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Abstract

Modelling pixels using mixture of Gaussian distributions
is a popular approach for removing background in video se-
quences. This approach works well for static backgrounds
because the pixels are assumed to be independent of each
other. However, when the background is dynamic, this is
not very effective. In this paper, we propose a generali-
sation of the algorithm where the spatial relationship be-
tween pixels is taken into account. In essence, we model
regions as mixture distributions rather than individual pix-
els. Using experimental verification on various video se-
quences, we show that our method is able to model and
subtract backgrounds effectively in scenes with complex dy-
namic textures.

1. Introduction
Probabilistic modelling of backgrounds is used exten-

sively in scene change detection. Of all the approaches
used in the probabilistic modelling of pixels, mixture of
Gaussians (MoG) is one of the most popular algorithms.
Even though there was prior research on modelling pixels
based on mixture models [1], the MoG modelling technique
proposed by Stauffer and Grimson [2] provides the basis
for almost all recent research in this topic. They modelled
each pixel in an image as an online MoG model which was
learned using a recursive filter. While this works well for a
static background subject to gradual lighting changes in the
scene, it fails to handle any dynamic changes in the back-
ground such as leaves swaying, or water waves.

One way to address this issue is to extend the modelling
of a pixel’s temporal variation to include its spatial neigh-
bourhood. This is because these type of changes (waves rip-
pling, leaves swaying) in the background can be viewed as
dynamic textures [3] which exhibit certain spatio-temporal
stationarity properties. In this paper, we propose a generali-
sation of the MoG approach that incorporates spatio tempo-
ral data to handle dynamic textures in the scene. Our model
is allowed to update from pixels within a spatial neighbour-

hood thus incorporating small changes in the background
from frame to frame such as the motion of waves or leaves
in a scene.

In the following sections, we review previous work in
this field, and derive novel on-line update equations, using
expectation maximisation (EM), for modelling scenes con-
taining dynamic textures. Finally, we provide experimen-
tal results to verify the working of our algorithm. We also
compare the performance of our algorithm with other well-
known background subtraction algorithms.

2. Related Work
The system proposed by Stauffer and Grimson [2] is the

de facto standard for probabilistic modelling of background
pixels based on Gaussian mixtures. They used an online
k-means approximation to incrementally learn new obser-
vations with a learning parameter that ranges from zero to
one. The model is thus learned with an exponential decay
of the past history. This approach is a per-pixel approach,
with the pixels assumed to be independent of each other.
There have also been various other pixel level methods [4]
that have improved upon this method; however, all these
methods fail to address the issue of dynamic backgrounds
effectively. Whilst the original k-means updating equations,
and variants thereof, were heuristic, [5] presented a rigorous
theoretical derivation for them using an EM framework.

Dynamic textures are defined as sequences of images in
a scene that exhibit certain stationarity properties in time
[3]. Examples range from waves in the sea, movement of
branches in the wind, smoke, fire etc. All these phenom-
ena could be termed periodic because they tend to repeat
within a small neighbourhood of the image. By using spa-
tial data along with the pixel temporal values, these dy-
namic textures can be modelled in a better manner. Many
researchers have indeed tried to use spatial data to model
the dynamic background in scenes. Some notable examples
include Sheikh and Shah [6], who used a kernel-based ap-
proach that took into account neighbouring pixel locations,
whilst modelling the background of a particular pixel. How-
ever, in their approach, they had to maintain a history of
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frames based on their learning rate. This results in a high di-
mensionality problem as it requires storage of a lot of data.
Jodoin et al. [7] proposed a combined spatial and temporal
framework, with the assumption that a pixel’s spatial and
temporal variations can be modelled in a similar manner.
However, the authors themselves state that this assumption
does not always hold true, as for example, in the case of a
temporally periodic event such as a blinking light.

