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SE 41296 Göteborg, Sweden
e-mail: carsten.hoever@chalmers.se

Abstract
In recent years the method of waveguide finite element modelling has emerged as a suitable tool for the
simulation of the structural behaviour of tyres. It combines cross-sectional finite element modelling with
classical wave propagation methods along the waveguide. Compared to traditional finite element methods it
is numerically much more efficient and provides greater physical insights into the vibrational behaviour. In
an ongoing project an existing waveguide finite element model for the calculation of stationary (non-rolling)
tyre vibrations is extended to allow for calculation of the stress distributions inside a rolling tyre being in
contact with the ground. The results are used to identify local areas of high stress, which are not only
important from a structural point of view but which can also be associated with high energy losses due to
dissipation, hence affecting the overall rolling resistance of the tyre. The procedure and preliminary results
will be presented.

1 Introduction

In the year 2006 the fuel consumption in the road transportation sector was responsible for 23 % of the
CO2 emissions in the European Union [1] and 26 % in the United States [2] — in both cases with absolute
emission values remaining constant or even increasing since 1990. As there is sustained demand for personal
mobility and transportation services in most societies, it seems unlikely that a reduction of CO2 emissions
can be achieved by a reduction of mileage travelled. Instead, one possible of way of reducing CO2 emissions
is by finding ways to increase the energy effectivity of existing means of transportation.

For cars powered by classical combustion engines, only about 10 % to 20 % of the chemical energy stored
in the fuel is available as mechanical energy at the axles to drive the wheels, the remainder being consumed
by engine inefficiency, friction in the driveline, standby operation or auxiliary appliances (e.g. the A/C
system) [3]. Ultimately, these 10 % to 20 % are consumed by aerodynamic drag, rolling resistance and brak-
ing/acceleration. Depending on the driving conditions, approximately 4 % to 7 % of the fuel consumption
are based on rolling losses in the tyres, see [3]. For trucks and other heavy vehicles, the influence is even
higher [4].

Hence, a reduction of the energy losses due to rolling resistance has a strong potential of reducing a vehicle’s
overall fuel consumption. The Transportation Research Board of the United States, for example, has come
to the conclusion that “a 10 percent reduction in average rolling resistance [...] promises a 1 to 2 percent
increase in fuel economy” [3]. For the United States, this equivalents a reduction of the overall yearly fuel
consumption by 3.7 · 109 l to 7.5 · 109 l.

About 80 % to 95 % percent of rolling losses can be attributed to hysteretic losses in the tyres [5], i.e. the
dissipation is based on the viscoelastic properties of the tyre material. Most of the dissipation is related to



deformation of the rubber material in the tread, hence possible ways of reducing the rolling resistance are
changing the tread geometry, the rubber compound or reducing the thread thickness [5]. Any change of an
individual tyre parameter, however, does not only affect rolling losses, but also other important aspects like
wear, traction or noise generation. This is a problem which is even intensified by the complex tyre structure
with inhomogenous and anisotropic material properties. Knowledge about how the hysteretic losses are
distributed in the structure of a tyre rolling on an actual road and which vibrational modes contribute mostly
to these losses can help to make design decisions for tyres with a low rolling resistance.

For this, a waveguide finite element tyre model [6] is combined with a quasi three-dimensional contact
model [7], to give the vibrational behaviour of the tyre when rolling on a real road. This is then used
to calculate the strain energy distribution inside the tyre respectively over the different vibrational modes,
which, together with the local loss factors, can be directly related to the internal damping of the tyre [8].

2 Fundamentals of rolling resistance and prediction methods

Generally, rolling resistance is defined as the mechanical energy converted into heat for a unit distance
travelled [9], with a unit of J/m. Traditionally, this has been associated with a drag force of unit N opposing
the direction of motion. Since the more general energy based definition seems to be more appropriate within
the scope of this study, it will be used in the following. This also allows the use the term rolling loss as an
equivalent expression for rolling resistance.

