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Abstract 
This article describes the user modeling, feature extraction and bagged decision tree methods that 

were used to win 2
nd

 place student prize and 4
th

 place overall in the ACM’s 2010 KDD Cup. 
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1 Introduction 

The datasets for the 2010 KDD Cup came from Intelligent Tutoring Systems (ITS) used by 

thousands of students over the course of the 2008-2009 school year. This was the first time the 

ACM used an educational data set for the competition and also marked the largest dataset the 

competition has hosted thus far. There were 30 million training rows and 1.2 million test rows in 

total occupying over 9 gigabytes on disk. The competition consisted of two datasets from two 

different algebra tutors. One came from the Carnegie Learning Algebra system; this dataset was 

simply called “Algebra”. The other came from the Bridge to Algebra system whose dataset was 

aptly called “Bridge to Algebra”. The task was to predict if a student answered a given math step 

correctly or incorrectly. Predictions between 0 and 1 were allowed and were scored based on 

RMSE. In addition to the two challenge datasets, three datasets were released prior to the start of 

the official competition. Two datasets were from the two previous years of the Carnegie Learning 

Algebra tutor and one was from the previous year of the Bridge to Algebra tutor. These datasets 

were referred to as the development datasets. Full test labels were given for these datasets so that 

competitors could familiarize themselves with the data and test various prediction strategies 

before the official competition began. These datasets were also considerably smaller, roughly 

1/5
th
 the size of the competition datasets. A few anomalies in the 2007-2008 Algebra dataset were 

announced early on, so that dataset will not be analyzed in this article. 

1.1 Summary of methods used in the final prediction 

The final prediction was a combination of Bayesian Hidden Markov Models (HMMs) and bagged 

decision trees. The HMM used was a novel Bayesian model developed based on work by Pardos 

& Heffernan (2010) that predicts the probability of knowledge for each student at each 

opportunity as well as a prediction of probability of correctness on each step. The model learns 

individualized student specific parameters (learn rate, guess and slip) and then uses these 

parameters to train skill specific models. The resulting model that considers the composition of 

user and skill parameters outperforms models that only take into account parameters of the skill. 

The Bayesian model was used in a variant of ensemble selection (Caruana and Niculescu-Mizil, 
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2004) and also to generate extra features for the decision tree classifier. The bagged decision tree 

classifier was the primary classifier used and was developed by Leo Breiman (2001).  

1.2 The Anatomy of the Tutor  

While the two datasets came from different tutors, the format of the datasets and underlying 

structure of the tutors was the same. A typical use of the system would be as follows; students 

would start a math curriculum determined by their teacher. The student would answer math 

question on the tutor and would be given tutorial help if they answered incorrectly. The tutorial 

help would often involve asking a series of additional questions that broke the problem into sub 

steps. A student could also request a hint but requesting a hint would mark the student as getting 

the step wrong in the system.  

The largest curriculum component in the tutor is a unit. Units contain sections and sections 

contain problems. Problems are the math questions that the student tries to answer and can consist 

of multiple steps. Each row in the dataset represented a student’s answer to a single step in a 

problem. Determining whether or not a student answers a problem step correctly on the first 

attempt was the prediction task of the competition.  

Students’ advancing through the tutor is based on their mastery of the skills involved in the 

pedagogical unit they are working on. If students do not master all the skills in a unit, they cannot 

proceed on their own, however, a teacher may intervene and skip them ahead. 

1.3 Missing data in the test sets 

Seven columns in the training sets were intentionally omitted from the test sets. These columns 

either involved time, such as timestamp and step duration or information about performance on 

the question, such as hints requested or number of incorrect attempts at answering the step. 

In the development datasets, the chronology of the steps in the test rows with respect to the 

training rows could be determined by the row ID column, however, in the challenge set the row 

ID of the test rows was reset to 1. The test row chronology was inferred based on the unit in 

which the student answered problem steps in. A student’s rows for a given unit in the test set 

were assumed to come directly after their rows for that unit in the training set. While there may 

have been exceptions, this was a safe assumption to make given the organizers description of how 

the test rows were selected which was that an arbitrary problem was selected from each of the 

units a student completed. The steps in that problem became the test rows and all steps prior to 

those became part of the training set. 

