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ABSTRACT
The discovery of vulnerabilities in source code is a key for
securing computer systems. While specific types of security
flaws can be identified automatically, in the general case the
process of finding vulnerabilities cannot be automated and
vulnerabilities are mainly discovered by manual analysis. In
this paper, we propose a method for assisting a security an-
alyst during auditing of source code. Our method proceeds
by extracting abstract syntax trees from the code and de-
termining structural patterns in these trees, such that each
function in the code can be described as a mixture of these
patterns. This representation enables us to decompose a
known vulnerability and extrapolate it to a code base, such
that functions potentially suffering from the same flaw can
be suggested to the analyst. We evaluate our method on the
source code of four popular open-source projects: LibTIFF,
FFmpeg, Pidgin and Asterisk. For three of these projects,
we are able to identify zero-day vulnerabilities by inspecting
only a small fraction of the code bases.

1. INTRODUCTION
The security of computer systems critically depends on the

quality of its underlying code. Even minor flaws in a code
base can severely undermine the security of a computer sys-
tem and make it an easy victim for attackers. There exist
several examples of vulnerabilities that have led to security
incidents and the proliferation of malicious code in the past
[e.g. 21, 26]. A drastic case is the malware Stuxnet [7] that
featured code for exploiting four unknown vulnerabilities in
the Windows operating system, rendering conventional de-
fense techniques ineffective in practice.

The discovery of vulnerabilities in source code is a cen-
tral issue of computer security. Unfortunately, the process
of finding vulnerabilities cannot be automated in the gen-
eral case. According to Rice’s theorem a computer pro-
gram is unable to generally decide whether another program
contains vulnerable code [10]. Consequently, security re-
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search has focused on devising methods for identifying spe-
cific types of vulnerabilities.

Several approaches have been proposed that statically iden-
tify patterns of specific vulnerabilities [e.g., 4, 18, 28, 32],
such as the use of certain insecure functions. Moreover, con-
cepts from the area of software verification have been suc-
cessfully adapted for tracking vulnerabilities, for example,
in form of fuzz testing [27], taint analysis [22] and symbolic
execution [1, 8]. Many of these approaches, however, are
limited to specific conditions and types of vulnerabilities.
The discovery of vulnerabilities in practice still mainly rests
on tedious manual auditing that requires considerable time
and expertise.

In this paper, we propose a method for assisting a security
analyst during auditing of source code. Instead of striving
for an automated solution, we aim at rendering manual au-
diting more effective by guiding the search for vulnerabili-
ties. Based on the idea of vulnerability extrapolation [33], our
method proceeds by extracting abstract syntax trees from
the source code and determining structural patterns in these
trees, such that each function in the code can be described
as a mixture of the extracted patterns. The patterns contain
subtrees with nodes corresponding to types, functions and
syntactical constructs of the code base. This representation
enables our method to decompose a known vulnerability and
to suggest code with similar properties—potentially suffer-
ing from the same flaw—to the analyst for auditing.

We evaluate the efficacy of our method using the source
code of four popular open-source projects: LibTIFF, FFm-
peg, Pidgin and Asterisk. We first demonstrate in an quan-
titative evaluation how functions are decomposed into struc-
tural patterns and how similar code can be identified auto-
matically. In a controlled experiment we are able to narrow
the search for a given vulnerability to 8.7% of the code base
and consistently outperform non-structured approaches for
vulnerability extrapolation. We also study the discovery of
real vulnerabilities in a qualitative evaluation, where we are
able to discover 10 zero-day vulnerabilities in the source code
of the four open-source projects.

In summary, we make the following contributions:

• Generalized vulnerability extrapolation: We present a
general approach to the extrapolation of vulnerabili-
ties, allowing both the content and structure of code
to be considered for finding similar flaws in a code base.

• Structural comparison of code: We present a method
for robust extraction and analysis of abstract syntax
trees that allows for automatic comparison of code
with respect to structural patterns.
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Figure 1: Schematic overview of our method for vulnerability extrapolation.

• Evaluation and cases studies: We study the capabili-
ties of our method in different empirical experiments,
where we identify real zero-day vulnerabilities in pop-
ular open-source projects.

The rest of this paper is structured as follows: our method
for vulnerability discovery is introduced in Section 2 and its
evaluation is presented in Section 3. Limitations and related
work are discussed in Section 4 and 5, respectively. Section 6
concludes this paper.

2. VULNERABILITY EXTRAPOLATION
The concept of vulnerability extrapolation builds on the

observation that source code often contains several vulner-
abilities linked to the same flawed programming patterns,
such as missing checks before or after function calls. Given a
known vulnerability, it is thus often possible to discover pre-
viously unknown vulnerabilities by finding functions sharing
similar code structure.

In practice, such extrapolation of vulnerabilities is attrac-
tive for two reasons: First, it is a general approach that
is not limited to any specific vulnerability type. Second,
the extrapolation does not hinge on any involved analysis
machinery: a robust parser and an initial vulnerability are
sufficient for starting an analysis. However, assessing the
similarity of code is a challenging task, as it requires ana-
lyzing and comparing structured objects, such as subtrees
of syntax trees. Previous work has thus only considered
flat representations, such as function and type names, for
extrapolating vulnerabilities [see 33].

To tackle the challenge of structured data, our method
combines concepts from static analysis, robust parsing and
machine learning. It proceeds in four steps that are illus-
trated in Figure 1 and described in the following:

1. Extraction of abstract syntax trees. In the first step,
abstract syntax trees (AST) are extracted for all func-
tions of the code base using a robust parser. This
parser is based on the concept of island grammars [20]
and capable of extracting syntax trees from C/C++
source code even without a working build environment
(Section 2.1).

