
A Game of Paradigms
A Usability Study of Functional Idioms in Gameplay

Programming

Figure 1: Made using icons by Freepik and Nikita Golubev from www.flaticon.com

Project Report - 10th Semester Computer Science
PT103F19

https://www.freepik.com/
https://www.flaticon.com/authors/nikita-golubev
https://www.flaticon.com/

Aalborg University
Department of Computer Science, SICT

Software Engineering
Aalborg University

http://www.cs.aau.dk/

Title:
A Game of Paradigms: A Usability
Study of Functional Idioms in Gameplay
Programming

Theme:
Scientific Theme: Language evaluation,
game development, functional program-
ming, interpreted languages, evaluation
strategey

Project Period:
Spring Semester 2019

Project Group:
PT103F19

Participant(s):
Thomas Gwynfryn McCollin
Tobias Morell

Supervisor(s):
Bent Thomsen

Copies: Digital distribution only

Page Numbers: 131

Date of Completion:
June 6, 2019

Abstract:

This project examines the use of func-
tional programming in gameplay pro-
gramming. Two notable game develop-
ment gurus, John Carmack and Tim
Sweeney, claim that increased use of
functional programming in game de-
velopment would be beneficial. This
project puts those claims to the test
by comparing the use of C# and F#
in the Unity game engine.
We first examine experienced game de-
velopers attitude towards the claims
via a usability evaluation. We found
that the participants were able to write
more concise and modular code in F#,
but still were reluctant to use it in
practise. In need of a stronger incen-
tive we turned to a performance study,
intended to measure if concurrent code
in F# is more performant than concur-
rent code in C#. We found that F# is
slightly slower than C# in most cases.
Finally we put the observed benefits of
F# into the context of modern game
development practices to examine why
those benefits are not appealing to ex-
perienced gameplay programmers.

The content of this report is freely available, but publication (with reference) may only be pursued
due to agreement with the author.

Contents

Preface iv

1 Introduction 2
1.1 Problem Statement . 3
1.2 Project Scope . 4

2 Related Work 5
2.1 Implicit Parallelisation . 5
2.2 Effects Typing . 9
2.3 Functional Programming in Games 10
2.4 Benchmarks . 11

3 Research 13
3.1 Functional Reactive Programming 13
3.2 Usability Evaluation of Programming Languages 14
3.3 Concurrency in Unity . 18

4 Usability Evaluation 20
4.1 Cognitive Dimensions of F# and C# 20
4.2 Usability Evaluation . 34

5 Concurrency in C#, F# and Unity 55
5.1 Benchmarks . 55
5.2 Parallel Overhead & Performance 63
5.3 Performance Benchmarking the FRP System 72
5.4 Threats to Validity . 82

6 Discussion 84
6.1 F# Adoption Potential . 84
6.2 Methodology . 87
6.3 Technology Choices . 89
6.4 Performance Difference of F# and C# 91

7 Conclusion 93
7.1 Project Summary . 93
7.2 Research Questions . 94
7.3 Closing Remarks . 96

8 Future Work 97
8.1 Lenient Evaluation in F# . 97

ii

8.2 Improving the FRP System . 98
8.3 Longer Term Usability Evaluation 99
8.4 Reactive Programming in C# . 100

Bibliography 110

List of Figures 112

List of Tables 113

List of Listings 115

A Concurrency in Unity 116

B Benchmark Data 119
B.1 Binary Tree Benchmarks - F# . 119
B.2 Binary Tree Benchmarks - C# . 120
B.3 Critical Work Data . 121

C Interview Guide 123

D Usability Quote Transcriptions 124
D.1 Participant 1: F# Debrief . 124
D.2 Participant 4: F# Debrief . 125
D.3 Participant 6: F# Debrief . 126

E Code Examples 127
E.1 A Less Viscous Implementation of Unit Management 130

iii

Preface

The field of game development is subject to many opinions from the industry and
is often backed by little scientific evidence. We will therefore need to cite pages
that are not “traditionally scientific” in this report, examples of which are Quora
and StackOverflow. These sources are of questionable quality and need not reflect
the broad opinion on the game development industry. However, we include them
here to indicate that “some” game developers share the expressed belief.

Acknowledgements

Bent Thomsen

Adam Kjær Søgaard

Hans-Christian Greve

PT101F19 and PT102F19 for the good mood in the group room

The participants of the usability evaluation

Resume

This project examines the claims of John Carmack and Tim Sweeney. These
two notable game development figures claims than increased used of functional
programming in game development would be beneficial. The two gurus suggest
using functional programming in different ways; Carmack argues that developers
should adhere to a functional style in any language, whereas Sweeney suggests the
introduction of a new pure functional language with explicit effects typing and
lenient evaluation.

We decided to examine why functional programming is not yet used by AAA game
engines, such as Unity and Unreal Engine. This was first examined by conducting
a usability evaluation. The participants in the evaluation were profession game
developers from Aalborg, who had experience in Unity and C#. During the test
sessions the participants would implement one or more task, which was designed

iv

to resemble an aspect of gameplay programming. Half of the tasks were to be
implemented in F# and the rest in C#. A total of eight tasks were designed
for the experiment, which were sorted into four categories. The purpose of the
categories was to allow a side-by-side comparison of F# and C# under similar
conditions. After the session a short interview was conducted to allow the partic-
ipants to express whether or not they found the use of functional programming
beneficial in game development. The participants generally agreed that the use of
functional programming would prove many benefits, such as more modular code
and immutability, but still were reluctant to use it in practice. Their primary
arguments against F# was that the cost of learning the language would be too
high, compared to the provided benefits.

After learning that game developers were not keen on switching, we decided to
examine the performance impact of using F# instead of C#. We did so with a
particular focus on concurrency, to learn whether concurrent code F# was more
performant than in C#. In most cases, F# runs slightly slower than C#. Further-
more, we found that F#’s Async Workflows parallelisation strategy was fragile, as
using Async.Parallel instead of Async.StartChild can result in a massive
performance degradation. In the best case circumstances, the Task parallelisa-
tion of C# and Async Workflows of F# seems to fare equally well. We also
conducted a test in Unity, which measures the framerate given an increasing num-
ber of MonoBehaviours. We found that MonoBehaviours written in F# was a
little less performant compared to C#. Finally, the performance of the Functional
Reactive Programming (FRP) system, which was written as part of this project,
was much slower still. The reason for this was that the current implementation is
simple and suboptimal, meaning that each FRPBehaviour is a full-blown FRP
system with conditions-checking and event-dispatching.

Finally, we put out findings into the perspective of modern game development and
discuss why the benefits provided by F# might be less important to the developers
than productivity.

1

1 | Introduction

Game development has been dominated by the object oriented programming paradigm
since the advent of game engines[1], arguably even before that. Game engines have
separated hardware and rendering specific problems from the game development
and thus enabled the emergence of smaller independent game developers[2]. These
developers have varying levels of training in modern software disciplines[3], [4]
which exacerbates the complexities of game development[5].

While C/C++ still seems to dominate the game development industry[6], some of
the widely used commercial game engines have migrated from C/C++ to other
alternatives. One example is Unreal Engine, which has released the visual pro-
gramming language Blueprint[7] to support developers and reduce game devel-
opment complexity[8]. While these languages are promising, this niche may also
be filled by functional languages. Proponents of functional languages have, in
the past, claimed that functional languages excel under similar conditions[9]–[11].
Therefore such languages are examined in a game development context.

In a previous semester project, we have investigated the performance impact of
managed languages in a game development context[12]. Some game development
techniques utilising functional programming were also measured, but these systems
were not competitive. Instead we examine the functional programming approaches
proposed by influential game developers: John Carmack (founder of id Software)
and Tim Sweeney (founder of Epic Games). Their proposed approaches to func-
tional programming, while striving for the same goal, tackle the issue differently.

“No matter what language you work in, programming in a functional
style provides benefits. You should do it whenever it is convenient, and
you should think hard about the decision when it isn’t convenient.”

-John Carmack[13]

John Carmack suggests placing the responsibility on the programmer and un-
derlines that the functional programming style should be adhered to whenever
possible[13]. This approach is well supported in the multiparadigm programming
language C#, which is predominantly object oriented, but supports various func-
tional constructs, such as lambda expressions[14] and soon pattern matching[15].
Another important aspect of this approach is purity. Game developers argue that
games are inherently stateful[5], [16], but smaller functions may be side-effect free

2

and effectively become pure. Carmack, however, believes that enforcing this is left
to the programmer.

“Purely Functional is the right default [...]
Imperative constructs are vital features that must be exposed through
explicit effects-typing constructs [...]
Lenient evaluation is the right default.”

-Tim Sweeney[17]

The approach proposed by Tim Sweeney suggests a new game-development ori-
ented and functional-programming language[17]. Thus responsibility is moved
away from the programmer. The suggested language should be pure, but support
imperative constructs. Another quirk of the language is the proposed evaluation
strategy. Sweeney believes that the language should use the lenient evaluation
strategy and use strict/eager evaluation as a compiler optimisation, furthermore
lazy evaluation may be made available via explicit constructs to the programmer.

1.1 Problem Statement

The gurus John Carmack and Tim Sweeney present two different approaches to
the use of functional programming in game development. On one hand Carmack
recommends writing code in a functional style whenever possible, but he does
not believe fully functional programming languages are practical tools for game
development. The main features mentioned are higher-order and pure functions
along with action items.

In contrast Sweeney argues for a pure functional language supporting multiple
evaluation strategies explicitly controlled by the programmer. In addition, he
argues for constructs that allow for explicit handling of the imperative nature of
games, however the exact nature of such constructs is left to the language designers.

Using the .NET platform we can conduct a side-by-side evaluation of functional
and object-oriented programming. C# is object-oriented and has many functional
constructs, which presents a viable candidate of Carmack’s suggested approach.
F# is a functional programming language and presents a possible candidate for
Sweeney’s approach. With two programming languages of these paradigms, we can
test their applicability to game development. We propose the following research
questions to examine the use of functional programming in game development:

1. How well do experienced game developers express gameplay code
in the functional paradigm, in comparison to object-oriented pro-
gramming?

3

2. How can functional programming be incorporated in game development?

3. What are the performance impacts of using functional idioms in a game
engine?

4. What is required of functional programming to be adopted by game devel-
opers?

1.2 Project Scope

As this project examines the use of functional programming in game development,
we have to select a game framework or game engine that will act as a host for
the experiment. We have suggested using C# and F# in the experiment because
they run in the same platform and are representative of the gurus’ suggestions.
There are a couple of game engines that support the .NET platform, including
Unity, Godot, MonoGame and CryEngine, among others[12]. We chose Unity
in this project, because it is the most popular engine that supports the .NET
platform[18]. None of the platforms support F#, but the communities have added
support in all cases[19]–[22].

4

2 | Related Work

In this chapter we discuss related work. We first examine how performance of par-
allel programs may be analysed. Tim Sweeney mentions effects typing constructs
in his approach, which we discuss next. Finally we examine other projects that
have tried to incorporate functional programming in game engines and classify
performance benchmarking strategies.

2.1 Implicit Parallelisation

Functional programming has long claimed to be inherently parallelisable[23], [24].
The claimed advantage of functional programs is the high degree of modularity,
which simplifies the parallelisation process. A number of languages have attempted
to implement programming systems that utilise this advantage, however few have
reached mainstream use. In this section we will explore the theoretical background
for implementing an implicitly parallelisable system in F#.

First different evaluation strategies are explored, since F# supports both strict
and non-strict evaluation. In addition to these two dominant evaluation strate-
gies, another promising strategy, called lenient evaluation, is examined. Once the
strategies are outlined, the question of when to parallelise is addressed with the
work/span methodology.

2.1.1 Evaluation Strategies

Programming language behaviour is heavily dependent on the evaluation strategy
employed. Conventionally two such strategies are prominent in the literature[25];
strict (also called eager) and non-strict (commonly known as lazy, though this is
not entirely accurate). [25] suggests a lenient evaluated language. This strategy
is non-strict, but not lazy, which places it in-between eager and lazy[25]. This
intermediary position means that the lenient strategy benefits from both eager
and lazy advantages. According to literature lenient evaluation lends itself to
implicit parallelism[26]. This section will explore the three strategies and clarify
the distinctions between them.

In Sweeney’s discussion of the game-programming language of tomorrow, he un-

5

derlines that it should make use of the lenient evaluation strategy[17]. The reason
for this is that eager evaluation strategy is too limiting and lazy evaluation is too
costly. Sweeney also underlines that the compiler of this new language should be
capable of optimising pieces of code to use eager evaluation, whenever it is more
optimal.

Strict Evaluation

Strict evaluation, often called eager evaluation, is a prominent evaluation strategy
in traditional programming languages. The defining feature of the strategy lies
in the handling of function parameters. Eager evaluation requires fully evaluated
parameters before a function may be evaluated[27, p. 103], however this is not the
only requirement. Depending on the choice of parameter passing approach, the
evaluation strategy may also be affected. Chief among eager parameter passing
approaches are call-by-value and call-by-reference. In the case of call-by-value a
parameter must be evaluated and its result passed to the function. On the other
hand call-by-reference has the same requirement, but instead the memory address
of the result is passed to the function.

Non-strict Evaluation

Contrary to strict evaluation, non-strict evaluation does not require parameter
evaluation until they are needed[28]. This strategy is often implemented using
call-by-name or call-by-need parameter-passing approaches. This strategy affords
the programmers more expressive power[29] and allows for infinite data structures
and non-terminating functions[27, p. 103]. The parameter passing approaches
state that parameter evaluation is delayed until they are called, therefore unused
parameters need not be calculated at all.

Lenient Evaluation

The lenient evaluation strategy does not restrict the order of parameter evaluation.
The only requirement is that the variables are available when they are needed,
or in other words that the data dependencies are satisfied. Parameter passing
approaches in this strategy often make extensive use of parallelism and concurrency
techniques, due to the inherent parallelisability of lenient evaluation[26].

The most notable instantiation of this evaluation strategy is call-by-future[30].
In this implementation the main thread of the program executes the program
and every time it encounters a function invocation, it spawns a future for each
argument to the function. The main thread then continues to execute the function-
body, synchronising with the futures as arguments are needed in the function-body.

6

This has the result that functions and arguments are computed concurrently. The
parallelisability of programs may vary greatly, depending on how the program
is written and what it is intended to do. Therefore, we examine static analysis
methods to determine when to parallelise.

A visualisation of parallelism in the different evaluation strategies can be seen in
Figure 2. Here two cases are compared: a summation of a binary tree (Figure 2a)
and sorting and summation of a list (Figure 2b). The X-axis represents time and
the Y-axis represents the number items that can be computed in parallel at that
given point in time.

(a) Parallelism profiles for computing the sum
of the leaves of a binary tree.

(b) Parallelism profiles for sorting a list and
computing its sum.

Figure 2: Parallelism profiles for evaluation strategies, graphs taken from [26].

2.1.2 Formal Performance of Parallel Programs

This section will detail a formal method of estimating performance of parallel
programs called work and span. This method counts the number of primitive

7

operations required to execute the entire program. This is called the sequential
running time of the program and is denoted: T (n) where n is the problem size[31].
The sped up running time, using additional processors, is denoted: Tp(n). Here p
denotes the number of processors, Thus:

T (n) denotes the total sequential running time.

Tp(n) denotes the total running time of the program when parallelised as much as
possible.

In order to estimate Tp(n) the work and span of the program must be identified.
The work is the total running time of all processors, ignoring synchronisation
overheads. This is equivalent to running the program on a single processor or
sequentially. Therefore

work = T (n)
The span is the longest data dependent path in the program i.e. the longest path
of strictly sequential computation. This is sometimes called the critical path or
the computational depth[32]. The shorter the span, the more parallelisable the
program. Finally the cost of the program can be calculated. This is the total
running time across all processors including the time spent idling. The cost is
denoted pTp.

Given this information about a parallel program, the speed-up gain from paralleli-
sation can be calculated. This calculation assumes an infinite number of processors,
T∞. A number of different metrics for this gain exist, they are as follows.

Speed-up is the raw gain from running the program on multiple processors.

Sp = T1/Tp

Efficiency is the speed-up per processor.

Sp/p

Parallelism is the maximum possible speedup given a number of processors.

T1/T∞

Slackness is a measure of the program’s parallelisability. A slackness of less then
one implies that perfect linear speedup is possible.

T1/(pT∞)

8

Since no actual machine has an infinite number of processors, the above equations
require slight modifications to simulate real machines. Any computation that can
run on N processors can be executed on smaller number of processors, p < N [33].
This is achieved by dividing the work load onto the processors, instead of assigning
one processor per task. Furthermore, running on fewer then N processors the
execution is bounded by:

Tp ≤ TN + T1 − Tn

p

The bound Tp can be expressed with upper and lower bound[34]:

T1

p
≤ Tp ≤ T1

p
+ T∞

These metrics are calculable at compile time and therefore present a potential
answer to the implicit parallelisation question.

2.1.3 Lenient Parallelisation

Using a highly granular parallelisation system, such as .NET Tasks, each argu-
ment to a function could be evaluated as a task, unless the expression is too small.
Determining the computational cost of an argument is calculated by estimating
the work of the expression. This information, along with the span of the program,
should provide enough information to the system to effectively parallelise a lenient
program.

2.2 Effects Typing

In the problem statement we presented a quote from Tim Sweeney suggesting
that “imperative constructs should be made available via explicit effects typing”
(see Chapter 1). Effects typing i.e. type and effect systems, are type systems
that track types and the changes made to them[35]. These changes are referred
to as effects. Such changes could be modifying a mutable variable, opening a file
handle, reading or writing to a shared resource. These systems are mainly seen
in academia, where annotated type and effect systems have been implemented.
The annotated approach has proven to be unwieldy to program[36], which may
explain the small number of languages using such systems. Recently type and
effect systems have been subject to renewed interest and the Rust programming
language incorporates a similar system[37].

The effects tracked by type and effect systems can be extended to parallel changes.
Thus the system can be used to manage concurrency and guarantee equivalent

9

behaviour between sequential and concurrent implementations of the same prob-
lem[38]. While type and effects systems have been around for a a while, it has
recently been proven to be able to calculate when it is sound to parallelise a
task[39]. This information is discernible via static analysis of the source code,
using an annotated type and effect system, at compile time.

2.3 Functional Programming in Games

In this section we examine other projects that research functional programming
in game development. These projects range from scientific articles and reports to
open-source projects.

2.3.1 Functional Programming in Unity

In parallel to this project, another group on the Programming Technology speciali-
sation course is researching the use of F# in Unity as well. This project researches
how well children, who are members of the Coding Pirates group, and students
on the Medialogy education are able to express gameplay code in F#. In their
experiment, the participants are to complete eight tasks, which results in a space
invaders game. After solving each task the participant must self-evaluate how well
the exercise was completed along with how much effort it took to solve it[40].

There are several projects that aim to integrate functional programming in Unity.
Examples of those are Unity F# Integration[19], F# Kit[41] and Arcadia[42].
The two former allow the programmer to write gameplay code in F#, whereas
the latter implements Clojure in Unity. We found that said game frameworks
needed a larger community and better documentation in order to be truly useful.
Furthermore Arcadia introduced a significant performance impact, compared to
C# in Unity.

2.3.2 Reactive Programming in Unity

Just as there are projects that seek to integrate functional programming in Unity,
there are also projects that seek to integrate reactive programming. An example
of such is UniRx[43]. This project implements a series of extensions that allow
the programmer to use reactive programming in Unity. The advantages of this are
that keyboard, mouse and other types of input can be treated as event streams
and filtered in. Furthermore, they underline the simplicity of implementing parallel
and asynchronous web requests[44].

10

2.3.3 Functional Reactive Programming in Games

The scientific community has also shown interest in functional programming in
games. Particularly the paradigm FRP has seen a lot of research. This idea of FRP
originates from FRAN[45] and was later used to implement the game framework
Yampa Arcade[46]. [47] implements a First Person Shooter (FPS) game called
FRAG in Yampa Arcade and Haskell and concludes that it requires fewer lines
of code to implement concurrent updates of game objects in Yampa compared to
multithreading. In previous research we have also examined the use of functional
programming in game development[12], in particular in the game engine Nu, the
game framework Helm and in the Arcadia extension for Unity. These projects aim
to enable game development in respectively F#, Haskell and Clojure. We found
that said projects were hard to use, mainly because of lacking documentation and
a small community around them. Furthermore, the Arcadia extension for Unity
had a huge impact on the performance of the gameplay code[12].

2.4 Benchmarks

Estimating the general performance of a programming language is a difficult task.
A programming language, even a Domain Specific Language (DSL), has broad
problem domains compared to conventional programs. Therefore benchmarks
suites are employed to test different aspects of the programming language. Such
suites have been used to measure the Scheme programming language and its deriva-
tives[48], [49] and popular game engines[12]. When measuring the performance of
managed languages, microbenchmarks are often employed to account for warm-up
time and garbage collection[50].

2.4.1 Benchmark Categories

There exists a number of different benchmarking techniques. This section will out-
line a few of these and clarify their differences. The different kinds of benchmarking
are outlined in [12]:

• Microbenchmarks

• Macrobenchmarks

• Application Benchmarks

Microbenchmarks are small tests that can be run repeatedly. They test a small
part of the code and are sometimes referred to as component tests. These tests are

11

comparable to unit tests in size. In the microbenchmarking methodology outlined
in [50], these small tests are run several times to measure the arithmetic mean and
standard deviation. The number of runs varies, the idea is that the code has run
at least twice and at least for 0.25 wall-clock seconds.

Macrobenchmarks are considered tests of multiple microbenchmarks sequenced
together. These are comparable to an automatic integration test or a test of
a partial system. These tests measure the overhead of component composition.
This methodology is still based on the same principles as microbenchmarking and
therefore computes an arithmetic mean and standard deviation for the composed
system.

Application benchmarks test a full application, with start-up times included. This
is sometimes referred to as real program testing. This testing category measures a
real use case and therefore doesn’t always employ arithmetic mean and deviation.

12

3 | Research

In this chapter we present the research that was conducted as foundation for the
project. We first discuss FRP, which is presented as a suitable candidate for
integrating functional programming in games[46], [47], [51]. We then discuss how
the usability of programming languages can be ascertained. Finally we examine
Unity’s concurrency system and discuss how that differs from .NET’s Task model.

3.1 Functional Reactive Programming

FRP stems from the Functional Reactive Animation (FRAN) framework presented
in [45]. In the scientific community the most notable FRP framework is the Yampa
Arcade project[46], which was initially used to implement a clone of Space Invaders.
It was later shown that Yampa Arcade could be used for commercial-grade games
of that time by developing a game called FRAG[47].

FRP is a mixture of functional programming and reactive programming, treating
programs as data- or event streams (events are sometimes called signals). [52]
describes events as time-stamped values, i.e. discrete variables with respect to
time. Examples of events are button clicks, GPS location updates and gestural
inputs[53]. As an example, a mouse button may be either clicked or not clicked
at some time t. The event stream from the mouse button is a list of tuples:
(time, clicked). Programs are expressed in a declarative manner as sets of event
handlers (sometimes called signal functions or behaviours) that react to the event
streams. The strength of FRP lies in the ability to combine multiple event han-
dlers. Such combinations may come in the form of chaining together several event
handlers or creating one event handler that responds to multiple events[52].

[51] presents an overview of different game-related FRP systems and conclude:

“Perhaps a commercial language like F#, with better support and inte-
gration into the presentation pipeline (.NET, C#, XNA, and the Kinect
SDK), would be a better choice for making FP (functional program-
ming) into a real game changer.”

-Christopher Maraffi and David Seagal[51]

Apart from Yampa Arcade, FRP has also been implemented in other game frame-

13

works, such as Helm [54] and more recently Nu[55]. In previous work we examined
both and concluded that to be truly useful they need a bigger community and
more documentation[12].

3.1.1 FRP Performance

In scientific literature, the consensus seems to be that FRP is too slow to be
adopted in game development[47], [51], which is backed by findings from Nu, where
7,000 objects can be simulated using pure FRP, whereas the number is 25,000 for
imperative objects[56]. On the other hand, [57] claims that Netflix, a world-wide
video streaming service, uses FRP on both frontend and backend. If that is true, it
is a strong indication that the performance overhead is not as large as the scientific
community fears.

3.1.2 Other Applications

FRP is also used in other areas than game development. As mentioned earlier,
FRP dates back to FRAN, which could be used to model 3D geometry[45]. FRP
has also seen its use in music with the Euterpea Haskell DSL[58].

3.2 Usability Evaluation of Programming Lan-
guages

In this section we present usability evaluation methods for programming languages.
As usability evaluation of programming languages does not have a standardised
method or framework, we discuss several different usability evaluation models.
These include user interface evaluation methods, such as Instant Data Analysis
(IDA), and methods that are tailored towards programming language analysis
such as discount method for language evaluation. We wish to research a broad
palette of methods, as this allows us to combine the strategies in an attempt to
obtain valuable data.

3.2.1 Instant Data Analysis

IDA is an analysis strategy, which is meant to be used with think-aloud based
usability evaluation techniques[59]. [59] suggests conducting between four and six
usability evaluation sessions, which are followed by a one hour IDA brainstorming
session. During the brainstorming session the data-logger and test monitor discuss

14

the usability problems found during the sessions. Meanwhile, the facilitator takes
notes, categorises the problems, asks questions for clarification and directs the
discussion. After the brainstorming session, the facilitator writes down a prioritised
list of usability problems, which ranks their severity, placement in the software
system and gives a short description of the problem. The IDA method has the
advantage that a full-scale usability evaluation can be conducted in a single day,
while still discovering a majority of the problems[59].

3.2.2 Discount Method for Language Evaluation

Discount Method for Language Evaluation is a work-in-progress method based on
IDA[60] and the Discount Usability Evaluation Method[61]. It is a technique in-
tended for low-cost evaluation of a programming language during its development.
The technique requires very limited setup and can be used even before the lan-
guage’s compiler has been written. The method requires the test participant to
implement a set of programming problems in the language. The test participants
are equipped with a sample sheet, that gives code examples and brief explana-
tions of how the language is structured. All the programs are written either in
a text-editor or using pen and paper. These tools present no error-checking and
code-completion. This leaves all errors present in the code for subsequent evalua-
tion. The errors are then classified according to how much work it would require
to fix them.

3.2.3 Cognitive Dimensions

In order to talk about notation systems and their usability features in general, these
features must be generalised to their fundamental dimensions. These dimensions
are the cognitive dimensions, which dictate the usefulness of design strategies
for various design problems. One such vocabulary is the cognitive dimensions
framework[62]. The framework itself consists of a set of thirteen dimensions, each
of which represent a generic usability problem area. We will not go in detail with
the dimensions as more detailed descriptions can be found in [62] and [12]. In
previous work we used the cognitive dimensions framework to compare gameplay
programming in C++ and C#[12].

3.2.4 Attention Investment Models

In order to understand how users interact with a programming system, their prob-
lem solving approach needs to be examined. This can be done by analysing the
generic nature of a user’s first programming steps. From this analysis the cognitive
demands can be explored and mapped[63].

15

The cognitive demands consists of cost, investment, payoff and risk:

Cost is the number of attention “units” required by a programming activity to
be completed.

Investment is the actual attention spent by the user and may be greater than the
cost.

Payoff is the reduced cost of undertaking the task in future, due to the assistance
of the program.

Risk is the chance that the program is not completed and the investment wasted.

The model uses an agent architecture. This means that each course of action
is represented as an agent competing for the user’s attention. Human focus is
simulated by only allowing one agent to be processed at a time. In fact all tasks in
the system are represented as agents, including subtasks and the division of tasks
into subtasks. Thus inquiry into the problem and the problem solving activities
can both be modelled using the same system.

The model can be used to give a broad stroke estimation of a user’s attention
expenditure when using a system. This can help designers improve the system by
identifying problematic features. The model can also be applied with more rigour,
to achieve a finer grain understanding of the attention economy of a system. This
approach entails simulating the behaviour of the user in the agent architecture
yielding even more information, but is significantly more costly.