2 Pre-processing 

The Algebra dataset contained 24 columns while the Bridge to Algebra dataset contained 20. The 

first step to being able to work with the dataset was to convert the ASCII text fields of the 

columns into strictly numeric values. This was done using perl to hash text values such as 

anonymized usernames and skill names into integer values. The timestamp field was converted to 

epoc and the problem hierarchy field was parsed into separate unit and section values.  

Special attention was given to the step duration column that describes how long the student 

spent answering the step. This column had a high percentage of null and zero values making it 

very noisy. For the rows in which the step during value was null or zero, a replacement to the step 

duration value was calculated as the time elapsed between the current row’s timestamp and the 

next row’s timestamp for that same user. Outlier values for this recalculated step time were 

possible since the next row could be another day that the student used the system. It was also the 

case that row ID ordering did not strictly coincide with timestamp ordering so negative step 

duration values occurred periodically. Whenever a negative value or value greater than 1,000 

seconds was encountered, the default step duration value of null or zero was kept. The step 

duration field was used for feature generation described in the Random forests section. 
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2.1 Knowledge Component columns in the dataset 

The Knowledge Component (KC) columns in the dataset described the skill or skills involved in 

the row’s problem step. Different KC columns used a different group of skills to describe a 

problem step. The KCs are used in Cognitive Tutoring to track student learning over the course of 

the curriculum. A KC skill tagging that more accurately represents the student’s knowledge at 

that time will also more accurately predict future performance. Because of this it was important to 

explore which KC columns most accurately fit the data for each dataset. 

2.1.1 Rows of data where a KC column had no value 

There were a large percentage of rows (~20-25%) in both the training and test sets in which one 

or more KC columns had no value. That is, no skill was associated with the problem step. The 

Bayesian model needs skill associations to predict performance so this issue needed to be 

addressed. The solution was to treat null KC values as a separate skill with ID 1, called the NULL 

skill. A skill that appears in a separate unit is considered a separate skill so there were as many 

null ID skills as there were units. These null skill steps were predicted with relatively low error 

(RMSE ~0.20). In personal communication with Carnegie Learning staff after the competition, it 

was suggested that the majority of the null steps were most likely non math related steps such as 

closing an application window or clicking a button. 

2.1.2 Handling of KC values with multiple skills 

There can be one or more skills associated with a step for any of the KC columns. Modeling 

multiple skills with Knowledge Tracing is significantly more complex and is not currently done 

within the Cognitive Tutor. To avoid having to model multiple skills per step, the KC values with 

multiple skills were collapsed into one skill. Two ways of collapsing the values were tried, 

creating two separate versions of the KC columns. The first way was to keep only the most 

difficult skill. This approach is based on the hypothesis that skills compose conjunctively in an 

ITS. Difficulty was calculated based on percent correct of all rows in the training set containing 

that skill. The second way of collapsing multiple skill values was to treat a unique set of skills as 

a completely separate skill. The result of this processing was the generation of two skill models 

for each KC column for each challenge set. For the development datasets, only the “treat a set of 

skills as a separate skill” strategy was used. 

2.1.3 Creating internal testing and training sets 

The competition’s test sets represent student responses that chronologically directly follow the 

responses in the training set for each student per unit. We could have arbitrarily split the training 

set allowing for a 2-fold cross validation, however arbitrary selecting rows for internal training 

and testing would not respect the temporal aspect of the data. Instead, the internal test set was 

created by taking the last problem responses per student per unit in the training set. The internal 

training set then became what was left after removing those last responses. The intuition behind 

this organization was that the internal predictions would be more accurate at forecasting 

challenge test set predictions if the internal training and test sets were symmetric to the challenge 

training and test sets. This method also allowed for features relating to recent student 

performance to be appended to the test sets. In order to test the effectiveness of ensemble 

selection and of the Random forest classification, without going to the public leader board, a 

second internal test and training set was created from the first internal training set
1
. While the 

training sets were used to train the Bayesian models, the test sets, using feature extraction, were 

good enough samples of the dataset to serve as highly accurate training sets for the challenge test 

set.  