As mentioned before, the majority of the rolling loss can be attributed to hysteresis. During rolling, the tyre
material is periodically deformed. Due to the viscoelastic properties of the rubber compound, in each cycle
not all of the stored elastic energy can be regained, instead a part of it is dissipated. The main cause of
deformation for a rolling tyre is the flattening of the contact patch which leads to bending of the crown, the
sidewalls and the bead area, compression of the tread and shearing of the tread and the sidewall [5]. These
disturbances propagate inside the tyre structure as waves in a variety of different mode shapes and orders,
leading to dissipation. How dissipation is distributed among different wave modes is one of the areas of
interest for this study.

For todays usually used radial tires most of the dissipation occurs in the tread which is usually made out of a
rubber compound consisting of natural and/or synthetic polymers, reinforcing fillers and some additives (e.g.
oils). This is due to the high loss factor of rubber and the fact that the tread is comparably soft (especially
when compared to the belt with its reinforcing plies), allowing for large deformations and hence a high
potential energy.

The viscoelastic properties of the rubber compound are highly temperature and frequent dependent [10].
Additionally, the rolling resistance shows a more or less prominent dependance on a variety of features such
as tyre load, tyre geometry, tyre pressure, driving speed, (road) surface geometry, condition and roughness,
etc. A thorough description of these effects is outside the scope of this study, detailed information can for
example be found in [4, 5].

In this study, the main focus will be on developing a method which is suitable for the evaluation of the
distribution of potential energy inside a rolling tyre. Moreover, the influence of vibrational parameters like
frequency and mode order is investigated. For this, the aforementioned parameters are kept fixed in this
study. At later stages the model will be used to evaluate the dependance of rolling resistance on changes in
certain parameters such a type of tyre or road.

The method is based on the property that the energy dissipation within a structure is determined by the
product between local potential energy and local loss factors [8], hence potential energy and rolling loss
are directly related. At this stage, the method does not aim at calculating detailed values for the dissipated
energy. This is due to the fact that this would require full knowledge about the loss factor in specific regions
of the tyre, which is not available in the necessary detail level. Even though basically every tyre model
includes some assumptions on loss factor characteristics for the tyre, these values vary considerably between



different models1 and it is believed that good simulation results for certain cases (such as point and transfer
mobility calculations) do not automatically indicate exact loss factor assumptions, especially not on a more
local level. A notable effort at estimating viscoelastic details for a tyre structure is made in [11], however
the employed process is quite tedious and requires dedicated measurements of the specific tyre. Hence,
dissipation will be assumed to be based on a set of rather global loss factor assumptions for the time being.

A good summary of existing literature on the evaluation of rolling losses can be found in [3]. For the
sake of brevity, only a few models are mentioned in the following. Both Hall and Moreland [4] and Lin
and Hwang [12] calculate the dissipation based heat distributions inside a rolling tyre. References to tyre
vibrations are, however, not drawn. Yam et al. [13] base their work on experimental modal analysis data,
leading to total values for rolling resistance based on different velocities or loads. Stutts and Soedel [14]
use a stationary tension band on an elastic foundation to calculate the rolling resistance from the deflection
in the contact zone. The work of Fraggstedt [11] is the basis for this analysis. He calculates the dissipated
power inside a tyre based on the imaginary parts of the stiffness and mass matrices of a waveguide finite
element model of a tyre rolling on a road. Frequency and wave order distributions are shown as well as
individual element contributions to the overall dissipation. However, a detailed analysis of the results is
missing, instead the focus is on the calculation of total dissipated power for individual road surfaces. Also,
this approach relies heavily on an accurate loss factor data for the definition the complex stiffness and mass
matrices.

2.1 Review of existing tyre models

Since the mid-1960s, a variety of different models have been developed, aiming at simulating the dynamic
response of tyres. They range from analytical models, based on coarse simplifications of the geometrical and
material properties, to highly sophisticated numerical models, accounting for the detailed physical properties
of tyres. In the following, a selection of tyre models found in the open scientific literature is reviewed.

One of the first models was presented by Böhm in [15], where the tyre belt was described as a pretensioned
ring, resting on a Winkler bedding. The bedding represents the sidewalls and the enclosed air cavity, whereas
the pretension force is due to the inflation pressure. The general idea of modelling the vibrational behaviour
as some kind of ring or plate structure on an elastic foundation has thereafter been used in many more and
more refined variations, e.g. by Kropp and co-workers [16, 17, 18], Kim and Bolton [19], Muggleton et
al. [20] or more recently by Kindt et al. [21]. Although these models are simple, fast and generally capture
the dynamic behaviour quite well within a certain frequency region, they are of limited use when the local
stress distribution is of interest, as they lack the necessary level of structural detail.

