
Poster: Debugging Inputs
Lukas Kirschner

CISPA – Helmholtz Center for
Information Security
Saarbrücken, Germany

s8lukirs@stud.uni-saarland.de

Ezekiel Soremekun
CISPA – Helmholtz Center for

Information Security
Saarbrücken, Germany

ezekiel.soremekun@cispa.saarland

Andreas Zeller
CISPA – Helmholtz Center for

Information Security
Saarbrücken, Germany
zeller@cispa.saarland

ABSTRACT
Program failures are often caused by invalid inputs, for instance due
to input corruption. To obtain the passing input, one needs to debug
the data. In this paper we present a generic technique called ddmax
that (1) identifies which parts of the input data prevent processing,
and (2) recovers as much of the (valuable) input data as possible. To
the best of our knowledge, ddmax is the first approach that fixes
faults in the input data without requiring program analysis. In our
evaluation, ddmax repaired about 69% of input files and recovered
about 78% of data within one minute per input.

1 INTRODUCTION
Several techniques for automated debugging have been developed
in research and practice [5, 7]. Most of these techniques focus
on program code, i.e. identifying fault locations in the code and
synthesizing fixes for this code. However, program failures are often
caused by invalid inputs, such invalid inputs are prevalent in the
wild. In fact, four percent of input files in the wild are invalid, they
could not be processed either by their grammar or program(s) [4].

If input data is corrupted, the easiest remedy is to use a backup.
But if a backup does not exist, one may want to recover as much
data as possible from the existing data—or in other words, debug
the data. However, debugging input data can be very tedious. For
instance, consider a large Wavefront OBJ file with one corrupted
line (e.g. an invalid character inside a “usemtl” statement). To fix
such an error by hand, one would have to scroll through thousands
of lines of code to find the single corrupted character [4].

In this paper, we introduce a generic input repair method which
does precisely this: Given a failure-inducing input, it automatically
produces a 1-maximal subset in which every single element (charac-
ter) from the original input is added without producing a failure. We
obtain this method by inverting the original delta debugging (ddmin)
algorithm [8] into a ddmax algorithm, repeatedly adding data from
the originally failing input (first larger pieces, then smaller pieces)
as long as the failure does not occur.

The ddmin algorithm [8] focuses on identifying error causes
in the input by simplifying a failure-inducing input down to a
minimum that reproduces the error. Unfortunately, ddmin is not
a good fit for input repair: It produces the smallest subset of the
input that also produces an input error—typically a single character.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7122-3/20/05.
https://doi.org/10.1145/3377812.3390797

{ "item": "Apple", "price": **3.45 }

Figure 1: Failing JSON input

{ "item": "Apple", "price" 3.45 }

Figure 2: Failing JSON input with missing colon

However, ddmax identifies the invalid input fragment quickly (for
debuggers) while also preserving a maximum of content (for users).

For instance, consider Figure 1, a JSON input with a syntax error;
ddmax produces the “repaired” (passing) input subset — { "item":
"Apple", "price": 3.45 }, where the faulty characters “**” are removed.
The difference between the repaired input and the original input,
gives a precise diagnosis of the cause of the failure (for debuggers),
and serve as a debugging aid for developers. In contrast, ddmin
produces the reduced input consisting of a single character (“{”)
which produces a syntax error. This ddmin output is neither useful
for diagnosis nor data recovery.

2 APPROACH
We present two variants of the ddmax algorithm: (1) lexical ddmax
which repairs arbitrary invalid inputs at the character level, and
(2) syntactic ddmax which perform input repair on the parse tree.

Lexical ddmax. The ddmax algorithm uses the same setting as
ddmin; however, rather than minimizing the failure-inducing input
c✘, it starts with a passing input c ′✔ = c✔. Like ddmin, it assumes
for simplicity that c✔ = ∅ holds. It then maximizes c ′✔, systemati-
cally minimizing the difference between c ′✔ and c✘ using the same
techniques as ddmin (first progressing with large differences, then
smaller differences), until every remaining difference would cause
c ′✔ to fail. This makes ddmax act in exact symmetry to ddmin, and
complements the original definitions of dd and ddmin [8].

Syntactic ddmax. We introduce the syntactic ddmax algorithm,
which improves the performance of ddmax using the input grammar.
The key insight is to execute ddmax on the parse tree of the input,
instead of the input characters. This improves the runtime and
general performance of the ddmax algorithm, since it can easily
exclude corrupted parse tree nodes or subtrees during test runs.
The knowledge of the input structure ensures that the resulting
recovered inputs are syntactically valid. This helps in the case of
syntax errors and multiple corruptions on the input (structure).

For instance, consider the corrupted JSON input in Figure 2.
Repairing this input using the lexical ddmax algorithm results in
the JSON input — { "item": "Apple" }, which would take over 100
test runs. For this example, syntactic ddmax reduces the number of
test runs of ddmax to nine, improving performance by ten fold.

ICSE ’20 Companion, October 5–11, 2020, Seoul, Republic of Korea Lukas Kirschner, Ezekiel Soremekun, and Andreas Zeller

3 EXPERIMENTS
We evaluate our approaches on three input formats (namely, JSON,
Wavefront OBJ and DOT [1]) using eight subject programs, namely
Blender, Assimp, Appleseed, JQ, JSON-Simple, Minimal-JSON,
Graphviz, and Gephi [4]. The test oracle for ddmax is a crashing
oracle. An input is treated as invalid if it crashes the subject program,
produces no output or the program runs for more than 10 seconds.

