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ABSTRACT 

Certain speech modifications, such as changes in foreign/regional 
accents or articulatory styles, are performed more effectively in the 
articulatory domain than in the acoustic domain. Though 
measuring articulators is cumbersome, articulatory parameters may 
be estimated from acoustics through inversion. In this paper, we 
study the impact on synthesis quality when articulators predicted 
from acoustics are used in articulatory synthesis. For this purpose, 
we trained a GMM articulatory synthesizer and drove it with 
articulators predicted with an REF-based inversion model. Using 
inverted instead of measured articulators degraded synthesis 
quality, as measured through Mel cepstral distortion and subjective 
tests. However, retraining the synthesizer with predicted 
articulators not only reversed the effect of errors introduced during 
inversion but also improved synthesis quality relative to using 
measured articulators. These results suggest that inverted 
articulators do not compromise synthesis quality, and open up the 
possibility of performing speech modification in the articulatory 
domain through inversion. 

Index terms- articulatory synthesis, articulatory inversion, 
speech modification, Maeda parameters 

1. INTRODUCTION 

In order to modity certain characteristics of speech such as 
duration, pitch, speaker identity and articulation styles, we must 
first decouple them from other factors that make up the speech 
signal. Some of these characteristics, such as duration and pitch, 
are easily extracted in the acoustic domain. Others, such as 
regional/foreign accents and articulation styles, are more 
challenging since speaker-dependent and linguistic information 
interact in complex ways when analyzing the formant structure of 
the utterance. These two sources of information, however, may be 
easily decoupled in articulatory space [1]. For this reason, 
researchers have incorporated articulatory parameters in a variety 
of speech modification problems such as voice transformation [2], 
foreign accent conversion [3], and flexible text-to-speech synthesis 
[4]. 

However, current technologies that collect articulatory 
parameters are impractical outside laboratory settings. These 
technologies, such as X-Ray Microbeam, ultrasound, 
electropalatography, and, electromagnetic articulography (EMA) 
are invasive, and in the case of X-ray microbeam also dangerous. 
In order to avoid the cumbersome process of measuring 
articulatory parameters, researchers have proposed several methods 
to invert articulatory parameters fTom the acoustic signal [5-8]. 
Inverted articulatory features have been found useful for speech 

recognition [9-11], but their effectiveness in speech modification is 
not well studied. 

As a first step toward using articulatory inversion in speech 
modification, this article investigates the impact on synthesis 
quality of replacing measured articulators with predictions from 
articulatory inversion. Namely, we predict Maeda articulatory 
features [12, 13] from speech acoustics (MFCCs) using an REF­
based inversion method [5]. Then, we use a GMM-based 
articulatory synthesizer [6] to synthesize speech from either 
measured or predicted articulators. Finally, we compare these two 
types of synthesis using objective measures (Mel cepstral 
distortion) and subjective evaluation (listening tests). 

Relation to prior work. Our work is most related to previous 
studies that incorporated articulatory parameters in speech 
synthesis and speech modification [3, 4, 6]. These previous 
studies, however, used directly measured articulatory parameters -
see section 2 for a detailed discussion. In contrast, our study uses 
articulatory parameters predicted from acoustics through inversion. 
Also related to our work are models of infant motor learning based 
on articulatory inversion/synthesis [14, 15]. Because these studies 
focus on the process of motor learning, they generally use synthetic 
speech or restricted natural utterances (e.g., vowel/consonant 
patterns, babbling). In contrast, our work uses natural speech 
containing complete sentences. 

The paper is organized as follows. In section 2 we review 
related work on speech modification in the articulatory domain. 
Section 3 describes the articulatory inversion model and the data­
driven articulatory synthesizer we used in this work. In section 4 
we compare the quality of the resulting speech synthesis when 
using actual articulators or predicted articulators. 

2. RELA TED WORK 

A few studies have shown how to incorporate articulatory control 
for moditying speech characteristics [4, 6, 16]. Toda et al. [6] 
proposed a data-driven language-independent method for flexible 
articulatory speech synthesis. The authors used a GMM-based 
forward mapping to estimate acoustic parameters (Mel cepstral 
coefficients) from articulatory parameters (seven EMA positions, 
pitch and loudness). Then, they manipulated the EMA positions to 
simulate the effect of speaking with the mouth wide open. As a 
result of this manipulation, the authors observed a loss of high 
frequency components in fricatives. Though the articulatory 
manipulation was effective in moditying speech characteristics, it 
also reduced the synthesis quality compared to driving the GMM­
based forward mapping with unmodified articulators. Ling et al. [4] 
showed that incorporating articulatory parameters in a HMM-based 
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(a) (b) 
Figure 1: Block diagrams of the articulatory (a) inversion and 
(b) synthesis methods 