                                                      
1 In comments about the method in submissions to the leaderboard, the names ECO and PRE were used to referred to 

the two internal Bayesian test sets that served as training sets for the Random forests. 
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3 Bayesian Networks Approach 

Bayesian Networks were used to model student knowledge over time. A simple HMM with one 

hidden node and one observed node has been the standard for tracking student knowledge in ITS 

and was introduced to the domain by Corbett and Anderson (1995). In this model, known as 

knowledge tracing, a student’s incorrect and correct responses to questions of a particular skill are 

tracked. Based on the parameters of the HMM for that skill and the student’s past responses, a 

probability of knowledge is inferred. In the Cognitive Tutor, students who know a skill with 95% 

probability, according to the HMM, are considered to have mastered that skill. There are four 

parameters of the HMM and they are typically learned from the data using Expectation 

Maximization (EM). A max iteration of 100 and was used for EM parameter learning. EM will 

also stop if the log likelihood fit to the data increases by less than 1e-5 between iterations. 

3.1 The Prior Per Student Model (Simple Model) 

Standard knowledge tracing has four parameters that are learned per skill. The parameters capture 

the concepts of learning rate, prior knowledge, guess rate and slip rate. Work by Pardos and 

Heffernan (2010) has shown that specifying a separate prior per student in the training and 

predictions steps can increase the accuracy of the learned parameters and of the prediction 

accuracy. In that work, simulated datasets created from a known distribution were analyzed by 

the standard knowledge tracing model and by one that allowed for a prior per student based on 

the student’s first response. The prior per student model resulted in more accurate predictions as 

well as convergence to the ground truth parameter values regardless of initial parameter values 

for EM parameter learning. The standard knowledge tracing model, however, was very sensitive 

to initial parameter values in converging to the ground truth parameters. 

 

 

Figure 1. Simple HMM: Prior per student model 

Figure 1 describes the Prior Per Student (PPS) model. In this model the student node can take on 

any value from 1 to N where N is the number of students, however, we have found that using a 

student’s first response to seed the prior is an effective heuristic. We refer to this as the cold start 

heuristic. If a student answers the first observed step incorrectly, they are assigned a prior of 0.10, 

if they answer the step correctly; they are assigned a prior of 0.85. These values were chosen ad-

hoc based on experimentation with this and other datasets. One alternative to the ad-hoc setting is 

to let the two prior seeding values be adjusted and learned from data. These values may be 

capturing guess and slip probabilities so another alternative is to have the prior seeding values be 

the same as the guess and slip values. We tested these three strategies with the two development 

datasets and found the following results, shown in Table 1. 

Model Parameters
P(L0) = Probability of initial knowledge
P(L0|S) = Individualized P(L0)
P(T) = Probability of learning
P(G) = Probability of guess
P(S) = Probability of slip

Node representations
K  = Knowledge node
Q = Question node
S = Student node 

K K K

Q Q Q

P(T) P(T)P(L0|S)

P(G)

P(S)

S

Prior Per Student Model

Node states
K = Two state (0 or 1)
Q = Two state (0 or 1)
S  = Two state (0 or 1)
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 Algebra (development) 

 Strategy RMSE 

1 adjustable 0.3659 

2 guess/slip 0.3660 

3 Ad-hoc 0.3662 
 

 Bridge to Algebra (development) 