The Attention Investment Model serves as a cognitive model of programming ef-
forts that offers a consistent account of all programming behaviour, from profes-
sionals to end-users.

3.2.5 Champagne Prototyping

The Champagne Prototyping method was developed for the testing of Microsoft
Excel[64]. The reason for its development was a lack of cheap prototyping tech-
niques that could be deployed early in the project. The methodology is designed
to answer a question about a feature or product. A cheap prototype is created
specifically to answer this question. It is important to keep in mind that the pro-
totype must be complete enough that it can be used to answer the question. The
authors found the following points to be the minimum necessities:

• The prototype must be fully operational. Useful usability data can only be
gathered from a working system.

• Therefore the prototype must be based on an existing product.

16

• Dysfunctional prototypes can be used for demonstration purposes and can
be used to gauge the users reaction to the visuals, but cannot be used if the
user is to interact with it.

A small number of credible participants are selected. It is important that these
participants are experts in the relevant field and that they have no programming
experience (unless it is relevant for the field). The participants are asked to perform
some task in the prototype. The nature of the task should be dependent on the
question being answered. Following task completion, the participants are subjected
to a scenario-based interview. Finally the results are analysed using attention
investment models and cognitive dimensions.

3.2.6 Expert Review Method

Another approach to usability evaluation of programming languages is the expert
review method[65]. In this method there are two different roles; the test participant
and the expert. The test participant must be an experienced programmer, who has
no experience in the language under test. The expert must be highly skilled in the
language under test. In [65] the expert is a prominent member of the language’s
compiler team.

In the expert review method a test participant solves a series of problems in each
of the languages under test. In [65] the authors use the Cowichan problems[66].
The method consists of four phases for each language:

1. The test participant implements solutions to each of the problems in the
language under test.

2. The expert reviews the programs and writes a list of comments and sugges-
tions for improvements.

3. The test participant incorporates the feedback from the expert.

4. The expert reviews the solutions again to check that the feedback was not
misunderstood.

The feedback from phases two and four presents valuable information on possible
pitfalls in the language and places for improvement.

In [65] the authors evaluate the programs using four metrics: code size, execution
time, speed up and correction time. In other research by the same authors, they
evaluate in greater depth the performance of the programs before and after the
expert review phases[67].

17

3.3 Concurrency in Unity

Initially Unity was single-threaded, but over the last two years, Unity Technologies
has made an effort to implement concurrency in the form of a C# Job System[68]
and more recently an Entity Component System (ECS)[69]. Unity does not sup-
port the async/await-model, that is usually seen on the .NET platform, when
dealing with MonoBehaviours[70], [71].

3.3.1 C# Job System

Unity’s C# Job System provides a “simple and safe” way of writing multithreaded
code in Unity. It can be used on top of the “traditional” way of writing Unity code,
i.e. MonoBehaviours. In the job system, the developer expresses concurrent
code using jobs rather than threads. Unity is in charge of running the jobs on a
group of worker threads, which is shared with the engine code[68].

Jobs in Unity must be implemented as structs that implement one of the IJob-
interfaces. This interface defines an Execute-method, in which the concurrent
code must be written. Jobs can be scheduled by calling one of the Schedule-
methods, which returns a JobHandle, that can be used to manage dependencies
between jobs. The developer is in charge of figuring out the dependencies between
the jobs, as Unity does not provide any means of dependency management[68].

Listing 29 in Appendix A shows an example that moves forward all bullets in a
game using an IParallelForTransform-job.

3.3.2 Entity Component Systems

ECS is a design-pattern, which presents an alternative way of representing objects
in a game world. It is an alternative to the scene graph pattern[72], which is used
in both Unity and Unreal today. ECSs consist of three different components[69],
[73]:

Entities represent single objects in the game. It is a very simple data structure,
e.g. an ID, which is used to look up components associated with the object.

Components are data containers, which defines data that is needed in order to
carry out a certain behaviour. It is very important that each component is
kept small and defines as few fields as possible.

Systems define the behaviour of the entities. They consist of two parts; a filter,
which defines the components that must be present for the system to take

18

effect and an update method, which applies the system’s behaviour to the
entities at regular intervals.

The advantage of ECSs, compared to scene graphs, are that they tend to increase
code reusability, as systems may be used to control multiple different types of
objects. Furthermore, ECSs will attempt to group components together in so-
called chunks, which increases spatial locality. In Unity, the ECS may be used in
conjunction with the C# Job System to update chunks in parallel[69]. Listing 31
in Appendix A lists an example, which moves all bullets in the scene forward.

19

4 | Usability Evaluation

In this chapter we research usability of functional-style programming in gameplay
programming. We first use the cognitive dimensions framework to discuss our
experience with the transition from C# to F# and compare the two languages.

Afterwards we conduct a usability test of F# in Unity. The tests are formulated
based on the Champagne Prototyping methodology (see Section 3.2.5). For this
test the Unity game engine was extended, via a plugin to support programming
in F# [19]. In addition, a FRP module was implemented in F# for Unity. These
two extensions served as the prototype under test.

4.1 Cognitive Dimensions of F# and C#

In order to ascertain the usability of F# in comparison to C#, we have conducted
an analysis based on the cognitive dimensions framework[62]. C# is the gameplay
programming language available in the Unity game engine, therefore, if F# is to
usurp this position the advantages and disadvantages should be made clear. We
conduct this analysis on the basis of our own experience with F#. Both authors
of this report have prior experience with C# programming in Unity and no prior
experience with F#.

Abstract Gradient

The abstract gradient is measured from abstraction hating, through abstraction
tolerant, to abstraction loving. The abstractions measured are the notations’
ability to group elements and refer to them as a single entity. Most modern
textual-programming languages make extensive use of abstraction and functional
languages even more so[28]. F# is a functional-programming language with object-
oriented features allowing for extensive abstractions.

On the other hand C# is an object-oriented language which supports functional
features. This means that C# also supports extensive abstraction. The main dif-
ference lies in the fact that C# is object-oriented programming first and F# is
functional programming first. Considering the high level of abstraction in both lan-
guages they will both be considered abstraction loving in this report. [74] presents

20

a discussion, underlining that functional languages generally rely on function ab-
straction, treating types as thin data containers, whereas object-oriented languages
rely on data abstraction, where functionality is associated with the types. The
author notes that this may surface as making it harder to add new types in func-
tional languages and adding functionality in object-oriented languages. A similar
orthogonality is also expressed in two out of three of Tennent’s language design
principles[75], namely the principle of abstraction and the principle of data type
completeness.

Closeness of Mapping

The measure of how close to the problem domain a language can get is called
the closeness of mapping. In order to solve a real problem, the problem must be
expressible in the language and the closer the language is to the real world, the
easier it is to express[62]. Textual programming languages are abstractions over
the real problem domain and therefore often do not map directly to the domain.

Both languages have mechanisms to model the problem domain. In object-oriented
programming, the world is represented as objects and the objects are abstracted
over via classes[76]. Functional programming models the problem as behaviour
(functions) which are applied to data[10]. The advantage of the object-oriented
approach is that the object abstraction comes quite close the problem domain.

“The object expresses the user’s view of reality [...]”

-Object Oriented Analysis & Design[77]

This approach is in contrast to the functional paradigm which models reality math-
ematically. This approach is not as close as the object model, however mathemat-
ical modelling of the world is widespread in many different fields of study.

“Typically the main function is defined in terms of other functions,
which in turn are defined in terms of still more functions, until at the
bottom level the functions are language primitives. These functions are
much like ordinary mathematical functions [...]”

-John Hughes[10]

The abstraction models of the languages are the tools used by the programmers
to model the world. C# uses a model, which lends itself more to closeness of
mapping, but both languages make use of custom types and naming which allow
programmers to mold their programs in accordance with the problem domain.
Additionally both languages support each other’s modelling approach. An example

21

of this can be seen in Listing 1, where a recursive class in C# can be implemented
via custom types in F#.

1 type Talent(strength, intellect, agility) =
2 member val Strength = strength with get, set
3 member val Agility = agility with get, set
4 member val Intellect = intellect with get, set
5

6 type Tree =
7 | Node of TalentValue:Talent * Children:Tree list
8 | Leaf of TalentValue:Talent

1 public class MyTalent
2 {
3 public int Strength;
4 public int Agility;
5 public int Intelligence;
6

7 public List<MyTalent> SubTalents = new List<MyTalent>();
8

9 [...]
10 }

Listing 1: Talent tree data structure implementations (F# on top, C# below).

The example in Listing 1 implements a class and a discriminated union in F#,
which together implement the behaviour of the C# class. The F# approach has
separated the tree from the talent, where in the C# solution the tree emerges from
the recursive nature of the class (see Listing 2). The C# solution is closer to the
problem domain, but the F# solution is closer to the mathematical concept of
trees. In C#, with the use of more classes, a generalisable tree walker could also
be implemented. We argue that this would yield higher reusability of the code.

22

1 let rec foldTree folding init tree =
2 match tree with
3 | Node (t, c) ->
4 let f = folding t init
5 let cf =
6 c
7 |> List.map (foldTree folding init)
8 |> List.fold folding init
9 folding f cf

10 | Leaf (t) ->
11 folding t init
12

13 let sumNodes root =
14 foldTree (fun t1 t2 -> Talent(t1.Strength + t2.Strength,

t1.Intellect + t2.Intellect, t1.Agility + t2.Agility))
(Talent(0,0,0)) root

↪→

↪→

1 [...]
2 public MyTalent SumTalents() {
3 var t = new MyTalent(Strength, Agility, Intelligence);
4 if(SubTalents?.Count == 0)
5 return t;
6

7 foreach (var child in SubTalents) {
8 var childTalentValues = child.SumTalents();
9 t.Strength += childTalentValues.Strength;

10 t.Agility += childTalentValues.Agility;
11 t.Intelligence += childTalentValues.Intelligence;
12 }
13 return t;
14 }
15 }

Listing 2: Talent walker implementations (F# on top, C# below).

Consistency

In the Cognitive Dimensions framework consistency is the coherence between the
language designer’s understanding and the language user’s intuition of the lan-
guage[62]. This does not mean that consistency is the difference in language
knowledge, but rather the difficulty of extrapolating behaviour and syntax of lan-
guage features based on knowledge of a subset of the language or other language
features.

F# uses a strict type system which infers types. This feature allows the program-
mer to omit explicit typing while still gaining the benefits of it. In some cases the
type inference can cause confusion or act in an unexpected way, as when a int16
value is used in the declaration of a int value. In Listing 3 an example of this can

23

be seen. Line 2 gives an error because an int literal and an int16 name binding
are multiplied. This behaviour is consistent with F#’s rules, but is surprising for
programmers who are versed in C-style languages.

1 let x = 10s
2 let y = 2 * x

Listing 3: An example of type incompatibility in F#. 10s is an int16 and 2 is an int.

Naming conventions can present consistency difficulties for some languages. An
example of this are the type modules in F#, such as List. These modules sup-
ply helper functions for working with a particular type, an example of which
is List.append. In C#, equivalent functionality would have been placed as
instance methods on said types. This may cause some confusion for C-family
programmers, as they may find functionality they seek in unexpected places.

In addition to naming conventions causing confusion, lists have another problem.
F# and C# share the .NET runtime and can therefore use each other’s language
features. While this is an advantage, it also presents some disadvantages, most
notably that F# lists and C# lists are not the same type. This clashes with
programmer expectations and converting to the correct list type can be surprisingly
difficult, which we have demonstrated in Listing 4.

1 private static List<T> GetParams<T>
(Microsoft.FSharp.Collections.List<T> parameters)↪→

2 {
3 return new List<T>(parameters);
4 }

Listing 4: Conversion from F# List to C# List.

In functional programming languages function signatures can often be specified by
the programmer, to help the compiler catch unexpected behaviour. This is also
possible in F#, however in an unexpected manner. Function signatures in F# are
reported using the Hindly-Milner type system’s syntax[78]. However, when the
programmer attempts to declare the function signature manually, they cannot use
the same syntax. Instead a Python-like syntax is used. An example can be seen
in Listing 5.

24

1 // reported function signature
2 val add: int -> int -> int
3

4 // function definition without explicit signature
5 let add x y = x + y
6 // function definition with explicit signature
7 let add (x:int) (y:int) : int = x + y

Listing 5: Difference between reported and user-defined function signatures in F#.

In F# lambda expressions are denoted using the fun keyword and -> operator.
The use of fun vs. the use of func may initially be confusing for programmers,
but is quickly learned. After the initial confusion, the feature is consistent with
the rest of F#, as lambda expressions are defined like functions. This is not the
case in C#, where lambda expressions are defined using the => operator. This is
not consistent with the rest of C#, because C# does not use a function signature
similar to the Hindly-Milner type system.

F# has two primary collection types: lists and arrays. The array-collection type
can provide some benefits when looking up elements by index. However, when
looking up an element by index, dot notation is used to call the [] function,
thus a lookup becomes array.[0]. This clashes with expectations of a C-family
programmer where array[0] is the norm.

While F# presents some consistency problems, they’re are consistent within the
language. This indicates that the problems may be experienced more by novice
programmers and that they dissipate with experience.

Diffuseness/Terseness

This dimension measures the conciseness of a notation system on a scale from
terse, meaning too brief, to diffuse, meaning not brief enough. The golden middle
ground is referred to as concise. This measure is affected by the symbols used for
operators as well as the notation system’s naming conventions. If the notation
is too brief, understanding its meaning may be quite difficult and small changes
can have large consequences. On the other hand, notations that are too verbose,
cannot be viewed on a single screen and are therefore more difficult to overview.

To compare the conciseness of both languages, two solutions to a problem will be
examined. The problem consists of calculating three sums based on properties of a
list of objects. The objects are given and the sums must be printed to the console.
In Listing 6 the C# solution can be seen. The method takes a collection of Items
and iterates over them, keeping a running tally of three sums. Once all objects
have been summed, the results are printed to the console.

25

1 public void Solution1(IEnumerable<Item> Armour)
2 {
3 var totalAgi = 0;
4 var totalStr = 0;
5 var totalInt = 0;
6

7 foreach (var item in Armour)
8 {
9 totalAgi += item.Agility;

10 totalStr += item.Strength;
11 totalInt += item.Intellect;
12 }
13 Debug.Log($"Exercise 1\n\tAgility: {totalAgi}\n\tStrength:

{totalStr}\n\tIntellect: {totalInt}");↪→

14 }

Listing 6: Summing the attribute bonuses of a character’s armour in C#.

The approach taken in F# is somewhat different, the solution can be seen in
Listing 7. Instead of iterating over the given array, a map-reduce approach is
used. On line 8 the array is piped into a map which deconstructs each Item into
a triple. The triples are then piped into a reduce function which calls the sum
function defined on line 1. In the start function on line 16, the sums are computed
and printed to the console.

1 let sum (triplet1:int*int*int) (triplet2:int*int*int) =
2 let (a1, b1, c1) = triplet1.Deconstruct()
3 let (a2, b2, c2) = triplet2.Deconstruct()
4 (a1+a2,b1+b2,c1+c2)
5

6 [...]
7

8 let totalStats (armour:Item[]) =
9 armour

10 |> Array.map (fun a -> (a.Agility, a.Intellect, a.Strength))
11 |> Array.reduce sum
12

13 [...]
14

15 member this.Start() =
16 let i = ItemStore.AllItems()
17 let (agi, int, str) = totalStats(i)
18 Debug.Log("Agility: " + agi.ToString())
19 Debug.Log("Intellect: " + int.ToString())
20 Debug.Log("Strength: " + str.ToString())
21

22 [...]

Listing 7: Summing the attribute bonuses of a character’s armour in F#.

26

The F# solution is slightly longer than the C# solution, which is due to dividing
the functionality into several smaller functions. This lengthened the implementa-
tion of the first solution, but reduced the overall length of the code. The C# code
ended up being 35 lines longer than the F# code. The full examples can be seen
in Appendix E.

The most prominent syntactic differences between C# and F# are the operators,
scope delimiters and line end delimiters. In C# blocks are denoted using the { and
} symbols, whereas F# uses indentation. In addition statements are terminated
using a ; in C#, where a newline character is used in F#. These differences mean
that F# uses fewer symbols in general than C#, however some programmers find
the F#’s syntax more difficult to read[79].

Another difference that greatly affects terseness/diffuseness is the approach to
code reuse the languages use. In C# inheritance and the Composite Pattern[80]
are often used[81]. In functional languages function composition, chaining and
currying are often used to implement design patterns[82]. Both approaches reduce
the codebase, but do so in different ways.

Error-proneness

Errors produced by the programmer fall into one of two categories, either the error
is a slip or a mistake. Slips are instances where the programmer knows what to do,
but did something else by accident and mistakes are instances when a programmer
makes a logical error. These errors can be exacerbated by language features.

According to [62], textual programming languages are inherently more error-prone
than visual languages. The given examples are implicit declaration, line-ends and
delimiters. Implicit declarations are not applicable in either C# or F#, however
line-ends are used in both languages. C# uses ; to denote line-ends whereas F#
uses newlines. A C-family programmer may find it difficult to overview F# code
for this reason. In C# a ; need not be followed by a line-end and depending
on the type of statement, practices may differ (it is not typical to break lines in
for-loop declarations, but it is after variable declarations).

The strong type system used in F# can also cause unexpected errors. While the
system prevents some errors down the line, C-family programmers would expect
type coercion to assist with operations on integer values of different sizes. We gave
an example of this in Listing 3, which yields an error because an int and int16
are multiplied. This causes initial errors, but may prevent type errors later in
development[83].

Programmers may inadvertently change the parameters of a function by separating
parameters using commas (see Listing 8). In most cases this is valid F# and
compiles, however the function now takes a single tuple parameter. This mistake

27

can occur without the programmer noticing any difference, until they have to
invoke the function. At this point the invocation has changed from add 2 4(two
parameters) to addTupled (2, 4)(tuple parameter). Both declarations are valid,
but the latter may cause confusion when the programmer attempts to use the
functions as higher-order, as he would have to pack all arguments in tuples. We
have listed examples in Listing 8.

1 // Multiple parameters
2 let add x y = x + y
3

4 // Single parameter
5 let addTupled (x, y) = x + y
6

7 //Sum list without tupled parameters
8 let sum = [1..10] |> List.reduce add
9

10 //Sum list with tupled parameters
11 let sum = [1..10]
12 |> List.reduce (fun acc elm -> addTupled (acc, elm))

Listing 8: Examples of functions with and without tupled parameters and it’s influence on their
applications as higher-order.

Hard Mental Operations

The hard mental operations dimension defines how often incomprehensible expres-
sions occur in the code. Hard mental operations often occur in conjunction with
boolean expressions[62].

Boolean expressions are expressed similarly in C# and F#, with the only excep-
tion that C# uses ! to negate expressions, whereas F# uses the not function.
Boolean expressions in both languages are equally hard to read. We have illus-
trated examples in Listing 9. In this example the reader may incorrectly assume
that the && operator is evaluated before !, and that the expression is evaluated
as !(expr1 && expr2). The exact same case is present in F#. Programmers may
reduce perceived ambiguity by inserting parentheses, but may risk changing the
order of evaluation by doing so.

1 if(!expr1 && expr2) {
2 //[...]
3 }

1 if not expr1 && expr2 then
2 //[...]

Listing 9: Hard mental operations illustrated using boolean expressions in C# and F#.

In F# it is optional for the programmer to indicate types when writing functions.

28

Sometimes it may be necessary to verify that the compiler’s inference is correct by
looking at the deduced function signature. We argue that this may present hard
mental operations in both languages, as the function signatures will quickly get
incomprehensible as the number of arguments grow. Take for example the function
signature of the ReactTo function that we wrote as part of the FRP plugin for
Unity:

member FRPBehaviour.ReactTo : event:FRPEvent * condition:('T0 -> bool)

* handler:('T0 -> unit) -> unit.
We should underline that this function uses tupled arguments, because we wanted
to overload it with a function to unconditionally react to events. But even without
tupled arguments the definition would have been:
member FRPBehaviour.ReactTo : event:FRPEvent -> condition:('T0 -> bool)

-> handler:('T0 -> unit) -> unit.
In C# the equivalent would have been:
public void ReactTo(FRPEvent event, Func<T, bool> condition, Action<T>

handler)

Whether one or the other is easier to comprehend than the other is a matter of
opinion. The problem is more prominent in F#, however, due to the type inference
in the compiler.

Hidden Dependencies

Hidden dependencies discuss how many relationships there are between compo-
nents, that are not visible from at least one of the components. We discuss several
problems in this section, but we must underline that some of these problems can
be mitigated by using an Integrated Development Environment (IDE), as they
often allow programmers to trace dependencies.

The problem of hidden dependencies is prominent in both C# and F#, though in
two different flavours (see Listing 10). In F# the problem is present on the function
level. This is because F# programmers are allowed to write functions that are
directly nested in a module. These functions may be imported into another module
or namespace with the open keyword. Given that a name of a function does not
collide, the function may be referred to without the use of its fully qualified name.
In C# the problem occurs because programmers are allowed to reference code in
base classes without using their fully qualified name. One example of this in Unity
is that any MonoBehaviour may directly call Destroy. This method is actually
a static method on the GameObject-class, from which MonoBehaviour inherits.
This may make it more difficult to distinct between static and non-static methods
and “hide” the base class from the reader. In F# programmers are required to
give fully qualified names when dealing with classes.

29

1 class Base {
2 protected static string

Method() {↪→

3 return "Method";
4 }
5 }
6

7 class Inherited : Base {
8 private string Method2() {
9 return Method() + "2";

10 }
11 }

1 module X =
2 let function () =
3 "function"
4

5 open X
6 module Y =
7 let function2 () =
8 function() + "2"

Listing 10: Hidden dependencies in function/method calls in C# and F#.

In both languages the problem of function/method hiding may occur. An example
of this is if a base class defines a virtualmethod in C# or an abstractmethod
with default implementation in F#. This method may be hidden further down the
inheritance tree by implementing a function with the same name without using
the override keyword. This will give a warning at compile-time, which can
be removed by supplying the new keyword in front of the method that hides the
existing implementation.

C# has a modified version of the goto-statement, which traditionally allow pro-
grammers to jump to labels anywhere in the source code. In C#, however, the
jumps are restricted to either a label in the same scope or in an enclosing scope[84].
Nevertheless, it may be hard to comprehend the exact target of a goto if it is
deeply nested in multiple loops. According to a StackOverflow discussion[85], it
seems that the goto statement sees limited use in practice.

The problem of hidden dependencies may also occur if a component is dependent
on a global variable. In games it is common to see such types of dependencies[5],
[86], [87]. This problem is easier to mitigate in F# because the global variable
is per default immutable and the developer has to explicitly indicate if he wants
a mutable variable. In C# it’s easier to make slips, as everything is mutable per
default. In Unity this problem is also present in-between components, as it’s a
common pattern to declare a field on a class that references some component and
thereby assign that field from Unity’s Inspector[88]. This has the consequence that
there is no way of knowing which components depends on each other by inspecting
the source code. Furthermore, it is not possible to trace dependencies backwards
in Unity without writing custom Editor scripts[89].

Premature Commitment

Premature commitment describes how much guessing ahead the programmers must
do when programming in a given language.

30

In F# there is a fixed ordering when defining types, that enforces all name bindings
(let) to be declared before members. This is similar to the problem of Commit-
ment to layout presented in [62]. Luckily, these declarations may quickly be moved
around in F# source code by cutting and pasting. This problem is not present in
C#, where the programmer is free to choose any ordering when declaring methods,
fields and properties on classes.

In C# the problem of premature commitment may surface when dealing with class
hierarchies. The problem is also present in F#, as it is also object-oriented, but we
argue that C# is more prone to the class-related problems as it is object-oriented
first. The problem of premature commitment arises when a programmer has to
implement a base class, without being certain which other classes might inherit
therefrom. This introduces guess-work and might result in missing functionality,
unneeded class members and potentially the requirement of reimplementing the
base class. This problem is even more prominent when inheriting from third party
code that contains multiple classes[90], as the programmer may choose to inherit
from one class and later discover that it was a wrong decision and therefore the
the entire class must be reimplemented. The problem is more prominent in Unreal
than Unity, as Unreal has multiple different base classes for components[91], where
Unity has one.

Another small-scale issue of premature commitment arises when using F#’s col-
lection functions (such as List.map or Array.reduce). These functions take
as first argument a function and as second the collection to operate on. If they are
used without the pipe operator (|>), the IDE will be unable to aid the program-
mer when he is implementing the mapping function until the second argument has
been given. The correct order is thus to write the name of the function, add empty
brackets, add the name of the collection and finaloly implement the function.

Another problem of premature commitment arises in F#, because circular depen-
dencies between classes are not allowed. The dependencies between classes are
visible in IDEs, where classes that are further down the source file list may depend
on classes that are further up. If circular dependencies are needed in a program
architecture, the programmer must define and implement an interface on one of
the classes and reorder the source files. This constraint might seem annoying at
first, but has the benefit of yielding class architectures with looser coupling[92].

Progressive Evaluation

Progressive evaluation defines how well a partially finished program can be exe-
cuted and evaluated. Higher progressive evaluation means that more incomplete
programs can be executed. C# and F# programs can only be executed if the
source code is syntactically correct. We therefore deem that their progressive
evaluation is equivalent. Both languages are supported by Read Eval Print Loop
(REPL)-tools called called C# Interactive[93] and F# Interactive[94] respectively.

31

These tools enable programmers to run and evaluate anything from single lines of
code to whole files. We used this tool frequently in the beginning of the project,
when we were learning F# to experiment with different functions and constructs,
before implementing them in the source code.

Role-expressiveness

Role-expressiveness defines how easily a program can be read and comprehended.
The dimension is easily confused with hard mental operations or secondary nota-
tion, from which it should be kept apart[62]. Role-expressiveness thus defines how
self-explanatory a program is.

Being languages that run in the same platform, C# and F# share many constructs
and all libraries. This means that a discussion of the standard library is of little
interest. There are, however, some differences in the syntax that we will highlight.

First and foremost C# uses either var or type names in variable declarations. In
F# the equivalent is let, possibly followed by mutable to indicate mutability.
Depending on the programmer’s background, these keywords may be more or
less expressive. From a mathematical background it makes sense to create name
bindings by using let, as that’s common in proofs and similar mathematical lingo.
The type of a name binding may be inferred by how it’s used. Furthermore, let
indicates a name binding and not a variable, which further underlines that F#
is pure until otherwise is expressed. This contrasts with the classic C-style way
of defining variables; by using their type name. Some programmers that are less
versed in mathematical notation may prefer this way, as it is more expressive of the
variable’s type. Finally, the var keyword is simply an abbreviation for ‘variable’,
which goes well hand-in-hand with its purpose; a variable which the compiler
should determine the type of. Common for the last two types of declarations are
that they do not indicate anything about mutability and thus require knowledge
about the language at hand.

Lambda functions are available in both languages. In C# they’re expressed as
(a,b) => a + b, where as in F# they’re expressed as fun a b -> a + b. In this
case F# uses the keyword fun to indicate a lambda, which is quite literally an
abbreviation of ‘function’. One thing worth noting is that the fun keyword may
easily be confused with the English word fun. Another abbreviation such as fn
or func, would probably have been better. C# uses the =>, which is of limited
expressiveness, especially because C# does not use arrow-style function signatures
anywhere else.

In order to declare custom data structures in C#, one can use class, struct
or enum, depending on the purpose of the structure. In F# all data structures
are constructed using the type keyword. Depending on the symbols used in and
around the definition, the outcome will change (see Listing 11). Consequently

32

this means that the type keyword in F# has very limited role-expressiveness,
compared to those of C#.