The rapid development of computer capacity during recent decades has made it possible to perform detailed
modelling of tyres using the finite element method (FEM). A number of examples are found in the literature,
of which a few are Kung et al. [22], Richards [23] and Pietrzyk [24], who all modelled free or forced response
cases. The response of rotating tyres, making contact with the ground, was modelled by Fadavi et al. [25],
Brinkmeier et al. [26] and by Lopez et al. [27]. Generally, FEM models, although flexible and capable of
giving insight into local properties, suffer from high requirements on computer capacity and need for detailed
input data.

Waki et al. [28] presented a model based on an approach in which the tyre is considered as a waveguide
along the circumferential direction. Initially, a short section of the waveguide is modelled using standard
finite elements. A periodicity condition is then applied. This results in an eigenvalue problem from which
the dispersion properties and cross-section modes are obtained. Nilsson [29] developed a model based on the
waveguide finite element method (WFEM). This approach is related to that of Waki et al. in the sense that it
also makes use of an FE technique to model the response of waveguides. The model considers the structural
as well as fluid domain, using waveguide finite elements of the thin shell type, fluid type and fluid–structure
coupling type. A modified version of the model in [29] has also been presented in [11], where thick shell

1A short literature study revealed that loss factors used for the belt region vary from 0.04 to 0.25 between different publications.



elements were used to model the sidewalls and belt and solid elements to model the tread. An additional
difference as compared to [29] is that the air cavity was excluded. By utilising the waveguide properties of
the tyre, the computational burden is significantly reduced compared to traditional FEM modelling. Also the
wave characteristics are more directly captured than with the FEM.

The model described in [11], with one simplification introduced, has also been implemented by two of
the authors to describe the wave field in a stationary tyre (cf. [6]). The model is also well suited for the
assessment of rolling losses as intended here: Hamilton’s principle, which is used for the derivation of the
governing equations, inherently includes a description of the potential energy and due to being an assembly
of individual elements, the investigation is easily possible on a sub-structure basis. Some details of the model
will be described in the Sec. 3.1.

3 The tyre model

3.1 Waveguide finite element modelling

The waveguide finite element model of the tyre being used in this study is, apart from some small changes,
identical to the the one previously described by two of the authors in [6]. It is modified version of the model
presented in Paper B of [11] with differences being the omission of the rim from the assembly and changes
in the implementation of damping. In the following a short overview of waveguide finite element modelling
is given.

A waveguide is a system which has constant geometrical and material properties along one, typically “long”
dimension, along which the motion can be described conveniently by a set of propagating waves with the
right set of boundary conditions. In this sense a tyre is a waveguide for which the motion along the circum-
ferential dimension can be described by a set of waves fulfilling a periodicity condition u(φ) = u(φ± 2π),
where u denotes the tyre displacement.

Typical other waveguide examples include beams and plates [31] or rails [32]. In the waveguide finite el-
ement method (WFEM) the waveguide property is used in conjunction with conventional two-dimensional
finite element modelling of the waveguide cross-section, i.e. in a cylindrical coordinate system the displace-
ment component ui for a point (r, x, φ) is given by (time dependency ejωt dropped in the following)

ui(r, x, φ) = N(r, x)vi(φ) i = r, x, φ . (1)

Herein, N is a vector of cross-sectional FE shape functions while vi represents the corresponding nodal
degrees of freedom. Thus, only the displacement dependance on the cross-sectional coordinates is approxi-
mated using FE modelling, while the nodal displacements are functions of the angular coordinate φ, Hence,
they depend on the assumed wave propagation along this dimension.