A background model based on spatio-temporal texture
was proposed by Yumiba et al. in [8]. They handled local
and global changes in the background by using a spatio-
temporal texture, called a ”Space-Time Patch”, which uses
gradients to describe the motion and appearance of objects.
However, their method is just used for detecting the pres-
ence of motion in a scene and not for actual segmenta-
tion. Dalley et al. [9] proposed a heuristic generalisation
of the MoG model to handle dynamic textures. They al-
lowed models to be generated from any/all pixels in a neigh-
bourhood window by using multiple simultaneous measure-
ments because different Gaussians could independently af-
fect the same pixel at the same time. These calculations in-
crease the computational complexity of the algorithm. Our
method is motivated by their approach; however, instead of
providing heuristic equations, we provide a theoretical jus-
tification using EM theory, which is computationally less
burdensome as it removes the need for simultaneous mea-
surements.

3. Spatial MoG

As shown in [5], the original MoG algorithm proposed
by Stauffer and Grimson is an online EM algorithm which
estimates the maximum likelihood of the observed data.
The pixel data is grouped into clusters or mixtures that
model this data over time in a k-means like manner. We
extend the theory in [5] to produce a generalisation of the
algorithm, which includes spatial data taken from a pixel’s
neighbourhood region. We first look at the algorithm from
a batch EM viewpoint, to provide a theoretical justifica-
tion of our work, and then we extend this into a generalised
online version of pixel mixture modelling based on spatio-
temporal relationships.

3.1. Batch mode updates

Consider the data X = {x1, x2, ..., xi, ..., xN} where
N is the number of data samples and i = 1, 2, ..., N de-
notes the index of the data samples. The neighbourhood
space of i, Ri is defined at any instant as a collection of r
data values in the neighbourhood centered around xi. Let
k = 1, 2, ...,K be the number of classes the data samples
could belong to, at each position i. Let zik denote the mem-
bership of any data sample to a cluster at position i, where
zik = [0, 1]. Furthermore, let θ = {µik, σ2

ik, ωik} be the

parameters of each class zik that the data samples can be-
long to. Now, any particular sample can be modelled as a
mixture distribution which is a combination of both colour
and space. Over time, the mixtures are updated from pix-
els that are close in colour and fall within the region of the
mixtures.

In batch mode, the EM algorithm is used to find the max-
imum likelihood estimate of the log likelihood function of
the observed data [10]. The expectation over the posterior
distribution of the latent variable zik given the data and the
parameters is

Ep(zik|xq,θold)(zik) =
∑
qεRi

γq(zik) (1)

where

γq(zik) =
ωik ∗ N (xq|µik, σ2

ik)∑
i∈Ri

∑k
j=1 ωj ∗ N (xq|µij , σ2

ij)
(2)

Now, this is different from the traditional batch MoG in
that this expected value depends on the neighbouring loca-
tions whereas in the traditional batch approach it only de-
pends on the current location. The subscript q for γ here
indicates that the expectation of the mixture, based on its
neighbourhood data, r, is maintained separately. Outside of
the cluster’s neighbourhood, the data does not influence the
cluster, therefore, the expectation values are assumed to be
zero.

The update parameters in the maximisation step can be
derived by maximising the expected value of the log likeli-
hood function with respect to the different parameters (the
derivation of which is beyond the scope of this paper). The
final update equations are obtained as follows:

µik =
1

Nik

∑
qεRi

γq(zik) ∗ xq (3)

σ2
ik =

1

Nik

∑
qεRi

γq(zik) ∗ (xq − µik)2 (4)

ωik =
Nik
N

(5)

where Nik is given by

Nik =
∑
n

∑
qεRi

γq(zikn) (6)

3.2. Online mode updates

In order to extend the batch algorithm to the online sit-
uation, stochastic gradient descent technique is used [5] re-
sulting in the following equations:

µtqk = (1− ρ)µt−1qk + ρ(xti) (7)
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Figure 1. An illustration of the model update. The light boxes in the top row indicate the current pixel and its neighbourhood. The middle
row indicates the possible clusters the data could belong to. The bottom row shows the cluster updated for the current pixel index (X
denotes that the clusters are not considered as they fall outside the neighbourhood of the pixel). The mixture updates are performed using
equations 7-9

σ2t
qk = (1− ρ)σ2t−1

qk + ρ(xi
t − µt−1qk )

2
(8)

ωtqk = (1− α)ωt−1qk + α (9)

We now explain the Spatial MoG algorithm incorporat-
ing the above equations in detail. This is followed by the
explanation of the model update example shown in fig. 1.