 Strategy RMSE 

1 guess/slip 0.3227 

2 adjustable 0.3228 

3  Ad-hoc 0.3236 
 

Table 1. Results of prior seeding strategies on the two development datasets 

Table 1 shows that for the algebra (development) datasets, the difference between the ad-hoc and 

adjustable strategy was 0.0003. This appeared to be a small benefit at the time and the extra free 

parameters of the adjustable strategy added to the compute time of the EM runs. While the 

guess/slip strategy added less compute time than the adjustable strategy, the ad-hoc value strategy 

was chosen to be used going forward with all models used for the competition datasets because of 

the small difference in RMSE and because this strategy had already been more carefully studied 

in past work (Pardos & Heffernan, 2010). Another reason Ad-hoc was chosen is because it 

appeared to be the best strategy in the bridge to algebra dataset when initially calculated. Upon 

closer inspection for this article, the Ad-hoc prediction was short around 250 rows compared to 

the other strategy predictions. After correcting this, the guess/slip strategy appears favorable. 

3.1.1 Limiting the number of student responses used 

The EM training for skills with high amounts of student responses would take up over 8gigs of 

memory on the compute machines. This was too much as the machines used to run these models 

had only 8 gigs and reaching into swap memory caused the job to take consderiably longer to 

finish. The skills with high amounts of data often had over 400 responses by one student. To 

alleviate the memory strain, limits were placed on the number of most recent responses that 

would be used in training and prediction. The limits tested were 5, 10, 25, 150 and none. 

 

 Algebra (development) 

 Limit RMSE 

1 25 0.3673 

2 150 0.3675 

3 none 0.3678 

4 10 0.3687 

5 5 0.3730 
 

 Bridge to Algebra (development) 

 Limit RMSE 

1 10 0.3220 

2 25 0.3236 

3 5 0.3239 

4 none 0.3252 

5 150 0.3264 
 

Table 2. Results of limiting the number of most recent student responses used 

Table 2 shows the prediction RMSE on the development sets when limiting the number of most 

recent student responses used for training and prediction. A surprising result was that very few 

responses were needed to achieve the same or better results as using all data. In the algebra 

(development) set, 25 was the best limit of the limits tried and was the second best limit in the 

bridge to algebra (development) set. This prediction improvement was a welcomed bonus to 

eliminating the memory issue which would have been compounded when working with the much 

larger competition set. A limit of 25 would be used for all subsequent models. 

3.1.2 Distribution of skill parameters 

Using the model in Figure 1, learn, guess and slip rates were learned from the data for all 387 

skills in the algebra (development) set and 442 skills in the bridge to algebra (development) set. 

The distribution of the values of those parameters for each dataset is shown in Figure 2. 
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Algebra (development) 

 
Bridge to Algebra (development) 

 

Figure 2. Distribution of skill parameters in the algebra and bridge to algebra development sets 

Figure 2 shows that both datasets are populated with skills of various learning rates with a higher 

frequency of skills that are either very hard or very easy to learn. Both datasets have a high 

frequency of skills that are both hard to guess and hard to slip on. The Algebra (development) set 

appears to have slightly more skills with higher slip rates than bridge to algebra (development).  

3.1.3 Prediction performance of the KC models in the challenge datasets 

Unlike the development sets, the challenge datasets had multiple KC columns which gave 

different skill associations for the step. The bridge to algebra set had two KC columns while the 

algebra set had three. As described in section 3.2, two versions of each KC model were created, 

each using a different strategy for converting multi skill step representations to a single skill. The 

results in Table 3 describe the KC model and RMSE. KC model “2-1”, for instance, refers to the 

2
nd

 KC column for that dataset using “use the hardest skill” for multiple skill steps while KC 

model “2-2” refers to the 2
nd

 KC column using “treat a set of skills as a separate skill”. 