2. Embedding in a vector space. The abstract syntax trees
of the functions are then embedded in a vector space,
such that techniques from machine learning can be ap-
plied to analyze the code. The embedding is accom-
plished by disregarding irrelevant nodes in the trees
and representing each function as a vector of contained
subtrees (Section 2.2).

3. Identification of structural patterns. Based on the vec-
torial representation, structural patterns are identified

in the code using the technique of latent semantic anal-
ysis [5]. This analysis technique determines dominant
directions (structural patterns) in the vector space cor-
responding to combinations of AST subtrees frequently
occurring in the code base (Section 2.3).

4. Vulnerability Extrapolation. Finally, the functions of
the code base are described as mixtures of the iden-
tified structural patterns. This representation enables
identifying code similar to a known vulnerability by
finding functions with a similar mixture of structural
patterns (Section 2.4).

In the following, these four steps are described in detail
and the required theoretical and technical background is pre-
sented where necessary.

2.1 Robust AST Extraction
Determining arbitrary structural patterns in code demands

a fine grained representation of code, similar in precision
to the abstract syntax trees (AST) generated by compilers.
Obtaining these trees directly from a compiler is only pos-
sible if a working build environment is available. Unfortu-
nately, constructing such an environment is often non-trivial
in practice, as all dependencies of the code including correct
versions of build tools and header files need to be available.
Finally, when analyzing legacy code, parts of the code may
simply not be available anymore.

As a remedy, we employ a robust parser for C/C++ based
on the concept of island grammars [20]. This parser allows
for extracting ASTs from individual source files. In contrast
to parsers integrated with a compiler, this parser does not
aim to validate the syntax of the code it processes. Instead,
the objective is to extract as much information from the
code as possible, assuming that it is syntactically valid in
the first place.

Our parser is based on a single grammar definition for the
ANTLR parser generator [23] and publicly available1. The
parser outputs ASTs in a serialized text format as shown in
Figure 2. This serialized format is well suited for subsequent
processing and provides generic access to the structure of the
parsed code. A graphical version of the corresponding tree
is presented in Figure 3.

For our analysis we distinguish between different types of
nodes in the syntax tree. We refer to all nodes associated
with parameter types, declaration types and function calls
as API nodes (dashed in Figure 3), as they define how the
code interfaces with other functions and libraries. Moreover,
we denote all nodes describing syntactical elements as syntax
nodes (dotted in Figure 3).

1http://codeexploration.blogspot.de/



1 int foo(int y)
2 {
3 int n = bar(y);
4

5 if (n == 0)
6 return 1;
7

8 return (n + y);
9 }

(a) Exemplary C function

# type depth value1 value2
func 0 int foo
params 1
param 2 int y
stmts 1
decl 2 int n
op 2 =
call 3 bar
arg 4 y
if 2 (n == 0)
cond 3 n == 0
op 4 ==
stmts 3
return 4 1
return 2 (n + y)
op 3 +

(b) Serialized AST

Figure 2: Example of a C function and a serialized AST
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return

param: int

GETcall: bar

GETdecl: int

GETfunc

GETparams

GETreturnGETif
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=
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Figure 3: Abstract syntax tree with API nodes (dashed) and
syntax nodes (dotted).

2.2 Embedding of ASTs in a Vector Space
Abstract syntax trees offer a rich source of information

for extraction of code patterns. However, machine learning
techniques cannot be applied directly to this type of data,
as they usually operate on numerical vectors.

To address this problem, a suitable map is required, allow-
ing ASTs to be transformed into vectors. This map needs
to capture the structure and content of the trees, and thus
is crucial for the success of vulnerability extrapolation. To
construct this map, we describe the AST of each functions
in our code base using a set of subtrees S. In particular, we
experiment with the following three definitions of the set:

1. API nodes. We consider only flat function and type
names [see 33]. The set S simply consists of all indi-
vidual API nodes found in the ASTs of the code base.
All other nodes are ignored.

2. API subtrees. The set S is defined as all subtrees of
depth D in the code base that contain at least one
API node. The subtrees are generalized by replacing
all non-API nodes with placeholders (empty nodes).

3. API/S subtrees. The set S consists of all subtrees of
depth D containing at least one API or syntax node.
Again, all non-API and non-syntax nodes are replaced
by placeholders (empty nodes).

Depending on this definition of S, we obtain different
views on the functions of the code base. If we consider
API nodes only, our characterization is shallow and we only
capture the interfacing of the functions. If we choose API
subtrees as the set S, we describe the functions in terms
of API nodes and the structural context these nodes occur
in. Finally, if we consider API/S subtrees, we obtain a view
on our code base that reflects API usage as well as the oc-
currences of syntactical elements in the functions. In the
following we fix the depth of subtrees to D = 3 in all ex-
periments, as this setting provides a good balance between
a shallow representation and overly complex subtrees.

Based on the set S we can define a map φ that embeds an
AST x in a vector space, where each dimension is associated
with one element of S. Formally, this map is given by

φ : X 7−→ R|S|, φ(x) −→
(
#(s, x) · ws

)
s∈S

where X refers to all ASTs of functions in our code base
and #(s, x) returns the number of occurrences of the subtree
s ∈ S in x. For convenience and later processing, we store
the vectors of all ASTs in our code base in a matrixM , where
one cell of the matrix is defined as Ms,x = #(s, x) · ws.

The term ws in the map φ corresponds to a TF-IDF
weighting. This weighting ensures that subtrees occurring
very frequently in the code base have little effect when as-
sessing function similarity. Furthermore, it removes the bias
towards longer functions, which can contain similar subtrees
to a lot of different functions but are not particularly simi-
lar to any of them. A detailed description of this weighing
scheme is given by Salton and McGill [25].