1 type Enum =
2 | B = 0
3 | C = 1
4

5 type Union =
6 | B
7 | C
8

9 type DiscriminatingUnion =
10 | B of bool
11 | C of char

1 type Record = { b: bool, c:
char }↪→

2

3 type Class() =
4 let b = true
5 let c = 'x'
6

7 [<Struct>]
8 type Struct(b:bool, c:char) =
9 member this.B = b
10 member this.C = c

Listing 11: Different kinds of data structures defined using the type-keyword in F#.

Secondary Notation and Escape from Formalism

Secondary notation and escape from formalism defines how well a programming
environment supports conveying information that is not part of the source code.
Typical examples of such are comments, indentation and grouping code into para-
graphs in textual languages[62].

C# and F# are very alike in this dimension. They both support the //-operator,
which indicates that the rest of the line should be commented out and matching
pairs of /* and */, which comments everything out between them. Furthermore
functions, methods, classes and more or less any program construct may be anno-
tated with ///-comments, which allow the programmer to add eXtended Markup
Language (XML)-documentation[95]. The programmer may use this to describe
the intention of the construct along with its arguments and, if needed, link to other
constructs in the source code. Other developers may open this documentation in
a pop-up box in their IDE, whenever such construct is encountered.

Viscosity

Viscosity defines how much effort a developer has to put in to make a small change.
[62] notes that textual languages are less viscous than visual programming lan-
guages in their comparison of Basic, ProGraph and LabVIEW.

We argue that the primary difference between C# and F# is scope delimitation.
C# scopes are delimited by pairs of curly brackets, whereas in F# they are delim-
ited by indentation. If a programmer is to move code from one scope to another in
C#, he would have to either insert or delete pairs of curly brackets, whereas in F#
he would select the code that needs to be moved and press TAB or Shift+TAB.

33

Visibility and Juxtaposability

Visibility and Juxtaposability determines whether required material is accessible
without cognitive work[62]. In textual languages this dimension is not necessarily
determined by the language, but more so by the environment (IDE).

There are two prominent IDEs for the .NET platform: Visual Studio and Rider.
Both IDEs support numerous ways of making source code available. Examples of
such are:

• Splitting the text editor both horizontally and vertically, such that two files
can be open side-by-side

• Jumping to implementations by control-clicking.

• Hovering over function or type names to read a description of what they’re
meant for.

• Opening documentation pop-ups that explain how to use of classes and meth-
ods.

4.2 Usability Evaluation

In this section we present the usability evaluation that was conducted as part of
the project. We first go over the setup of the test, presenting participant selec-
tion criteria and describe the tasks that were given to the participants. We then
turn to the results of the test, where we adopt the analysis method described in
Champagne Prototyping [64]. The Champagne Prototyping method yields rather
shallow analysis results and hence we present a more in-depth analysis of the
problems using the Cognitive Dimensions framework. Finally we discuss potential
sources of errors in the experiment.

4.2.1 Setup

The test setup draws inspiration from the Champagne Prototyping method and
Discount Method for Language Evaluation. The tasks, prototype and participants
were selected according to the former, whereas the use of a cheat-sheet for the
participant was inspired by the latter. Contrary to the suggestion of using a text
editor in Discount Method for Language Evaluation, we chose to use IDEs, as we’re
testing well established languages. We allowed the users to choose JetBrain’s Rider
or Microsoft’s Visual Studio, depending on what they were used to.

34

For each participant a one and a half hour session was planned. We expected that
actual coding time would be roughly one hour, as we conducted a questionnaire
before the test to learn about the test participants’ experience with Unity and a
debriefing interview after the test to allow the participant to share their opinion on
F# in Unity, C# and functional programming. Out of the one hour coding time,
we intended to use 20 minutes on C# and 40 minutes on F#, as the participants
were required to have experience with C# in Unity and therefore likely would
complete the C# tasks faster.

The cheat-sheet served a two-fold purpose and was made available online1 using
Github pages. The first purpose of the document was to give the test participants
an introduction to F# in Unity prior to the test and second to act as a cheat-sheet
during the test. Similarly, the tasks were also made available online during the
test2. We also created a Github repository, in which the test-setups were stored3.
The master branch of said repository holds a Unity project with eight scenes, one
for each of the test cases. The purpose of this setup was to remove Unity as a
factor in the experiment and avoid having the participants spend time setting up
scenes. For each of the test participants we created a new branch in the repository,
which would allow us to view each of the participants’ code in isolation.

During the tests we recorded the screen and audio on the test computer. The files
were not transcribed, but whenever we quote one of the participants we refer to
transcriptions of larger pieces of dialogue that are listed in Appendix D. We do
so in order to give the reader more context on the quotes and avoid “plucking”
sentences out of their context.

Test Cases

We created a total of eight test cases, which fall into four categories; player con-
troller, generalised walkers, map-reduce and “concurrent” update. We list concur-
rent with double ticks here, as the tasks were designed to be implemented with
async/await in C# and asynchronous workflows in F#. The reason we chose
this was that it would be possible for the participants to implement a concur-
rent version with minor rework, given the right setup. Unity’s concurrency model
requires more boilerplate code, which we deemed would not provide any useful
information.

FPS Controller The participant is to implement a FPS controller, i.e. a compo-
nent which can be added to a player character to move it around the world
with the WASD-keys and rotate the camera with the mouse.

1https://sppt-2019.github.io/unity-fsharp-introduction/. Please note
that the document is in Danish, as all participants were Danes.

2https://sppt-2019.github.io/unity-fsharp-introduction/tasks/. Please
note that the document is in Danish, as all participants were Danes.

3https://github.com/sppt-2019/Unity-FSharp

35

https://sppt-2019.github.io/unity-fsharp-introduction/
https://sppt-2019.github.io/unity-fsharp-introduction/tasks/
https://github.com/sppt-2019/Unity-FSharp

3rd Person Controller This test case is similar to the previous test case, except
that the camera must rotate around the player character.

Talent Tree-Walker The participant is first asked to implement a data structure
that can hold a talent tree. Afterwards the player is given a pre-made
talent tree from which the participant must calculate two things. At first a
character’s bonuses in three attributes should be calculated by summing all
talents that are Picked and afterwards the maximum achievable bonus of
all attributes by summing all talents.

Armour Graph In this test case, the participant is given a list of armour equipped
on a character. The participant is to implement code that sums the char-
acter’s bonus in three attributes from the armour. In the second half of the
test, we assume that certain pieces of armour can scale the attributes from
all other pieces of armour and ask the participant to calculate the scaled
attribute bonuses.

Dialogue Tree The participant is to first implement a data structure that can
hold a dialogue tree. Afterwards the participant must parse a list of dialogue
options into a tree using his own data structure. Finally the participant is
to find all unique dialogue paths that has a certain outcome.

Currency The participant is presented with three different types of coin. He must
first implement code that exchanges a given number of said coins into the
minimum number of total coins. Afterwards he should add a function to
calculate whether a player can buy a certain item from a vendor and finally
implement code that buys the item and updates the player’s wallet.

Unit Management (RTS) The participant is to implement an inverse state ma-
chine. By inverse we mean that the state machine should hold collections
of entities for each state in the state machine. At each Update the state
machine should map the corresponding state’s update-function over each
collection to create new collections of entities. Finally the participant is
asked to implement a “concurrent” mapping of the update-function.

Magnetic objects The participant is to simulate magnetism. He is presented with
a list of objects, some of them which are magnetic. All magnetic objects
should be attracted to a common center-point at a given speed. In the second
half of this task the participant is asked to implement a “concurrent” version
of the simulation.

Category F# Task C# Task
Player Controller FPS Controller 3rd Person Controller
Generalised Walkers Talent Tree Armour Graph
Map-Reduce Dialogue Currency
“Concurrent” Update Magnetism Unit Management

Table 1: Categories and their associated tasks.

36

In Table 1 we list the categories and their associated tasks. As we wanted to
explore how suitable Carmack’s and Sweeney’s approaches to game development
are, we decided to use a fixed ordering of the test categories for each participant.
We had initially planned that the participants would be given one of the tasks
from the controller category as the first task and distribute the remaining semi-
randomly, but discovered after the first actual test that the participants would
only have time to solve a single task. We therefore decided that the participants
would be given starting tasks from different categories. This ordering allow us to
compare each of the participants’ the solutions to tasks of the same category.

FRP System

We chose to add support for F# via the Unity F# Integration plugin[19]. The
test cases are to be implemented in a FRP system that we developed in F#. The
FRP system introduces a new class called FRPBehaviour. Classes that inherit
from FRPBehaviour inherit a method called ReactTo, which exists in two vari-
ations. The first variations accepts an event type (such as Update, Keyboard or
MouseMove) and a handler. This method will unconditionally invoke the handler
whenever an event of the given type occurs. The second variation accepts an event
type, a filtering function and a handler. This variation will only invoke the han-
dler when the filtering function returns true. Listing 12 shows an example of the
magnetism task implemented in F#. This code rotates all balls to look at the
center and thereby moves them forward.

1 member this.Start() =
2 let balls = GameObject.FindGameObjectsWithTag("Magnetic")
3

4 this.ReactTo (FRPEvent.Update,
5 (fun () ->
6 let center:Vector3 = getCenter(balls)
7 let updatedBalls =
8 balls
9 |> Array.map (fun b -> lookAt(b, center))

10 |> Array.map step
11)
12)

Listing 12: Implementation of the magnetism task in F#. The getCenter and lookAt
functions are excluded for brevity.

The F# plugin also allows programmers to implement gameplay code using the
standard Unity strategy (i.e. a chain of if-else statements to check for input in
the Update-method). We decided that we wanted to remove this option entirely
and therefore implemented an Update method in the FRPBehaviour that was
reserved for condition checking. This method cannot be overridden, which entirely

37

prevents the user from using Update-based programming. We took this decision
partly because scientific research underlines that FRP is well suited for game
development[46], [47], [51] and partly because we argue that the temptation of
writing C# code in F# syntax would be too large if we did not take counter
measures.

Participants

The participants for this experiment were recruited by sending emails to game
studios and other game-related companies in Denmark, asking if their employees
were interested in participating in the experiment. The participants were required
to have experience with C# and Unity in the game development industry. We
gathered a total of six participants; two participants with Indie game-development
experience, three from a company that creates augmented reality/virtual reality
applications and one who teaches children game development.

For selection criteria we looked for participants that had developed games or had
significant experience with C# in Unity. In addition the participants need not
have experience with F#. The criteria were ranked as follows:

1. Game development experience.

2. Unity & C# experience.

3. No F# experience.

Pilot Test

We conducted a pilot test with a participant from the Programming Technol-
ogy specialisation course at Aalborg University in order to get some feedback on
the setup. The test participant has experience with Unity from Indie game de-
velopment and teaching Unity programming to children in the Danish secondary
school/advanced level (not to be confused with our test participant, who has a
similar job). Contrary to the requirements for the actual test, the pilot test par-
ticipant had experience with F# and functional programming in general.

Prior to the pilot test we had assumed that a 50/50 distribution between C# and
F# would give the most valuable results, as it would not skew the results time-
wise. During the pilot test the participant, who had prior experience with F#,
was able to complete three tasks in C# and two in F#. We therefore decided to
change the distribution to 20 minutes of C# and 40 minutes of F#.

Apart from that, the participant noted that some of the tasks were hard to un-
derstand, mainly because they required the participant to utilise code that was

38

pre-implemented. We decided to rewrite the tasks and insert code snippets with
existing classes where-ever the participant would have to use them. Finally, the
participant noted that the function-name ReactTo, which is used to bind an
event handler to a given event, was odd. He suggested renaming it to Bind. We
chose to ignore this suggestion, with the argument that the sound of ReactTo
has a strong connection with FRP, whereas Bind has a stronger connection with
conventional functional programming.

4.2.2 Results Analysis

The result of the test was six git branches with source code written by the partic-
ipants along with five video-files. Sadly the video-recording program broke down
during one of the tests and we were unable to recover the file. We took notes
during the tests and will refer to those instead. Whenever we quote the notes
rather than the participant, we will clearly indicate that.

In general the participants were able to complete roughly one test case, some didn’t
and some started the second as well. This was the case for both F# and C#. Table
2 lists the participants and which exercises they were assigned. Please note that
participant four was assigned the Dialogue Tree task, but asked for another task
as he found it too hard.

Participant F# C#
1 FPS Controller 3rd Person Controller
2 Magnetism Unit Management
3 Armour Graph Talent Tree
4 Dialogue (skipped as it was

too hard), FPS
3rd Person Controller

5 Magnetism Unit Management, Currency
6 Dialogue Currency

Table 2: Participants and their assigned tasks in F# and C#.

Questionnaire

All participants were asked to estimate their own skill levels in these categories
and give a ballpark estimate of how many Unity applications they had developed.
The results can be seen in Table 3.

39

Participant C# Unity Game Dev Functional Unity Apps
1 9 9 5 3 25
2 8 8 7 2 10
3 8 8 2 1 12
4 10 10 8 1 10
5 9 9 9 2 10
6 8 8 9 6 5

Table 3: Participants self-evaluation scores.

Data Processing

In the following section we will process the data from the tests, using methodology
presented in Section 3.2. The tests were constructed using the Champagne Pro-
totyping methodology and the analysis of the data will also follow this approach.
Champagne Prototyping uses two methodologies for data processing; Attention
Investment Model and Cognitive Dimensions.

4.2.3 Champagne Prototyping

In this section we analyse the video files from the usability experiment using the
champagne prototyping methodology. This method uses two different analysis
strategies; attention investment and cognitive dimensions. In both of these anal-
yses we count mentions of each feature or dimension. We present these using
bullets in tables, which is recommended by [64]. A closed bullet () means that a
participant mentioned an aspect of the feature, when the participant mentioned it
multiple times an open bullet is used (#). The categories, Correct & Unprompted
and Correct & Prompted are instances where the participants mention or explain a
feature correctly and/or positively. The last category are instances where features
are mentioned negatively, incorrectly or is a cause for confusion.

4.2.4 Attention Investment Model

The attention investment model, presented in Section 3.2.4, can be used to map
out the programming steps undertaken by a user. This section will endeavor
to do so, using the user test video material. Firstly, user comprehension of the
feature being evaluated is measured. This feature is the use of F# and FRP in
gameplay programming. In order to measure comprehension, the instances where
participants mention aspects of the feature were recorded and categorised, as can
be seen in Table 4.

40

Recognised
Aspects

Correct &
Unprompted

Correct &
Prompted

Incorrect

Modularity
ReactTo # #
Types #####
List Operations # #

Table 4: User comprehension of the FRP features.

In addition to a measure of the participants’ comprehension, the attention in-
vestment model also provides a quantification of their efforts in the programming
activity. This consists of four metrics, mentioned in Section 3.2.4. This can be
seen in Table 5. The risk metric measures the amount of times participants men-
tioned or discussed things that could go wrong, which includes increased difficulty
of some tasks using F#. The cost metric is the attention and time required to
switch to F#. Any musing over the difficulties of switching over is included. The
payoff is the reduced cost of gameplay programming after switching to F#. The
imperative alternative metric is the number of times participants mentioned the
problems in C#, or other imperative languages, that form the basis for switching
to F#.

Attention Investment
Investment Risk #
Investment Cost ####
Investment Payoff ####
Imperative Alternative

Table 5: Attention investment findings.

The participants were able to correctly use and describe F# and FRP behaviour
in some instances and struggled in other instances. As can be seen in Table
4, not all participants were cognisant of all feature aspects, e.g. all participants
misunderstood or struggled with the type system. Functional programming claims
a greater degree of modularity than imperative languages[10], however, less than
half of the participants expressed cognisance of this. Some participants wrote
much more modular code in F# than in C#, but did not mention it.

As can be seen in Table 5 the participants noted a high cost with a high payoff.
Participants could see the usefulness of FRP, but several participants expressed
uncertainty of any benefit provided by F#. Another point is that very few par-
ticipants noted the problems with existing solutions, even when compared to F#.
The high cost is attributed to loss of productivity while a developer learns to use
F#.

41

4.2.5 Cognitive Dimensions

In this section we use the cognitive dimensions framework to aid the analysis of
the video from the usability test. In this analysis we count the number of times
the participants experience or mention problems with each dimension. We use
the same notation that was presented in the previous section. The frequency of
mentions can be seen in Table 6. The mentions counted are any instances where
the participants said or did some thing that fit under a cognitive dimension. Many
of the counted instances are therefore not explicit statements made by the partic-
ipants, but rather instances where their actions fell under one of the categories.

Dimension F# C#
Abstract Gradient
Closeness of Mapping
Consistency ###
Diffuseness/Terseness #
Error-proneness ####
Hard Mental Operations # #
Hidden Dependencies
Premature Commitment
Progressive Evaluation #
Role-expressiveness #
Secondary Notation and Escape from Formalism
Viscosity
Visibility and Juxtaposability #

Table 6: Cognitive dimensions findings (results from participant 5 has been omitted).

It is not surprising that participants encountered more problems with F# than
they did with C#. Participants were selected based on the criteria stated in
Section 4.2.1, these included requirements for C# experience and limited to no
F# experience. This allowed us to study the potential adoption difficulties of F#.
The higher frequency of mentions when using F# is inline with this.

While an overview can be gained from Table 6, it does not provide adequate
information of why a participant would undertake a certain strategy or action.
Therefore, selected instances among the mentions, are analysed further in the
following sections.

4.2.6 Instance Analysis

Some instances during the test made the difficulties of using F# and the functional
paradigm more clear than others. In this section, these instances are explored and

42

examined in order to discover the problems faced by developers adopting F# in a
gameplay programming setting. We list examples under seven different dimensions
here. Those seven dimensions were chosen because we could find concrete code
examples or situations during the sessions where the dimension was visible.

Consistency

All participants had prior C# experience which affected their expectations. This
was apparent when participants applied C# methodology in the F# code. An
example is type-confusion. Several participants noted that they preferred strict
typing or specifying types manually. An example of this can be seen in Listing 13.

1 [<SerializeField>]
2 let mutable _velocity = 5.0f
3 [...]
4 member this.HandleMoveForward() =
5 this.transform.position+=new Vector3(0,0,this._velocity)

Listing 13: Problem experienced with types in F#. The Vector3 constructor accepts floats
and are invoked with int-parameters.

In Listing 13 the participant correctly types the _velocity variable on line 2.
However, when attempting to set the object’s position on line 5, the participant
uses 0 instead of 0.0f. This valid in C#, but not in F#. This is an instance of
confusion surrounding the automatic type inference of variables and the typing of
literals.

1 let moveMagneticBalls (objs:GameObject[]) (center:GameObject) =
2 objs center |> Array.map (fun i ->
3 i.transform.LookAt(center.transform)
4 i.transform.Translate(i.transform.forward * Time.deltaTime *

speed))↪→

Listing 14: Closure misunderstanding. The user attempts to catch center in the closure by
piping it into the map-function.

Some participants also experienced issues with closures. In Listing 14 a partici-
pant has defined a function to move a number of objects towards a center point.
The center point, center, is passed as a parameter, but the participant became
confused as to how to pass it to the lambda expression. Therefore center was
added on line 2 after objs and piped into the map function. This causes an error
because objs center is now a function invocation to a non-existent function,

43

objs, with the argument center. Passing center to the lambda function is
unnecessary, because it is captured in the lambda’s closure.

The behaviour described is consistent within F#, but not with the expectations of
the participant. Arguably, this instance is a product of the participant’s inexpe-
rience with functional programming, however it is an example of the disharmony
between the largely consistent rules of F# and the expectations of programmers.
These consistency issues were primarily present in the F# code, which is not sur-
prising considering the participants’ experience.

Error-proneness

Several of the participants did not connect indentation with scope. This meant
that the scoping of variables at times presented a challenge. In most test cases the
solutions were implemented in a class. As a consequence, the improperly indented
function bodies would work initially because the function body would be part of
the class instead of the function. Such incorrectly indented functions may still be
called within the scope of the class (see Listing 15).

1 type FRP_FPSController() =
2 inherit FRPBehaviour()
3

4 member this.Start() =
5 this.HandleMoveForward()
6

7 member this.HandleMoveForward() =
8 let newPosition = this.transform.position + new Vector3(0.0f,

0.0f, _velocity)↪→

9 this.transform.position <- newPosition

Listing 15: Incorrect indentation of HandleMoveForward. A problem is reported when code
is added after the function declaration.

In Listing 15, lines 7 and 8 are indented incorrectly, but the code compiles and
behaves as expected. The IDE gives a warning on both lines, but no errors are
thrown until new member functions are defined below HandleMoveForward.

Premature Commitment

In F# all let functions must be declared before the first member function. An
example of this can be seen in Listing 16. This caused some initial confusion for
participants, but it was quickly overcome. The reason for the strict order was not
intuitive for the participants. The difference between the use of let and member

44

is the accessibility of the method or function in question. The let keyword denotes
a function in the class instance’s scope, effectively a private function. The member
keyword denotes an instance function, which is similar to methods in C#.

1 type Candy(price:int) =
2 member val Price = price with get
3 let discountTuesday = this.Price / 2

Listing 16: Incorrect order of function declarations. let declarations must come before
members.

Role-expressiveness

Unit and Void In F# the last expression in a function body is implicitly re-
turned. In some cases that should not be the case and the function should return
Unit (equivalent to C#’s void). If the last line in the function body is not
of type Unit, programmer must add an additional line containing only (). This
confused some of the participants, as they felt that it was unnecessary to explicitly
indicate a non-existing return type. One of the participants even asked directly
what Unit was and the monitor answered with an explanation. Approximately
fifteen minutes later the participant encountered another Unit-type problem and
was unable to recover without an additional explanation.

Let Declarations Another role-expressiveness problem we encountered was that
some participants attempted to let declare multiple bindings without initialising
them. Some participants assumed that let declarations without assignment would
result in default values (such as null for classes).

Pipe Operators A single participant also noted that he found F#’s pipe oper-
ations “not nice to read”. He stated that he would prefer the SQL-like variation
of Language Integrated Query (LINQ) in C# because it is closer to plain En-
glish. The monitor asked if it was related to the names of the functions (map and
reduce or Select and Aggregate), to which the participant stated that it
was solely related to the way pipe operations were structured.

Bindings and Operators In F# the = symbol is used to denote two different
operators; the value-binding operator, and the equality operator. Notably the
symbol is not used for rebinding (F#’s equivalent of assignments), which it is in
C#. A comparison of the two different rebinding/assignment styles can be seen in
Listing 17. Rebindings are only allowed on mutable variables, which should be
limited to a scope.

45

1 let mutable x = 0
2 x <- 1

1 int x = 0;
2 x = 1;

Listing 17: Assignment Comparison in F# (left) and C# (right).

Furthermore, since x = 1 is valid in F#, no errors were encountered immedi-
ately. Instead the program behaved unexpectedly and the participants received a
warning, that the value of a boolean expression was being ignored. None of the
participants were able to deduce the source of the error without assistance from
the monitor. The degree of assistance required ranged from a hint to the monitor
explaining the problem so that the test could continue.

Some participants encountered minor errors when declaring variables, because vari-
ables are implicitly immutable in F#. This is the opposite of C#, where the
const keyword is used to explicitly declare a variable immutable. However, once
the participants realised this, they had no issue using it.

Types and Type Inference Many participants had problems with the type
system and type inference. The functions provided in the sample sheet had explic-
itly typed parameters, which the participants partially mimicked when declaring
their own functions. However, participants did not specify function return types
nor did they utilise typing of their namebindings. An example of such a function
can be seen in Listing 18.

1 [...]
2 let getTotalWithMod (items:Item list) (attribute:Item->int)

(attributeMod:Item->float32) =↪→

3 [...]

Listing 18: Participant function with type annotations on parameters, but not on return type.

In addition several participants remarked that they preferred strictly typed lan-
guages, even though they had encountered several type errors. Some of the par-
ticipants had Python experience, which may explain this assumption, because
Python 3.x annotates function parameters similarly to F# and Python is dynam-
ically typed.

Another problem faced by the participants were related to class type declarations,
where the participants did not realise that the brackets after a type’s name could
be used to pass constructor arguments.

46

Function Declarations Some participants also expressed frustration with how
functions are defined. The issue may stem from a problem with our sample sheet,
which did not contain an example of a simple function definition. Plenty of func-
tions were defined, but only ever as part of examples of other language features.
Furthermore, functions share the let keyword with name bindings, which con-
tributed to the confusion during the test.

Several participants struggled with lambda expressions in F#. Some of these
participants expressed that they were not familiar with lambda expressions in C#
either, but even the participants with lambda expression experience from C# had
issues with them in F#. The difference in syntax can be see in Listing 19.

1 str => Console.WriteLine(str); 1 fun str -> printfn str

Listing 19: Lambda Expression Syntax, C# on the left and F# on the right.

Secondary Notation

In the test we saw very limited use of secondary notation. This may be caused by
the relatively small tasks, along with the fact that the code was not meant to be
used in production nor expanded upon. The participants, however, would often
open documentation pop-up boxes to read about functions and methods before
putting them to use. Generally, our intuition was that the participants had an
easier time understanding the C# documentation than the F# documentation.
We suspect that there two reasons:

1. The programmers were more experienced in C#.

2. F# uses the arrow-style function signatures (e.g. val map : mapping : ('T

-> 'U) -> list:'T list -> 'U list, which is the signature of List.map)
in its documentation.

This notation indicates that a function of multiple parameters can be curried.
Currying is not supported in C# and was a concept that most of the participants
were unfamiliar with.

Viscosity

In our test cases, viscosity is particularly visible in the “concurrent”-update cate-
gory. The reason for this is that the participants were asked to develop a sequential
solution first, followed by a concurrent implementation. Generally viscosity is low
in both languages. In F# we saw the magnetism task implemented using the

47

pipe operator. Such an implementation can be extended to a concurrent solution
by piping into Async.Parallel and then Async.RunSynchronously (see
Listing 20). A similar solution can be achieved in C# using LINQ.

1 let speed = 3f;
2

3 let moveBallForward (ball:GameObject) =
4 ball.transform.Translate(ball.transform.forward *

Time.deltaTime * speed)↪→

5

6 let Update () =
7 let balls = GameObject.FindGameObjectsWithTag("Magnetic")
8 balls
9 |> Array.map moveBallForward

10 ()
11

12 let UpdateAsync () =
13 let balls = GameObject.FindGameObjectsWithTag("Magnetic")
14 balls
15 |> Array.map (fun b -> async {moveBallForward})
16 |> Async.Parallel
17 |> Async.RunSynchronously
18 ()

Listing 20: Transforming from sequential to concurrent list operations in F#.

As with many other dimensions, viscosity can also be affected by the program-
mer’s style of programming. This is exemplified in Listing 21 through List-
ing 23, both of which are taken from one of the solutions in C#. In order
to implement “concurrent” update, the participant had to construct a new list
in the Update-method and wrap the calls to the state methods in Task.Run
(e.g. updateTasks.Add(Task.Run(() => Flee(fleeingShooter)))). This change
is manageable, but imagine how much effort it would take if we wanted to add an
additional state to the units. If such change was to be implemented, the program-
mer would have to:

• Add an additional list and foreach-statement in Listing 21.

• Add an additional case to the switch-statement in JoinState in Listing
21.

• Change the signature of the RemoveFromList in Listing 23 to accept an-
other list and add an additional else if for the third list.

• Add an additional case to the switch in Listing 22, and update the call to
RemoveFromList in all other cases.

48

An alternative and less viscous solution was implemented by another participant
in the test. We have listed that in Appendix E.1.

1 class StateMachine : MonoBehaviour
2 {
3 [...] //Pre-implemented code
4

5 private List<Shooter> fleeingShooters;
6 private List<Shooter> movingShooters;
7 private List<Shooter> attackingShooters;
8

9 public void JoinState(Shooter shooter, State state)
10 {
11 switch(state)
12 {
13 case State.Fleeing:
14 fleeingShooters.Add(shooter);
15 break;
16 case State.Moving:
17 movingShooters.Add(shooter);
18 break;
19 case State.Attacking:
20 attackingShooters.Add(shooter);
21 break;
22 default:
23 break;
24 }
25 }
26

27 private void Update()
28 {
29 foreach(var fleeingShooter in fleeingShooters)
30 {
31 Flee(fleeingShooter);
32 }
33 foreach (var movingShooter in movingShooters)
34 {
35 Move(movingShooter);
36 }
37 foreach (var attackingShooter in attackingShooters)
38 {
39 Attack(attackingShooter);
40 }
41 }
42

43 [...] //TransferState
44 [...] //RemoveFromList
45

46 [...] //methods for each unit state
47 }

Listing 21: Example of viscous C# implementation of the Unit Management Test.