 

 Algebra (challenge) 

 KC model RMSE 

1 3-1 0.2834 

2 3-2 0.2835 

3 1-1 0.3019 

4 1-2 0.3021 

5 2-2 0.3049 

6 2-1 0.3050 
 

 Bridge to Algebra (challenge) 

 KC model RMSE 

1 1-1 0.2858 

2 1-2 0.2860 

3 2-1 0.2870 

4 2-2 0.2871 
 

Table 3. Prediction accuracy of the KC models in both challenge datasets 

The most significant observation from Table 3 is the considerably superior performance of 

the third KC model in the algebra set. The different of 0.0185 between the algebra KC models 3-1 

and 1-1 is greater than the RMSE difference between the first and tenth overall finisher in the 

competition. The difference between multiple skill approach 1 and 2 was negligible.  
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It is important to note that the Bayesian models only made predictions when there existed 

previous responses by the student to the skill being predicted. If no prior skill data existed no 

prediction was made. This occurred in a significant portion of the test data (~10%). Therefore, the 

RMSE scores shown in Table 3 represent the RMSE only for the predicted rows and not the 

entire test set. It was also the case that total number of predicted rows for each KC model differed 

by ~1,200, likely due to a Bayesian skill prediction job not finishing or other processing anomaly. 

While 1,200 rows only constitutes 0.2% of the total algebra test rows it was a significant enough 

difference to cause the algebra 3-2 KC model to appear to have a lower RMSE than 3-1 and for 

the bridge to algebra KC model 1-2 to appear to have a lower RMSE than 1-1. Because of this, all 

subsequent models were created using 3-2 and 1-2. The RMSE scores in Table 3 were calculated 

based only on the test rows that all the KC model predictions had in common which was 

435,180/508,912 (86%) rows for algebra and 712,880/774,378 (92%) rows for bridge to algebra. 

The additional prediction rows were filled in by Random forests for the final submission. 

3.2 The Student-Skill Interaction Model (Complex Model) 

The more complex model expanded on the simple model considerably. The idea was to learn 

student specific learn, guess and slip rates and then use that information in training the parameters 

of skill specific models. The hypothesis is that if a student has a general learning rate trait then it 

can be learned from the data and used to benefit inference of how quickly a student learns a 

particular skill and subsequently the probability they will answer a given step correctly. 

The first step in training this model was to learn student parameters one student at a time. 

Student specific parameters were learned by using the simple model shown in Figure 1 but only 

training on the data of the individual student. The rows of the data were skills answered by the 

student and the columns were responses to steps of those skills. All responses per skill started at 

column 1. Some skills spanned more columns than others due to more responses on those skills. 

EM is able to work with this type of sparsity in the training matrix. 

The second step was to embed all the student specific parameter information into the complex 

model, called the Student-Skill Interaction (SSI) Model, shown in Figure 3. 

 

 

Figure 3. Student-Skill Interaction Model  

Model Parameters
P(L0) = Probability of initial knowledge
P(L0|Q1) = Individual Cold start P(L0)
P(T) = Probability of learning
P(T|S) = Students’ Individual P(T)
P(G) = Probability of guess
P(G|S) = Students’ Individual P(G)
P(S) = Probability of slip
P(S|S) Students’ Individual P(S)

Node representations
K  = Knowledge node
Q = Question node
S = Student node
Q1= first response node
T = Learning node
G = Guessing node
S = Slipping node

Parameters in bold are learned
from data while the others are fixed

K K K

Q Q Q

P(T) P(T)P(L0|Q1)

P(G)

P(S)

S

Student-Skill Interaction Model

Node states
K , Q, Q1, T, G, S = Two state (0 or 1)
Q = Two state (0 or 1)
S  = Multi state (1 to N)
(Where N is the number of students in the training data)

G S

T

P(T|S)

P(G|S) P(S|S)

Q1
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There is an SSI model for each skill but each SSI model is instantiated with the same student 

specific parameter data. For example, the list of student learning rates is placed into the CPT of 

the T node. The parameters that are learned in the SSI model are the guess, slip and learn rate for 

each skill. The effect of the student parameter nodes is to inform the network which students have 

high learn, guess or slip rates and allow the skill parameters to be learned conditioning upon this 

information. For example, two learning rates will be learned for each skill. One learning rate for 

if the student is a fast learner (described in the T node) and one learning rate for if the student is a 

not a fast learner. The same is done for the skill’s guess and slip parameters. These values can be 

different for each skill but they are conditioned upon the same information about the students. 