Let us, as an example, consider the AST given in Figure 3
and the set S of API nodes. The tree x contains only three
API nodes, namely param: int, decl: int and call: bar. As
a result, the corresponding three dimensions in the vector
φ(x) are non-zero, whereas all other dimensions are zero.
The vector space constructed by the map φ may contain
hundred thousands of dimensions, yet the vectors are ex-
tremely sparse. This sparsity can be exploited for efficiently
storing and comparing the vectors in practice.

2.3 Identification of Structural Patterns
By calculating distances between vectors, the representa-

tion obtained in the previous step already allows functions
to be compared in terms of the subtrees they share. How-
ever, we cannot yet compare functions with respect to more
involved patterns. For example, the code base of a server
application may contain functions related to network com-
munication, message parsing and thread scheduling. In this
setting, it would be better to compare the functions with
respect to these functionalities rather than looking at the
plain subtrees of the ASTs.

Fortunately, we can adapt the technique of latent semantic
analysis [5] to solve this problem. Latent semantic analysis
is a classic technique of natural language processing that is
used for identifying topics in text documents. Each topic
is represented by a vector of related words. In our setting
these topics correspond to types of functionality in the code
base and the respective vectors are associated with subtrees
related to these functionalities.



Latent semantic analysis identifies topics by determining
dominant directions in the vector space, that is, subtrees
frequently occurring together in ASTs of our code base. We
refer to these directions of related subtrees as structural pat-
terns. By projecting the original vectors on the identified
directions, one obtains a low-dimensional representation of
the data. Each AST of a function is described as a mixture
of the structural patterns. For example, a function related
to communication and parsing is represented as a mixture
of patterns corresponding to these types of functionality.

Formally, latent semantic analysis seeks d orthogonal di-
rections in the vector space that capture as much of the
variance inside the data as possible. One technical way to
obtain these d directions is by performing a singular value
decomposition (SVD) of the matrix M . That is, M is de-
composed into three matrices U , Σ and V as follows

M ≈ UΣV T =
← u1 →
← u2 →

...
← u|S| →



σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σd



← v1 →
← v2 →

...
← v|X| →


T

.

The decomposition provides a wealth of information and
contains the projected vectors as well as the structural pat-
terns identified in the matrix M .

1. The d columns of the unitary matrix U correspond to
the dominant directions in the vector space and define
the d structural patterns of subtrees identified in the
code base.

2. The diagonal matrix Σ contains the singular values of
M . The values indicate the variances of the directions
and allow us to assess the importance of the d struc-
tural patterns.

3. The rows of V contain the projected representations
of the embedded ASTs, where each AST is described
by a mixture of the d structural patterns contained in
the matrix U .

As we will see in the following, these three matrices pro-
vide the basis for extrapolation of vulnerabilities and con-
clude the rather theoretical presentation of our method.

2.4 Extrapolation of Vulnerabilities
Once the decomposition has been calculated, which takes

a fraction of the time required for code parsing, an analyst is
able to access the information encoded in the three matrices.
In particular, the following three activities can be performed
instantaneously to assist code auditing.

• Vulnerability extrapolation. The rows of the matrix V
describe all functions as mixtures of structural pat-
terns. Finding structurally similar functions is thus as
simple as comparing the rows of V using a suitable
measure, such as the cosine distance [25]. This oper-
ation forms the basis for the extrapolation of vulner-
abilities. Clearly, there is no guarantee that functions
with similar structure are plagued by the same vul-
nerabilities, however, examples presented in Section 3
provide some evidence for this correspondence.

• Code base decomposition. At the beginning of an au-
dit, little is known about the overall structure of the
code base. In this setting, the matrix U storing the
most prevalent structural patterns in its columns gives
important insight into the structure of the code base.
This information can be used to uncover major clusters
of similar functions, such as sets of functions employing
similar programming patterns. This allows an analyst
to select interesting parts of the code early in the audit
and concentrate on promising functions first.

• Detection of unusual functions. Finally, the represen-
tation of functions in terms of structural patterns is
fully transparent, allowing an analyst to discover the
most prominent patterns used in any particular func-
tion by comparing rows of V with columns of U . This
enables determining deviations from common program-
ming patterns by analyzing differences in the represen-
tations of functions. For example, it might be inter-
esting to audit a function related to message parsing
that deviates from other such functions by also sharing
structural patterns with network communication.

3. EVALUATION
We proceed to evaluate our method with real source code.

In particular, we are interested in studying the ability of our
method to assess the similarity of code and to identify po-
tentially vulnerable functions in practice. We first conduct a
quantitative evaluation, where we apply our method in a con-
trolled experiment on different code bases. We then present
a qualitative evaluation and examine the extrapolation of
real vulnerabilities in two case studies.

For the evaluation we consider four popular open-source
projects, namely LibTIFF, FFmpeg, Pidgin and Asterisk.
For each of these projects we pick one known vulnerability
as a starting point for the vulnerability extrapolation and
proceed to manually label candidate functions which should
be reviewed for the same type of vulnerability.

In the following, we describe the code bases of these projects
and the choice of candidate functions in detail:

1. LibTIFF (http://www.libtiff.org) is a library for
processing images in the TIFF format. Its source code
covers 1,292 functions and 52,650 lines of code. Ver-
sion 3.8.1 of the library contains a stack-based buffer
overflow in the parsing of TLV elements that allows
an attacker to execute arbitrary code using specifically
crafted images (CVE-2006-3459). Candidate functions
are all parsers for TLV elements.