synthesizer [17] improved synthesis quality, as opposed to using 
only text input. The authors used a five-state left-to-right HMM 
structure with no skip to train context-dependent phoneme models 
on a combination of articulatory (six EMA positions) and acoustic 
features (40th-order frequency-warped LSFs). The output 
distribution of acoustic parameters was modeled as a Gaussian 
distribution with the mean value given by a linear function of the 
articulatory parameters and the state-specific parameters. The 
authors showed the feasibility of modifying vowels by 
manipulating articulatory parameters alone. As an example, 
increasing the tongue-height parameters led to a clear shift in 
vowel perception from /E/ to iii in synthesis. Similarly, decreasing 
the tongue-height parameters led to a shift from /E/ to /re/. 
Improvements in synthesis quality relative to Toda et al. [6] come 
from the use of phonetic information and the ability of HMMs to 
model the temporal properties of speech better than a GMMs. In a 
recent study [3], we used articulatory parameters to convert 
utterances from a non-native speaker so they sounded more native­
like. Our approach consisted of identifying mispronounced or 
accented diphones in the non-native utterances, and replacing them 
with units from the non-native speaker such that the substitute units 
closely matched the articulatory trajectories of a native speaker. 
Our method was able to reduce the perceived accented ness of the 
non-native utterance, though the reduction was limited by the 
availability of target units in the non-native corpus. 

These previous studies illustrate the feasibility of performing 
speech modifications in the articulatory domain, assuming 
articulatory measurements are available. Though this is rarely the 
case, articulatory-based modification of speech may still be 
possible if acoustic features can be mapped accurately into the 
articulatory domain (i.e., through inversion). As a step towards this 
objective, the present study seeks to understand the effect of 
replacing measured articulators with inverted articulators. For this 
purpose, we use the GMM-based articulatory synthesizer of Toda 
et al. [6] since it does not require access to the phonetic 
transcription; this allows us to focus on issues in synthesis quality 
that are due exclusively to articulatory information. 

3. ARTICULATORY INVERSION AND SYNTHESIS 

METHODS 

To evaluate the effectiveness of inverted articulatory features we 
used the articulatory inversion and articulatory synthesis strategy 
outlined in Figure l. Our articulatory inversion method predicts 
Maeda articulatory features from the audio signal through the 
following four steps. First, we extract pitch (fo), aperiodicity and 
spectral envelope using STRAIGHT [I8]. In a second step, we 

compute Mel Frequency Cepstral Coefficients (MFCCs) by 
warping the STRAIGHT spectral envelope according to the Mel­
frequency scale and then applying a type-II discrete cosine 
transformation (DCT). Then, we map MFCCs into Maeda 
parameters with an RBF network; see section 3.1 for details. 
Finally, we smooth the trajectory of inverted Maeda parameters 
with a low-pass filter to match the natural smoothness of measured 
Maeda trajectories. In what follows, we refer to the filtered 
inverted Maeda parameters as iMaeda to differentiate them from 
the actual Maeda parameters. 

Our articulatory synthesis method involves three steps, as 
illustrated in Figure l(b). First, we use a GMM-based forward 
mapping to estimate spectral features (MFCCI_2-1) from articulatory 
features (Maeda and delta-Maeda), log pitch (lnUo) , and the 
energy parameter (MFCCo). In a second step, we reconstruct the 
STRAIGHT spectral envelope from the estimated spectral 
coefficients (MFCCI_u) and the energy parameter (MFCCo) in the 
original speech. Specifically, given a vector of predicted MFCCs, 
the least-squares estimate of the spectral envelope is s = 
(FT F) -1 FT e, where F is the Mel Frequency Filter Bank (MFB) 
matrix used to extract MFCCs from the STRAIGHT spectrum, and 
e is the exponential of the inverse DCT of MFCCs. In a final step, 
we use the STRAIGHT synthesis engine to generate the waveform 
using the estimated spectral envelope, aperiodicity and pitch (to). 

In the following subsections, we provide details of the RBF­
based articulatory inversion model and the GMM-based forward 
mapping model. 