Finnveden and Fraggstedt have shown [30] that based on Eq. (1), using a modified Hamilton’s principle
which accounts for harmonic response and the viscoelastic properties of the tyre material, and application of
common FE procedures, a set of coupled ordinary differential equations is obtained:

[
−A11

∂2

∂φ2
+ (A01 − A10)

∂

∂φ
+ A00 − ω2M

]
v(φ) = f(φ) . (2)

The generalised stiffness matrices Anm and the mass matrix M are derived from the tyre’s potential respec-
tively kinetic energies and f is the generalised force vector describing the external load. By setting f = 0 the
homogeneous case is obtained, for which solutions are given by exponential functions of kind

v(φ) = v̂eiκφ . (3)



These can be physically interpreted as waves of cross-sectional mode shape v̂ travelling along the circum-
ferential direction with polar wavenumber κ. Inserting (3) into (2) results in an eigenvalue problem which
can be solved to get the eigenfrequencies and mode shapes for a specific polar wave number. The forced
response case, (i.e. the solution to the inhomogeneous form of (2)), can for example be solved by means of
an assumed mode procedure as described in [11].

3.2 Modelling of rolling contact

The model for the contact between the rolling tyre and the road surface is based on quasi-3D model described
in [7]. It accounts for the radial contact forces which are due to the indenting of the road roughness into the
tyre tread. To get accurate results, three-dimensional roughness data is necessary, i.e. it is not sufficient
to include only one roughness track along the circumferential direction, it has also to be accounted for the
roughness variation along the lateral direction. It has also to be considered that the tyre vibrations are a
function of the contact forces while, at the same time, the contact forces also are a function of the tyre
vibrations. This non-linearity leads to a formulation in the time domain.

For a specific contact patch and radial contact forces, the dynamic problem can be described by the following
system of equations

F(t) = C−1 ∆y(t) (4a)

∆y(t) = y0(t) + kr(t) + ξ(t) − kt(t) (4b)

ξn(t) =
∑
m

Fm(t) ∗ gm,n(t) , (4c)

where F(t) are the contact forces for all contact points, C is an influence matrix obtained from an elastic-half
space representation of the tyre tread and ∆y(t) is the deformation of the tread. y0(t) denotes the centre
position of the rim whereas kr(t) and kr(t) describe the profile of the road roughness and the tyre and are
obtained from scanning of the actual surfaces. Finally, ξ(t) is the dynamic displacement of the tyre structure
around the neutral line. Its components ξn(t) are given by the convolution of the contact force Fm(t) at
position m, with the Green’s function gm,n(t). The Green’s functions can be directly obtained from the
WFE model described in Sec. 3.1 by calculation the responses for point force excitation and subsequent
Fourier transformation. The set of equations (4) is finally iteratively solved for every time step.

In order to decrease the computational burden and due to the nature of the WFEM mesh, different levels of
discretisation are used for the road roughness and tyre profiles. Whereas the discretisation of the road and
tyre profiles is very fine to capture even small variations, the discretisation of the contact patches on the tyre
structure is coarser, i.e. the contact forces are integrated locally to excite specific solid elements of the tread
structure. The validity of this approach is shown in [7]. By transformation to the frequency domain and
adaption to the WFEM tyre model, the generalised force f(φ) in Eq. (2) is obtained from F(t).

3.3 Strain energy and power dissipation

According to [30] the strain potential for a viscoelastic material is given as

Ū =

∫
V

εaTDε dV (5a)

=

2π∫
0

1∑
n=0

1∑
m=0

∂nvaT

∂φn
Anm

∂mv

∂φm
dφ (5b)
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Figure 1: Mesh of the modelled 205/55R16 tyre. Each • represents one node with each shell element having
three and each solid element having nine nodes.

Eq. (5a) gives the general strain potential relation for the domain V , based on the engineering strain ε and
the rigidity matrix D, while Eq. (5b) follows from the application of the WFEM principle (1), the strain-
displacement relations and the assembly of the cross-section structure. T denotes transpose and a denotes the
complex conjugate in an mathematically adjoint system with negative damping. The latter is a conceptual
trick used in the formulation of the variational principle for viscoelastic materials upon which Eq. (2) is
based. For details the reader is referred to [30].

Since the stiffness matrices Anm are based on the FE element formulations and the subsequent assembly
process, it is possible to calculate the strain potential Û for individual elements, the whole tyre or any sub-
structure in-between, as long as the nodal displacements v are known. Upon this basis a detailed investigation
of the strain potential distribution in the tyre structure is possible. From this, an evaluation of the dissipated
power can be conducted.