While a student may have a high individual learn rate, the fast-student learn rate for a difficult 

skill like Pythagorean Theorem may be lower than the fast-student learn rate for subtraction. The 

model also allows for similar learn rates for both fast and slow student learners. Results of SSI vs. 

PPS are shown in Table 4. The improvement is modest but significant. 

 

 Algebra (challenge) 

 Bayesian model RMSE 

1 SSI (KC 3-2) 0.2813 

2 PPS (KC 3-2) 0.2835 

Improvement: 0.0022 
 

 Bridge to Algebra (challenge) 

 Bayesian model RMSE 

1 SSI (KC 1-2) 0.2824 

2 PPS (KC 1-2) 0.2856 

Improvement: 0.0032 
 

Table 4. Results of complex SSI model vs. the simple PPS model. 

3.2.1 Distribution of student parameters 

Student specific learn, guess and slip rates were learned from the data for all 575 student in the 

algebra (development) set and 1,146 student in the bridge to algebra (development) set. The 

distribution of the values of those parameters for each dataset is shown in Figure 4. 

 

Algebra (development) 

 
Bridge to Algebra (development) 

 

Figure 4. Distribution of student parameters in the algebra and bridge to algebra development sets 

Figure 4 shows that users in both datasets have low learning rates but that a small portion of 

students posses learning rates in each range. Moderate guessing and low slipping existed among 

students in both datasets. 
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4 Random Forests Classifier 

Leo Breiman Random Forests© (Breiman , 2001) were used to make predictions based on a rich 

set of features from the training and testing sets. Random Forests is also known as bagged 

decision trees since it trains an ensemble of decision tree classifiers and uses bagging to combine 

predictions. Using feature extraction, only a fraction of the data needed to be used for training. 

4.1 Parameters of the Random Forest algorithm 

MATLAB’s TreeBagger implementation of bagged decision trees was used. Regression mode 

was used so that the end prediction would be a value between 0 and 1 representing the probability 

of the binary class. The number of features for each tree to sample was left at its default of 1/3 the 

number of features. The two parameters that were modified were MinLeaf and NumTrees. 

MinLeaf is the minimum number of observations per tree leaf. This is recommended to be set at 1 

for classification and 5 for regression, however, the optimal values for this parameter were often 

between 15 and 65. The NumTrees parameter is the number of bagged decision trees trained. The 

rule of thumb is to use a value of 200 or greater. Values between 50 and 800 were tried. For some 

of the feature sets a randomly chosen 50,000 rows were used for training and 50,000 for testing in 

order to do a grid search of the MinLeaf parameter. MinLeaf was searched from 1 to 100 in 

increments of 1 and NumTrees was set at 50 for this parameter search. NumTrees did not appear 

to affect the optimal MinLeaf value chosen, however this was not tested thoroughly. It is possible 

that there is a different optimal MinLeaf value depending on NumTrees. 

4.2 Feature Extraction 

Feature sets for random forest training and prediction were created. Some were created based on 

KCs while others were based on user and problem properties. Values for the test set features were 

created from the training set. For instance, population-percent-correct for a particular problem in 

the test set was calculated by taking the percent correct of that problem in the training set. The 

same procedure was applied to create features for the internal test set. The internal test set, with 

all features added, then became the training set for the challenge test set. 

4.2.1 Percent correct features 

For each skill, the percent correct of steps associated with that skill was calculated for each 

section, problem and step the skill was associated with including the overall percent correct for 

steps of that skill. This was done for each of the skill models in each of the challenge datasets. 

Percent correct was also calculated for each student by unit, section, problem, step and overall 

percent correct. These features were joined into the test sets that will be used as training sets. The 

joining looks at the user, skill, unit, section, problem and step of the row in the test set and adds 

the appropriate ten percent correct features to it, five from user and five from skill. 