2. Pidgin (http://www.pidgin.im) is a client for instant
messaging implementing several communication pro-
tocols. The implementation contains 11,505 functions
and 272,866 lines of code. Version 2.10.0 of the client
contains a vulnerability in the implementation of the
AIM protocol (CVE-2011-4601). An attacker is able to
remotely crash the client using crafted messages. Can-
didate functions are all AIM protocol handlers convert-
ing incoming binary messages to strings.

3. FFmpeg (http://www.ffmpeg.org) is a library for con-
version of audio and video streams. Its code base spans
6,941 functions with a total of 298,723 lines of code. A



API nodes API subtrees API/S subtrees
75% 90% 100% 75% 90% 100% 75% 90% 100%

Pidgin 0.1 0.36 2.00 0.35 0.22 0.98 0.22 0.67 25.98
LibTIFF 6.35 6.97 7.58 5.65 6.66 7.27 6.49 9.36 17.32
FFmpeg 6.17 8.10 19.61 5.00 8.66 11.09 7.71 15.21 28.35
Asterisk 0.06 10.64 15.29 0.24 10.23 15.54 1.19 16.50 28.45
Average 3.17 6.52 11.12 2.81 6.44 8.72 3.90 10.44 25.03

Table 1: Performance of vulnerability extrapolation in a controlled experiment. The performance is given as amount of
code (%) to be audited to find 75%, 90% and 100% of the potentially vulnerable functions.

vulnerability has been identified in version 0.6 (CVE-
2010-3429). During the decoding of video frames, in-
dices are incorrectly computed, enabling the execution
of arbitrary code. Candidate functions are all video
decoding routines, which write decoded video frames
to a pixel buffer.

4. Asterisk (http://www.asterisk.org) is a framework
for Voice-over-IP communication. The code base cov-
ers 8,155 functions and 283,883 lines of code. Ver-
sion 1.6.1.0 of the framework contains a vulnerabil-
ity (CVE-2011-2529), which allows a remote attacker
to corrupt memory of the server and to cause a de-
nial of service via a crafted packet. Candidate func-
tions are all functions reading incoming packets from
UDP/TCP sockets.

3.1 Quantitative Evaluation
In our first experiment, we study the ability of our method

to identify functions sharing similarities with a known vul-
nerability on the four code bases. To conduct a controlled
experiment we thoroughly inspect each code base and man-
ually label all candidate functions, that is, all functions that
potentially contain the same vulnerability. Note that this
manual analysis process required several weeks of work and
can hardly be seen as an alternative to the concept of vul-
nerability extrapolation.

For each of the four code bases, we apply our method and
rank the functions according to the selected target vulner-
abilities. We vary the embedding of syntax trees by con-
sidering flat API nodes, API subtrees and API/S subtrees
(see Section 2.2). Moreover, we compute the ranking for
different numbers of structural patterns identified by latent
semantic analysis (see Section 2.3). As performance mea-
sure we assess the efficacy of the vulnerability extrapolation
by measuring the amount of code that needs to be inspected
for finding all candidate functions.
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Figure 4: Performance of vulnerability extrapolation in a
controlled experiment.

Figure 4 shows the results of this experiment for FFmpeg
and LibTIFF, where results for the other two code bases
are similar. The API subtrees clearly outperform the other
representations of the code and enable narrowing the set
of functions to be inspected to 8.7% on average. By con-
trast, the flat representation of API nodes requires 11.1% of
the functions to be reviewed, while for the API/S subtrees
even every 4th function (25%) needs to be inspected. Fur-
thermore, Figure 4 also shows that the number of extracted
structural patterns is not a critical parameter for vulnera-
bility extrapolation. Our method performs well on all code
bases when this number is between 50 to 100 dimensions,
despite the fact that FFmpeg contains 6,941 and LibTIFF
only 1,292 functions. In the following case studies, we fix
this parameter to 70.

Table 1 presents a fine-grained analysis of the performance
for each code base, where the amount of code that needs to
be audited for revealing 75%, 90% and 100% of the candidate
functions is shown. All numbers are expressed in percent of
the code base to account for their different sizes. The API
subtrees perform best, where 75% of the candidate functions
are discovered by reading under 3% of the code bases. In the
case of Pidgin and Asterisk, this number further reduces to
less than 1% of the entire code base providing a significant
advantage over manual auditing.

Nevertheless, the results also show room for improvement,
particularly when all candidate functions need to be discov-
ered. In this case, the amount of code to be read reaches
8.7% on average and up to 16% in the worst case. However,
even in the worst case the amount of code that needs to be
inspected is reduced by 84% and vulnerability extrapolation
clearly accelerates manual code auditing in practice.

3.2 Qualitative Evaluation
In a case study with FFmpeg and Pidgin, we now demon-

strate the practical merit of vulnerability extrapolation and
show how our method plays the key role in identifying eight
zero-day vulnerabilities. We have conducted two further
studies with Pidgin and Asterisk uncovering two more zero-
day vulnerabilities. For the sake of brevity however, we omit
these case studies and details of the vulnerabilities here.