3. 1 Inversion model 

Following Chao and Carreira-Perpinan [5], we use an RBF-based 
inversion model. Given a static acoustic feature vector Yt at 
frame t, the inversion model estimates the corresponding static 
Maeda parameters Xt = Wo + L:f=l Wi ¢(IIYt - Ci II), where 
Wi, i = 0,1,2 . .  N are weight vectors, N is the number of hidden 
nodes in the RBF network, and Ci, i = 1,2 . . .  N are the centroids 
of the Gaussian basis functions. The basis function is defined as 
¢(r) = e-(r/(J)2, where r = IIYt - Ci II and (J is the spread 
parameter. The centroids Cj are obtained through k-means 
clustering of the acoustic feature vector Yt in a training set, 
whereas the weights Wi are learned using the pseudo-inverse 
method [19] with a regularization parameter, l. Parameters (J and 1 
are selected through cross-validation while training the RBF 
network [5]. 

3.2 Forward mapping model 

Following Toda et al. [6], we use a GMM-based forward mapping 
model coupled with global variance [20] to estimate the trajectory 
of spectral features from the trajectory of articulatory parameters. 
Assume xt is an articulatory feature vector consisting of (a) static 
and dynamic (delta) Maeda parameters, (b) energy, and (c) log 
pitch at frame t. Let Yt be the target spectral feature vector 
(MFCCI_u) of dimension D. Then, the distribution of the joint 
vector Zt = [xt T , Yt T ] T is modeled as 

M 

p(ZtIA(z)) = L am N(Zt; Jl�), I:�)), (1) 
m=l 
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where am is the weight of the mth mixture component and 

N(Zt; Il�)' l:�)) is its normal distribution with mean Il�) and 

covariance matrix l:�). We will use the symbol ACz) to denote the 
parameter set for the GMM model, which consists of weights, 
mean, and covariance matrices of all individual mixture 
components. All model parameters are learned from the training set 
of joint vectors Zt using expectation-maximization (EM). 

Given a GMM model, we calculate the maximum likelihood 
estimate of spectral features considering the dynamics and the 
global variance (GV) as follows. Let column vector Y = 

[ Yi, yr. yr. ... . .  YI] T 
denote the sequence of static and dynamic 

spectral features from all L frames in a sentence, where Y t = 
[Yt T , !J.Yt T] T 

is the target spectral feature column vector 
composed of static spectral features Yt and the corresponding 
dynamic features !J.Yt at frame t. Similarly, let column vector 
X = [Xi, xI. xI, ... . .  xI] T 

denote the sequence of articulatory 
feature vectors of the same L fTames where X t = [ Xt T , !J.Xt T] T. 

Also, consider the within-sentence variance of the dth component of 

spectral features given by v(d) = i: It=1 (Yt(d) - y(d))2, where, 

y(d) = i:n=1 Yt(d) and Yt(d) is the dth component of static 

spectral feature vector at time frame t. Thus, the GV of the static 
spectral feature is written as 
v(y) = [v(l), v(2), v(3), ... v(d), . .  v(D)] where D is the 
dimension of static spectral feature vector Yt T, and Y is the 
sequence of static spectral features [Yi, Yr.YL ... . .  YI] T. Now, 
the time sequence of estimated spectral feature vectors (static only) 
is given by the following equation: 

y = argmax P (YIX, ACz), Acv)) 
y 

(2) 

where A(v) = {IlCv), l:(vv)}, IlCv) is the vector of average variance 
for all spectral features and l:(vv) is the corresponding covariance 
matrix, learned from the distribution of v(y) in the training set. 
The likelihood P(YIX, ACzl, ACv)) is computed as 

p(YIX, ACZ) , ACv)) = p(yIX, Acz), Acv)t· p(V(y)IACv)). (3) 

The distribution of GV, P(V(y)IACv)), is modeled by a single 
Gaussian N(v(Y);IlCv), l:Cvv)). The power term w (= l/2L) in 
equation (3) controls the balance between the two likelihoods. 
Following [20], we use EM to solve for y in equation (2). 