Algorithm: Spatial Mixture of Gaussians

1. Given an observation space {x1, x2, ..., xn}, initialise
the mixture parameters {µk, σ2

k, ωk} by assigning ran-
dom values from the neighbourhood for the means, high
variances and equal weights. For each observation xt,
all related observations in its neighbourhood defined by
a window size r are also taken into consideration.

2. Calculate the most likely mixture for the current obser-
vation (over the entire neighbourhood). This is usually
approximated by a distance measure between the mean
of the mixture and the pixel intensity of the current ob-
servation. In our experiments, Euclidean distance was
used.

3. Compare the distance of the above mixture with a thresh-
old value which is usually a scaled factor of the standard
deviation of the mixture. This indicates whether the pixel
matches the mixture model or falls outside the model.

4. If a match is found, update the mixture parameters of the
above mixture by using the equations 7-9

5. If no match is found, replace the mixture with the lowest
weight (at the current observation location) with a new
mixture by initialising it again.

6. Normalise the weights in the current region appropri-
ately so that the weights are balanced even if there are
multiple updates to a mixture from pixels around its lo-
cation.

7. The background model is then built with Gaussians hav-
ing high weights in the region. If the current observation
falls within this model, it is classified as a background
pixel; otherwise it is classified as a foreground pixel.

In fig. 1, we illustrate how the online model is updated
for a 1-d case with a neighbourhood size r = 3. The top
row represent the N data samples for one time instant, with
i representing the data indices. The light coloured boxes
in this row indicate the current pixel and its neighbourhood.
The left column shows the situation for the update for i = 2.
The pixel value is 33 and the neighbourhood pixel values to
either side are 35. The middle row of boxes represent the
possible clusters that have been learnt by the model thus
far. For illustrative purposes, only the relevant clusters that
are updated are shown here but other clusters that may be
present are assumed to be unimportant in this example. For
this reason, the cluster 90 at i = 4 is shown at k = 2 and
not k = 1. Note here that the total number of clusters at
each pixel location is, say K = 2, as in normal MoG, but
these clusters can be updated from any pixel in their neigh-
bourhood space unlike normal MoG where the clusters are
located at the same location as the pixel that influence them.
Assume that the models have been updating for a certain
time period and the figure shows the model at the current
time instant. The bottom row shows the cluster allocation
based on a hard choice from the cluster likelihoods. Thus
for the pixel value 33 at i = 2, a region wide search pro-
vides the cluster at i = 2 and k = 1 as the most probable
cluster, which is denoted by a 1 at that location and the other
clusters in the region are denoted by zeros, i.e. at i = 1 and
3 and also at i = 2 and k = 2. The X marks at i = 4
and 5 indicate that these clusters are not considered as they
fall outside the neighbourhood space of i = 2. Based on
this information, the parameters of the cluster at i = 2 and
k = 1 are updated by the equations 7-9. We then move
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the window one step to the right and we obtain the situation
shown in the middle column. In this case, the most probable
cluster in the neighbourhood of the pixel value at i = 3 is
found to be located at i = 2 and k = 1 and hence that clus-
ter is again updated using the update equations given above.
This is the key difference between our method and the orig-
inal approach in that a cluster at a different pixel location
can be updated provided it falls under the neighbourhood of
the current observation. The weights are normalised at each
step over the region that is currently under consideration.
Because the cluster at i = 2 and k = 1 is updated twice,
when the weights are normalised in that region, it will re-
sult in a higher weight for that cluster and lower weights for
other clusters that may be present in the same neighbour-
hood. Then we move the window again one step to the right
and this case is shown in the right column. Here, the pixel
value is 88 and from all the clusters in the neighbourhood of
i = 4, the cluster at i = 4 and k = 2 is found to be the most
probable cluster and hence, it is updated as above. Now, if a
new pixel is encountered that does not belong to the clusters
in its region, a new cluster is created at the same location of
the pixel with a low weight and high variance and the new
pixel intensity as the mean.