3.2.1 Case study: FFmpeg.
Flaws in the indexing of arrays are a frequently occurring

problem in media libraries. In many cases these vulnerabil-
ities allow attackers to write data to arbitrary locations in
memory, an exploit primitive that can often be leveraged for
arbitrary code execution. In this case study, we show how a
publicly known vulnerability in the video decoder for FLIC
media files of FFmpeg (CVE-2010-3429) is used to uncover
three further vulnerabilities of this type, two of which were
previously unknown. Note that this is the same vulnerabil-



1 static int flic_decode_frame_8BPP(AVCodecContext *avctx,
2 void *data, int *data_size,
3 const uint8_t *buf,
4 int buf_size)
5 { [...]
6 signed short line_packets; int y_ptr;
7 [...]
8 pixels = s->frame.data[0];
9 pixel_limit = s->avctx->height * s->frame.linesize[0];

10 frame_size = AV_RL32(&buf[stream_ptr]); [...]
11 frame_size -= 16;
12 /* iterate through the chunks */
13 while ((frame_size > 0) && (num_chunks > 0)) { [...]
14 chunk_type = AV_RL16(&buf[stream_ptr]);
15 stream_ptr += 2;
16 switch (chunk_type) { [...]
17 case FLI_DELTA:
18 y_ptr = 0;
19 compressed_lines = AV_RL16(&buf[stream_ptr]);
20 stream_ptr += 2;
21 while (compressed_lines > 0) {
22 line_packets = AV_RL16(&buf[stream_ptr]);
23 stream_ptr += 2;
24 if ((line_packets & 0xC000) == 0xC000) {
25 // line skip opcode
26 line_packets = -line_packets;
27 y_ptr += line_packets * s->frame.linesize[0];
28 } else if ((line_packets & 0xC000) == 0x4000) {
29 [...]
30 } else if ((line_packets & 0xC000) == 0x8000) {
31 // "last byte" opcode
32 pixels[y_ptr + s->frame.linesize[0] - 1] =
33 line_packets & 0xff;
34 } else { [...]
35 y_ptr += s->frame.linesize[0];
36 }
37 }
38 break; [...]
39 }
40 [...]
41 } [...]
42 return buf_size;
43 }

static void vmd_decode(VmdVideoContext *s)
{

[...] int frame_x, frame_y;
int frame_width, frame_height;
int dp_size;

frame_x = AV_RL16(&s->buf[6]);
frame_y = AV_RL16(&s->buf[8]);
frame_width = AV_RL16(&s->buf[10]) - frame_x + 1;
frame_height = AV_RL16(&s->buf[12]) - frame_y + 1;

if ((frame_width == s->avctx->width &&
frame_height == s->avctx->height) &&
(frame_x || frame_y)) {

s->x_off = frame_x;
s->y_off = frame_y;

}
frame_x -= s->x_off;
frame_y -= s->y_off; [...]
if (frame_x || frame_y || (frame_width != s->avctx->width) ||

(frame_height != s->avctx->height)) {
memcpy(s->frame.data[0], s->prev_frame.data[0],

s->avctx->height * s->frame.linesize[0]);
} [...]
if (s->size >= 0) {

pb = p;
meth = *pb++; [...]
dp = &s->frame.data[0][frame_y * s->frame.linesize[0]

+ frame_x];
dp_size = s->frame.linesize[0] * s->avctx->height;
pp = &s->prev_frame.data[0][frame_y *

s->prev_frame.linesize[0] + frame_x];
switch (meth) { [...]
case 2:

for (i = 0; i < frame_height; i++) {
memcpy(dp, pb, frame_width);
pb += frame_width;
dp += s->frame.linesize[0];
pp += s->prev_frame.linesize[0];

} break; [...]
}

}
}

Figure 5: Original vulnerability in flic_decode_frame_8BPP (left) and zero-day vulnerability found in vmd_decode (right)

ity extrapolated in our previous work [33], thus allowing the
advantages of our improved method to be demonstrated in
direct comparison to a non-structured approach.

Original vulnerability. Video decoding in general in-
volves processing image data in form of video frames. These
frames contain the encoded pixels as well as meta informa-
tion of the image, such as width and offset values. Decoders
usually proceed by allocating an array and then using the
offsets provided in the video frame to populate the array
with the image data. In this context, it must be carefully
verified that offsets specified by the frame refer to loca-
tions within the array. In the case of the decoding routine
flic_decode_frame_8BPP shown in Figure 5, no verification
of this kind is performed allowing an attacker to reference
locations outside the pixel array.

The critical write is performed on line 32, where the least
significant byte of the user-supplied integer line_packets is
written to a location relative to the buffer pixels. It has
been overlooked that the offset is dependent on y_ptr and
s->frame.linesize[0], both of which can be controlled by an
attacker. Due to the loop starting at line 21, it is possible
to assign an arbitrary value to y_ptr independent of the last
value stored in line_packets and no check is performed to
verify whether the offset remains within the buffer.

Extrapolation. We proceed by using our method to
generate the ranking shown in Table 2. This ranking con-

tains the 30 most similar functions to the vulnerable function
flic_decode_frame_8BPP selected from a total of 6,941 func-
tions in the FFmpeg code base. Candidate functions for the
vulnerabilities are depicted with light shading, discovered
vulnerabilities are indicated by dark shading.

First, we note that 20 out of 30 functions are candidate
functions, i.e., they are decoders performing a write opera-
tion to a pixel buffer. Furthermore, no irrelevant functions
are part of the first 13 results and we can spot four vulner-
able functions in the ranking corresponding to the following
three vulnerabilities:

1. The function flic_decode_frame_15_16BPP is located in
the same file as the original vulnerability and likewise
processes FLIC video frames. The function has been
found by FFmpeg developers to contain a similar vul-
nerability, which was patched along with the original
flaw. Our method returns a similarity of 98%.

2. The function vmd_decode depicted in Figure 5 contains
the vulnerability discovered in [33]. The function pro-
ceeds by employing the same API functions used in
the original vulnerability to read frame meta data on
line 7 to 10 and then uses these values to calculate an
incorrect index into the pixel buffer on line 28. Our
method returns a similarity of 89%, leading us almost
instantly to this vulnerability.