49

1 public void TransferState(Shooter shooter, State state)
2 {
3 switch (state)
4 {
5 case State.Fleeing:
6 fleeingShooters.Add(shooter);
7 RemoveFromList(shooter, ref movingShooters, ref

attackingShooters);↪→

8 break;
9 case State.Moving:

10 movingShooters.Add(shooter);
11 RemoveFromList(shooter, ref fleeingShooters, ref

attackingShooters);↪→

12 break;
13 case State.Attacking:
14 attackingShooters.Add(shooter);
15 RemoveFromList(shooter, ref movingShooters, ref

fleeingShooters);↪→

16 break;
17 default:
18 break;
19 }
20 }

Listing 22: TransferState-method, which is part of the viscous Unit Management implementa-
tion from Listing 21.

1 private void RemoveFromList(Shooter shooter, ref List<Shooter>
list1, ref List<Shooter> list2)↪→

2 {
3 if (list1.IndexOf(shooter) != -1) {
4 list1.Remove(shooter);
5 return;
6 }
7 if(list2.IndexOf(shooter) != -1) {
8 list2.Remove(shooter);
9 return;

10 }
11 }

Listing 23: RemoveFromList-method, which is part of the viscous Unit Management imple-
mentation from Listing 21.

50

Visibility and Juxtaposability

All the participants in the tests chose to use Visual Studio, which was used for both
C# and F#. The differences in this dimension are thus minimal. It is interesting,
however, that none of the visibility and juxtaposability enhancing features of the
IDE were used during the tests. This may have two possible explanations:

1. The tests were relatively small-scale and required minimal interaction with
existing code.

2. When existing code was needed, the participants would refer to the cheat-
sheet or task descriptions, where example code was given. Some participants
actually chose to open those documents side-by-side with Visual Studio.

4.2.7 Threats to Validity

In this section we will examine potential sources of errors and other threats to
validity. Such threats are categorised as either internal or external. An internal
threat occurs when data is mishandled, misinterpreted or in some other way skewed
to such a degree that the results are untrustworthy. The second category consists
of errors caused by the data being inapplicable to other cases. This is inline with
terminology outlined in [96].

Internal Validity

In this section the internal validity is explored. The goal of this section is to map
out the possible shortcomings originating from data handling and interpretation.
Each potential threat is explained in turn and actions undertaken to mediate the
threat are outlined. In some cases a threat cannot be sufficiently mediated, in
which case it is simply listed.

Evaluation Parameters The user tests were evaluated in accordance with the
Champagne Prototyping method (see Section 3.2.5). This methodology is intended
to be used to measure the usability of a single feature, not an entire programming
language. Therefore it was modified to fit our case better. The methodology con-
sists of two other usability techniques: Cognitive Dimensions and Attention In-
vestment Models (see Section 3.2.3 and Section 3.2.4). We modified the Cognitive
Dimensions aspect to focus on the languages as a whole and kept the feature focus
of Attention Investment Model. Thus the evaluation parameters were centered on
the users’ experience with F# and their understanding of the FRP system.

51

The Cognitive Dimensions framework is originally intended to estimate the usabil-
ity, or provide a vocabulary to such an estimation, of a notational system such as a
programming language. Therefore our modification of Champagne Prototyping is
to use Cognitive Dimensions for its original purpose. Furthermore, a single aspect
of Discount Method for Language Evaluation was used, namely the sample sheet
(see Section 3.2.2). This was employed to assist test participants with F#.

Task Difficulty The user test consisted of a number of tasks that participants
were asked to complete. These tasks were inspired by game development scenarios
and applicability of functional idioms. Before the test we were worried that some
tests were more difficult than others. This could skew the results, as participants
completing the more difficult tasks would struggle more than participants com-
pleting the easier tasks. The dialogue tree task (see Section 4.2.1) presented a
much more difficult problem than expected. The task relied on recursion and tree
structures which were unfamiliar to the participants.

After the user test it became apparent that some tasks were indeed more difficult
than others, significantly so in some cases. The difficulty of the tasks themselves
did not affect the results to the degree we had expected, instead the difficult tasks
brought conflicting idioms and faulty problem solving approaches to light that may
not have been as apparent in the easier tasks.

Task Presentation Some tests were not formulated clearly enough. This meant
that participants misunderstood the tasks and therefore did not sufficiently com-
plete the task. These misunderstandings came from unclear task descriptions and
lacking context. We attempted to mediate this by conducting a pilot test. This
test clarified several unclear task descriptions before the user test. Unfortunately
this test did not catch all the obscurities in the tasks.

Furthermore, some tasks were problematic, not because of formulation, but be-
cause of the test definition. An example of this is the dialogue tree task. We ob-
served that the participants misunderstood the purpose of the task and attempted
to solve it in a suboptimal manner. The problem was partially caused by a preim-
plemented class, which the participants had to use. We had attempted to mediate
the problem by listing the class’ source code, but it seemed the participants could
not visualise the data structure.

Sample Size & Test Duration The user test was conducted with six partici-
pants outlined in Section 4.2.1. This was inline with the Champagne Prototyping
methodology. In order to analyse the test results qualitative methods were em-
ployed. According to [97] six participants should allow us to discover 80% of the
usability issues. However, there is no consensus on the optimum number of partic-
ipants for such a usability study[98]. However, the participants only had an hour

52

to complete exercises in both F# and C#. This meant that most participants
only managed to complete a single test case in each language, which provides only
limited insight into the usability of the languages. Some test cases focused on cer-
tain aspects of the programming language’s idiom, such as recursion, which some
participants were unfamiliar or inexperienced with.

These problems could be mediated by allocating more time for the tests, however
taking up an hour of the participants’ day, presents scheduling issues already.
Therefore, extending the tests was not an option. In order to mediate this issue
the test could be restructured so that the participants worked solely with F#.
This would provide more information about the use and challenges of F#, but not
allow us to compare the F# and C# code.

External Validity

This section explores the potential threats originating from outside the test itself.
This means any threat that can affect or skew the results that is not directly
related to the test conduction. An example of this is whether the test tests the
right things and whether the findings are broadly applicable or not.

Applicability to Game Development The test cases were designed to mimic
gameplay programming scenarios. These cases were constructed to showcase situ-
ations where conventional and functional solution strategies could compete. How-
ever, the realism of the these cases is questionable. Our knowledge of the game
development industry stems from a literature study and personal hobby, which
need not align with industrial reality.

Some participants commented on the realism of the test cases. One participant
noted that the character controller tasks were not representative of real develop-
ment as they are freely available, and even if they weren’t the developer would
buy one from the asset store. Other participants indicated that they had spent a
lot of time writing character controllers.

Development Environment & Test Setup In order to use F# with Unity
a custom plugin was used. This plugin was developed by another student on
the Programming Technology specialisation at Aalborg University[19]. Unity does
not officially support F# and in order to run the F# code a work around was
employed. The plugin automated this process and allowed the test participants to
focus on the task at hand. However, the use of the plugin presented some problems.
Compilation of F# code was done in the Unity editor instead of the IDE. These
problems were mediated along the way, by reporting them to the developer. The
plugin was patched repeatedly during test construction, and no plugin errors were
encountered during the test.

53

Some errors were encountered during the test, however these errors originated from
the setup code. Some errors had been identified and fixed as a result of running
the pilot test. Unfortunately full test coverage was not achieved during the pilot
test and some errors remained undiscovered until the test. This could have been
mediated with additional pilot testing or unit testing to verify that changes did
not break the scenes.

54

5 | Concurrency in C#, F# and
Unity

In the previous chapter we uncovered that even though experienced gameplay
programmers wrote more concise code in F#, they were reluctant to switch. In
order to introduce functional gameplay programming in the industry, we therefore
need a stronger incentive. One such incentive could be implicit (or at least simpler)
concurrency. In [26] the author argues that the lenient evaluation strategy, which
was also proposed by Sweeney, may provide high implicit parallelisability. This
evaluation strategy may be implemented in the FRP system that we prototyped
during the usability test.

In this section we research how the lenient evaluation strategy compares to classic
concurrency strategies. During this research we found that there is a certain
threshold of task-sizes, which must be exceeded before concurrency has a positive
effect on execution time. We attempt to estimate this threshold in Section 5.2
using two tests; a busy-wait delay estimation and matrix summation.

In the final section of this chapter we measure the performance of the FRP system
to ascertain whether or not the use of functional programming in Unity results in
a performance penalty.

5.1 Benchmarks

In this section we explore the performance of the lenient evaluation strategy (see
Section 2.1) and how well it parallelises. The reason for our study is that interest
in the lenient evaluation strategy has been lacking to say the least. We could not
find a reason as to why and decided to explore whether it was because [26] gave
false promises of the high implicit parallelisability of leniently evaluated programs.

5.1.1 Test cases

[26] presents two test cases that we reuse in this experiment:

Binary Tree Sum where a tree-walker sums the values of all leaves of a binary

55

tree.

Binary Tree Accumulation and Sort where a tree-walker flattens all values of a
tree’s leaves into a list and sorts it.

The difference between the two test cases is that there are no data-dependencies
in the summation test, i.e. we can calculate the results of the left subtree and the
right subtree in parallel. In the Binary Tree Accumulation and Sort benchmark the
tree must be traversed in a left-to-right order and thus there is a data-dependency
between the results from the left and right subtree.

5.1.2 Implementations

We implemented the benchmark suite in both F# and C#. In this test F# will be
the primary test subject, as we wish to examine how well it parallelises. The C#
implementation will be used as control, in the sense that we will compare, for the
different strategies, which of the languages is fastest. We are well aware that F#
is not lenient, but we wanted to compare the strategies within the same language
runtime and therefore attempted to map the lenient evaluation strategy onto F#
using its async workflows. Listing 24 gives a code example how to do so (a similar
mapping could also be made to .NET’s Tasks).

1 //Lenient function, body evaluated asynchronously from caller
2 //parameters evaluated asynchronously from function body
3 let CalculateC a b =
4 let c = a * 50 //Implicit synchronisation with a-thread
5 c + b; //Implicit synchronisation with b-thread
6

7 //F# lenient mapping of the CalculateC-function
8 //async function that runs asynchronously from the caller
9 let CalculateCLenient a b = async {

10 let! aResult = a
11 let c = aResult * 50
12 let! bResult = b
13 return c + b
14 }

Listing 24: Lenient evaluation mapping using F# Async Workflows.

The mapping shown in Listing 24 involves wrapping all arguments to methods in
Async Workflows and explicitly synchronise using the let! keyword whenever
there is a data-dependency between them. This means that all values of arguments
are calculated asynchronously from the method body. The method is marked as
async, meaning that an Async Workflow is spawned for every invocation of the

56

method, i.e. it runs asynchronously from the caller. This leaves the majority of
the footwork to F#’s scheduler, which must figure out in which order to execute
them.

We implemented the test cases in four different synchronization models:

Sequential which uses divide and conquer on one unit of execution to do all the
calculations. This provides the baseline speed for the computation on a
single core.

Async Workflows which also uses divide and conquer, but in each recursion step,
two Async Workflows are spawned to compute the results of the left and
right subtree. The Workflows are then synchronised at the end of each
recursive call.

Task which uses C#’s Task-library and divide and conquer. It is similar to the
previous, except that it spawns Tasks.

Lenient using the mapping displayed in Listing 24, i.e. wrapping everything in
Async Workflows and have the .NET Core task scheduler figure out the
computation order.

5.1.3 Test Setup

According to [50] the most reliable results are obtained when the tests are repeated
multiple times and the average and standard deviation calculated for the results.
We therefore decided to take the average execution speed over 100 repetitions for
varying problem sizes, starting with 1 leaf node and gradually doubling the number
up to a total of 65536 nodes.

The tests were run on a laptop, of which the specifications are listed in Table 7.

57

Processor
Model Intel Core i7 4702HQ
Clock Frequency 2.2 GHz
Max Turbo 3.2 GHz
Physical 4 Cores
Logical1 8 Cores

Memory
Memory Size 16 GiB
Memory Speed 1600 MHz
Memory Type DDR3L 1600

Software
Operating System Ubuntu 18.04 64bit
C# runtime dotnet 2.2.104

Table 7: System specifications of the test machine.

We wish to analyse the following research questions:

1. Which of the four presented strategies handle increasing sizes of trees best?

2. Does F# have worse performance than C# when running equivalent (con-
current) code?

5.1.4 Results

In this section we analyse and discuss the results based on the two research ques-
tions presented in the previous section.

Parallel Strategy and Performance

The results are plotted in Figure 3 and Figure 4 (and listed in Table 11 and Table
12 in Appendix B).

1Logical cores are sometimes called threads. However logical cores is used here to avoid
confusion with the software concept; threads, which is distinct from hardware threads.

58

1 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2
163

84
327

68
655

36
29

213

217

221

225

229

Number of Nodes

Ru
n
T
im

e
(n
s)

Sequential Async Workflow Task Lenient

Figure 3: Binary accumulation benchmark results in F# (lower is better).

1 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2
163

84
327

68
655

36
28

212

216

220

224

228

Number of Nodes

Ru
n
T
im

e
(n
s)

Sequential Async Workflow Task Lenient

Figure 4: Binary summation benchmark results in F# (lower is better).

Much to our surprise, the sequential implementation was actually the fastest in all
cases. It seems that the overhead of spawning and synchronising Tasks outweighs
the performance gain of concurrency when the problem sizes are in the magnitude

59

of additions and list appending. Furthermore, the Accumulation test case pre-
sented in [26] is a poor choice when it comes to parallelism, as it must traverse the
tree in a left-to-right manner, meaning that the only things that can be executed
in parallel are the recursive calls down the tree. We suspect that the advantages
of parallel programming will be more prominent, as the amount of work in each
Async Workflow or Task increases. We will research this hypothesis in greater
depth in the following section.

The execution times of the lenient strategy grows faster with problem size than
those of the task strategy. This means that the lenient approach handle increasing
sizes of trees worse. It is, however, not as bad as Async Workflows. We have
only obtained data for Async Workflows up to trees containing 256 nodes, as the
running times grew so rapidly that it was not feasible to continue. Strangely
enough, the lenient strategy scales much better. The only difference between the
two implementations are that workflows are started with Async.StartChild
in the lenient implementation and Async.Parallel in the other. These types
of results showcase the fragility of parallel programs, where small and seemingly
irrelevant details may have a huge impact on the performance.

Language Performance with C# Tasks

Figure 5 and Figure 6 shows the running time of the sequential implementation in
C# and F#. These results show that F# is faster in the accumulation benchmark
up to tree sizes of roughly 256 nodes. In the summation benchmark C# is faster
all the way. Both data sets seem to decrease in running time up to tree sizes of
128 nodes. This is strange, as it means that the implementation handles more
computations in less time. We are unsure what causes this.

60

1 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2
163

84
327

68
655

36
210

212

214

216

218

Number of Nodes

Ru
n
T
im

e
(n
s)

F# C#

Figure 5: Binary Accumulation in F# and C# using the sequential solutions (lower is better).

1 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2
163

84
327

68
655

36

29

211

213

215

217

Number of Nodes

Ru
n
T
im

e
(n
s)

F# C#

Figure 6: Binary Summation in F# and C# using the sequential solutions (lower is better).

In Figure 7 and Figure 8 we have plotted the running times for F# and C# in the
two test cases. Both the C# and F# implementation uses the Task strategy (i.e.
divide-and-conquer that spawns two tasks in each recursion step). These results

61

align with the previous in that F# is fastest when there is a small number of nodes
in the tree (up to 128 nodes in accumulation and 8 nodes in summation). After
that point C# is faster, and it seems that C# handle increasing number of nodes
better. The strange curve we observed in the sequential data sets are also present
in C# in the binary summation benchmark. Again, we’re unsure what causes this
behaviour.

1 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2
163

84
327

68
655

36
212

215

218

221

224

Number of Nodes

Ru
n
T
im

e
(n
s)

F# C#

Figure 7: Binary Accumulation in F# and C# using Task parallelisation (lower is better).

62

1 4 8 16 32 64 128 256 512 102
4

204
8

409
6

819
2
163

84
327

68
655

36

213

215

217

219

221

223

Number of Nodes

Ru
n
T
im

e
(n
s)

F# C#

Figure 8: Binary Summation in F# and C# using Task parallelisation (lower is better).

5.2 Parallel Overhead & Performance

In this section we present results from an experiment that estimates how much
work needs to be done in an Async Workflow or Task to outweigh the performance
penalty. This is the real-world equivalent of the program’s span (see Section 2.1.2
and Section 2.1). We also implement a matrix summation benchmark to determine
how different parallelisation strategies handle matrices of increasing sizes.

5.2.1 Estimating Minimum Concurrent Workload

In this experiment we estimate the minimum concurrent workload of .NET’s Task
system. By minimum concurrent workload we mean how much time each task must
execute before it is worthwhile to spawn it, compared to a sequential solution. The
reason for this exploration is that we found the sequential solution to be faster in
the binary tree benchmarks presented in the previous section. In this case we use
the C# implementation, as it was the fastest.

63

Test Setup

We use the binary tree summation benchmark presented in the previous section
with a minor modification: Every time the algorithm finds a Node, it busy-waits
for a given amount of time to simulate work. The busy-wait was implemented
with a loop, whose number of iterations is gradually halved until the sequential
solution executes faster than the concurrent. The hypothesis is that the concurrent
solutions will be faster with higher iteration counts, because it is capable of busy-
waiting multiple tasks at the same time.

We implemented the test in two variations, which are listed in Listing 25 (helper
methods listed in Listing 26). The first variation emulates a data dependency
between the wait and the results from the subtrees, i.e. the wait is intended to
emulate a computation that must be carried out after the results of both subtrees
have been computed. The other variation emulates a situation where the left and
right subtree can be computed in parallel with the wait, i.e. no data dependency
between the delay and the subtrees. The tree has a total of 60 leaf nodes. In addi-
tion to the binary tree summation, we also implemented a N-ary tree summation
in the same variations as that of binary.

1 public static async Task<int> SumLeaves(Tree<int> tree, int
workBias)↪→

2 {
3 if (tree is Leaf<int> leaf)
4 return leaf.Value;
5

6 var sums = tree.Children.Select(c => SumLeaves(c,
workBias)).ToList();↪→

7

8 #if !DELAY_DEPENDS_ON_LR
9 var workBias = Task.Run(() => DoFakeWork(workBias));

10 await Task.WhenAll(sums);
11 var fakeSum = await workBias;
12 #else
13 await Task.WhenAll(sums);
14 var fakeSum = DoFakeWork(workBias);
15 #endif
16

17 return sums.Sum(t => t.Result) + fakeSum;
18 }

Listing 25: Implementation of the two different data dependency strategies with an N-ary tree.
The strategy may be selected by either defining or undefining the DELAY_DEPENDS_ON_LR
preprocessor flag.

64

1 public static int DoFakeWork(int workBias) {
2 //Start the 'work bias' before blocking wait on child

computation, i.e. we're waiting while the children↪→

3 //are computing
4 var fakeSum = 0;
5 for(var i = 0; i < workBias / 2; i++) {
6 fakeSum += i;
7 }
8 for (var i = 0; i < workBias / 2; i++) {
9 fakeSum -= i;

10 }
11 return fakeSum;
12 }

Listing 26: Implementation of the DoFakeWork method, which is used in Listing 25.

Results

The results are plotted in Figure 9 and Figure 10 (and listed in Table 15 and Table
16 in Appendix B.3).

16,
800

,00
0

8,3
90,

000

4,1
90,

000

2,1
00,

000

1,0
50,

000

524
,00

0

262
,00

0

131
,00

0
65,

500
0

2

4

6

·108

Number of Busy-Wait Iterations

Ru
n
T
im

e
(n
s)

Sequential Fork Join Lenient

Figure 9: Minimum concurrent workload with data dependency benchmark results (lower is
better).

65

16,
800

,00
0

8,3
90,

000

4,1
90,

000

2,1
00,

000

1,0
50,

000

524
,00

0

262
,00

0

131
,00

0
65,

500
0

2

4

6

·108

Number of Busy-Wait Iterations

Ru
n
T
im

e
(n
s)

Sequential Fork Join Lenient

Figure 10: Minimum concurrent workload without data dependency benchmark results (lower
is better).

134
,00

0,0
00

67,
100

,00
0

33,
600

,00
0

16,
800

,00
0

8,3
90,

000

4,1
90,

000

2,1
00,

000

1,0
50,

000

524
,00

0
0

0.5

1

1.5

2

2.5

3

·109

Number of Busy-Wait Iterations

Ru
n
T
im

e
(n
s)

Sequential Fork Join Lenient

Figure 11: Minimum concurrent workload with data dependency on N-ary tree benchmark
results (lower is better).

66

134
,00

0,0
00

67,
100

,00
0

33,
600

,00
0

16,
800

,00
0

8,3
90,

000

4,1
90,

000

2,1
00,

000

1,0
50,

000

524
,00

0
0

0.5

1

1.5

2

2.5

3
·109

Number of Busy-Wait Iterations

Ru
n
T
im

e
(n
s)

Sequential Fork Join Lenient

Figure 12: Minimum concurrent workload without data dependency on N-ary tree benchmark
results (lower is better).

No data dependency Data dependency
Binary 1024 4096
N-ary 2048 2048

Table 8: Iterations of the busy-wait loop before the sequantial solution becomes the fastest.

The number of iterations in the busy-wait loop before the sequential solution is
faster than the concurrent is listed in Table 8. These results are in alignment
with our hypothesis. The plots show that the parallel solutions grow slower than
the sequential solutions because they are capable of executing multiple busy-waits
concurrently. Finally, we notice that the lenient and fork join strategy lie very close
in execution speed. This is a promising result for the lenient evaluation strategy,
as it shows that it may be as fast as a traditional concurrency strategy.

Some concurrency models batch smaller jobs together to form larger jobs. Such
batching may reduce the time spent context switching and thus increase the ex-
ecution speed of the concurrent solutions. Such strategy is employed by Unity’s
C# job system[68].

67

5.2.2 Matrix Summation

In this section we execute a matrix summation benchmark. This benchmark mea-
sures the time it takes to sum all indices of a random N × N matrix. This bench-
mark was implemented in both C# and F# with four different parallelisation
strategies to explore how well they scale to increasing sizes of N :

Sequential utilises a double-nested for-loop to iterate over the matrix and sum
the values. This benchmark provides a baseline value for running the com-
putation on one thread.

Map-Reduce maps a function that sums each column over the matrix. The re-
sulting list of column sums is then reduced to the overall sum of the matrix.
In C# we utilise the LINQ-methods Select, Sum and Aggregate and in
F# we use List.map and List.reduce.

Parallel Foreach uses a parallel loop to iterate over the columns of the matrix
that may execute the summation of each column in parallel.

Tasks is similar to parallel foreach, with the only exception that we manually
spawn a Task that calculates the sum of each column.

We have not included a lenient variation in this experiment, as a lenient implemen-
tation would be largely equivalent to a Task-mapping of the lenient evaluation
strategy. The most notable difference being that a lenient-evaluation strategy
would most likely also construct the matrix in parallel with the summation. As
the time it takes to construct a matrix is not included in the results here, this
should have no effect on the validity of the results.

As the matrices are of size N×N , they contain a total of N2 elements, which are ini-
tialised with random values between Int64.Minvalue and Int64.MaxValue.
When running the test with large matrices we found that the result would over-
flow, which throws an exception because C# and F# are managed languages.
In order to avoid this, we used the unchecked-keyword in C#, which disables
bounds-checking on an integral arithmetic operation[99]. [99] states that using
unchecked “might improve performance”, compared to checked integral arith-
metic operations. The unchecked keyword does not exist in F#, instead we
found a StackOverflow post, which stated that implementing a custom operator
would be our best choice (let (+!) (x:int64) (y:int64) = Operators.(+) x

y)[100].

Results

The results are plotted in Figure 13 and Figure 14. The first thing to notice is
that Map-Reduce seems to be roughly equal to the sequential in running time.

68

This could indicate that the Select-method of C#’s LINQ, which was used to
implement Map-Reduce, does not parallelise its iterations. We will thus treat
Map-Reduce as a sequential solution for the rest of this result discussion.

2 4 8 16 32 64 128 256 512 102
4

204
8

409
6

29

212

215

218

221

224

Size of matrix colums and rows

Ru
n
T
im

e
(n
s)

Sequential Map Reduce Parallel Foreach Tasks

Figure 13: Matrix summation benchmark results in F#.

2 4 8 16 32 64 128 256 512 102
4

204
8

409
6

29

212

215

218

221

224

Size of matrix colums and rows

Ru
n
T
im

e
(n
s)

Sequential Map Reduce Parallel Foreach Tasks

Figure 14: Matrix summation benchmark results in C#.

69

In general, the results from this experiment is in alignment with those of the
previous, in that there is an initial overhead associated with concurrency. In this
case, it seems the sequential and concurrent solutions evens out at job sizes of
around 512 summations, after which point the concurrent solutions are faster.

After overcoming the initial overhead, the concurrent solutions handle increasing
matrix sizes much better than their sequential counterparts. This is even more
notable in Figure 15, which plots the same data as a line and without logarithmic
y-axis. As the matrix sizes continue to grow, it may be possible to split the columns
in multiple separate tasks, possibly making the concurrent implementations faster
yet.

256 512 1,0
20

2,0
50

4,1
00

0

2

4

6

·106

Size of matrix Columns and Rows

Ru
n
T
im

e
(n
s)

Sequential Map Reduce Parallel Foreach Tasks

Figure 15: Matrix summation benchmark results in F#, here plotted as a line and without
logarithmic y-axis.

In Figure 16 we have plotted the concurrent implementations in C# and F#. This
plot shows that the Task implementation in F# is faster with smaller problem sizes.
It remains the fastest up until N is around 128. After that point the C# Task
implementation becomes the fastest and continues to remain so. It seems to scale
better with problem sizes than the other implementations. The parallel foreach
implementations lie around the same running time, meaning that the languages
are equally performant with that concurrency strategy.

70

2 4 8 16 32 64 128 256 512 102
4

204
8

409
6

213

215

217

219

221

223

Size of matrix colums and rows

Ru
n
T
im

e
(n
s)

C# Parallel Foreach C# Tasks F# Parallel Foreach F# Tasks

Figure 16: Matrix summation in C# compared to F#.

5.2.3 Discussion

Our results show, first and foremost, that there is an initial overhead in concurrent
programming. In order to speed up a computation the task sizes must exceed a
certain threshold. Our results show that this threshold lies around the size of 1024-
4096 iterations2 in a for-loop that increments a variable, but also that it varies with
the type of problem. Furthermore, the results show that the concurrency of lenient
evaluation strategy in these cases is similar to that of classic concurrency strategies,
but that the choice of problems in [26] is not well suited to parallelisation. Finally,
C#’s Task-model seems to handle the matrix summation problem well, after
exceeding the threshold of roughly 512 summations in each column.

As part of the project we implemented a simple FRP system in Unity, because
this particular programming paradigm is well suited to gameplay programming
in functional languages[46], [47], [51]. We had initially decided that this experi-
ment would use either lenient evaluation or Async Workflows under the hood to
update MonoBehaviours concurrently, but discovered too late that Unity uses
a custom concurrency strategy called Unity C# Job System[68] (see Section 3.3).
Unity therefore does not allow MonoBehaviour updates from Tasks and Async
Workflows[70]. The resulting FRP system therefore runs sequentially.