3.4 Modelling details

In this study a model similar to that of the 205/55R16 tyre as previously described in [6] is used. It consists
of 29 deep shell elements which constitute the sidewalls and the belt, and 13 two-dimensional solid elements
which are used to model the rubber tread. In [11] a mesh of similar size is shown to give sufficient results up
to at least 1000 Hz, which was also proven by a small convergence study. Along the tyre circumference, 512
response positions are evaluated.

The deep shell elements account for anisotropy, rotational inertia, shearing across the element and pretension
due to the tyre inflation and are based on quadratic shape functions. The solid elements are of isotropic, two-
dimensional Lagrange type. A detailed description of both element types can be found in [30]. The resulting
cross-sectional tyre mesh can be found in Fig. 1. Even though a complete tyre has a very complicated internal
structure, this mesh is sufficient for a waveguide finite element model since, neglecting the tread pattern, the
cross-sectional geometry and material parameters are constant along the circumferential direction.

As previously mentioned, the tyre is considered not to have any tread groves. Moreover, the air cavity is not
explicitly modelled (but the resulting pre-tension is included) as fluid and structure modes are only weakly
coupled in tyres [23]. Hence, it is believed that the influence of the cavity modes on the stress distribution
can be neglected. Also the wheel is not included in the simulations since its influence is mostly relevant
when comparing low frequency response between simulations and measurements on a freely suspended tyre
where the rim’s mass considerably influences the low frequency behaviour. Concluding, it is believed that it
is sufficiently to simulate the influence of the wheel by blocking the tyre motion at the bead and the influence
of the air cavity by including pre-tension due to inflation in the shell elements.
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Figure 2: Dissipated power as function of frequency. Frequencies higher than 500 Hz omitted due to negli-
gible influence on dissipation.

Most of the required input data for the elastic properties, pretension forces, densities and damping parameters
is based on an input deck provided by a tyre manufacturer and a subsequent refinement of this data based on
a comparison of simulation results to measured transfer functions. In the following a brief overview of the
input parameters is given, for a detailed description of this process see [6].

For the isotropic solid elements in the tread a frequency independent Young’s modulusE of roughly 20 MPa
and a Poisson’s ratio ν of 0.49 are assumed. The necessary stiffnesses for the shell elements are directly
taken from the input deck, with the following small adaptions: A small frequency dependance included in
the input deck data is neglected, missing values for shear stiffnesses across the element thickness are set to be
equal to the in-plane shear stiffness and the circumferential bending stiffness is reduced by 50 %. Adaption
of the pretension values includes a correction of unphysical lateral pretension near the beds and a reduction
of the circumferential pretension by 25 %.

Damping is based on a stiffness-proportional model. For the shell elements the frequency dependent loss
factor η assumes a value of 0.05 below the cut-on frequency of the first symmetric belt bending mode and
0.15 above it with a transition region extending from roughly 280 Hz to 370 Hz. For the solid elements
representing the highly damped rubber, the loss factor is set to η = 0.25.

For the rolling contact a speed of 50 km/h and a loading of 3000 N are assumed. The tyre surface profile
is taken from a measurement of a slick tyre profile and the road roughness profile is based on a scan of 15
lateral tracks of an drum-mounted ISO 512 road surface. Rolling losses are averaged over a road surface
length corresponding to three full tyre revolutions. The obtained frequency resolution is 3.5 Hz.

4 Results

Due to time constraints only preliminary results are shown in the following. Figures 2 and 3 show the dis-
tribution of the dissipated power over frequency respectively circumferential wave order. All of the relevant
dissipation occurs below 200 Hz, with a considerable level of dissipation in a broad low frequency region,
followed by a very distinct maxima at 85 Hz and two other maxima of lesser importance at 103 Hz and
154 Hz. In the circumferential wave order domain, dissipation is concentrated at wave orders 1 to 5 with an
emphasis on orders 1, 2 and, to a lesser degree, 4. Wave orders 10 and higher only contribute to a very small
extent to the dissipation.