1 static void vqa_decode_chunk(VqaContext *s)
2 {
3 [...]
4 int lobytes = 0;
5 int hibytes = s->decode_buffer_size / 2; [...]
6 for (y = 0; y < s->frame.linesize[0] * s->height;
7 y += s->frame.linesize[0] * s->vector_height){
8 for (x = y; x < y + s->width; x += 4, lobytes++, hibytes++)
9 {

10 pixel_ptr = x;
11 /* get the vector index, the method for
12 which varies according to
13 * VQA file version */
14 switch (s->vqa_version) {
15 case 1: [...]
16 case 2:
17 lobyte = s->decode_buffer[lobytes];
18 hibyte = s->decode_buffer[hibytes];
19 vector_index = (hibyte << 8) | lobyte;
20 vector_index <<= index_shift;
21 lines = s->vector_height;
22 break;
23 case 3: [...]
24 }
25 while (lines--) {
26 s->frame.data[0][pixel_ptr + 0] =
27 s->codebook[vector_index++];
28 s->frame.data[0][pixel_ptr + 1] =
29 s->codebook[vector_index++];

s->frame.data[0][pixel_ptr + 2] = 30

s->codebook[vector_index++]; 31

s->frame.data[0][pixel_ptr + 3] = 32

s->codebook[vector_index++]; 33

pixel_ptr += s->frame.linesize[0]; 34

} 35

} 36

} 37

} 38

39

static av_cold int vqa_decode_init(AVCodecContext *avctx) 40

{ 41

VqaContext *s = avctx->priv_data; 42

unsigned char *vqa_header; 43

int i, j, codebook_index; 44

s->avctx = avctx; 45

avctx->pix_fmt = PIX_FMT_PAL8; [...] 46

/* load up the VQA parameters from the header */ 47

vqa_header = (unsigned char *)s->avctx->extradata; 48

s->vqa_version = vqa_header[0]; 49

s->width = AV_RL16(&vqa_header[6]); 50

s->height = AV_RL16(&vqa_header[8]); [...] 51

/* allocate decode buffer */ 52

s->decode_buffer_size = (s->width / s->vector_width) * 53

(s->height / s->vector_height) * 2; 54

s->decode_buffer = av_malloc(s->decode_buffer_size); 55

s->frame.data[0] = NULL; 56

return 0; 57

} 58

Figure 6: The second zero-day vulnerability found by extrapolation of CVE-2010-3429 in vqa_decode_chunk.

3. The function vqa_decode_chunk contains another previ-
ously unknown vulnerability shown in Figure 6. In this
case, however, reading of frame meta data using the
characteristic API is performed by a different function,
vqa_decode_init, on line 21 and 22. Despite the miss-
ing API information, our method is able to uncover the
decoder based on its characteristic code structure. In
particular, the two nested loops iterating over the pixel
buffer on line 6 and 8 are common to most decoders.

In summary, this example shows that our method is use-
ful to identify zero-day vulnerabilities in real-world code.
Furthermore, by combining information about symbol usage
and code structure, our method gains increased robustness
over approaches resting solely on symbol information.

Sim. Function name

0.98 flic_decode_frame_15_16BPP

0.92 decode_frame

0.92 decode_frame

0.91 flac_decode_frame

0.90 decode_format80

0.89 decode_frame

0.89 tgv_decode_frame

0.89 vmd_decode

0.89 wavpack_decode_frame

0.88 adpcm_decode_frame

0.88 decode_frame

0.88 aasc_decode_frame

0.88 vqa_decode_chunk

0.87 cmv_process_header

0.87 msrle_decode_8_16_24_32

Sim. Function name

0.87 wmavoice_decode_init

0.85 decode_frame

0.84 smc_decode_stream

0.84 rl2_decode_init

0.84 xvid_encode_init

0.84 vmdvideo_decode_init

0.83 mjpega_dump_header

0.82 ff_flac_is_._valid

0.82 decode_init

0.82 ws_snd_decode_frame

0.81 bmp_decode_frame

0.81 sbr_make_f_master

0.80 ff_h264_decode_ref_pic_.

0.80 decode_frame

0.79 vqa_decode_init

Table 2: Top 30 most similar functions to a known vulner-
ability in FFmpeg.

3.2.2 Case study: Pidgin
To demonstrate the generality of our method, we perform

a second extrapolation on a different code base and for a
different vulnerability type. In this case study, the set of
relevant functions is very small in comparison to the size
of the code base, that is, only 67 out of 11,505 functions
are candidate functions. Despite this increased difficulty, we
are able to identify nine vulnerabilities similar to a known
vulnerability among the first 30 hits, six of which were pre-
viously unknown.

Original Vulnerability. The function receiveauthgrant

shown in Figure 7 does not perform sufficient validation of
UTF-8 strings received from the network allowing attackers
to cause a denial of service condition and possibly execute
arbitrary code. The function reads the username and mes-
sage from an incoming binary data packet on line 15 and 20
respectively. It then passes these values to a suitable packet
handler on line 27. In general, packet handlers assume that
strings passed in parameters are valid UTF8-strings, how-
ever, the function does not ensure that this is the case.

Extrapolation. We again apply our method to obtain
the 30 most similar functions to the original vulnerability as
shown in Table 3. We first note that 28 of the first 30 hits are
candidates selected from a total of 11,505 functions. After
a short inspection of the suggested functions, we are able to
spot the same type of vulnerability as in the original function
in nine of the candidates. As an example, consider function
parseicon shown in Figure 7. The username is read from
the binary data packet on line 16 and is passed to a handler
function unchecked on line 25–similar to the vulnerability in
receiveauthgrant. It has been verified that this again allows
to cause a denial of service condition.