2According to sharplab.io each iteration results in 11 Intermediate Language (IL) instruc-
tions, so between 11264 and 45056 IL instructions. The exact number of instructions is unknown,
as the likely optimises the code during run time.

71

sharplab.io

5.3 Performance Benchmarking the FRP Sys-
tem

In this chapter we examine the performance of F# and our FRP system in Unity.
We first examine the aspect of Garbage Collection/Garbage Collector (GC) by
looking at Unity best-practice guidelines, which suggests that garbage is to be
avoided to the extent that it’s possible. We were not aware of this when we
implemented reference solutions to the eight usability test cases that we presented
in Section 4.2.1. We therefore adapt one of the solutions to conform to Unity best-
practice guidelines and benchmark that against a more “careless” implementation.

5.3.1 Unity Garbage Collection

In this section we first examine best practices for developing applications in Unity
with a particular focus on garbage. We then list different GC algorithms, briefly
characterise them and investigate which algorithms are used in Mono, dotnet and
Unity. Finally we measure the running times of F# against C# in Unity and a
functional map-based approach against an imperative one.

Best Practices

Unity recommends careful memory management when writing in C# and avoid-
ing unnecessary heap allocations[101]. The performance optimisation guideline
in [101] lists many common performance bottlenecks for Unity developers. The
most notable of those are lack of caching and extensive use of boxing. Unity
provides many methods and properties that allow developers to access collections
of components, such as the GameObject.FindObjectsWithTag method and
Mesh.vertices property[101], [102]. The implementation of those methods will
allocate a new array for the objects behind the scenes every time they’re invocated.
We list an example of this from [102] as Wrong in Listing 27. In the example
mesh.veritices might seem like an innocent property access, but each time
the property is accessed, a new array is allocated. This means that the code allo-
cates four new arrays in every iteration of the loop. This puts a huge burden on
the GC and will, according to [102], result in noticeable performance degradation.
Instead, developers should use the code listed as Correct in Listing 27, which
does the exact same, but only allocates one array for all iterations, due to better
use of caching.

The problems highlighted in Listing 27 are an instance of common subexpression
elimination, and one could speculate whether or not Unity’s C# compiler should
be capable of performing such optimisations. Nevertheless, Unity’s best practice

72

1 //sample implementation of mesh.vertices
2 class Mesh {
3 public Vector3[] vertices {
4 get {
5 var verts = new Vector3[/*number of vertices*/]
6 //find the vertices and put them into verts
7 return verts;
8 }
9 }

10 }
11

12 //Wrong
13 for(var i = 0; i < mesh.vertices.Length; i++)
14 {
15 float x, y, z;
16

17 x = mesh.vertices[i].x;
18 y = mesh.vertices[i].y;
19 z = mesh.vertices[i].z;
20

21 DoSomething(x, y, z);
22 }
23

24 //Correct
25 var verts = mesh.vertices;
26 for (var i = 0; i < verts.Length; i++) {
27 DoSomething(verts[i].x, verts[i].y, verts[i].z);
28 }

Listing 27: Common performance bottleneck in Unity [102]. mesh.vertices should be
cached. Example is taken from [102].

guidelines list them as an example and explain how developers should transform
their code manually[102].

The problem of boxing occurs when a value-type should be used by reference,
for instance when constructing a list of integers or appending a float to a string.
This generates a small amount of garbage, which can quickly accumulate, e.g.
during list iterations. Furthermore, [101] underlines the importance of avoiding
LINQ-statements all together, due to the garbage generated under the hood. [102]
recommends avoiding coding styles that requires passing functions as arguments
and to completely avoid closures, due to the amount of garbage generated by said
language constructs. This is in conflict with many functional idioms, which we
will explore later.

73

Garbage Collection Algorithm

Unity uses the Boehm–Demers–Weiser GC, which is a conservative mark-sweep
GC[102], originally created for automatic memory management in C and C++[103].
Mark-sweep algorithms are the simplest type of GCs and have the primary disad-
vantages that they halt computation while running, increase in execution time as
more objects are allocated and may fragment memory[104].

The dotnet runtime uses a generational GC with three generations for smaller
objects and a single generation for large objects[105]. The younger generations
are collected more often than the older and all surviving objects are moved to
the older generations. Each time an older generation is collected, all younger
generations are also collected. Generational GCs have the advantage that short-
lived object allocations have a smaller performance penalty, but the disadvantage
that they introduce additional overhead if old objects contain references to young
objects[104]. Depending on the system the dotnet runtime may use different GC
strategies, including concurrent versions[105]. Concurrent GCs can collect garbage
concurrently with the computation, meaning that GC pauses are minimised or
entirely removed[105].

Mono has previously used the Boehm–Demers–Weiser GC, but has since moved to
a concurrent, generational GC called sgen[106]. We have previously mentioned that
Unity uses the Mono runtime, which may cause some confusion, so a clarification is
in order. Unity supports two different runtimes: Mono and IL2CPP. Unity’s Mono
runtime is a fork of the official Mono runtime[107], meaning that updates to the
official Mono are not necessarily applied to Unity’s Mono runtime. The IL2CPP
runtime Ahead-of-Time (AoT) compiles code in IL to C++, which also uses the
Boehm–Demers–Weiser GC[108]. However, as part of Unity’s 2019.1.0 release an
experimental “incremental garbage collector, which should reduce stutters and time
spikes” was added[109].

Functional Programming and Garbage Collection

All these recommendations stand in direct contrast to the common practices em-
ployed in the functional programming paradigm. In functional programming it’s
typical to map over collections, which has two problems compared to this Unity
performance guideline:

1. map allocates a new collection instead of mutating the existing collection.

2. map requires a function as one of the arguments, which defines what should
happen to each of the elements in the collection.

This practice also extends to other generalised constructs, such as the tree-walker[110].

74

These guidelines explain why Unity Technologies does not want to add F# sup-
port, despite over 3500 votes on their feedback forums in April 2018[111]. The
vote was later closed by Unity, without any explanation3.

Investigating Performance

GC is not the only thing that may affect performance in a managed language.
There is also the problem of calling from the native (or unmanaged) code to
the managed code. An investigation of Unity’s integration with the managed
runtime shows that a there is a considerable overhead in calling the pre-defined
MonoBehaviour-methods (such as Update) in Unity 5.2.2[112]. In [112] the
author sets up two different scenes:

1. A scene containing 10,000 separate MonoBehaviours with an Update-
method that increments a variable.

2. A scene containing one MonoBehaviour, which contains an array of 10,000
objects. Each time the Update-method is called, the MonoBehaviour
iterates through the 10,000 objects and calls a custom MyUpdate-method.

On an iPhone 6 the first approach took an average of 5.4ms to update the 10,000
objects, whereas the second took 0.22ms[112]. In the first approach only 0.4%
of the time is spent actually executing the Update-code, the remaining 99.6% is
spent doing sanity checks, iterating MonoBehaviours and instrumenting calls
from the native code into the runtime[112].

Test Setup

The question then arises if the (potentially) increased overhead from GC can be
outweighed by having a single MonoBehaviour manage several other behaviours
in the same scene. In order to investigate, we reused the implementation of the
Unit Management test case from the usability test (see Section 4.2.1). This solu-
tion is listed in Listing 28. This test case may be solved by creating a collection
of tuples: (Unit, State). The state machine contains a series of unit manage-
ment methods; one for each state. These methods take a unit as argument and
returns a state. At each iteration the corresponding state’s methods are mapped
over the collection to create a new collection of game objects and their updated
state, which is stored for the subsequent update. This approach avoids dealing
with the problems of updating the list while iterating and potentially applying two
updates to one GameObject. The advantage is that a single MonoBehaviour

3In previous work we have cited the Unity forums to support this claim[12], but as of February
2019 Unity has closed their feedback forums, meaning that this citation is no longer valid.

75

is in charge of updating all units in the “Realtime Strategy Game” and the dis-
advantage is that it generates substantially more garbage, as a new collection is
allocated at each Update. We refer to this method as “Inverse” in the remainder
of this section.

The other approach, here referred to as “Normal”, creates a MonoBehaviour
for each unit, which contains it’s own state machine. This has the advantage
that we can exploit caching and generate less garbage, as suggested by Unity
Technologies[101]. It comes at the disadvantage that each unit must have its own
Update-method, potentially introducing a large overhead[112].

Methodology

We decided to implement the two approaches in both C# and F#. We run the
tests in Unity 2019.1.0f2 and unless otherwise stated, the IL2CPP runtime is used.
In all test cases we used a MonoBehaviour written in C# to measure the time
between each Update-call, i.e. the time it takes to generate a frame. We decided
to run the test in five setups with 500, 1000, 1500, 2000 and 2500 units. For each
setup we generated 900 frames, as that corresponds to 15 seconds of gameplay at
60 Frame per Second (FPS). Each measurement was added to a HashSet, which
was written to a CSV file after the test. This means that the measurements include
all game-related code, both including rendering, physics and so alike. However, as
this system is ultimately going to be used to develop games, we conclude that delta
time (or equivalently FPS) is a sufficient metric, as that is of utmost importance
to the player.

The following research questions outlines the intent of the experiment:

• How does the performance penalty from extensive garbage generation com-
pare to the performance penalty from an increased number of calls between
unmanaged and managed runtimes?

• Does AoT-compilation in the IL2CPP runtime actually provide a speed up?

• Does the use of F# (and FRP) introduce an additional overhead?

• Unity introduced a new incremental GC in Unity 2019.1. Does this new GC
provide a speed-up when using either C# or FRP?

5.3.2 Results

In this section we discuss the results from the benchmarks. We use the questions
presented in the previous section as baseline for the discussion.

76

1 private List<(State state, Unit unit)> _stateList;
2 public void Update()
3 {
4 //Apply updates and store the updated states in a list
5 var newStates = _stateList.Select(s =>
6 {
7 switch (s.state)
8 {
9 case State.Fleeing:

10 return Flee(s.unit);
11 case State.Moving:
12 return Move(s.unit);
13 case State.Attacking:
14 return Attack(s.unit);
15 default: return (State.Moving, s.unit);
16 }
17 }).ToList();
18

19 //zip the list with the old states to create tuples: (new
state, old state)↪→

20 foreach (var statePair in newStates.Zip(_stateList, (sNew,
sOld) => (sNew,sOld)))↪→

21 {
22 //Compare old state and new state, initialise the unit for

the new state if changed↪→

23 if (statePair.sNew.state != statePair.sOld.state)
24 {
25 var unit = statePair.sNew.unit;
26 _initialiseState(statePair.sNew.state,

statePair.sNew.unit);↪→

27 //Create a new list containing the updated unit
28 _stateList = _stateList.Select(s => s.unit == unit ?

(state, unit) ? s);↪→

29 }
30 }
31 }

Listing 28: Possible solution for the Unit Management test cases.

77

Performance Penalty from Extensive Garbage Generation

The results are listed in Table 9 and plotted in Figure 17. The results indicate
that F# adds a small overhead, which increases as the number of units grow. This
can be seen by comparing C# Normal and F# Normal. Furthermore, the C#
Inverse also adds a small overhead compared to C# Normal. This could indicate
that Unity has optimised the calls between native and managed code since v5.2.2.
We also observe that the inverse FRP state machine performs notably worse than
the other approaches as the number of units grow. The reason is that each unit
is in fact an entire FRP-system with condition-checking and event-dispatching.
We outline in Section 8.2.1 how a (potentially) more performant system could be
structured.

Number of Units C# C# Inverse F# FRP Inverse
500 53.58 54.04 54.35 53.63
1000 50.24 51.33 51.53 41.24
1500 19.15 21.17 18.90 12.34
2000 19.09 16.23 11.70 7.73
2500 13.63 10.89 8.43 5.50

Table 9: Average framerate when simulating the given number of units in Unity’s Mono runtime.

500 100
0

150
0

200
0

250
0

23

24

25

26

Number of Units

Av
er
ag
e
FP

S

Csharp Normal Csharp Inverse Fsharp Normal FRP Inverse

Figure 17: Average FPS in Unit Management benchmark using the Mono runtime (higher is
better).

78

Performance of Runtimes

The results, listed in Table 10 and plotted in Figure 18, show that IL2CPP does
not necessarily provide a speed up. We deem this as C# Normal is faster in Mono,
whereas IL2CPP provides roughly two more FPS in C# Inverse and F# Normal.

Another interesting observation we made during the test is that there is a very
large spike in the time it takes to generate the third frame. This spike is around
20 times the time it takes to generate the other frames. One could explain this
spike in Mono as runtime-optimisation, but as it is also present in IL2CPP, which
is AoT, that cannot be the case. We do therefore not know what causes the spike.

Runtime IL2CPP Mono
Csharp Normal 19.15 19.82
Csharp Inverse 21.17 18.54
Fsharp Normal 18.90 17.42
FRP Inverse 12.34 12.23

Table 10: Average framerate in Unity’s two runtimes measured with 1500 units in the scene.

Cs
ha
rp
No
rm
al

Cs
ha
rp
Inv
ers
e

Fsh
arp

No
rm
al

FR
P I
nv
ers
e

12

14

16

18

20

22

Strategy

Av
er
ag
e
FP

S

Mono il2cpp

Figure 18: Average FPS of the two different runtimes in the Unit Management benchmark
(higher is better).

79

Performance of the FRP-system

The results are plotted in Figure 19. The results show that FRP introduces addi-
tional overhead. This overhead results in a decrease of ten FPS on average over the
900 frames. On the other hand, the FRP-system yields a smoother curve, which
means that the game will be subject to less stuttering and fewer lag spikes.

0 100 200 300 400 500 600 700 800
0

10

20

30

40

Frame No.

FP
S

Csharp FRP

Figure 19: FPS for each frame in FRP and C# Inverse using the Mono runtime (higher is
better).

Unity’s Incremental Garbage Collector

The results from running the C# Normal implementation with the two different
runtimes and GCs are plotted in Figure 20. These results show that the two
GCs perform more or less equivalently. It might even seem that the incremental
GC performs worse than the original after the framerate stabilises after the 350th
frame.

In general, the incremental GC has lower variation, except from Mono after frame
650 where the FPS varies wildly (which can be seen by the high standard deviations
in Figure 20).

80

0-4
9

50-
99

100
-14
9

150
-19
9

200
-24
9

250
-29
9

300
-34
9

350
-39
9

400
-44
9

450
-49
9

500
-54
9

550
-59
9

600
-64
9

650
-69
9

700
-74
9

750
-79
9

800
-84
9

850
-89
9

10

20

30

40

Frame No.

FP
S

il2cpp Mono Incremental il2cpp Incremental Mono

Figure 20: Average FPS over 50 frames in C# using the two different Unity GCs (higher is
better).

0-4
9

50-
99

100
-14
9

150
-19
9

200
-24
9

250
-29
9

300
-34
9

350
-39
9

400
-44
9

450
-49
9

500
-54
9

550
-59
9

600
-64
9

650
-69
9

700
-74
9

750
-79
9

800
-84
9

850
-89
9

10

20

30

40

Frame No.

FP
S

il2cpp Mono Incremental il2cpp Incremental Mono

Figure 21: Average FPS over 50 frames in F# using the two different Unity GCs (higher is
better).

We also tested the two GCs with the FRP-system we developed in F#. The results

81

are plotted in Figure 21. These results show that the incremental GC performs
slightly better than the original one. However, it comes at the cost of much
higher variation in the framerate, especially in the Mono runtime. The IL2CPP
incremental curve has large spikes up until around the 200th frame, after which
point it stabilises. The Mono curve continues to variate between an average of 10
FPS to over 30 FPS.

5.4 Threats to Validity

In this section we examine threats to validity in the performance benchmarks that
were presented in this chapter. Once again we use the methodology proposed by
[96]. The points discussed here are in general applicable to both the concurrency
benchmarks, the critical work benchmarks and the Unity FRP benchmarks.

5.4.1 Internal Threats

In this section we discuss internal threats. Internal threats may originate from the
test cases, execution and data analysis. We both discuss the origin of the threats
as well as what we did to counteract it.

Experience

One of the threats to validity is our experience with F#. None of us had written
F# before starting this project and thus our experience is in the vicinity of months.
We have spent time examining best practices and how to implement concurrent
code in F#, but some programming tasks come more easily with doing rather than
reading. Furthermore, it is well known that writing concurrent code is notoriously
difficult and requires greater experience[65], [67].

Test Cases

In the F# concurrency benchmark we reused the problems presented in [26], as the
author claimed that they were well suited for the lenient evaluation strategy. We
discovered that it was not the case. In order to research how the lenient evaluation
strategy fares when the amount of work grows, we introduced a modified version
of the binary summation benchmark, which emulates work in each node. We also
introduced a matrix summation test, where each column was summed concurrently.
These tests allow only a rather limited peek into how well F# parallelises in
comparison to C#, as they are very specialised problems. Furthermore, they do

82

not provide any information about how the two languages parallelise in the context
of a game, as we argue that it is not common to sum large matrices and accumulate
leaves of trees in games.

Implementation of Binary Accumulation and Sort

We have made a systematic error in the implementation of the Binary Accumula-
tion and Sort benchmark. [26] first accumulates the leaves of the tree and thereby
sorts them. In our implementation we have only accumulated them and not sorted
the leaves. This error is present in all implementations, so they are still mutually
comparable. This may explain why our results differ from those of the paper.

5.4.2 External Threats

In this section we examine external threats. External threats are those that arise
outside the testing environment and may affect how broadly applicable the test
results are. We first present the origin on the threat and then outline how the
tests could be altered in the future to provide more broadly applicable results.

Limited Generalisability

All the benchmarks were run on a single test machine, as listed in Table 7. This
means that the results may have limited generalisability to other system setups.
This threat can rather easily be counteracted by running the benchmarks on other
computers. The Central Processing Unit (CPU) of the test machine was announced
on the 6th of April 2013[113], meaning that it is a little over six years old at the
time of writing. It would therefore be beneficial to rerun the benchmarks on a
newer processor to obtain more contemporary results.

83

6 | Discussion

In this chapter we discuss the results of the project. We start with a discussion
of the adoption potential of F# and examine the test participants’ arguments for
and against F#. We then move on to discussing the methodology adopted in this
project, namely the use of Champagne Prototyping, Attention Investment Model
and Cognitive Dimensions. Finally we discuss the technology choices we made in
the project, which consists of using Unity as the host game engine and C# and
F# as languages.

6.1 F# Adoption Potential

While the F# code produced during the user test in general was shorter than
the C# code (see Appendix E), the participants expressed that they would not
personally choose F# in a real project. Even participants who clearly identified the
benefits of F#, held this opinion. In this section we will explore the participants’
reasons for this standpoint. The participants stated a number of rationales for this
during the debriefing interview, which we categorised in four categories; prevalence
and popularity of C#, learning overhead and cost, comfort zone and difference of
priority. Each category is, in turn, analysed and explained.

6.1.1 Prevalence and Popularity of C#

Several participants stated that C# was simply more prevalent, which means that
documentation, forum posts, tools and libraries would be more available. These
sources of information are very important because they aid developer productivity,
which is of higher importance than performance in game development. This was
pointed out by participant 5 and was consistent with what other participants
expressed. In the quotes below the relevant sentences have been highlighted with
bold text.

“If my boss told me to do it, then I would use it, I wouldn’t refuse. But
I wouldn’t use it in my spare time, C# is too well documented
and familiar. It would take a while to get into F# and the functions
I am familiar with from C# [...]”

84

-Participant 1, Appendix D.1

Participant 1 states that he would not use F#, unless specifically asked to do so.
Learning a new language or tool takes too long time, even when the benefits of
the tool or language are evident. This is echoed by participant 4:

“And I have worked with C# and Unity almost everyday and I am as
familiar with C# as is needed in Unity [...]
Alright, so it isn’t anything I would ever use, but that is because I have
used this [C# in Unity] since 2011. It is so integrated in me that
I just do that, that, and that and I am happy that I am at the point
where I don’t need to think about syntax errors, because it is usually
logic errors I get.”

-Participant 4, Appendix D.2

This is inline with the literature, which states (among other things) that developers
tend to select languages they feel they know[114]. However, participant 4 also
argued that new languages are mainly useful for larger development studios. This is
in contradiction with the literature, where evidence points to the opposite. Finally,
the participants’ agreed that the use of events is highly positive. We argue that
the use of events is a corner stone in the domain specificity of the FRP system,
echoing scientific research that says that domain specific languages are more likely
to be adopted[114].

6.1.2 Learning Overhead & Cost

All participants struggled with F#’s syntax, which was expected. The syntax
struggle was also a factor in participants’ decision making process. While F#
was a new language, it also presented a new paradigm. This paradigm shift was
difficult for the participants, but few mentioned the shift directly.

“I really like functional, but now that I tried programming for games I
am not sure.”

-Participant 6, Appendix D.3

However, most participants did not take note of the paradigmatic changes directly.
Instead their focus was on the syntactical differences as well as the new keywords
and operators. This may be caused by the their limited experience with F# and
that the paradigm shift may become more apparent to the participants.

85

“It was very difficult to look at a new language again after such a long
time.”

-Participant 4, Appendix D.2

“However syntax-wise I was quite lost.”

-Participant 1, Appendix D.1

All participants, except 6, had very limited experience with the functional paradigm.
The five first participants had Medialogy educations, which does not teach func-
tional programming. According to [114] only 15% of computer science students
learn functional programming languages if they are not taught during their edu-
cation. This further increases the learning cost associated with F#, as the partic-
ipants must acquaint themselves with both a new paradigm and a new language.

Participants were made aware of a potential advantage of F#; the higher paral-
lelisability, which may afford developers greater utilisation of the system resources.
However, participant 5 pointed out that “performance is provided by the engine,
not the game”1, which explains why none of the participants were particularly
interested in F#’s potential for simpler or even implicit parallelisation.

6.1.3 Comfort Zone

As earlier stated, developers tend to select programming languages that they are
familiar with[114]. This is reflected by the participants as well, where both partic-
ipant 1 and 4 noted that they were too used to C# to switch to F#. Furthermore,
participant 1 stated that the languages he used tended to be the more popular
languages.

“I think in the context of what I would be assigned to do, if someone
assigned this to me I would do it, but typically it is the more popular
languages you are assigned.”

-Participant 1, Appendix D.1

In addition most participants had developed habits from C# that they would have
to unlearn or manage to productively write F#. Syntactically the habits consisted
of writing semicolons, curly braces and explicitly writing types in front of variables.
On the semantic side, the inversion of access modifier defaults, immutability and
implicit returns posed the largest challenge.

1The footage of the fifth test was lost, therefore any and all quotes from participant 5 are
those noted by the test observer during the test.

86

“Yea, I mean it is only a question of time before you get used to not
making semicolons and curly brackets.”

-Participant 1, Appendix D.1

“It would help a lot if I had longer time to work with a project.”
-Participant 6, Appendix D.3

Participants largely agreed that the habitual issues would disappear with more
practice. Given more experience with F# and experience with actual projects
and problems, the paradigmatic differences may become more apparent to the
participants.

6.1.4 Difference of Priority

Some of the potential benefits offered by F# are not as appealing to the partici-
pants as initially believed. Surprisingly, multiple participants expressed that per-
formance was not a concern, which is in direct conflict with literature on software
developers in general[114]. In addition productivity was deemed more important
than program correctness.

“As is, I can’t see the advantage of it because I already use Unity which
manages everything. So there isn’t, as such, any thing [requirement]
there.”

-Participant 4, Appendix D.2

Participant 5 expressed that F# was more readable because it forced correct pro-
gram indentation, but still maintained that productivity was more important. Due
to internet distribution platforms, bugs can be fixed at a later date and meeting the
initial deadline is the main challenge. Furthermore, we speculate that games have
a shorter lifetime (usually only one larger release and a series of smaller patches)
than other software products and therefore maintenance is of lower priority.

6.2 Methodology

In this section we will discuss the chosen methodology for this project. A number
of different methodologies were presented in Section 3.2, of these we opted for
Champagne Prototyping. None of the methodologies were exact matches for our
case, causing us to modify Champagne Prototyping to fit our case better. This
modification consisted of including additional Attention Investment Models and
Cognitive Dimensions usability methodologies.

87

6.2.1 Champagne Prototyping

The Champagne Prototyping method was selected because of its cheap deployment
cost and the availability of a F# plugin for Unity [19]. This meant that early in
the project the necessities of the method were met (see Section 3.2.5), i.e. a fully
operational prototype based on an existing product. However, Discount Method
for Language Evaluation was also an option. This methodology only requires a set
of problems and some participants to solve them. The use of an IDE is optional,
as the methodology is intended to test languages before a compiler has been imple-
mented. This means that it is an ideal fit for evaluating programming languages.
Champagne Prototyping uses a scenario-based task formulation strategy, which
we argue is better suited for testing user interfaces. We therefore decided to draw
inspiration from the tasks formulations in Discount Method for Language Evalu-
ation and apply them with the participant selection and analysis of Champagne
Prototyping. We chose the analysis of Champagne Prototyping for two reasons:

1. Discount Method for Language Evaluation uses IDA, which was simply not
possible for us due to planning issues.

2. Cognitive Dimensions and Attention Investment Model, which are used by
Champagne Prototyping, are better suited for evaluating programming lan-
guages than IDA.

A third alternative is Expert Review Method. However, as the name implies, this
method requires an expert in each language under test. In addition, participants
would be required to participate in multiple sessions. This was a concern, as
finding qualified participants willing to spend an hour on the test already proposed
a challenge. Given this challenge, Champagne Prototyping was the method which
provided the most benefit at the smallest cost. This freed up time to improve the
test setup and explore features such as the FRP system.

Attention Investment Model

The primary contribution of the Attention Investment Model in this project is the
overview of participant comprehension. This can be seen in Table 4, where an
overview of what the participants understood of the FRP system. The method
was used as a broad-brush measure to participant comprehension, however it can
be used as a finer grain tool. When used in this way, the method could be used to
simulate participant behaviour and thus explain their decision making process[63].
This approach was not used due to the significant effort required. In addition, it
was not obvious from the paper how to apply the method in practice.

Furthermore, the Attention Investment Model method was designed to map the
decisions made by the programmer during a programming activity. In particu-

88

lar, the method may be used to explore when and why a programmer decides to
generalize an implementation, instead of hard coding it. However, in Champagne
Prototyping it is targeted at a certain feature. We used Attention Investment
Model in accordance with Champagne Prototyping and in a similar manner to
Cognitive Dimensions; as a vocabulary to discuss the decision-making process of
the participants (see Section 4.2.4).

Multipass Cognitive Dimensions

The Cognitive Dimensions framework is used in Champagne Prototyping, but
we also used the framework on its own. The reason for this was to discuss our
experience with F# and C# separately from the participants’ experience. This
allowed us to compare the experiences and make educated guesses on whether some
issues are resolved with more practice. This means that Cognitive Dimensions
was applied twice, first as vocabulary to compare C# and F#, and second as
part of Champagne Prototyping to gain an overview of usability issues. The first
application was in the same style as our previous study of gameplay programming
languages[12].

The main difference we observed between the two passes was that the participants
only sparsely talked about paradigms. The participants had a tendency of associ-
ating all their problems with the new syntax, rather than the new way of thinking.
Furthermore, we saw very little use of the function abstraction we discussed under
the abstraction gradient dimension (see Section 4.1). Instead, the participants
would attempt to use the object-orientation of F# to implement gameplay code
like they were used to. We also observed that a participant did not want to add
types in his F# code, because he argued that it would clash with the functional
paradigm. Regarding consistency, we observed that the participants experienced
many of the same issues as we did, particularly related to lists, type compatibility
and function signatures. Many participants struggled with F#’s type inference,
which we chose to classify as role-expressiveness. The reason for this was that
some participants thought they were dealing with a dynamic type system, and we
thus argue that F#’s type system does not sufficiently express that it is, in fact,
strongly typed. This was an unexpected discovery, as we knew in advance that
F# has a strong type system with inference.

6.3 Technology Choices

In this section we discuss the choices of technology for the project. We first discuss
the choice of Unity as the host game engine for the experiment. Afterwards we
discuss the choice of C# and F# as languages in this experiment.