Protocol: We collected a corpus of 7835 unique input files crawled
from Github [2] and filtered them into sets of valid files and invalid
files. Then, we randomly selected and mutated 50 valid crawled
files to produce an additional set of corrupted input files. We fed
an invalid file to each subject program (called Baseline), and the
ANTLR parser framework [6]. ANTLR executed its default error
recovery strategy while generating a parse tree for the input [3].
Finally, we fed the invalid file to ddmax to test the input under
repair repeatedly using the feedback from the subject program.

RQ1 Effectiveness: How effective is lexical and syntactic ddmax
in repairing invalid input documents within a time budget of one
minute per file? For all input formats, ddmax repaired 69% of in-
valid inputs within a time budget of one minute per input. Lexical
ddmax repaired about two-thirds (66%) of all invalid inputs and
significantly outperforms both the baseline and ANTLR. Syntactic
ddmax repaired about three-quarters (73%) of all invalid inputs,
it is about 10% more effective than lexical ddmax. It significantly
outperformed both the built-in repair strategies of the subject pro-
grams and ANTLR, it repaired five times as many files as the subject
programs, and almost twice as many files as ANTLR. This confirms
that using the input grammar improves the performance of ddmax.

RQ2DataRecovery: Howmuch data is recovered by ddmax? Over-
all, ddmax has a high data recovery rate, it recovered about 78% of
data. On average, syntactic ddmax (89%) has a higher data recovery
rate in comparison to lexical ddmax (58%). For all invalid inputs,
the baseline and ANTLR maintain an almost perfect data recovery
rate, but repair signifiantly fewer inputs (see RQ1).

RQ3 Diagnostic Quality: How effective is ddmax in diagnosing
the root cause of invalid inputs, especially in comparison to ddmin?
On average, only one-eighth (12%) of a ddmin diagnosis contains
the minimal failure cause and about one-third (33%) of ddmin diag-
nosis contains the maximal passing input. Given that ddmax was
completely executed without a timeout, the repair of ddmax is the
maximal passing input and ddmax diagnosis is the minimal failure
cause. As expected ddmin diagnosis is significantly larger (21 times
more) than the ddmax diagnosis, hence, it contains a significant
amount of noise (33%), i.e. portions of the maximal passing input.

4 LIMITATIONS
Both lexical and syntactic ddmax are limited in the following ways:
Context Sensitivity. If the input format has several context-sensitive
dependencies, such as checksums, hashes, encryption, or references,
a strict lexical or syntactical subset may not be sufficient to produce
a valid repair. Learning and checking for such input context can
improve the performance of ddmax.
Data repair, not information repair. Even though the resulting
ddmax repair may be lexically or syntactically close to the original

input, it can have very different semantics. We are exploring how
to extend ddmax to account for (domain-specific) semantics.
Input Semantics.Although, ddmax obtains some “semantic” infor-
mation from the feedback of the subject program itself, this feedback
is limited to failure characteristics, i.e. “pass” or “fail”. However, it
is possible to extend ddmax to include (domain-specific) semantic
checks, which could either be defined as the execution of specific
program artifacts such as a specific branch, or programmatically
defined by a developer (e.g. as an expected program output).
Multiple repairs. If there are multiple ways to repair an input,
ddmax will produce only one of them. This property is shared
with dd and ddmin, which also pick a local minimum rather than
searching for a global one. However, it would be easy to modify
ddmax to assess all alternative repairs rather than the first repair.

5 CONCLUSION AND FUTUREWORK
We have presented ddmax— the first generic technique for auto-
matically repairing failure-inducing inputs, it recovers a maximal
subset of the input that can still be processed by the program at
hand. Our work opens the door for a number of exciting research
opportunities in the following areas:
Synthesizing input structures. We are investigating grammar-
based production strategies to synthesize missing input fragments,
such input synthesis can improve ddmax’s performance.
Hybrid repair. Both ddmax variants can be combined such that
after syntactic ddmax is executed on the parse tree, lexical ddmax
further repairs the bytes in the faulty nodes. This improves the
effectiveness of ddmax and reduces the number of iterations.
Semantic Input Repair. The ddmax test oracle can be extended
to include checks for desirable “semantic” properties. For instance,
to check if some function or output is observed during repair. These
checks would ensure that the resulting maximized passing input is
semantically similar to the original input and avoids the failure.
Fuzzing. Both variants of ddmax can be applied to improve soft-
ware fuzzing. For instance, mutational fuzzers often produce mal-
formed inputs that can be repaired by ddmax, to ensure validity.

A replication package of ddmax’s evaluation is available at:
https://tinyurl.com/debugging-inputs-icse-2020

REFERENCES
[1] GitHub. 2018. Grammars written for ANTLR v4. https://github.com/antlr/

grammars-v4
[2] GitHub Inc. 2018. REST API v3. https://developer.github.com/v3/
[3] ANTLR 4.7.1 API JavaDocs. 2018. Class DefaultErrorStrategy. https://www.antlr.

org/api/Java/org/antlr/v4/runtime/DefaultErrorStrategy.html
[4] L Kirschner, E Soremekun, and A Zeller. 2020. Debugging Inputs. In The 42nd

International Conference on Software Engineering (ICSE 2020).
[5] Alexandru Marginean, Johannes Bader, Satish Chandra, Mark Harman, Yue Jia,

Ke Mao, Alexander Mols, and Andrew Scott. 2019. Sapfix: Automated end-to-
end repair at scale. In Proceedings of the 41st International Conference on Software
Engineering: Software Engineering in Practice. IEEE Press, 269–278.

[6] Terence Parr and Kathleen Fisher. 2011. LL(*): The Foundation of the ANTLR
Parser Generator. SIGPLAN Not. 46, 6 (June 2011), 425–436. https://doi.org/10.
1145/1993316.1993548

[7] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A survey
on software fault localization. IEEE Transactions on Software Engineering 42, 8
(2016), 707–740.

[8] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183–200. https://doi.org/
10.1109/32.988498