4. EXPERIMENT AL RESULTS 

We evaluated our inversion/synthesis methods on an 
articulatory/acoustic dataset of 640 sentences uttered by a single 
speaker (rgo) described in [3]. Following Bawab et al. [21], we 
estimated six Maeda parameters (jaw opening, tongue back 
position, tongue shape, tongue tip height, lip opening and lip 
protrusion) from drift-corrected EMA (Electromagnetic 
Articulography) positions. The seventh Maeda parameter (larynx 
height) cannot be calculated from EMA. We then normalized the 
Maeda parameters to zero mean and unit variance. We computed 
25 MFCCs (MFCCo_2-I), from the STRAIGHT spectrum, and used 
MFCCo as the energy parameter and MFCCI_24 as spectral features. 
Pitch and aperiodicity were also extracted from STRAIGHT 
analysis, and later used in waveform generation. Maeda and 
MFCCs were obtained for synchronous time steps sampled at 
200Hz. Out of the 640 sentences, we randomly selected 100 
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Figure 2: (a) Trajectories of actual (dotted blue) and inverted 
(solid red) Maeda parameters of a typical sentence. (b) Accuracy 
of inverted Maeda features (JO=jaw opening, TB=tongue body 
position, TS=tongue shape, TT=tongue tip, LO=lip opening, 
LP=Lip protrusion). (c) Correlation coefficient between measured 
and inverted Maeda parameters. 

sentences as a test set, and used the remaining 540 sentences to 
train the inversion and forward mappings. 

4. 1 Accuracy of the inversion model 

Following Chao and Carreira-Perpinan [5], we trained an RBF 
network with 25 input nodes (25 MFCCs), 1024 hidden nodes, and 
6 output nodes using all non-silent frames from the training 
sentences. We then predicted Maeda parameters for all the non­
silence frames in the test sentences. Figure 2(a) shows the 
trajectories of inverted and actual Maeda parameters (tongue shape 
and tongue tip) on a sample utterance, whereas Figure 2(b-c) shows 
the average RMSE (root mean squared error) and average CC 
(correlation coefficient) and between inverted and measured 
parameters. Predictions of tongue shape had the least accuracy 
(RMSE=0.80, CC=0.69), followed by lip protrusion (RMSE=0.76, 
CC=0.71) and tongue tip (RMSE=0.73, CC=0.81). Lip opening 
(RMSE =0.54, CC=0.83) had the highest accuracy among the six 
Maeda parameters. 

4.2 Synthesis quality with measured and predicted 

articulators 

After establishing the accuracy of the inversion model, we 
designed an experiment to compare the quality of synthesis driven 
by either measured or predicted Maeda parameters. For this 
purpose, we trained a GMM-based forward mapping model with 
256 mixture components using measured Maeda parameters. Then, 
we generated two sets of syntheses. The first set (MaedaSynth) was 
obtained by driving the GMM with measured Maeda features; the 
second set (iMaedaSynth) was obtained by driving the GMM with 
predicted Maeda parameters. We then calculated the average MCD 
(Mel cepstral distortion) between non-silent frames in the original 
and synthesized utterances as 

MCD = � '2 N� (MFCCCO) - MFCCCS))2 (4) 
In 1 0  --.j L.d-1 d d ' 

where MFCCdO)and MFCCdS) are the dth MFCC coefficient of the 
original and synthesized sentences, respectively. As shown in 
Figure 3(a), the quality of iMaedaSynth (MCD=4.92dB) was 7% 
worse than that of MaedaSynth (MCD =4.60dB). 

We also conducted a listening test to evaluate the subjective 
quality of MaedaSynth and iMaedaSynth. Given that both synthesis 
methods involved lossy compression of STRAIGHT spectra into 
MFCCs, we also evaluated a third set of synthesis (mfccSynth), 
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Figure 3: (a) Objective and (b) subjective evaluation of 
articulatory synthesis driven by measured and predicted Maeda 
parameters; MaedaSynth (MS): driven by measured Maeda 
parameters; iMaedaSynth (iMS): driven by iMaeda; mfccSynth 
(mfccS): synthesis following MFCC compression. (c) Objective 
comparison of synthesis quality of iMaedaSynth2 (iMS2) with 
MaedaSynth (MS) and iMaedaSynth (iMS). 

which consisted of mapping STRAIGHT spectra into MFCCs and 
back to STRAIGHT spectra. For the perceptual tests, listenersa 
(n=30) were asked to rate 30 sentences (10 sentences for each of 
the three synthesis methods, presented randomly without 
repetition) using Mean Opinion Score (MOS: l=Bad; 2=Poor; 
3=Fair; 4=Good; 5=Excellent). Before the test began, participants 
were calibrated by listening to sample sounds with accepted MOS 
values. Results are shown in Figure 3(b). The baseline method 
(mfccSynth) was rated highest with an average MOS of 3.0. 
MaedaSynth and iMaedaSynth received average MOS of 2.4 and 
2.1 respectively, a result that is consistent with the objective 
evaluation in Figure 3(a). In conclusion, both objective and 
subjective evaluations indicate that the articulatory-inversion 
model degraded the quality of synthesized speech. Does this result 
mean that articulatory inversion cannot be used to enable speech 
modification in the articulatory domain? Not quite, as we show 
next. 