Additional insight into the distribution of the rolling losses between different frequencies and wave orders
can be gained by Fig. 4. Therein, a majority of the dissipation occurring at 85 Hz can be related to wave
order 1. According to [6] this corresponds to a semi-rigid body mode of the tyre where the belt acts as a rigid
ring being displaced in radial direction as shown in Fig. 5. Similar relations can be established between the
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Figure 3: Dissipated power as a function of circumferential wave order.
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Figure 4: Dissipated power as a function of frequency and circumferential wave order. Colour scaling is in
dB re. maximum of plot.
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Figure 5: Cross-sectional mode shape for 85 Hz and wave order 1. Note: Shown mesh is not the one used in
this study.
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Figure 6: Cross-sectional mode shape for 625 Hz and wave order 20. Note: Shown mesh is not the one used
in this study.

dissipation peaks at 103 Hz respectively 154 Hz and circumferential wave orders 2 respectively 4. In both
cases the cross-sectional mode shape is basically identical to the one previously shown for the semi-rigid
case, i.e. it is dominated by a radial motion of the whole tread region as shown in Fig. 4. Accordingly, all
three modes are strongly excited by radial forces applied to the tread. An analysis of dispersion relations
conducted in [6] reveals that all three cases belong to a set of waves with similar cross-sectional shapes.
The concentration of rolling losses along a nearly straight line up to wave order 15 at approximately 500 Hz
in Fig. 4 can also be attributed to this wave set. The importance of these waves for the rolling resistance
decreases with increasing frequency, which is due to a gradual change of cross sectional mode shape towards
higher frequencies, until there is no tread deformation anymore and only side-wall motion, see Fig. 6. In
addition, with increasing order the wavelength becomes equal or smaller than the contact length (which
is around 10 cm), which means that the contribution of these modes to the global deformation of the tyre
structure in the contact area is rapidly decreasing. This might explain the change in Fig. 4 from order 9 to
order 10. For order 9, the circumferential wavelength is about twice the contact length. Still, below wave
order 11 and 400 Hz major parts of the dissipation can clearly be associated with this set of waves.

In Fig. 4 further sets of waves can be identified, all of which represent symmetric belt bending modes which
are characterised by an odd number M of half wavelengths of out-of-plane displacement over the cross
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Figure 7: Cross-sectional mode shape for 385 Hz and wave order 8. Note: Shown mesh is not the one used
in this study.
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Figure 8: Comparison of used drum-mounted ISO road surface profile (red) with typical ISO surface profile
(black).

section, as shown exemplarily for M = 5 in Fig. 7. Their overall contribution to the dissipation, however, is
of minor importance.

Contrary to this concentration of dissipation to individual wave orders for frequencies above approximately
80 Hz, a more widespread distribution of rolling loses can be found in the lower frequency regime, covering
wave orders from 1 to 15 or even higher. This might be caused by the low frequency nature of the contact
excitation and the lack of tyre eigenmodes in this region. Due to the characteristics of the specific ISO road
profile scan, a strong low frequency content is inherent in the excitation, see Fig. 8 where a part of the used,
drum-mounted, ISO road surface scan is compared to a typical ISO surface.

The local distribution of power dissipation between the different elements can be seen in Fig. 9. The lack
of symmetry can be explained by the specific characteristics of the ISO road surface where a higher road
profile can be found for one side. The fact that most dissipation occurs in the shell elements is somewhat
unexpected but might be related to the specific tyre investigated in this study.

Finally, the total dissipated power is given as 643 W, a value which is in the same range as expected from
the results shown in [11].
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Figure 9: Distribution of dissipation between individual shell (black ∗) and solid (red �) elements. Asym-
metry due to local features of the road roughness profile.

5 Conclusion

A way is shown how to assess rolling losses based on the strain energy distribution in an existing waveguide
finite element model of a car tyre which is coupled with a quasi three-dimensional model for rolling contact.
Preliminary results based on a specific ISO road roughness profile are used to show the general applicability
of this approach. The estimated total rolling loss is comparable to values found in the literature and detailed
examination of the frequency and wave order content reveal the importance of the contact patch size and
a strong influence of a limited set of tyre modes on the rolling resistance. In general, rolling resistance
seems to be a low-frequency, low wave order problem. The solid rubber elements seem to contribute less
to the dissipation as expected, which will be the topic of further investigations in the future. A necessary
improvement is an averaging over a longer section of road roughness profiles to reduce the influence of very
specific local characteristics. This was only partly possible for this study due to time constraints. Further
studies will include evaluation of the influence of different conditions such as road profile, speed, loading,
etc. on the rolling loss distribution.
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