In our model, it can be seen that the dynamic background
information is taken into account by updating the mixtures
from pixels that lie within a spatial region. The learning
rate controls the rate at which the mixtures are learnt over
time. Since there can be multiple updates in a single time
frame, this model can update faster than the conventional
approach. Although the modelling uses block level prop-
erties, it is still a pixel level approach and hence provides
a well defined output unlike other block based techniques
using spatial relationship that provide block level results.

Another advantage of this model is that it can be ex-
tended to general probabilistic models like kernel density
estimates for non-parametric modelling and also to other
families of probability distributions like mixture of Poissons
for low lighting conditions. It can also be generalised fur-
ther to different feature sizes and block based approaches.

4. Experiments
To evaluate the proposed spatial MoG algorithm, we

tested its performance on four video sequences contain-
ing dynamic texture backgrounds. The first three are well-
known sequences that have been extensively used for test-
ing by the video analytics research community. These are a
bottle sequence (240x320) [11], beach sequence (128x160)
[12], and waving trees sequence (120x160) [13]. In ad-
dition, we have evaluated the spatial MoG performance
against a sequence acquired from a CCTV camera on board
a moving bus. This is the most complex sequence of all and
it involves a moving bus with a passenger in it. The com-
plexity of the scene comes from the window region of the

Figure 2. ROC Curves for the water sequence and the beach se-
quence

bus where the outside scene varies dynamically. Also, there
is a huge illumination change in the bus due to shadows
falling in the bus as it changes direction. These scenarios
together make this sequence a challenging one.

We first investigated the effect of the neighbourhood
window parameter size on the algorithm performance. Fig.
2 shows ROC curves for both the water and beach sequences
for window sizes of 1, 3, 5 and 7 (a window size of 1 corre-
sponds to Stauffer and Grimson’s original algorithm). The
ROC curves for the other two sequences were found to fol-
low a similar pattern. Analysis of Fig. 2 confirms that as
the neighbourhood window size increases the performance
of the algorithm improves, indicating that the spatial mod-
elling can cope with dynamic background textures. Fig. 3
shows representative output frames from each sequence for
different window sizes. Qualitative analysis reveals that as
the neighbourhood size increases, there is a decrease in false
positives. This is because smaller neighbourhood mod-
els cannot accurately learn the dynamic textures that move
out of the neighbourhood. However, larger neighbourhood
models are able to suitably adapt to this change and include
them in their model. This results in fewer false positives
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with larger windows. In the bus sequence, it should be noted
that the algorithm is able to adapt to significant illumination
changes. This is visible in the aisle of the bus, where the
shadow falling in the bus causes a drastic change in illu-
mination. The key reason for including the bus sequence
is because of its highly dynamic window region. This re-
gion has a wide range of colours; green from vegetation,
brown/gray due to buildings, white due to the pavement etc.
Now, the original approach fails to work here because, as
the pixels are assumed to be independent, it models only the
colour that first appears in the video sequence, and fails to
handle any further variation. But in our approach, because
the model is maintained over a spatial neighbourhood, any
movement in the window region will be modelled appropri-
ately, thus enabling it to extract foreground only.