4.2.2 Student progress features 

These features were based upon previous performance of a student in the training set prior to 

answering the test row. Many of these features were adopted from work on gamming the system 

(Baker et al., 2008) which is a type of behavior a student can exhibit when he or she is no longer 

trying to learn or solve the problem but instead is clicking through help and hints in the problem. 

Features of student progress that were generated included the following: 

 The number of data points: [today, on the first day of using the tutor, since starting the 

tutor, on the first day of starting the current unit] 

 The number of correct answers among the last [3, 5, 10] responses 

 The percent correct among the last [3, 5, 10] responses 

 The number of steps out of the last 8 in which a hint was requested 

 The mean number of hints requested in the last 10 steps 
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 The mean number of incorrect attempts in the last 10 steps 

 The number of days since [starting the tutor, starting the unit] 

 The sum of the last [3, 10] z-scores for [step duration, hints requested, incorrect attempts] 

 

Z-scores were calculated by first calculating the mean and standard deviation of step 

duration, hints requested and incorrect attempts on a step for each skill. A z-score for step 

duration, for instance, was calculated by taking the step duration of a student on the last step and 

subtracting the mean step duration for that skill and then dividing that by the standard deviation 

step duration for that skill. The sum of the last three such z-scores constituted a feature. In 

addition to the features listed above, identical features were generated specific to the skill 

associated with the test row. For example, the feature “number of data points today” would 

become “number of data points of skill X today” where skill X is the still associated with the test 

row that the feature value is being generated for. There was often not enough past data for a 

particular skill to calculate the feature. Because of this, the skill specific version of student 

progress feature set covered fewer test rows than the non skill specific version. 

4.2.3 Bayesian HMM features 

The SSI model, which was run for each skill in the KC model of a dataset, generated various 

outputs that were treated as features for the Random forests. The features generated included: 

 The predicted probability of correct for the test row 

 The inferred probability of knowing the skill 

 The absolute value of the inferred probability of knowing the skill subtracted by the 

predicted probability of correct 

 The number of students used in training the parameters 

 The number of data points used in training the parameters 

 The final EM log likelihood fit of the parameters divided by the number of data points 

 The total number of steps in the predicted test problem 

 The problem step number 

 The problem step number divided by the total number of steps in the test problem 

 

Similar to the skill specific student progress features, the Bayesian HMM features required 

that prior skill data for the student be available. If such data was not available, no features were 

created for that test row. Because of this the Bayesian feature set did not cover all the test rows. 

4.3 Random forest prediction results 

After generating features for the three test sets (two internal sets and the challenge test set) based 

on the top KC models, Random forests were trained on the internal test set 2 to predict 1 and 

trained on internal test set 1 to predict 2. The means of the RMSE results for the two are shown 

bellow for the best performing Random forest parameter combinations per feature set. Coverage 

percentage is also included indicating what percentage of the total test rows were predicted by the 

feature set. 

 

 Algebra (challenge) 

 Feature set RMSE Coverage 

1 All features 0.2762 87% 

2 Percent correct+ 0.2824 96% 

3 All features (fill) 0.2847 97% 
 

 Bridge to Algebra (challenge) 

 Feature set RMSE Coverage 

1 All features 0.2712 92% 

2 All features (fill) 0.2791 99% 

3 Percent correct+ 0.2800 98% 
 

Table 5. Random forest prediction results of different feature sets 
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Table 5 shows that with all features, Random forests predict 92% of the bridge to algebra test set 

with an RMSE of 0.2712. This is outstanding prediction accuracy given that the top RMSE for 

this dataset on the leaderboard was 0.2777. The problem is that the remaining 8% of the test rows 

represent students who do not have past data for the skill being predicted and this group is 

particularly difficult to predict. The “All features (fill)” is the simplest attempt to fill in the 

missing values of “All features” by taking the mean value for a column when it doesn’t exist in a 

skill feature set that covers less than the other feature sets. The improvement is significant over 

only using the percent correct feature sets but the accuracy decreased heavily from the original. 

