282 25616 40969 3276812 ) ( 0 1 3 67 )
463104 311.9 ( 1282 25616 40968 3276813 ) ( 0 1 3 35 )
463360 314.6 ( 1282 25617 40968 3276813 ) ( 0 1 5 37 )
467200 315.3 ( 1282 25616 40969 3276813 ) ( 0 1 3 67 )
495872 315.6 ( 1282 25616 40968 3276814 ) ( 0 1 3 35 )
496128 318.3 ( 1282 25617 40968 3276814 ) ( 0 1 5 37 )
499968 319.0 ( 1282 25616 40969 3276814 ) ( 0 1 3 67 )
528640 319.3 ( 1282 25616 40968 3276815 ) ( 0 1 3 35 )

A.3. Identities

Any sequence x(n) can be decomposed into an even part xeven(n) and an
odd part xodd(n) using the well-known relation [74]

x(n) = xeven(n) + xodd(n) with

xeven(n) =
x(n) + x(N − n)

2

xodd(n) =
x(n)− x(N − n)

2

(A.3)

Let N, i, j ∈ Z (i, j < N) be integers. The following equivalences hold for
series of powers-of-two and of multiples of powers-of-two:

N−1∑
i=0

2i = 2N − 1 (Geometric series) (A.4)

N−1∑
i=j

2i =

N−1∑
i=0

2i −
j−1∑
i=0

2i = 2N − 2j (A.5)

N−1∑
i=0

i2i =

N−1∑
j=1

N−1∑
i=j

2i =

N−1∑
j=1

(
2N − 2j

)
=

N−1∑
j=1

2N −
N−1∑
j=1

2j

= (N − 1)2N − (2N − 2) = N2N − 2N+1 + 2 (A.6)
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[63] T. Lentz, D. Schröder, G. Behler, and M. Vorländer. Real-time audio
rendering system for virtual reality. Journal of the Acoustical Society
of America (JASA), Vol. 120(5), 2006.
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