Fig. 4 shows a comparison of the results from different
well known background subtraction approaches like Eigen
background [14], ViBe [15] and MGM-UM [16]. A sim-
ple median filtering has been applied uniformly to all the
images to remove noise in them. The number of pixel er-
rors (False Positives and False Negatives) for each algo-
rithm/sequence combination is shown in Table 1. The total
number of errors from all sequences (TE) for each algorithm
is also shown. It can be seen that our algorithm performs
better than most algorithms and also produce comparable
results to ViBe which is one of the best background sub-
traction algorithms currently in literature. The pixel models
of ViBe are updated exclusively with observed pixel values
compared to our approach where we approximate the model
with a weighting factor. Further, their background and fore-
ground models are mutually exclusive whereas there is a
possibility of outliers present in our models. However, our
results are still similar to their results and we believe our
approach can be further improved by adaptively varying the
neighbourhood size and the classification threshold. Fig. 5
shows the output of a few key frames from the waving trees
sequence for all the above mentioned algorithms. Here, the
branches of the tree are wildly waving in the background
and towards the end of the video sequence, a person en-
ters the scene. The results show that our method is able
to perform both dynamic background subtraction as well as
foreground segmentation very well.

Finally, the optimal choice of neighbourhood size de-
pends on the dynamics of the background texture. To illus-
trate this, consider the water sequence, which is twice the
size of the beach sequence. Here, the wave motion covers a
larger region than the wave motion in the beach sequence.
This indicates that the larger neighbourhood is required to
subtract the background in the water sequence compared to
the one required for the beach sequence. This can be seen
in the ROC results, where the results with neighbourhood
sizes of 5 and 7 for the beach sequence are almost the same,
whereas there is a marked difference between them for the

Figure 3. Background subtraction results for the different video
sequences. First Column - Original images; Second Column -
Ground Truth; Third Column - OriginalMoG (s = 1); Fourth, Firth
and Sixth Columns - SpatialMoG (s = 3, 5 and 7)

Figure 4. Comparison of results from different algorithms. First
Column - Original images; Second Column - Ground Truth; Third
Column - OriginalMoG; Fourth Column - Eigenbackground [14];
Fifth Column - ViBe [15]; Sixth Column - MGMUM [16]; Seventh
Column - SpatialMoG

Algorithm Errors Water Beach Trees Bus Total Errors

MoG FN 351 75 302 212 26496FP 7001 1553 1694 15308

SMoG FN 423 336 199 1020 8767FP 2093 231 688 3777

Eigen FN 388 270 48 468 9809FP 2100 222 1942 4371

MGMUM FN 564 334 153 1436 10972FP 4296 422 2182 1585

ViBe FN 592 333 186 1201 7757FP 2160 168 1424 1693

Table 1. Quantitative Analysis

water sequence. This indicates that there is a cut-off size
that is dependent on the magnitude of motion of the back-
ground texture. Any window size above this cut-off will not
show a noticeable difference in the results. Also, we no-
ticed in our experiments that the learning rate helps learn
the model faster than the conventional algorithm because
multiple updates can be done in one iteration. However,
this can be suitably adjusted if we would like the model to
update slower, i.e. foreground objects should not move to
background immediately.
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Figure 5. Comparison of results from different algorithms for the
waving trees sequence. First Row - Original images; Second Row
- OriginalMoG; Third Row - Eigenbackground [14]; Fourth Row
- MGMUM [16]; Fifth Row - ViBe[15]; Sixth Row - SpatialMoG

5. Conclusions
In this paper, we proposed a region based Mixture of

Gaussians approach by deriving update equations from EM
theory to handle dynamic background in video sequences.
By experimental evaluation, we showed that this approach
works well in modelling dynamic backgrounds in well
known sequences. Future work will include extending the
algorithm to work with different feature sizes instead of in-
dividual pixels to improve the background subtraction fur-
ther without compromising much on the foreground defi-
nition. As mentioned earlier, we also look to combine the
motion information of the texture to adapt the neighbour-
hood of the model.
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