The second case study demonstrates that our method
works well even when the number of relevant functions is
small compared to the total size of the code base. We are
able to narrow down the search for potentially vulnerable



1 static int
2 receiveauthgrant(OscarData *od,
3 FlapConnection *conn,
4 aim_module_t *mod,
5 FlapFrame *frame,
6 aim_modsnac_t *snac,
7 ByteStream *bs)
8 {
9 int ret = 0;

10 aim_rxcallback_t userfunc;
11 guint16 tmp;
12 char *bn, *msg;
13 /* Read buddy name */
14 if ((tmp = byte_stream_get8(bs)))
15 bn = byte_stream_getstr(bs, tmp);
16 else
17 bn = NULL;
18 /* Read message (null terminated) */
19 if ((tmp = byte_stream_get16(bs)))
20 msg = byte_stream_getstr(bs, tmp);
21 else
22 msg = NULL;
23 /* Unknown */
24 tmp = byte_stream_get16(bs);
25 if ((userfunc =
26 aim_callhandler(od, snac->family, snac->subtype)))
27 ret = userfunc(od, conn, frame, bn, msg);
28 g_free(bn);
29 g_free(msg);
30 return ret;
31 }

static int
parseicon(OscarData *od,

FlapConnection *conn,
aim_module_t *mod,
FlapFrame *frame,
aim_modsnac_t *snac,
ByteStream *bs)

{

int ret = 0;
aim_rxcallback_t userfunc;
char *bn;
guint16 flags, iconlen;
guint8 iconcsumtype, iconcsumlen, *iconcsum, *icon;

bn = byte_stream_getstr(bs, byte_stream_get8(bs));
flags = byte_stream_get16(bs);
iconcsumtype = byte_stream_get8(bs);
iconcsumlen = byte_stream_get8(bs);
iconcsum = byte_stream_getraw(bs, iconcsumlen);
iconlen = byte_stream_get16(bs);
icon = byte_stream_getraw(bs, iconlen);
if ((userfunc =

aim_callhandler(od, snac->family, snac->subtype)))
ret = userfunc(od, conn, frame, bn, iconcsumtype,

iconcsum, iconcsumlen, icon, iconlen);
g_free(bn);
g_free(iconcsum);
g_free(icon);
return ret;

}

Figure 7: Original vulnerability (CVE-2011-4601) in receiveauthgrant (left), zero-day vulnerability in parseicon (right).

Sim. Function name

1.00 receiveauthgrant

1.00 receiveauthreply

1.00 parsepopup

1.00 parseicon

1.00 generror

0.99 incoming_.._buddylist

0.99 motd

0.99 receiveadded

0.99 mtn_receive

0.99 msgack

0.99 keyparse

0.99 hostversions

0.98 userlistchange

0.98 migrate

0.98 error

Sim. Function name

0.98 incomingim_ch4

0.98 parse_flap_ch4

0.98 infoupdate

0.98 parserights

0.98 incomingim

0.98 parseadd

0.97 userinfo

0.97 parsemod

0.97 parsedata

0.97 rights

0.97 rights

0.97 uploadack

0.96 incomingim_ch2_sendfile

0.96 rights

0.96 parseinfo_create

Table 3: Top 30 most similar functions to a known vulner-
ability in Pidgin.

code to a handful of functions. Again, the extraploation en-
ables us to identify previously unknown vulnerabilities by
inspecting only a small fraction of the code base.

4. LIMITATIONS
The discovery of vulnerable code in software is a hard

problem. Due to the fundamental inability of one program
to completely analyze another program’s code, a generic
technique for finding arbitrary vulnerabilities does not ex-
ist [10]. As a consequence, all practical approaches either
limit the search to specific types of vulnerabilities or, as
in the case of vulnerability extrapolation, only identify po-
tentially vulnerable code. In the following we discuss the
limitations of our approach in more detail.

Our method builds on techniques from machine learning,
such as the embedding in a vector space and latent seman-
tic analysis. These techniques are effective in identifying
potentially vulnerable code, yet they do not provide any
guarantees whether the identified code truly contains a vul-
nerability. This limitation is inherent to the application of
machine learning, which considers the statistics of the source
code rather than the true semantics. Due to Rice’s theorem,
however, a generic discovery of vulnerabilities is impossible
anyway and thus even the discovery of potential vulnerabil-
ities is beneficial in practice.

A prerequisite for extrapolation is the existence of a start-
ing vulnerability. In cases where no known vulnerability is
available, our method cannot be applied. In practice such
cases are rare. For large software projects, it is not the
discovery of a single vulnerability that is challenging but
making sure that similar flaws are not spread across the en-
tire code base. Extrapolation addresses exactly this setting.
Moreover, related techniques such as fuzz testing, taint anal-
ysis and symbolic execution can be easily coupled with vul-
nerability extrapolation and provide starting vulnerabilities
automatically.

Finally, the discovery of our method is limited to vulner-
abilities present in few functions of source code. Complex
flaws that span several functions across a code base can be
difficult to detect for our method. However, our case study
with FFmpeg shows that vulnerabilities distributed over two
functions can still be effectively identified, as long as both
functions share some structural patterns with the original
vulnerability.

5. RELATED WORK
The identification of vulnerabilities has been a vivid area

of security research. Various contrasting concepts have been
devised for finding and eliminating security flaws in source



code. Our method is related to several of these approaches,
as we point out in this section.