89

6.3.1 Game Engine

In this project we chose to use the game engine Unity. We had three reasons for
this choice; Unity is popular, it supports the .NET runtime and we have prior
experience with it. We argued that any engine that supports the .NET runtime,
such as Godot, CryEngine and MonoGame, would have been viable choices. Fur-
thermore, we prefabricated code, scenes and assets that the programmers were to
use during the tests. The goal of said prefabricated code was to rule out the game
engine as a factor in the experiments and merely turn it into a “play button”. We
therefore argue that any game engine would have been viable choices, albeit some
would require more setup than others. Take for example Unreal Engine, which has
a virtual machine for running Blueprints[115]. This virtual machine could proba-
bly also host a functional language. However, it would require a new language to
be built as none are readily available.

Unity is source-available for customers with the “Pro” subscription plan. This
means that the engine and editor may only be adapted with the tools Unity Tech-
nologies provide (i.e. writing custom inspectors and editor plugins with C#).
This puts a natural limit on how “far” custom implementations may diverge from
Unity’s implementation. A better, but also more time consuming approach would
be to use the open source game engine Godot. Godot has support for GDScript
and Mono, among others. We speculate that this could mean that new languages
may be introduced with relative ease.

6.3.2 Programming Languages

We chose to use C# and F# in this experiment. This choice was mainly out of
convenience because those two languages share the .NET runtime. The choice is
associated with a potential source of error, namely that both languages are multi-
paradigm. This means that C# programmers may in fact write fully functional
programs and vice versa. In practice we saw fairly limited use of functional code
in C# and more use of imperative code in F#. We suspect that this is a matter of
habit, and is not an indicator that functional programming is unsuited for game
development. The reason is that the participants were most likely used to a certain
problem-solving strategy when they program, which is centered in the imperative
paradigm.

The shared runtime is also worth discussing. We experienced that some of the
participants were unsure of why one would use F# instead of C# because all the
classes are called the same. This is a consequence of the shared runtime. We
thought that the well-known classes would result in a smoother transition and a
sense of familiarity, but it seems that the known classes and the way of expressing
functionality in some cases were indistinguishable for our participants. With that
in mind, it may have provided more useful information if we had used an entirely

90

other game engine for the functional part. On the other hand, this may introduce
yet another learning factor in form of a completely new environment.

6.4 Performance Difference of F# and C#

In the benchmarks undertaken in this project, F# has consistently been out per-
formed by C#. This section discuss this performance difference and it’s signifi-
cance. In addition, the parallelisation strategies, in both languages, are compared.

The benchmarks were structured to test the potential performance speed-up of us-
ing lenient evaluation strategy for implicit parallelisation (see Section 5.1). There-
fore the first benchmarks compare a sequential implementation (as a control), an
F# strategy (Async Workflows), a C# strategy (Tasks) and the lenient evaluation
strategy. We found that the sequential control outperformed the concurrent im-
plementations in all cases (see Section 5.1.4). This prompted the next benchmark,
where we examined the growth of the strategies (see Section 5.2). However, the
Task based and the lenient strategies performed comparably, while the execution
times of Async Workflows grew very fast as the number of nodes increase. In these
benchmarks F# was marginally slower than C#.

Given the surprising results in the first round of benchmarks, we hypothesised that
the cause was the problem size. In order to tests this hypothesis another round of
benchmarks were constructed (see Section 5.2). These tested the strategies with
an arbitrary workload that was gradually decreased until the sequential strategies
outperformed the concurrent ones. The workload was implemented as a pair of
for loops iterating a given number of times (see Section 5.2.1 and Listing 26). The
results indicated that our hypothesis was correct and that the parallel strategies
scaled better than the sequential strategy(see Section 5.2.1 and Section 5.2.2).

Finally, a round of benchmarking was conducted inside the Unity engine. The
focus of these benchmarks was to ascertain if F# caused a significant performance
penalty in this environment. According to Unity’s performance guidelines garbage
generation will severely impact performance and F# generates more garbage than
C# (see Section 5.3.1)[110], [111]. The findings indicates that F# scales worse
than C#, depending on the employed strategy (see Section 5.3.2, Table 9 and
Figure 17). However, this issue is largely dependent on Unity’s use of an outdated
GC strategy (see Section 5.3.1) and could therefore be solved by switching to
modern GC algorithms.

Outside of Unity, F# has a small impact on performance, however the additional
garbage has a larger impact on performance in Unity. This performance problem
in Unity can be solved by modernising the GC. Therefore we can conclude that
the performance is not significant for most cases. This is supported by another
study, which found that F# was 7% slower than C# [40] and another study which

91

found a 5% difference[116].

Furthermore, the consensus of the participants in the usability evaluation seemed
to be that productivity was more important than performance. This further un-
derlines that it is no longer technical limitations that hinder the use of functional
programming in game development. These arguments break a long tradition in
game development, where performance have been the most important factor. We
speculate that the participants of this study care little about performance, because
they are not developing AAA games that push the limit of computational power.
This could be one of the reasons why they’re less concerned with performance than
tradition says.

92

7 | Conclusion

This chapter serves as the conclusion of the report. Here the work undertaken
during this project is summarised in detail, whereafter the research questions posed
in the problem statement (see Section 1.1) are answered.

7.1 Project Summary

In this project we examined the claims of two game development gurus: John Car-
mack and Tim Sweeney. These claims suggested that increased use of functional
programming in game development would be beneficial. These potential bene-
fits of functional languages were examined. Tim Sweeney directly suggested two
features; explicit effects typing and lenient evaluation strategy. The performance
impact of these language features were examined as well as other related boons,
such as FRP, implicit parallelism and other concurrency benefits.

We examined if their point-of-view was shared by game development professionals
in Aalborg, by conducting a usability evaluation, where the participants were
tasked with implementing gameplay code in F#. The test consisted of gameplay
programming tasks inspired by game development. The developers were asked to
implement solutions to these tasks in F# and C#. We found that the programmers
were reluctant to adopt F# because they believed that the cost of learning a new
language would out-weigh the benefits it could provide.

In need of a stronger incentive to promote F# we decided to examine if F# could
provide more performant code, than C#, via concurrency. We found that F#
introduces a performance penalty compared to C#, which is especially noticeable
as problem sizes grow. Furthermore, the Async Workflows concurrency strategy
employed by F# seems to be fragile, in the sense that small differences can severely
impact performance (using Async.StartChild instead of Async.Parallel).
In comparison, the Task model employed in C# seems more robust and also re-
sults in more performant concurrent code. The same results were obtained when
benchmarking F# in Unity, where MonoBehaviours implemented in F# were a
little less performant than those in C#. The FRP system was implemented sub-
optimally, where each FRPBehaviour is in fact a full-blown FRP system, which
resulted in poor performance. However, the FRP and Async Workflows were well
understood by the participants during the test.

93

7.2 Research Questions

In this section we will answer the exploratory questions, which have guided the
research in this project. The research questions are listed here for convenience:

1. How well do experienced game developers express gameplay code
in the functional paradigm, in comparison to object-oriented pro-
gramming?

2. How can functional programming be incorporated in game development?

3. What are the performance impacts of using functional idioms in a game
engine?

4. What is required of functional programming to be adopted by game devel-
opers?

7.2.1 Expressing Gameplay Code in F#

The game developers struggled with various aspects of F# and the FRP system,
however they managed to produce concise gameplay code (see Table 4 and Section
6.1). In some cases the F# code was shorter than the C# code written during the
test (see Appendix E). In general, the F# code produced during the test often had
qualities1 that were lacking in the C# code. Even still, developers were unsure of
whether F# was worth investing time in, which is illustrated in in Table 5. Several
developers recognised the benefits of F#, but remained unsure if it was worth the
investment risk, to switch to the language.

Of the findings from the usability test, the most surprising result was the difference
of priorities (see Section 6.1.4). It was expected that developers would be mindful
of risks associated with learning a new tool and that they may be reluctant to try
something new, but developers disregarded the advantages of F# because they
were unnecessary. The participants did not explicitly state the concrete reason
why these features were unnecessary, but we believe the rapid and short life cycle
of modern games is partly the cause.

7.2.2 Incorporating F# in Game Development

In this project we chose to add support for F# in Unity by installing a 3rd party
plugin. Using this plugin we implemented a simple FRP system that allows game-
play programmers to employ the functional reactive programming paradigm. The

1Qualities such as conciseness, readability and modularity.

94

participants of the usability evaluation agreed that event-driven programming is
well-suited for game development and would improve code quality.

The FRP system makes use of a paradigm within the functional paradigm, which
forces developers to think about their code in a different way (see Section 3.1 and
Section 4.2.1). This served as a segue into the functional paradigm. In contrast
many of the traditional introductions to functional programming are not necessar-
ily useful in real-world game development.

7.2.3 Performance Impacts of F#

Using microbenchmarking techniques and a set of benchmarks, we examined the
performance of F# both standalone and in conjunction with Unity (see Section
5.1). We found that F# introduces a small overhead compared to C#. We im-
plemented three different benchmarks in this project: binary tree summation/ac-
cumulation, matrix summation and unit management (see Section 5.1.2). All
the benchmarks showed that F# was slightly slower than equivalent code in C#.
Furthermore, the binary tree summation/accumulation benchmark showed that
the Async Workflow concurrency model in F# was much slower than the other
concurrent implementations (see Section 5.1.4). As C# and F# run on the same
platform, programmers may use C#’s Task model in F#, which yields only slightly
slower code in F#.

7.2.4 F# Adoption Requirements

The plausibility of the participants adopting F# has been discussed in Section
6.1. The participants list a number of problems that need to addressed before
they would consider using F#. The primary concerns raised by the participants
are the cost of learning the language, and the mismatch between desired benefits
and gained benefits.

Easing the learning process may also alleviate another issue with F#: the avail-
ability of Unity/F# documentation2. Additional documentation and assistance
would allow developers to learn much more rapidly, which was a major concern
for most participants.

The benefits provided by F# were modularity and maintainability. Some par-
ticipants noted that F# is ideal if you know the game you want to implement
well, however they concluded that this is not the case in most game development
scenarios (see Section 6.1 and Appendix D.2). The modularity afforded by F#

2While F# has sample documentation, very limited documentation is available for using F#
with Unity.

95

was not considered an indicator for faster development, but rather an indicator of
more maintainable code.

7.3 Closing Remarks

In conclusion, F# was met with mixed enthusiasm from the participants, while the
use of events in gameplay programming was met with almost unanimous approval.
The primary reasons identified, for the participants stance on F#, were the high
perceived cost of learning the language, and the cultural shock of the functional
paradigm. The benefits of F# were clear to several participants, but many did
not consider them relevant to game development, where productivity is of utmost
importance. This schism, may be caused by participants not fully grasping the
advantages, but this requires additional research. The .NET platform has reached
a point where the performance impact of using functional programming in game
development is minimal. This means that the remaining barriers are habitual
and preferential. We envision that such barriers can be breached by teaching the
functional paradigm early in game developers’ education.

96

8 | Future Work

In this chapter we outline options for future work. The options fall into three
categories; further researching the use of lenient evaluation and if/how it can
be adopted in F#, optimisation of the FRP system we developed and alternative
usability evaluation methods that can evaluate the use of F# after longer exposure.

8.1 Lenient Evaluation in F#

In this section we present an avenue for future research into a lenient parallelisation
system in F#. The theoretical background for this system is rooted in the lenient
evaluation strategy and the work/span work estimation system (see Section 2.1
and Section 2.1.2). Two different pilot implementations were tested using Async
Workflows from F# and .NET Tasks (see Section 5.1 and Section 5.1.2). The two
parallelisation systems promise fine grain parallelisation, which is suited for the
lenient system.

The performance of Async Workflows was not up to par with other approaches (at
least not when workflows are started without the explicit Async.StartChild),
however Tasks presented a promising system for lenient parallelisation in F#.
This can be seen in Figure 3 and Figure 4. The pilot implementation is a naïve
implementation of lenient evaluation in F#. The system could benefit from using
work/span and hardware information to make informed decisions about what and
when to parallelise. The benefit of using work/span, is that the analysis can be
made at compile time.

However, the above results are not concrete proof that such a system could provide
a significant speed up in real world scenarios. Therefore a new implementation,
using work/span or a different analysis tool, should be implemented and bench-
marked. This benchmark should be compared to state of the art sequential and
concurrent implementations to ascertain relative speed up. However, if the speed
up is not significant, the system may still hold merit as a potentially easier to use
parallelisation system.

97

8.2 Improving the FRP System

In this section we discuss how the FRP system can be improved in terms of perfor-
mance. We first outline the performance problems with the current implementation
and suggest a refactoring that should improve performance. Afterwards we discuss
the possibility of introducing implicit concurrent updates using Unity’s C# Job
System.

8.2.1 FRP Optimisation

The problem with the FRP system is that each FRPBehaviour is actually a
full-blown FRP-system with condition-checking and event-dispatching. The FRP
system could well be a singleton, as this means that conditions are only checked
once.

Solving this problem would require a larger refactoring, as this relates to the
Unity lifecycle of GameObjects. First and foremost some Unity methods are
required to be tied to the GameObject they belong to. Examples of such meth-
ods are OnCollisionEnter and OnTriggerExit. Other methods, such as
Update and reacting to keyboard strokes could, on the other hand, be tied to a
FRPEngine. In this approach the programmer will register each FRPBehaviour
to the set of events he would like to react to along with a condition and a handler.

The problem arises when GameObjects are destroyed and the event handlers
must be unsubscribed. We have not added support to remove FRPBehaviours
and their event handlers from the FRP system, as the current version “cleans”
up after itself when FRPBehaviours are destroyed. This is to be understood
in the sense that the whole system is deallocated and thus never risks invoking
event handlers on objects that have been destroyed. A possible pitfall of the
suggested optimisation is the risk of invoking event handlers on FRPBehaviours
that have already been destroyed. This raises an exception in Unity and yields an
unresponsive game.

In order to truly determine whether or not FRP comes with a performance penalty,
these changes would have to be incorporated.

8.2.2 Unity Concurrency

The possibility of promising implicit concurrency from using the FRP system is
indeed appealing. Yampa Arcade has managed to implement a concurrent FRP
system[46]. In order for this to be possible we would need to utilise the C# Job
System (which, despite its name, should also work in F#) or ECS in Unity. The

98

former allows programmers to implement concurrent code on MonoBehaviours,
whereas the latter uses Entitys rather than MonoBehaviours.

The current implementation implements a FRPBehaviour, which inherits from
MonoBehaviour. The C# Job System therefore presents the smallest required
change. If we were to implement concurrency using C# Job System, we would
create a collection for each event type that holds references to the objects that has
subscribed to the event along with the handler they subscribed. In each Update
those collections will be iterated, in parallel, to check the event conditions and
call the associated handlers. There are some engineering challenges still, as Unity
requires programmers to manually schedule the jobs and only allows value-types
(i.e. structs) to be passed as arguments to a job.

With the coming release of Unity’s ECS, it would also be interesting to examine
how well that pairs with FRP. We speculate that they might go well hand-in-hand,
as events in FRP can be replaced with Systems in ECS that are invoked only when
certain conditions are met. The events of FRP may then be represented as a series
of components that are attached to the entities. There are likely many engineering
challenges to face when developing such system, and our experience with Unity’s
ECS tells us that it is far from simple to use.

8.3 Longer Term Usability Evaluation

The usability evaluation presented in this project gives only a small glimpse into
the challenges faced by experienced C# programmers when they start using F#.
We suspect that part of the reason why the participants were not keen on adopting
F# was that they only experienced the “initial frustration” of switching to a new
language. Another interesting topic to explore is whether experienced gameplay
programmers are more positive towards F# after gaining more experience. This
would require a longer-term usability evaluation to be conducted.

A longer-term usability evaluation presents the challenge that the programmers
may not be monitored all the time, thus decreasing the amount of insight we can
obtain on F#’s learning curve. If we assume that it is not necessary to monitor the
participants, we can draw inspiration from the expert-review method presented in
[65] and the idea of structuring exercises as game prototypes presented in [40]. This
combined method would formulate a series of game prototype exercises, and send
them to participants at regular interval along with a questionnaire that examines
how happy the participant was with using F#. Alternatively several small usability
test sessions could be arranged, where the participants solve similar exercises.
Both these approaches require a huge time investment from the participants and
the latter requires a lot of planning. Nonetheless, these approaches may provide
another interesting point-of-view as to why functional programming has not been
broadly accepted in the game development industry.

99

Alternatively a comparative experiment could draw inspiration from [117], that
studies the effect of dynamic and static types on programming languages. Such
experiment would gather a larger group of participants and have half of them
implement a game prototype in C# and half in F#. The total development time
should be roughly 27 hours[117]. Alternatively, online resources could be used to
evaluate the usability, by having the participants complete an online course before
the actual session.

8.4 Reactive Programming in C#

The participants of the usability all agreed that the use of events in gameplay
programming would increase code quality compared to Unity’s current Update-
strategy. It would therefore be interesting to research if reactive programming
would receive a “warmer welcome” into the game development industry. One
possible strategy would be to repeat a similar experiment, but instead of using
F#, a reactive programming system for Unity (such as UniRx[43]) would be used.
As all tasks in this experiment would be implemented in C#, it would also have
the benefit that the “initial frustration”, which we discussed earlier in this section,
would be entirely removed.

100

Bibliography

[1] E. F. Anderson, “A classification of scripting systems for entertainment
and serious computer games”, in 2011 Third International Conference on
Games and Virtual Worlds for Serious Applications, May 2011, pp. 47–54.

[2] D. Michael, “Indie game development survival guide (game development
series)”, 2003.

[3] M. M. McGill, “Defining the expectation gap: A comparison of industry
needs and existing game development curriculum”, in Proceedings of the
4th International Conference on Foundations of Digital Games, ACM, 2009,
pp. 129–136.

[4] M. Hewner and M. Guzdial, “What game developers look for in a new
graduate: Interviews and surveys at one game company”, in Proceedings of
the 41st ACM technical symposium on Computer science education, ACM,
2010, pp. 275–279.

[5] J. Blow, “Game development: Harder than you think”, Queue, vol. 1, no. 10,
p. 28, 2004. [Online]. Available: http://faculty.salisbury.edu/
~xswang/Research/papers/game/queuefeb04/blow.pdf.

[6] Wikipedia. (May 2019). List of game engines. English, [Online]. Available:
https://en.wikipedia.org/wiki/List_of_game_engines
(visited on May 22, 2019).

[7] Unreal. (2018). Introduction to blueprints. English, [Online]. Available: https:
/ / docs . unrealengine . com / en - US / Engine / Blueprints /
GettingStarted (visited on Dec. 12, 2018).

[8] Unreal Engine. (Aug. 2015). Blueprint overview. English, [Online]. Avail-
able: https://docs.unrealengine.com/en-us/Engine/Blueprints/
Overview (visited on May 22, 2019).

[9] C. F. Kemerer and M. C. Paulk, “The impact of design and code reviews on
software quality: An empirical study based on psp data”, IEEE transactions
on software engineering, vol. 35, no. 4, pp. 534–550, 2009.

[10] J. Hughes, “Why functional programming matters”, The computer journal,
vol. 32, no. 2, pp. 98–107, 1989. [Online]. Available: https://academic.
oup.com/comjnl/article-pdf/32/2/98/1445644/320098.
pdf.

[11] Z. Hu, J. Hughes, and M. Wang, “How functional programming mattered”,
National Science Review, vol. 2, no. 3, pp. 349–370, 2015.

101

http://faculty.salisbury.edu/~xswang/Research/papers/game/queuefeb04/blow.pdf
http://faculty.salisbury.edu/~xswang/Research/papers/game/queuefeb04/blow.pdf
https://en.wikipedia.org/wiki/List_of_game_engines
https://docs.unrealengine.com/en-US/Engine/Blueprints/GettingStarted
https://docs.unrealengine.com/en-US/Engine/Blueprints/GettingStarted
https://docs.unrealengine.com/en-US/Engine/Blueprints/GettingStarted
https://docs.unrealengine.com/en-us/Engine/Blueprints/Overview
https://docs.unrealengine.com/en-us/Engine/Blueprints/Overview
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf
https://academic.oup.com/comjnl/article-pdf/32/2/98/1445644/320098.pdf

[12] T. Morell, M. E. R. Andersen, T. S. Jensen, T. G. McCollin, and D. D. A.
van Bolhuis, “An analysis of gameplay programming languages in free-to-
use game engines”, Aalborg University, Tech. Rep., 2019. [Online]. Avail-
able: https://projekter.aau.dk/projekter/da/studentthesis/
en - analyse - af - spilopfoerselsprogrammeringssprog - i -
gratisatbruge - spilmotorer(99442369 - 1b23 - 4deb - b99d -
060ae5cd5db2).html.

[13] J. Carmack. (Apr. 2012). In-depth: Functional programming in C++. En-
glish, [Online]. Available: https://www.gamasutra.com/view/
news/169296/Indepth_Functional_programming_in_C.php
(visited on Sep. 21, 2018).

[14] Microsoft Docs. (Mar. 2019). Lambda expressions (c# programming guide).
English, [Online]. Available: https://docs.microsoft.com/en-us/
dotnet/csharp/programming-guide/statements-expressions-
operators/lambda-expressions (visited on Apr. 30, 2019).

[15] M. Torgersen. (Jan. 2019). Do more with patterns in c# 8.0. English, [On-
line]. Available: https://devblogs.microsoft.com/dotnet/do-
more-with-patterns-in-c-8-0/ (visited on Apr. 30, 2019).

[16] Daniel Super. (Sep. 2016). Why do we don’t use functional programming
to implement a game engine? English, [Online]. Available: https://www.
quora.com/Why-do-we-dont-use-functional-programming-
to-implement-a-game-engine (visited on May 22, 2019).

[17] T. Sweeney. (2006). The next mainstream programming language: A game
developer’s perspective. English, Epic Games, [Online]. Available: https:
//www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-
fp/docs/sweeny.pdf (visited on Nov. 20, 2018).

[18] gamedesigning.org. (Jan. 2019). The top 10 video game engines. English,
[Online]. Available: https://www.gamedesigning.org/career/
video-game-engines/ (visited on May 22, 2019).

[19] M. Rosenbjerg. (Mar. 2019). Unity f# integration. English, [Online]. Avail-
able: https://github.com/sppt-2k19/unity-fsharp-integration
(visited on Apr. 2, 2019).

[20] L. Kokemohr. (Mar. 2018). Using f# in godot 3. English, [Online]. Available:
http://www.lkokemohr.de/fsharp_godot.html (visited on
May 7, 2019).

[21] A. Brown. (Oct. 2013). Making a platformer in f# with monogame. English,
[Online]. Available: https://bruinbrown.wordpress.com/2013/
10/06/making-a-platformer-in-f-with-monogame/ (visited
on May 7, 2019).

[22] rookboom. (Nov. 2012). Using f# in crymono. English, [Online]. Available:
https://www.cryengine.com/community_archive/viewtopic.
php?f=375&t=102099 (visited on May 7, 2019).

102

https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/statements-expressions-operators/lambda-expressions
https://devblogs.microsoft.com/dotnet/do-more-with-patterns-in-c-8-0/
https://devblogs.microsoft.com/dotnet/do-more-with-patterns-in-c-8-0/
https://www.quora.com/Why-do-we-dont-use-functional-programming-to-implement-a-game-engine
https://www.quora.com/Why-do-we-dont-use-functional-programming-to-implement-a-game-engine
https://www.quora.com/Why-do-we-dont-use-functional-programming-to-implement-a-game-engine
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
https://www.st.cs.uni-saarland.de/edu/seminare/2005/advanced-fp/docs/sweeny.pdf
https://www.gamedesigning.org/career/video-game-engines/
https://www.gamedesigning.org/career/video-game-engines/
https://github.com/sppt-2k19/unity-fsharp-integration
http://www.lkokemohr.de/fsharp_godot.html
https://bruinbrown.wordpress.com/2013/10/06/making-a-platformer-in-f-with-monogame/
https://bruinbrown.wordpress.com/2013/10/06/making-a-platformer-in-f-with-monogame/
https://www.cryengine.com/community_archive/viewtopic.php?f=375&t=102099
https://www.cryengine.com/community_archive/viewtopic.php?f=375&t=102099

[23] P. Hudak, “Para-functional programming”, Computer;(United States), vol. 19,
no. 8, 1986.

[24] H. W. Loidl, “Granularity in large-scale parallel functional programming”,
PhD thesis, University of Glasgow, 1998.

[25] G. Tremblay, “Lenient evaluation is neither strict nor lazy”, Comput. Lang.,
vol. 26, no. 1, pp. 43–66, 2000. doi: 10 . 1016 / S0096 - 0551(01)
00006-6. [Online]. Available: https://doi.org/10.1016/S0096-
0551(01)00006-6.

[26] G. Tremblay and B. Malenfant, “Lenient evaluation and parallelism”, Com-
put. Lang., vol. 26, no. 1, pp. 27–41, 2000. doi: 10 . 1016 / S0096 -
0551(01)00007- 8. [Online]. Available: https://doi.org/10.
1016/S0096-0551(01)00007-8.

[27] H. Hüttel, Transitions and Trees: An Introduction to Structural Operational
Semantics. Cambridge University Press, 2010.

[28] P. Hudak, “Conception, evolution, and application of functional program-
ming languages”, ACM Computing Surveys (CSUR), vol. 21, no. 3, pp. 359–
411, 1989. [Online]. Available: https://cse.sc.edu/~mgv/csce330f15/
haskell/p359-hudak.pdf.

[29] R. Bird, G. Jones, and O. De Moor, “More haste, less speed: Lazy ver-
sus eager evaluation”, Journal of Functional Programming, vol. 7, no. 5,
pp. 541–547, 1997.

[30] H. C. Baker Jr and C. Hewitt, “The incremental garbage collection of pro-
cesses”, ACM Sigplan Notices, vol. 12, no. 8, pp. 55–59, 1977.

[31] H. Casanova, A. Legrand, and Y. Robert, Parallel Algorithms. CRC Press,
2008, isbn: 978-1-58488-945-8. [Online]. Available: http://www.crcpress.
com/product/isbn/9781584889458.

[32] G. E. Blelloch, “Programming parallel algorithms”, Commun. ACM, vol. 39,
no. 3, pp. 85–97, Mar. 1996, issn: 0001-0782. doi: 10.1145/227234.
227246. [Online]. Available: http : / / doi . acm . org / 10 . 1145 /
227234.227246.

[33] J. L. Gustafson, “Brent’s theorem”, in Encyclopedia of Parallel Computing,
D. Padua, Ed. Boston, MA: Springer US, 2011, pp. 182–185, isbn: 978-
0-387-09766-4. doi: 10.1007/978-0-387-09766-4_80. [Online].
Available: https://doi.org/10.1007/978-0-387-09766-4_80.

[34] R. P. Brent, “The parallel evaluation of general arithmetic expressions”,
Journal of the ACM (JACM), vol. 21, no. 2, pp. 201–206, 1974.

[35] F. Nielson, H. R. Nielson, and C. Hankin, “Type and effect systems”, in
Principles of Program Analysis, Springer, 1999, pp. 283–363.

[36] M. Toro and É. Tanter, “Customizable gradual polymorphic effects for
scala”, in ACM SIGPLAN Notices, ACM, vol. 50, 2015, pp. 935–953.