An improvement on this would have been to take the mean value for the column amongst rows of 

the same skill. A step further still would have been to predict or impute the missing values using 

Random forests. Time ran out in the competition so these last two steps became a matter for 

future investigation. 

5 Ensemble selection 

A variant of ensemble selection (Caruana and Niculescu-Mizil, 2004) was used to blend the 

various model predictions. Because of the varying number of predictions between models, a 

special ensemble initialization technique was created whereby the best model was chosen first 

based on lowest RMSE and subsequent models were chosen based on the RMSE of the predicted 

rows excluding the rows already added to the initialized ensemble. This allowed for models to be 

used for the portions of the test set in which they excelled. For instance, the rows of the test set 

containing skills not yet seen by the user were best predicted by a model that was not a top 

predicting model overall. 

After the initialization, all models were blended with the current ensemble to determine 

which resulted in the best improvement to RMSE. The processes stopped when no blending of 

models would improve RMSE. Only three models were chosen in the blending stage for the 

bridge to algebra set and two for the algebra set. In this ensemble selection procedure, the internal 

test set RMSE is minimized and the same actions are performed on the challenge test predictions 

as on the internal ones. Since two internal test sets had been made, we were able to confirm that 

this ensemble selection procedure decrease the RMSE of the hill climbing set as well as the 

external test set. Table 6 shows the models chosen during the initialization processes and what 

percent of the test rows were covered after adding the prediction’s rows to the ensemble. There 

were 76 models for ensemble selection of the algebra set and 81 for the bridge to algebra set. This 

included the Bayesian model predictions and Random forest predictions with various parameters. 

 

 Algebra (challenge) 

 Prediction file RMSE Coverage 

1 Rf600m35_allFeat 0.2762 87% 

2 SSI_KC_3-2 0.2758 91% 

3 Rf100m15_hints 0.2839 99% 

4 Rf100m15_pctCor 0.2840 100% 

RMSE after blending (2 models): 0.2834 
 

 Bridge to Algebra (challenge) 

 Prediction file RMSE Coverage 

1 Rf500m15_allFeat 0.2712 92% 

2 SSI_KC_1-2 0.2719 94% 

3 Rf800m15_pctCor2 0.2775 99% 

4 Rf250m15_pctCor 0.2785 100% 

RMSE after blending (3 models): 0.2780 
 

Table 6. Ensemble selection procedure and RMSE improvement on the hill climbing set 

6 Conclusion 

Combining user features with skill features was very powerful in both modeling and classification 

approaches. Prediction error was very low for rows that had sufficient data to compile a complete 

user and skill feature set however error was very high for rows were the user did not have 

sufficient skill data. In order to increase prediction accuracy for these rows, imputing missing 

features could be very beneficial. What to do with these rows is a worthy area of future study 

since, while small, they significantly impacted overall RMSE. 
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APPENDIX 

Notes on other machine learning techniques attempted: Neural networks with 1-3 hidden layers 

were tried but with predictive performance far below that of bagged decision trees. SVMs were 

also tried with both linear and non-linear kernels. The linear kernel SVM parameters were 

explored using a coarse grid search and then a higher resolution search around the areas of low 

RMSE found in the first search. This approach resulted in prediction accuracies comparable to the 

neural network predictions. 

 

Notes on hardware and software used: A 30 node rocks cluster with 4 CPUs per node and a 6 

node rocks cluster with 8 CPUs per node were used to train the ~1,500 Bayesian skill models for 

each dataset and to generate the feature sets. One 16 core and one 8 core machine with 32gigs of 

RAM each were used to run the bagged decision tree classification using MATLAB’s 

TreeBagger function. The Parallel Computing Toolbox was used to parallelize the training of the 

Random forests naïve decision tree classifiers over 8 processor cores. All skills for a KC model 

could be run in 2 days with the complex model. Random forests prediction took 2 to 14 hours. 

                                                      
2 In keeping with the spirit of a student team, minimal assistance was sought during the official competition. 