4.3 Retraining the forward mapping model with predicted 

articulators 

Could the loss of quality of iMaedaSynth have been caused by 
training the articulatory inversion and forward mapping separately? 
To answer this question, we decided to retrain the GMM forward 
mapping using iMaeda parameters (from training sentences) 
instead of the measured Maeda parameters. Then, we generated a 
new set of syntheses (iMaedaSynth2) for the same test sentences in 
iMaedaSynth. To evaluate the synthesis quality, we computed 
MCD of iMaedaSynth2 and compared against the MCD for 
MaedaSynth and iMaedaSynth. Results are shown in Figure 3(c): 
the iMaedaSynth2 model (mean MCD: 4.06) not only outperforms 
the iMaedaSynth model (mean MCD: 4.92) but also the 
MaedaSynth model (mean MCD: 4.60). 

To confirm these results, we conducted pairwise listening tests 
to compare the subjective quality of iMaedaSynth and 
iMaeadaSynth2. Participants (n=lO) were asked to listen to parallel 
syntheses of the same sentence (one from iMaedaSynth, the other 
from iMaedaSynth2) and then select the one they perceived to be of 
better quality. Each participant listened to 60 such pairs (30 pairs of 
sentences presented twice in reversed order to avoid ordering 
effects). On average, the iMaedaSynth2 was preferred 68% of the 
time over iMaedaSynth (95% confidence interval ±5.38%). In a 

a Participants were recruited through Amazon Mechanical Turk. 
Only residents in the US were allowed to participate in the study. 

final perceptual study we compared iMaedaSynth2 against 
MaedaSynth. On average, iMaedaSynth2 was preferred 57% of the 
time over MaedaSynth (95% confidence interval ±3.85%). Thus, 
these results indicate that training the articulatory synthesizer with 
predicted articulators not only reverses any errors introduced by the 
articulatory inversion model but also provides higher synthesis 
quality than what could be achieved if ground-truth articulators 
were available. 

5. DISCUSSION 

The objective of this study was to evaluate the use of inverted 
articulatory parameters in data-driven articulatory speech synthesis. 
Our initial results show that replacing measured articulators with 
predicted articulators reduces the quality of a GMM-based 
synthesizer [6], as measured by Mel cepstral distortion and Mean 
Opinion Scores. However, the apparent loss of synthesis quality 
can be avoided by retraining the GMM on predicted Maeda 
parameters rather than on measured Maeda parameters. More 
importantly, driving the retrained synthesizer with inverted 
articulators (iMaedaSynth2) generates speech of higher quality than 
the original synthesizer driven by ground-truth articulators 
(MaedaSynth), as measured by Mel cepstral distortion and Mean 
Opinion Scores. Thus, it appears that the inversion step facilitates 
the synthesis process by eliminating variance in the articulators that 
is not predictive of (predicted by) acoustic information. These 
results suggest that inverted articulatory features can be used in 
speech synthesis without compromising synthesis quality, and open 
up the possibility of speech modification in the articulatory domain 
through articulatory inversion. 

Our inversion results indicate that predictions of tongue­
related parameters and lip protrusion are the least accurate. These 
results are consistent with previous studies [5, 6] and can be 
attributed to the higher degree of freedom of the tongue compared 
to jaw and lips. The poor subjective quality of MaedaSynth (MOS: 
2.4) also deserves further discussion. At first, this result may 
suggest that there are issues with our articulatory synthesizer. 
However, the baseline synthesis method (mfccSynth), which sounds 
very similar to the original recordings and comparable to those 
rated as 4.1 MOS in [20], also received a low rating (MOS: 3.0). 
In previous work [22], we reported that recordings from a non­
native speaker in the CMU-ARCTIC corpus received significantly 
lower MOS than those from a native speaker in that same corpus. 
Thus, the low ratings in our study can be attributed to the 
characteristics of the original recordings (i.e., utterances fTom a 
non-native speaker, EMA interfering with speech production). 

The results presented here were obtained using a speaker­
dependent articulatory inversion model. Further work is needed to 
test whether similar results can be achieved with subject­
independent inversion models. Though the task appears 
challenging, Ghosh and Narayanan [11] have recently shown that 
articulatory features predicted from speaker-independent models 
can boost automatic speech recognition. 
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