103

https://doi.org/10.1016/S0096-0551(01)00006-6
https://doi.org/10.1016/S0096-0551(01)00006-6
https://doi.org/10.1016/S0096-0551(01)00006-6
https://doi.org/10.1016/S0096-0551(01)00006-6
https://doi.org/10.1016/S0096-0551(01)00007-8
https://doi.org/10.1016/S0096-0551(01)00007-8
https://doi.org/10.1016/S0096-0551(01)00007-8
https://doi.org/10.1016/S0096-0551(01)00007-8
https://cse.sc.edu/~mgv/csce330f15/haskell/p359-hudak.pdf
https://cse.sc.edu/~mgv/csce330f15/haskell/p359-hudak.pdf
http://www.crcpress.com/product/isbn/9781584889458
http://www.crcpress.com/product/isbn/9781584889458
https://doi.org/10.1145/227234.227246
https://doi.org/10.1145/227234.227246
http://doi.acm.org/10.1145/227234.227246
http://doi.acm.org/10.1145/227234.227246
https://doi.org/10.1007/978-0-387-09766-4_80
https://doi.org/10.1007/978-0-387-09766-4_80

[37] R. D. Team. (Apr. 2013). Rust documentation. English, Rust Docs Team,
[Online]. Available: https : / / doc . rust - lang . org/ (visited on
Mar. 11, 2019).

[38] M. Krogh-Jespersen, K. Svendsen, and L. Birkedal, “A relational model
of types-and-effects in higher-order concurrent separation logic”, in ACM
SIGPLAN Notices, ACM, vol. 52, 2017, pp. 218–231.

[39] L. Birkedal, F. Sieczkowski, and J. Thamsborg, “A concurrent logical rela-
tion”, in Computer Science Logic (CSL’12)-26th International Workshop/21st
Annual Conference of the EACSL, Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2012.

[40] M. E. R. Andersen, T. S. Jensen, and D. D. A. van Bolhuis, “Functional got
game? - evaluating functional programming in game development”, Aalborg
University, Tech. Rep., 2019. [Online]. Available: https://projekter.
aau . dk / projekter / da / studentthesis / en - analyse - af -
spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-
1b23-4deb-b99d-060ae5cd5db2).html.

[41] vis2k. (Feb. 2018). F# kit - asset store. English, [Online]. Available: https:
//assetstore.unity.com/packages/tools/utilities/f-
kit-63652 (visited on May 20, 2019).

[42] R. N. T̃. Gardner. (Feb. 2017). Arcadia: Clojure in unity. English, [Online].
Available: https://github.com/arcadia-unity/Arcadia (visited
on Sep. 25, 2018).

[43] Y. Kawai. (Sep. 2018). Unirx - reactive extensions for unity. English, [On-
line]. Available: https://assetstore.unity.com/packages/
tools/integration/unirx-reactive-extensions-for-unity-
17276 (visited on May 20, 2019).

[44] ——, (Sep. 2018). Unirx - reactive extensions for unity. English, [Online].
Available: https://github.com/neuecc/UniRx (visited on May 20,
2019).

[45] C. Elliott and P. Hudak, “Functional reactive animation”, in International
Conference on Functional Programming, 1997. [Online]. Available: http:
//conal.net/papers/icfp97/.

[46] A. Courtney, H. Nilsson, and J. Peterson, “The yampa arcade”, in Proceed-
ings of the 2003 ACM SIGPLAN workshop on Haskell, ACM, 2003, pp. 7–
18.

[47] M. H. Cheong, “Functional programming and 3d games”, BEng thesis, Uni-
versity of New South Wales, Sydney, Australia, 2005.

[48] S. Bauman, C. F. Bolz, R. Hirschfeld, V. Kirilichev, T. Pape, J. G. Siek,
and S. Tobin-Hochstadt, “Pycket: A tracing jit for a functional language”,
in ACM SIGPLAN Notices, ACM, vol. 50, 2015, pp. 22–34.

104

https://doc.rust-lang.org/
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://projekter.aau.dk/projekter/da/studentthesis/en-analyse-af-spilopfoerselsprogrammeringssprog-i-gratisatbruge-spilmotorer(99442369-1b23-4deb-b99d-060ae5cd5db2).html
https://assetstore.unity.com/packages/tools/utilities/f-kit-63652
https://assetstore.unity.com/packages/tools/utilities/f-kit-63652
https://assetstore.unity.com/packages/tools/utilities/f-kit-63652
https://github.com/arcadia-unity/Arcadia
https://assetstore.unity.com/packages/tools/integration/unirx-reactive-extensions-for-unity-17276
https://assetstore.unity.com/packages/tools/integration/unirx-reactive-extensions-for-unity-17276
https://assetstore.unity.com/packages/tools/integration/unirx-reactive-extensions-for-unity-17276
https://github.com/neuecc/UniRx
http://conal.net/papers/icfp97/
http://conal.net/papers/icfp97/

[49] T. S. Strickland, S. Tobin-Hochstadt, R. B. Findler, and M. Flatt, “Chap-
erones and impersonators: Run-time support for reasonable interposition”,
in ACM SIGPLAN Notices, ACM, vol. 47, 2012, pp. 943–962.

[50] P. Sestoft, “Microbenchmarks in java and c#”, Lecture Notes, Sept, 2013.
[Online]. Available: https://itu.dk/~sestoft/papers/benchmarking.
pdf.

[51] C. Maraffi and D. Seagal, “Leveling up: Could functional programming be
a game changer?”,

[52] Lettier. (Oct. 2018). Your easy guide to fucntional reactive programming
(frp). English, Medium, [Online]. Available: https://medium.com/
@lettier/functional-reactive-programming-a0c7b08f6b67
(visited on Mar. 5, 2019).

[53] N. Singh. (Mar. 2018). A quick introduction to functional reactive program-
ming (frp). English, Medium, [Online]. Available: https://medium.
freecodecamp.org/functional-reactive-programming-frp-
imperative-vs-declarative-vs-reactive-style-84878272c77f
(visited on Mar. 5, 2019).

[54] Z. Corr. (Oct. 2016). Helm: A functionally reactive game engine. English,
[Online]. Available: http://hackage.haskell.org/package/helm
(visited on Sep. 25, 2018).

[55] B. Edds. (Mar. 2017). Nu. English, [Online]. Available: https://github.
com/bryanedds/Nu (visited on Sep. 21, 2018).

[56] ——, (Jun. 2016). Why functional programming works for games. English,
[Online]. Available: https://medium.com/@bryanedds/functional-
game-programming-can-work-95ed0df14f77 (visited on Dec. 6,
2018).

[57] E. Rey. (Jun. 2018). Functional reactive programming explained in a simple
way, in javascript... yes, in a simple way. English, Medium, [Online]. Avail-
able: https://itnext.io/functional-reactive-programming-
explained-in-a-simple-way-in-javascript-yes-in-a-
simple-way-925b14cddf75 (visited on Mar. 5, 2019).

[58] D. Quick. (Nov. 2018). Euterpea - a haskell library for music creation.
English, [Online]. Available: http://www.euterpea.com/ (visited on
Apr. 30, 2019).

[59] J. Kjeldskov, M. B. Skov, and J. Stage, “Instant data analysis: Conducting
usability evaluations in a day”, in Proceedings of the third Nordic conference
on Human-computer interaction, ACM, 2004, pp. 233–240.

[60] S. Kurtev, T. A. Christensen, and B. Thomsen, “Discount method for pro-
gramming language evaluation”, in Proceedings of the 7th International
Workshop on Evaluation and Usability of Programming Languages and Tools,
ACM, 2016, pp. 1–8. [Online]. Available: https://projekter.aau.
dk/projekter/files/239518386/report.pdf.

105

https://itu.dk/~sestoft/papers/benchmarking.pdf
https://itu.dk/~sestoft/papers/benchmarking.pdf
https://medium.com/@lettier/functional-reactive-programming-a0c7b08f6b67
https://medium.com/@lettier/functional-reactive-programming-a0c7b08f6b67
https://medium.freecodecamp.org/functional-reactive-programming-frp-imperative-vs-declarative-vs-reactive-style-84878272c77f
https://medium.freecodecamp.org/functional-reactive-programming-frp-imperative-vs-declarative-vs-reactive-style-84878272c77f
https://medium.freecodecamp.org/functional-reactive-programming-frp-imperative-vs-declarative-vs-reactive-style-84878272c77f
http://hackage.haskell.org/package/helm
https://github.com/bryanedds/Nu
https://github.com/bryanedds/Nu
https://medium.com/@bryanedds/functional-game-programming-can-work-95ed0df14f77
https://medium.com/@bryanedds/functional-game-programming-can-work-95ed0df14f77
https://itnext.io/functional-reactive-programming-explained-in-a-simple-way-in-javascript-yes-in-a-simple-way-925b14cddf75
https://itnext.io/functional-reactive-programming-explained-in-a-simple-way-in-javascript-yes-in-a-simple-way-925b14cddf75
https://itnext.io/functional-reactive-programming-explained-in-a-simple-way-in-javascript-yes-in-a-simple-way-925b14cddf75
http://www.euterpea.com/
https://projekter.aau.dk/projekter/files/239518386/report.pdf
https://projekter.aau.dk/projekter/files/239518386/report.pdf

[61] D. Benyon, “Designing interactive systems: A comprehensive guide to hci,
ux and interaction design”, 2014.

[62] T. R. G. Green, M. Petre, et al., “Usability analysis of visual program-
ming environments: A ’cognitive dimensions’ framework”, Journal of visual
languages and computing, vol. 7, no. 2, pp. 131–174, 1996.

[63] A. F. Blackwell, “First steps in programming: A rationale for attention
investment models”, in Proceedings IEEE 2002 Symposia on Human Centric
Computing Languages and Environments, IEEE, 2002, pp. 2–10.

[64] A. F. Blackwell, M. M. Burnett, and S. P. Jones, “Champagne prototyping:
A research technique for early evaluation of complex end-user programming
systems”, in 2004 IEEE Symposium on Visual Languages-Human Centric
Computing, IEEE, 2004, pp. 47–54.

[65] S. Nanz, S. West, and K. S. Da Silveira, “Examining the expert gap in paral-
lel programming”, in European Conference on Parallel Processing, Springer,
2013, pp. 434–445.

[66] G. V. Wilson and R. B. Irvin, Assessing and comparing the usability of
parallel programming systems. Citeseer, 1995.

[67] S. Nanz, S. West, K. S. Da Silveira, and B. Meyer, “Benchmarking usabil-
ity and performance of multicore languages”, in Empirical Software Engi-
neering and Measurement, 2013 ACM/IEEE International Symposium on,
IEEE, 2013, pp. 183–192.

[68] Unity Technologies. (Apr. 2019). Unity - manual: C# job system. En-
glish, [Online]. Available: https://docs.unity3d.com/Manual/
JobSystem.html (visited on Apr. 29, 2019).

[69] ——, (Jun. 2018). Introduction to the entity component system and c# job
system. English, [Online]. Available: https://unity3d.com/learn/
tutorials/topics/scripting/introduction-entity-component-
system-and-c-job-system (visited on Apr. 29, 2019).

[70] S. Vermeulen. (Sep. 2017). Async-await instead of coroutines in unity 2017.
English, [Online]. Available: http://www.stevevermeulen.com/
index.php/2017/09/using-async-await-in-unity3d-2017/
(visited on Apr. 30, 2019).

[71] Microsoft Docs. (Mar. 2019). The task asynchronous programming model in
c#. English, [Online]. Available: https://docs.microsoft.com/en-
us/dotnet/csharp/programming- guide/concepts/async/
(visited on Apr. 30, 2019).

[72] G. Foster. (Dec. 2013). Understanding and implementing scene graphs. En-
glish, [Online]. Available: http://archive.gamedev.net/archive/
reference/programming/features/scenegraph/index.html
(visited on Apr. 30, 2019).

106

https://docs.unity3d.com/Manual/JobSystem.html
https://docs.unity3d.com/Manual/JobSystem.html
https://unity3d.com/learn/tutorials/topics/scripting/introduction-entity-component-system-and-c-job-system
https://unity3d.com/learn/tutorials/topics/scripting/introduction-entity-component-system-and-c-job-system
https://unity3d.com/learn/tutorials/topics/scripting/introduction-entity-component-system-and-c-job-system
http://www.stevevermeulen.com/index.php/2017/09/using-async-await-in-unity3d-2017/
http://www.stevevermeulen.com/index.php/2017/09/using-async-await-in-unity3d-2017/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
http://archive.gamedev.net/archive/reference/programming/features/scenegraph/index.html
http://archive.gamedev.net/archive/reference/programming/features/scenegraph/index.html

[73] M. Jordan. (Nov. 2018). Entities, components and systems. English, [On-
line]. Available: https://medium.com/ingeniouslysimple/entities-
components - and - systems - 89c31464240d (visited on Apr. 30,
2019).

[74] E. Bendersky. (May 2016). The expression problem and its solutions. En-
glish, [Online]. Available: https://eli.thegreenplace.net/2016/
the - expression - problem - and - its - solutions/ (visited on
May 21, 2019).

[75] R. D. Tennent, “Language design methods based on semantic principles”,
Acta Informatica, vol. 8, no. 2, pp. 97–112, 1977.

[76] E. Kindler and I. Krivy, “Object-oriented simulation of systems with sophis-
ticated control”, International Journal of General Systems, vol. 40, no. 3,
pp. 313–343, 2011.

[77] L. Mathiassen, A. Munk-Madsen, P. A. Nielsen, and J. Stage, Object-
oriented analysis & design. Citeseer, 2000, vol. 25.

[78] S. Wlaschin. (Jul. 2012). Understanding type inference | f# for fun and
profit. English, [Online]. Available: https://fsharpforfunandprofit.
com/posts/type-inference/ (visited on May 7, 2019).

[79] C. Smith. (Aug. 2009). If #light syntax is so much better in f#, why isn’t
it the default? English, [Online]. Available: https://stackoverflow.
com/questions/1354722/if-light-syntax-is-so-much-
better-in-f-why-isnt-it-the-default (visited on May 22,
2019).

[80] S. Kumar. (Jul. 2017). Composite design pattern. English, [Online]. Avail-
able: https://www.geeksforgeeks.org/composite-design-
pattern/ (visited on May 22, 2019).

[81] K. Naik. (Mar. 2019). Design patterns in .net. English, [Online]. Avail-
able: https://www.c-sharpcorner.com/UploadFile/bd5be5/
design-patterns-in-net/ (visited on May 22, 2019).

[82] N. Ford. (Mar. 2012). Functional design patterns. English, [Online]. Avail-
able: https://www.ibm.com/developerworks/library/j-
ft10/index.html (visited on May 22, 2019).

[83] B. Ray, D. Posnett, V. Filkov, and P. Devanbu, “A large scale study of
programming languages and code quality in github”, in Proceedings of the
22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, ACM, 2014, pp. 155–165.

[84] A. D. Green. (Jan. 2017). Statements - c# language specification. En-
glish, [Online]. Available: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/language-specification/
statements#the-goto-statement (visited on May 7, 2019).

107

https://medium.com/ingeniouslysimple/entities-components-and-systems-89c31464240d
https://medium.com/ingeniouslysimple/entities-components-and-systems-89c31464240d
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/
https://eli.thegreenplace.net/2016/the-expression-problem-and-its-solutions/
https://fsharpforfunandprofit.com/posts/type-inference/
https://fsharpforfunandprofit.com/posts/type-inference/
https://stackoverflow.com/questions/1354722/if-light-syntax-is-so-much-better-in-f-why-isnt-it-the-default
https://stackoverflow.com/questions/1354722/if-light-syntax-is-so-much-better-in-f-why-isnt-it-the-default
https://stackoverflow.com/questions/1354722/if-light-syntax-is-so-much-better-in-f-why-isnt-it-the-default
https://www.geeksforgeeks.org/composite-design-pattern/
https://www.geeksforgeeks.org/composite-design-pattern/
https://www.c-sharpcorner.com/UploadFile/bd5be5/design-patterns-in-net/
https://www.c-sharpcorner.com/UploadFile/bd5be5/design-patterns-in-net/
https://www.ibm.com/developerworks/library/j-ft10/index.html
https://www.ibm.com/developerworks/library/j-ft10/index.html
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#the-goto-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#the-goto-statement
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/language-specification/statements#the-goto-statement

[85] B. Scott. (Jul. 2011). Does anyone still use [goto] in c# and if so why? En-
glish, [Online]. Available: https://stackoverflow.com/questions/
6545720/does-anyone-still-use-goto-in-c-sharp-and-
if-so-why (visited on May 7, 2019).

[86] V. Guana, E. Stroulia, and V. Nguyen, “Building a game engine: A tale
of modern model-driven engineering”, in Games and Software Engineer-
ing (GAS), 2015 IEEE/ACM 4th International Workshop on, IEEE, 2015,
pp. 15–21.

[87] R. Nystrom, Game programming patterns. Genever Benning, 2014.
[88] Unity Technologies. (Apr. 2019). Variables and the inspector. English, [On-

line]. Available: https://docs.unity3d.com/Manual/VariablesAndTheInspector.
html (visited on May 7, 2019).

[89] tnetennba. (Aug. 2011). How do i find which objects are referencing an-
other? English, [Online]. Available: https://answers.unity.com/
questions/155746/how-do-i-find-which-objects-are-
referencing-anothe.html (visited on May 7, 2019).

[90] L. Mikhajlov and E. Sekerinski, “A study of the fragile base class problem”,
in European Conference on Object-Oriented Programming, Springer, 1998,
pp. 355–382.

[91] Unreal Engine. (Aug. 2015). Components. English, [Online]. Available: https:
//docs.unrealengine.com/en-us/Programming/UnrealArchitecture/
Actors/Components (visited on May 21, 2019).

[92] A. Singla. (Jul. 2016). Understanding interfaces via loose coupling and tight
coupling. English, [Online]. Available: https://www.c-sharpcorner.
com/blogs/understanding-interfaces-via-loose-coupling-
and-tight-coupling (visited on May 6, 2019).

[93] C. Borley. (Sep. 2018). C# interactive walkthrough. English, [Online]. Avail-
able: https : / / github . com / dotnet / roslyn / wiki / C % 23 -
Interactive-Walkthrough (visited on May 6, 2019).

[94] Microsoft Docs. (May 2016). Interactive programming with f#. English,
[Online]. Available: https://docs.microsoft.com/en-us/dotnet/
fsharp / tutorials / fsharp - interactive/ (visited on May 6,
2019).

[95] M. Docs. (May 2016). Xml documentation. English, [Online]. Available:
https://docs.microsoft.com/en-us/dotnet/fsharp/language-
reference/xml-documentation (visited on May 3, 2019).

[96] S. McLeod. (2013). What is validity? English, [Online]. Available: https:
//www.simplypsychology.org/validity.html (visited on Jan. 4,
2019).

[97] R. A. Virzi, “Refining the test phase of usability evaluation: How many
subjects is enough?”, Human factors, vol. 34, no. 4, pp. 457–468, 1992.

108

https://stackoverflow.com/questions/6545720/does-anyone-still-use-goto-in-c-sharp-and-if-so-why
https://stackoverflow.com/questions/6545720/does-anyone-still-use-goto-in-c-sharp-and-if-so-why
https://stackoverflow.com/questions/6545720/does-anyone-still-use-goto-in-c-sharp-and-if-so-why
https://docs.unity3d.com/Manual/VariablesAndTheInspector.html
https://docs.unity3d.com/Manual/VariablesAndTheInspector.html
https://answers.unity.com/questions/155746/how-do-i-find-which-objects-are-referencing-anothe.html
https://answers.unity.com/questions/155746/how-do-i-find-which-objects-are-referencing-anothe.html
https://answers.unity.com/questions/155746/how-do-i-find-which-objects-are-referencing-anothe.html
https://docs.unrealengine.com/en-us/Programming/UnrealArchitecture/Actors/Components
https://docs.unrealengine.com/en-us/Programming/UnrealArchitecture/Actors/Components
https://docs.unrealengine.com/en-us/Programming/UnrealArchitecture/Actors/Components
https://www.c-sharpcorner.com/blogs/understanding-interfaces-via-loose-coupling-and-tight-coupling
https://www.c-sharpcorner.com/blogs/understanding-interfaces-via-loose-coupling-and-tight-coupling
https://www.c-sharpcorner.com/blogs/understanding-interfaces-via-loose-coupling-and-tight-coupling
https://github.com/dotnet/roslyn/wiki/C%23-Interactive-Walkthrough
https://github.com/dotnet/roslyn/wiki/C%23-Interactive-Walkthrough
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/fsharp-interactive/
https://docs.microsoft.com/en-us/dotnet/fsharp/tutorials/fsharp-interactive/
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/xml-documentation
https://docs.microsoft.com/en-us/dotnet/fsharp/language-reference/xml-documentation
https://www.simplypsychology.org/validity.html
https://www.simplypsychology.org/validity.html

[98] W. Hwang and G. Salvendy, “Number of people required for usability evalu-
ation: The 10±2 rule”, Communications of the ACM, vol. 53, no. 5, pp. 130–
133, 2010.

[99] Microsoft Docs. (Dec. 2018). Unchecked keyword - c# reference. English, In-
quisitir, [Online]. Available: https://docs.microsoft.com/en-us/
dotnet/csharp/language-reference/keywords/unchecked
(visited on Feb. 26, 2019).

[100] Mankarse. (Aug. 2018). How do i explicitly use unchecked arithmetic op-
erators in f#. English, [Online]. Available: https://stackoverflow.
com/questions/51672820/how-do-i-explicitly-use-unchecked-
arithmetic-operators-in-f (visited on May 15, 2019).

[101] Unity Technologies. (May 2018). Optimizing garbage collection in unity
games. English, [Online]. Available: https://unity3d.com/learn/
tutorials/topics/performance-optimization/optimizing-
garbage-collection-unity-games (visited on Apr. 2, 2019).

[102] ——, (Dec. 2018). Optimizing garbage collection in unity games. English,
[Online]. Available: https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-
1.html (visited on Apr. 2, 2019).

[103] H.-J. Boehm and M. Spertus, “Transparent programmer-directed garbage
collection for c+”,URL: http://www.open-std.org/jtc1/sc22/wg21/docs/papers,
no. 2310, 2007.

[104] P. Sestoft, Programming language concepts. Springer, 2017.
[105] M. Docs. (Aug. 2018). Fundamentals of garbage collection. English, [On-

line]. Available: https://docs.microsoft.com/en-us/dotnet/
standard/garbage-collection/fundamentals (visited on Apr. 2,
2019).

[106] Mono Project. (Feb. 2019). Generational gc. English, [Online]. Available:
https://www.mono-project.com/docs/advanced/garbage-
collector/sgen/ (visited on Apr. 8, 2019).

[107] Unity Technologies. (Mar. 2019). Mono: Mono open source ecma cli, c#
and .net implementation. English, [Online]. Available: https://github.
com/Unity-Technologies/mono (visited on Apr. 12, 2019).

[108] J. Peterson. (Jul. 2015). Il2cpp internals - garbage collector integration. En-
glish, [Online]. Available: https://blogs.unity3d.com/2015/07/
09/il2cpp- internals- garbage- collector- integration/
(visited on Apr. 8, 2019).

[109] Unity Technologies. (Mar. 2019). Roadmap - unity. English, [Online]. Avail-
able: https://unity3d.com/unity/roadmap (visited on Apr. 8,
2019).

[110] K. Nørmark, B. Thomsen, and L. L. Thomsen, “Mapping and visiting in
functional and object-oriented programming.”, Journal of Object Technol-
ogy, vol. 7, no. 7, pp. 75–107, 2008.

109

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unchecked
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/unchecked
https://stackoverflow.com/questions/51672820/how-do-i-explicitly-use-unchecked-arithmetic-operators-in-f
https://stackoverflow.com/questions/51672820/how-do-i-explicitly-use-unchecked-arithmetic-operators-in-f
https://stackoverflow.com/questions/51672820/how-do-i-explicitly-use-unchecked-arithmetic-operators-in-f
https://unity3d.com/learn/tutorials/topics/performance-optimization/optimizing-garbage-collection-unity-games
https://unity3d.com/learn/tutorials/topics/performance-optimization/optimizing-garbage-collection-unity-games
https://unity3d.com/learn/tutorials/topics/performance-optimization/optimizing-garbage-collection-unity-games
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html
https://docs.unity3d.com/Manual/BestPracticeUnderstandingPerformanceInUnity4-1.html
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals
https://www.mono-project.com/docs/advanced/garbage-collector/sgen/
https://www.mono-project.com/docs/advanced/garbage-collector/sgen/
https://github.com/Unity-Technologies/mono
https://github.com/Unity-Technologies/mono
https://blogs.unity3d.com/2015/07/09/il2cpp-internals-garbage-collector-integration/
https://blogs.unity3d.com/2015/07/09/il2cpp-internals-garbage-collector-integration/
https://unity3d.com/unity/roadmap

[111] Unity Technologies. (Jul. 2013). Unity feedback - f# support. English, [On-
line]. Available: https://web.archive.org/web/20180408181140/
https://feedback.unity3d.com/suggestions/f-support
(visited on Apr. 2, 2019).

[112] V. Simonov. (Dec. 2015). 10000 update() calls. English, [Online]. Avail-
able: https://blogs.unity3d.com/2015/12/23/1k-update-
calls/ (visited on Apr. 8, 2019).

[113] K. Hinnum. (May 2013). Intel core i7 4702hq notebook processor. English,
[Online]. Available: https://www.notebookcheck.net/Intel-
Core-i7-4702HQ-Notebook-Processor.93265.0.html (visited
on May 20, 2019).

[114] L. A. Meyerovich and A. S. Rabkin, “Empirical analysis of programming
language adoption”, in ACM SIGPLAN Notices, ACM, vol. 48, 2013, pp. 1–
18.

[115] Epic Games. (2019). Nativizing blueprints. English, [Online]. Available:
https://docs.unrealengine.com/en-US/Engine/Blueprints/
TechnicalGuide/NativizingBlueprints (visited on Jan. 8, 2019).

[116] G. Maggiore, A. Spanò, R. Orsini, M. Bugliesi, M. Abbadi, and E. Steffin-
longo, “A formal specification for casanova, a language for computer games.”,
in EICS, 2012, pp. 287–292.

[117] S. Hanenberg, “An experiment about static and dynamic type systems:
Doubts about the positive impact of static type systems on development
time”, in ACM Sigplan Notices, ACM, vol. 45, 2010, pp. 22–35.