5.1 Code Clone Detection
In the simplest case, functions containing similar vulnera-

bilities exist because code has been copied. The detection of
such copy-&-paste code clones has been an ongoing research
topic. In particular, Kontogiannis et al. [14] explore the use
of numerical features, such as the number of called func-
tions, to detect code clones, while Baxter et al. [2] suggest a
more fine-grained method, which compares ASTs. Li et al.
present CP-Miner, a tool for code clone detection based on
frequent itemset mining [16]. They demonstrate the supe-
riority of their approach to the well-known tool CCFinder
developed by Kamiya et al. [13], a token-based detection
method. Maletic et al. [19] propose a method for code clone
detection, which compares functions in terms of comments
and identifiers. Similarly, Jang et al. have introduced a
method for finding unpatched copies of code using n-gram
analysis [11]. A thorough evaluation of existing methods is
provided by Bellon et al. [3].

Code clone detection shares some similarities with vul-
nerability extrapolation. However, corresponding methods
address a fundamentally different problem and are specif-
ically tailored to finding copied code. As result, they can
only uncover vulnerabilities that have been introduced by
duplication of code.

5.2 Static Code Analysis
The idea of vulnerability extrapolation hinges on the ob-

servation that patterns of API usage are often indicative for
vulnerable code. This correspondence has been recognized
for a long time and is reflected in several static analysis tools,
such as Flawfinder [30], RATS [24] or ITS4 [28]. These tools
offer databases of API symbols commonly found in conjunc-
tion with vulnerabilities and allow a code base to be auto-
matically scanned for their occurrences. The effectiveness
of these tools critically depends on the quality and coverage
of the databases. Vulnerabilities related to internal APIs or
unknown patterns of API usage cannot be uncovered.

Engler et al. [6] are among the first to explore the link
between vulnerabilities and programming patterns. Their
method is capable of detecting vulnerabilities given a set of
manually defined programming patterns. As an extension,
Li and Zhou [15] present an approach for mining similar pat-
terns automatically and detecting their violation in code. An
inherent problem of this approach is that frequent program-
ming mistakes will lead to the inference of valid patterns and
thus common flaws cannot be detected. Williams et al. [31]
and Livshits et al. [17] address this problem by incorporating
software revision histories into the analysis. Our method is
related to these approaches. However, we focus on the anal-
ysis of code structure for finding vulnerabilities, rather than
modelling common programming templates.

5.3 Taint Analysis and Symbolic Execution
A more generic approach to vulnerability discovery builds

on taint analysis, where vulnerabilities are identified by a
source-sink system. If tainted data stemming from a source
propagates to a sink without undergoing validation, a poten-
tial vulnerability is detected. The success of this approach
has been demonstrated for several types of vulnerabilities,
including SQL injection and cross-site scripting [12, 18] as

well as integer-based vulnerabilities [29]. In most realiza-
tions, taint analysis is a dynamic process and thus limited
to discovery of vulnerabilities observable during execution
of a program.

The limitations of taint analysis have been addressed by
several authors using symbolic execution [e.g., 1, 4, 8, 22].
Instead of passively monitoring the flow from the a source to
a sink, these approaches try to actively explore different exe-
cution paths. Most notably is the work of Avgerinos et al. [1]
that introduces a framework for finding and even exploiting
security vulnerabilities. The power of symbolic execution,
however, comes at a prize: the analysis often suffers from a
vast space of possible execution paths. In practice, different
assumptions and heuristics are necessary to trim down this
space to a tractable number of branches. As a consequence,
the application of symbolic execution for regular code au-
diting is still far from being practical [9].

5.4 Vulnerability Extrapolation
The concept of vulnerability extrapolation has been first

introduced by Yamaguchi et al. [33]. In this work a method
for vulnerability extrapolation is proposed that analyzes the
usage of function and type names for finding vulnerabilities.
However, neither the syntax nor the structure of the code are
considered and thus the analysis is limited to flaws reflected
in particular API symbols. Our method significantly extends
this work by extracting and analyzing structural patterns in
ASTs. As a result, we are able to discover vulnerabilities
that are related to API usage as well as the structure of code.
Moreover, we demonstrate the efficacy of our approach on a
significantly larger set of code.

In comparison with related approaches, it is noteworthy
that vulnerability extrapolation does not aim at identifying
vulnerabilities automatically, but rendering manual audit-
ing of source code more effective. The underlying rationale
is that manual auditing—though time-consuming—is still
superior to automatic methods and indispensable in prac-
tice. The assisted approach of vulnerability extrapolation
here better fits the needs of security practitioners.

6. CONCLUSIONS
A key to strengthening the security of computer systems

is the rigorous elimination of vulnerabilities in the underly-
ing source code. To this end, we have introduced a method
for accelerating the process of manual code auditing by sug-
gesting potentially vulnerable functions to an analyst. Our
method extrapolates known vulnerabilities using structural
patterns of the code and enables efficiently finding similar
flaws in large code bases. Empirically, we have demonstrated
this capability by identifying real zero-day vulnerabilities in
open-source projects, including Pidgin and FFmpeg.

The concept of vulnerability extrapolation is orthogonal
to other approaches for finding vulnerabilities and can be di-
rectly applied to complement current instruments for code
auditing. For example, if a novel vulnerability is identified
using fuzz testing or symbolic execution, it can be extrap-
olated to the entire code base, such that similar flaws can
be immediately patched. This extrapolation raises the bar
for attackers, as they are required to continue searching for
novel vulnerabilities, once an existing flaw has been suffi-
ciently extrapolated and related holes have been closed in
the source code.



Reporting of Vulnerabilities
The discovered vulnerabilities have been reported to the re-
spective developers before submission of this paper. The
flaws should be fixed in upcoming versions of the projects.
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