110

https://web.archive.org/web/20180408181140/https://feedback.unity3d.com/suggestions/f-support
https://web.archive.org/web/20180408181140/https://feedback.unity3d.com/suggestions/f-support
https://blogs.unity3d.com/2015/12/23/1k-update-calls/
https://blogs.unity3d.com/2015/12/23/1k-update-calls/
https://www.notebookcheck.net/Intel-Core-i7-4702HQ-Notebook-Processor.93265.0.html
https://www.notebookcheck.net/Intel-Core-i7-4702HQ-Notebook-Processor.93265.0.html
https://docs.unrealengine.com/en-US/Engine/Blueprints/TechnicalGuide/NativizingBlueprints
https://docs.unrealengine.com/en-US/Engine/Blueprints/TechnicalGuide/NativizingBlueprints

List of Figures

1 Made using icons by Freepik and Nikita Golubev from www.flaticon.com A

2 Parallelism profiles for evaluation strategies, graphs taken from [26]. 7

3 Binary accumulation benchmark results in F# (lower is better). . . 59

4 Binary summation benchmark results in F# (lower is better). . . . 59

5 Binary Accumulation in F# and C# using the sequential solutions
(lower is better). 61

6 Binary Summation in F# and C# using the sequential solutions
(lower is better). 61

7 Binary Accumulation in F# and C# using Task parallelisation
(lower is better). 62

8 Binary Summation in F# and C# using Task parallelisation (lower
is better). 63

9 Minimum concurrent workload with data dependency benchmark
results (lower is better). 65

10 Minimum concurrent workload without data dependency bench-
mark results (lower is better). 66

11 Minimum concurrent workload with data dependency on N-ary tree
benchmark results (lower is better). 66

12 Minimum concurrent workload without data dependency on N-ary
tree benchmark results (lower is better). 67

13 Matrix summation benchmark results in F#. 69

14 Matrix summation benchmark results in C#. 69

15 Matrix summation benchmark results in F#, here plotted as a line
and without logarithmic y-axis. 70

16 Matrix summation in C# compared to F#. 71

111

https://www.freepik.com/
https://www.flaticon.com/authors/nikita-golubev
https://www.flaticon.com/

17 Average FPS in Unit Management benchmark using the Mono run-
time (higher is better). 78

18 Average FPS of the two different runtimes in the Unit Management
benchmark (higher is better). 79

19 FPS for each frame in FRP and C# Inverse using the Mono runtime
(higher is better). 80

20 Average FPS over 50 frames in C# using the two different Unity
GCs (higher is better). 81

21 Average FPS over 50 frames in F# using the two different Unity
GCs (higher is better). 81

112

List of Tables

1 Categories and their associated tasks. 36

2 Participants and their assigned tasks in F# and C#. 39

3 Participants self-evaluation scores. 40

4 User comprehension of the FRP features. 41

5 Attention investment findings. 41

6 Cognitive dimensions findings (results from participant 5 has been
omitted). 42

7 System specifications of the test machine. 58

8 Iterations of the busy-wait loop before the sequantial solution be-
comes the fastest. 67

9 Average framerate when simulating the given number of units in
Unity’s Mono runtime. 78

10 Average framerate in Unity’s two runtimes measured with 1500 units
in the scene. 79

11 Running time in ns in Binary Tree Accumulation benchmark for F#.119

12 Running time in ns in Binary Tree Summation benchmark for F#. . 120

13 Running time in ns in Binary Tree Accumulation benchmark for C#.120

14 Running time in ns in Binary Tree Summation benchmark for C#. . 121

15 Results from binary tree summation benchmark with work bias, all
measures in ns. Models data dependency between subtrees and delay.121

16 Results from binary tree summation benchmark with work bias, all
measures in ns. Models no data dependency between subtrees and
delay. 122

113

List of Listings

1 Talent tree data structure implementations (F# on top, C# below). 22
2 Talent walker implementations (F# on top, C# below). 23
3 An example of type incompatibility in F#. 10s is an int16 and 2

is an int. 24
4 Conversion from F# List to C# List. 24
5 Difference between reported and user-defined function signatures in

F#. 25
6 Summing the attribute bonuses of a character’s armour in C#. . . . 26
7 Summing the attribute bonuses of a character’s armour in F#. . . . 26
8 Examples of functions with and without tupled parameters and it’s

influence on their applications as higher-order. 28
9 Hard mental operations illustrated using boolean expressions in C#

and F#. 28
10 Hidden dependencies in function/method calls in C# and F#. . . . 30
11 Different kinds of data structures defined using the type-keyword

in F#. 33
12 Implementation of the magnetism task in F#. The getCenter

and lookAt functions are excluded for brevity. 37
13 Problem experienced with types in F#. The Vector3 constructor

accepts floats and are invoked with int-parameters. 43
14 Closure misunderstanding. The user attempts to catch center in

the closure by piping it into the map-function. 43
15 Incorrect indentation of HandleMoveForward. A problem is re-

ported when code is added after the function declaration. 44
16 Incorrect order of function declarations. let declarations must

come before members. 45
17 Assignment Comparison in F# (left) and C# (right). 46
18 Participant function with type annotations on parameters, but not

on return type. 46
19 Lambda Expression Syntax, C# on the left and F# on the right. . 47
20 Transforming from sequential to concurrent list operations in F#. . 48
21 Example of viscous C# implementation of the Unit Management

Test. 49
22 TransferState-method, which is part of the viscous Unit Manage-

ment implementation from Listing 21. 50
23 RemoveFromList-method, which is part of the viscous Unit Man-

agement implementation from Listing 21. 50
24 Lenient evaluation mapping using F# Async Workflows. 56

114

25 Implementation of the two different data dependency strategies with
an N-ary tree. The strategy may be selected by either defining or
undefining the DELAY_DEPENDS_ON_LR preprocessor flag. 64

26 Implementation of the DoFakeWork method, which is used in List-
ing 25. 65

27 Common performance bottleneck in Unity [102]. mesh.vertices
should be cached. Example is taken from [102]. 73

28 Possible solution for the Unit Management test cases. 77
29 Implementation of a job that moves bullets forward in Unity. SpawnBullet

and Update listed in Listing 30. 116
30 Spawning bullets and updating when using Unity’s C# Job System,

part of Listing 29. 117
31 Implementation of an ECS that moves bullets forward in Unity. . . 118
32 Armour Graph test case implemented in C#, Part 1. 127
33 Armour Graph test case implemented in C#, Part 2. 128
34 Armour Graph test case implemented F#, Part 1. 129
35 Armour Graph test case implemented in F#, Part 2. 130
36 A less viscous implementation of the unit management test case. . . 131

115

A | Concurrency in Unity

1 public class BulletJobSystem : MonoBehaviour {
2 //This array holds all bullets that need to be moved
3 private TransformAccessArray _transforms;
4 //This job handle may be used to synchronise with

previously scheduled move jobs↪→

5 private JobHandle _bulletMoveHandle;
6 public GameObject BulletPrefab;
7

8 //This struct implements the actual job.
9 public struct MoveBulletsJob : IJobParallelForTransform {

10 public float _moveSpeed;
11 public float _deltaTime;
12

13 //In the Execute-method we define how we want to apply
an update to a single bullet.↪→

14 public void Execute(int index, TransformAccess
transform) {↪→

15 transform.position += _moveSpeed * _deltaTime *
(transform.rotation * new Vector3(0,0,1));↪→

16 }
17 }
18

19 void Start() {
20 //Create an array with 0 elements and unlimited

capacity↪→

21 _transforms = new TransformAccessArray(0, -1);
22 }
23 }

Listing 29: Implementation of a job that moves bullets forward in Unity. SpawnBullet and
Update listed in Listing 30.

116

1 public void SpawnBullet(Transform shooter) {
2 //Instantiate the bullet as usual in Unity
3 var bullet = Instantiate(BulletPrefab);
4 bullet.transform.position = shooter.position;
5 bullet.transform.forward = shooter.forward;
6

7 //Synchronise with the job and add the new bullet to the
_transforms array.↪→

8 _bulletMoveHandle.Complete();
9 _transforms.capacity++;

10 _transforms.Add(bullet.transform);
11 }
12

13 void Update() {
14 //Complete the job, i.e. only apply one update at a time
15 _bulletMoveHandle.Complete();
16

17 //And schedule a new bullet update
18 var bulletMoveJob = new MoveBulletsJob (5f, Time.deltaTime);
19 _bulletMoveHandle = bulletMoveJob.Schedule(_transform);
20 JobHandle.ScheduleBatchedJobs();
21 }

Listing 30: Spawning bullets and updating when using Unity’s C# Job System, part of Listing
29.

117

1 //MoveForward component. Defines data that is needed to move
forward↪→

2 struct MoveForward {
3 public float Speed;
4 }
5

6 //C# Job system that moves forward in parallel
7 public class MoveForwardSystem : JobComponentSystem {
8 //The generic types of the interface implements the filter
9 struct MoveForwardJob : IJobForEach<Translation, Rotation,

MoveForward> {↪→

10 private readonly float _deltaTime;
11

12 //Move the entity forward. We do not have access to
"standard" Unity methods, so we use the dedicated
math-library

↪→

↪→

13 public void Execute(ref Translation trans, [ReadOnly]ref
Rotation rotation, [ReadOnly]ref MoveForward
moveForward) {

↪→

↪→

14 var forward = math.forward(rotation);
15 var step = math.mul(moveForward.Speed, _deltaTime);
16 var moveVec = math.mul(forward, new float3(step));
17 trans.Value += moveVec;
18 }
19 }
20 }
21

22 //On each update schedule the movement
23 protected void JobHandle OnUpdate(JobHandle inputDeps) {
24 var job = new MoveForwardJob{_deltaTime = Time.deltaTime};
25 return job.Schedule(this, inputDeps);
26 }

Listing 31: Implementation of an ECS that moves bullets forward in Unity.

118

B | Benchmark Data

B.1 Binary Tree Benchmarks - F#

Problem Size
(nodes)

Sequential Async Workflows Lenient

1 5726.39 0.00 10 060.09
4 2934.12 304 391.32 7672.24
8 2002.27 174 295.21 9167.75
16 1667.49 160 006.82 11 047.56
32 1509.51 15 158 107.00 12 837.72
64 1453.71 39 083 439.31 15 403.18
128 1547.82 76 112 965.72 21 190.94
256 1866.72 113 039 254.44 67 846.72
512 2538.33 0.00 137 755.58
1024 19 424.02 0.00 200 246.98
2048 19 496.68 0.00 344 141.83
4096 21 684.81 0.00 574 822.19
8192 26 659.38 0.00 1 437 555.04
16384 36 769.07 0.00 3 359 999.51
32768 56 058.70 0.00 7 327 466.76
65536 93 581.38 0.00 14 832 354.85

Table 11: Running time in ns in Binary Tree Accumulation benchmark for F#.

119

Problem Size
(nodes)

Sequential Async Workflows Lenient

1 3973.07 0.00 10 140.72
4 2019.53 150 249.33 13 163.97
8 1375.65 89 144.24 12 650.41
16 1066.52 201 812.51 11 486.46
32 903.28 158 448.38 11 603.26
64 831.55 136 880.42 12 814.82
128 867.02 127 539.91 16 802.54
256 984.22 134 530.20 22 587.04
512 1288.59 0.00 32 486.31
1024 1856.41 0.00 48 883.27
2048 2874.54 0.00 78 875.67
4096 4893.77 0.00 133 471.83
8192 8954.68 0.00 235 329.22
16384 15 959.52 0.00 430 012.89
32768 30 024.27 0.00 800 875.09
65536 70 139.41 0.00 1 504 625.89

Table 12: Running time in ns in Binary Tree Summation benchmark for F#.

B.2 Binary Tree Benchmarks - C#

Problem Size
(nodes)

Sequential Fork Join Lenient

1 9857.23 36 629.28 66 965.76
4 4994.40 43 676.94 67 174.41
8 3387.22 47 271.08 48 758.94
16 2596.80 38 250.07 43 577.53
32 2158.45 35 319.98 45 700.71
64 1901.25 37 010.60 55 606.06
128 1790.22 40 612.43 73 102.69
256 1832.47 49 199.53 115 121.84
512 2077.46 65 980.95 197 065.25
1024 2673.38 96 712.47 372 377.09
2048 3841.37 154 412.53 829 143.96
4096 6208.19 264 385.89 2 227 778.63
8192 14 926.54 467 222.64 3 921 581.87
16384 23 213.30 843 050.00 6 591 468.74
32768 36 584.34 1 547 022.41 14 741 916.07
65536 68 863.90 2 918 545.61 32 985 892.27

Table 13: Running time in ns in Binary Tree Accumulation benchmark for C#.

120

Problem Size
(nodes)

Sequential Fork Join Lenient

1 2257.68 19 163.44 23 054.61
4 1159.63 19 908.28 12 203.96
8 798.08 13 487.85 8374.54
16 628.82 10 467.70 6693.74
32 544.37 8973.08 6038.03
64 516.16 8581.24 6234.30
128 546.74 10 140.04 7547.88
256 655.92 15 984.02 10 434.79
512 896.26 20 904.28 16 115.95
1024 1369.66 29 559.09 26 874.44
2048 2291.90 46 303.59 47 002.19
4096 4018.59 77 999.85 84 505.84
8192 7482.40 139 589.84 156 087.74
16384 13 593.56 256 724.40 291 697.92
32768 25 462.02 475 981.33 548 702.11
65536 47 126.04 895 730.04 1 036 433.09

Table 14: Running time in ns in Binary Tree Summation benchmark for C#.

B.3 Critical Work Data

Work Bias (iterations) Sequential Fork Join Lenient
16777216 662923924 189587662 184895505
8388608 330032131 89513135 90196290
4194304 162695008 44769190 45062797
2097152 81608808 22795847 22560273
1048576 42350887 11337276 11355387
524288 21133781 6319716 6158697
262144 10286965 3165200 3134721
131072 5363634 1725501 1876498
65536 2762979 1334927 877759
32768 1565743 666707 518750
16384 702927 278365 234715
8192 466160 201201 156440
4096 203296 146571 106618
2048 112218 99716 105708
1024 60694 94271 558531

Table 15: Results from binary tree summation benchmark with work bias, all measures in ns.
Models data dependency between subtrees and delay.

121

Work Bias (iterations) Sequential Fork Join Lenient
16777216 676290609 196231564 183374685
8388608 340133573 88402011 90044598
4194304 166155127 44803618 44810012
2097152 83439476 22945558 22630346
1048576 42600364 12011160 11702572
524288 21881030 6159118 5769415
262144 10171517 3691751 2985699
131072 5494585 1792840 1708981
65536 2869688 926506 842725
32768 1399074 478496 428797
16384 703882 307624 211632
8192 358160 172348 141992
4096 242239 138516 544065

Table 16: Results from binary tree summation benchmark with work bias, all measures in ns.
Models no data dependency between subtrees and delay.

122

C | Interview Guide

The interview structure is based on the scenario-based interview technique pre-
sented in [64]. The scenario in this case is the task being solved by the test partic-
ipant. The interview is conducted during the test itself. The questions asked are
open and may be used to lead the participant towards the relevant problem, but
not to lead them to answers. The questions should be designed to clarify that the
prototype is being tested and not the participant themselves. With this in mind
the following questions are posed.

1. Is it clear how FRP-reactions work?

2. Do you consider FRP advantageous? Why?

3. Would you use this tool in a production environment?

(a) What if FRP had a performance impact?
(b) What if FRP had a performance gain?

All the posed questions are open and participants were encouraged to engage in
dialogue as a response. Their comments were recorded and at a later date, codified
and analysed. The theoretic justification for each question is summarised in the
remainder of this chapter.

Question 1 attempts to query the participant’s understanding of FRP, without
placing the focus on the participant. This can mitigate the pressure experienced
by the test participants and can therefore lead to clearer results. Determining how
well the FRP paradigm is understood is directly related to answering research
question 1 and 3. Furthermore the participants may provide insight into how the
FRP system can be made easier to understand.

Question 2 ascertains whether the participants consider the paradigm shift worth-
while. The participants will be exploring both new programming and game devel-
opment paradigms. Therefore their perception of benefits affords insight into the
usability of the paradigm. This question attempts to answer research question 2.

The third is an inquiry into research question 3. The participant is directly asked
about, in their opinion, the viability of such an approach in a production environ-
ment. Their response is followed up by either question a or b. If the participant
believes that the system can be employed in a production environment, then ques-
tion a is asked, otherwise they are asked question b.

123

D | Usability Quote Transcriptions

D.1 Participant 1: F# Debrief

Monitor: What did you think, especially about the first part, of the test?
Participant: Yea, I think it was too bad that I wasn’t better at understanding it.

Monitor: Don’t think about it like that.
Participant: Because I can see the idea behind it. The idea behind instead of running

Update, which was my first approach anyway. But instead of running Update you
just setup event handlers and handle them. If I had a bit better understanding, I
could have done it smarter than handle W, handle S, handle A and such. Instead
use GetAxis if I had figured that out. In that way it is pretty smart and yields
more readable code compared to doing it all in Update, which is what I did here.

Monitor: So you felt like it forced you to split code into smaller bites? Is that cor-
rect?

Participant: Yes at least in the case with player controllers, you need to input parse
all the time. There it makes much more sense, because generally when we write
software we basically never use Update. Because everything we make is usually
event-based. And it gives much more readable code. We are many that write the
same, instead of picking up the phone and asking if anyone is there all the time,
it is better to have an event that says: the phone is ringing. I like that a lot, I am
a big fan and I think you’ll find many... However syntax-wise I was quite lost.

Monitor: Ok, is that something you could get used to or do think it is terrible to
read?

Participant: It would take a long time. I prefer, which C# doesn’t need to be, very
strictly typed, on everything. I can tell immediately what [type] values are but
there are a lot of languages that don’t adhere to that. That I don’t need to specify
it is a float or whatever.

Monitor: So types are what would be the hardest to get used to?
Participant: Yea, I mean it is only a question of time before you get used to not making

curly brackets and semicolons. If that makes more or less readable is difficult to
say, because if you are used to the other thing it is probably more readable.

Monitor: Would you use this kind of framework for a real project? If you didn’t
have these issues with syntax and event setup.

Participant: That is a good question. No I don’t think so.
Monitor: How come?

Participant: I think I am too used to C#, especially. I think in the context of what
I would be assigned to do. If someone assigned this to me I would do it, but

124

typically it is the more popular languages you are assigned. Some kind of Java
derivative, Python, C languages, C++ or C#- we never use C today.

Monitor: What if it [FRP] offered implicit parallelism, would you use it then?
Participant: No I don’t think so, not unless I was assigned to use it. If my boss told

me to do it, then I would use it - I wouldn’t refuse. But I wouldn’t use it in my
spare time and in my own projects. C# is too well documented and familiar. It
would take a while to get into F# and the functions I am familiar with from C#,
which also probably exist in F#. I like this event approach, that you just setup,
in Start or Awake, just setup what you want. And then just get and deal with the
code when you need it instead of checking every time. This could also be setup in
C#.

D.2 Participant 4: F# Debrief

Monitor: What do you think of the experiment, especially the F# part?
Participant: It was very difficult to look at a new language again after such a long time.

And I have worked with C# and Unity almost everyday and I am as familiar with
C# as is needed in Unity, even though there are still things I want to learn like
lambda expressions and such, but haven’t needed. Therefore I got totally confused
by F# because it is completely different from what I have done before. Therefore
I can’t tell what it would be like to learn F# first, whether I would find it easier,
because I remember when learning C++ and C# with that bracket there and such.
It was actually the same thing I was struggling with here, with this F, is called F
or F#?

Monitor: F#
Participant: Alright, so it isn’t anything I would ever use, but that is because I have

used this since 2011. It is so integrated in me that I just do that, that, and that
and I am happy that I am at the point where I don’t need to think about syntax
errors, because it is usually logic errors I get. In that regard I am too lazy to learn
a new language, but that is also because I use this outside of here, in my spare
time, where I don’t want to spend a lot of time learning a new language...

Monitor: What about this way of thinking about the game as events?
Participant: I like the way of thinking, because I can see where it is going, where you

can avoid a lot of unit testing or not. I don’t know what’s it called... I mean
like older games where errors were unacceptable, but today games just have these
kinds of errors because you can just patch it. Whoops, deadlines! Patch, patch,
patch, you couldn’t do that before. This a language where you really need to
know what needs to be in and that variable mustn’t change otherwise things fuck
up, possibly. It is just there, the package, it works and you can of course make
mutable, but the idea is to try to avoid it, right? The idea of events, I like when
things are event based, so you avoid having 3000 update loops spinning around,
checking whether or not it is supposed to run, which it isn’t 69 times out of a 100

125

times. In that way I can see that it makes sense. It requires, maybe, that you
design properly and think this is what I need, of course you can correct the code,
but yes that is what I think.

Monitor: Do we have any other questions? Yes, what if F# offered a performance
gain, such as implicit parallelism?

Participant: I need that explained.
Monitor: It means that the code you have written now could be run on multiple

cores without additional changes.
Participant: As is, I can’t see the advantage of it because I already use Unity which

manages everything. So there isn’t as such any thing [requirement] there. I look
at as it works there, there and there, but with to my knowledge I can’t see an
advantage

D.3 Participant 6: F# Debrief

Monitor: Well, what do you think of, especially the F# way, of programming games?
Participant: I really like functional, but now that I tried programming for games I am

not sure. I have talked about wanting to try using functional programming for
games. It might provide something and I will proberbly need more time with it,
to actually do it. Because this is the first time I’m doing it [F#] with Unity. It
would help a lot if I had longer time work with a project.
..

Monitor: What advantages and disadvantages can you see with using F#?
Participant: Some things are just easier in functional. The task was a tree problem,

but I actually think trees are more intuitive due to recursion in functional. Where
as you need to make too many hacks in imperative than in functional, where you
can make a nice tree traversal. But things like instantiation of objects, when we
need 4 players at this position, that is just easier in C#. List handling is also good
in functional.

126

E | Code Examples

1 using System;
2 using System.Collections.Generic;
3 using UnityEngine;
4

5 public class ArmourBehaviour : MonoBehaviour
6 {
7 // Start is called before the first frame update
8 void Start()
9 {

10 var Armour = Item.Exercise1();
11 var GroupedArmour = Item.Exercise2();
12

13 Solution1(Armour);
14 Solution2(GroupedArmour);
15 }
16

17 public void Solution1(IEnumerable<Item> Armour)
18 {
19 int totalAgi = 0;
20 int totalStr = 0;
21 int totalInt = 0;
22

23 foreach (var item in Armour)
24 {
25 totalAgi += item.Agility;
26 totalStr += item.Strength;
27 totalInt += item.Intellect;
28 }
29 Debug.Log($"Exercise 1\n\t" +
30 $"Agility: {totalAgi}\n\t" +
31 $"Strength: {totalStr}\n\t" +
32 $"Intellect: {totalInt}");
33 }
34 }

Listing 32: Armour Graph test case implemented in C#, Part 1.

127

35 public void Solution2(List<Group> GroupedArmour)
36 {
37 GroupedArmour = Item.Exercise2();
38

39 var groupTotals = new List<Tuple<ItemGroup, int, int, int>>();
40

41 foreach (var group in GroupedArmour)
42 {
43 int totalAgi = 0;
44 int totalStr = 0;
45 int totalInt = 0;
46

47 float agiMod = 0.0f;
48 float strMod = 0.0f;
49 float intMod = 0.0f;
50

51 foreach (var item in group.Items)
52 {
53 totalAgi += item.Agility;
54 totalStr += item.Strength;
55 totalInt += item.Intellect;
56

57 agiMod += item.AgilityMod;
58 strMod += item.StrengthMod;
59 intMod += item.IntellectMod;
60 }
61

62 totalAgi = (int) (totalAgi * agiMod);
63 totalStr = (int) (totalStr * strMod);
64 totalInt = (int) (totalInt * intMod);
65

66 groupTotals.Add(new Tuple<ItemGroup, int, int,
int>(group.GroupName, totalAgi, totalStr,
totalInt));[firstline=35]

↪→

↪→

67 }
68

69 string res = "Exercise 2\n";
70 foreach (var tuple in groupTotals)
71 {
72 res += $"{tuple.Item1}\n\t" +
73 $"Agi: {tuple.Item2}\n\t" +
74 $"Str: {tuple.Item3}\n\t" +
75 $"Int: {tuple.Item4}\n";
76 }
77 Debug.Log(res);
78 }
79

80 // Update is called once per frame
81 void Update()
82 {
83

84 }

Listing 33: Armour Graph test case implemented in C#, Part 2.

128

1 namespace UnityFunctional
2 open UnityEngine
3 open System
4

5 type FRP_ArmourBehaviour() =
6 inherit FRPBehaviour()
7

8 let sum (triplet1:int*int*int) (triplet2:int*int*int) =
9 let (a1, b1, c1) = triplet1.Deconstruct()

10 let (a2, b2, c2) = triplet2.Deconstruct()
11 (a1+a2,b1+b2,c1+c2)
12

13 let fSum (triplet1:float32*float32*float32)
(triplet2:float32*float32*float32) =↪→

14 let (a1, b1, c1) = triplet1.Deconstruct()
15 let (a2, b2, c2) = triplet2.Deconstruct()
16 (a1+a2,b1+b2,c1+c2)
17

18 let totalStats (armour:Item[]) =
19 armour
20 |> Array.map (fun a -> (a.Agility, a.Intellect,

a.Strength))↪→

21 |> Array.reduce (fun acc elm ->
22 sum acc elm)
23

24 let scaledStats (groups:Group list) =
25 groups
26 |> List.map (fun g ->
27 List.ofSeq(g.Items)
28 |> List.map (fun i -> (i.Group,(i.AgilityMod,

i.IntellectMod,
i.StrengthMod),(i.Agility, i.Intellect,
i.Strength)))

↪→

↪→

↪→

29 |> List.reduce (fun acc elm ->
30 let (gr,aMod,aStats) = acc.Deconstruct()
31 let (gr,md,stats) = elm.Deconstruct()
32 (gr,(fSum aMod md), (sum aStats stats))))
33 |> List.map (fun i ->
34 let (grp,(agiMod,intMod,strMod),(agi,int,str)) =

i.Deconstruct()↪→

35 (grp, float32(agi) * agiMod, float32(int)*intMod,
float32(str) * strMod))↪→

Listing 34: Armour Graph test case implemented F#, Part 1.

129

36 member this.Start() =
37 let i = ItemStore.AllItems()
38 let (agi, int, str) = totalStats(i)
39 Debug.Log("Agility: " + agi.ToString())
40 Debug.Log("Intellect: " + int.ToString())
41 Debug.Log("Strength: " + str.ToString())
42

43 let g = ItemStore.GroupedItems()
44 let ss = scaledStats(g)
45

46 ss
47 |> List.iter (fun gs ->
48 let (gr, sAgi,sInt,sStr) = gs.Deconstruct()
49 Debug.Log(gr.ToString() + "\n" + String.Join("\n",

["Agility: " + sAgi.ToString(); "Intellect: " +
sInt.ToString(); "Strength: "+ sStr.ToString()])))

↪→

↪→

Listing 35: Armour Graph test case implemented in F#, Part 2.

E.1 A Less Viscous Implementation of Unit Man-
agement

130

1 class StateMachine : MonoBehaviour
2 {
3 [...] //Pre-implemented code, such as JoinState
4

5 public List<Shooter> shooterList = new List<Shooter>();
6 public List<State> stateList = new List<State>();
7

8 public void JoinState(Shooter shooter, State state)
9 {

10 shooterList.Add(shooter);
11 stateList.Add(state);
12 }
13

14 public void TransferState(Shooter shooter, State state)
15 {
16 if (shooterList.Contains(shooter))
17 {
18 stateList[shooterList.IndexOf(shooter)] = state;
19 }
20 }
21

22 private void Update()
23 {
24 for (int i = 0; i < shooterList.Count; i++)
25 {
26 switch (stateList[i])
27 {
28 case State.Attacking:
29 Attack(shooterList[i]);
30 break;
31 case State.Fleeing:
32 Flee(shooterList[i]);
33 break;
34 case State.Moving:
35 default:
36 Move(shooterList[i]);
37 break;
38 }
39 }
40 }
41

42 [...] //methods for each unit state
43 }

Listing 36: A less viscous implementation of the unit management test case.

131

	Front page
	Title page
	Table of contents
	Preface
	1 Introduction
	1.1 Problem Statement
	1.2 Project Scope

	2 Related Work
	2.1 Implicit Parallelisation
	2.2 Effects Typing
	2.3 Functional Programming in Games
	2.4 Benchmarks

	3 Research
	3.1 Functional Reactive Programming
	3.2 Usability Evaluation of Programming Languages
	3.3 Concurrency in Unity

	4 Usability Evaluation
	4.1 Cognitive Dimensions of F# and C#
	4.2 Usability Evaluation

	5 Concurrency in C#, F# and Unity
	5.1 Benchmarks
	5.2 Parallel Overhead & Performance
	5.3 Performance Benchmarking the FRP System
	5.4 Threats to Validity

	6 Discussion
	6.1 F# Adoption Potential
	6.2 Methodology
	6.3 Technology Choices
	6.4 Performance Difference of F# and C#

	7 Conclusion
	7.1 Project Summary
	7.2 Research Questions
	7.3 Closing Remarks

	8 Future Work
	8.1 Lenient Evaluation in F#
	8.2 Improving the FRP System
	8.3 Longer Term Usability Evaluation
	8.4 Reactive Programming in C#

	Bibliography
	List of Figures
	List of Tables
	List of Listings
	A Concurrency in Unity
	B Benchmark Data
	B.1 Binary Tree Benchmarks - F#
	B.2 Binary Tree Benchmarks - C#
	B.3 Critical Work Data

	C Interview Guide
	D Usability Quote Transcriptions
	D.1 Participant 1: F# Debrief
	D.2 Participant 4: F# Debrief
	D.3 Participant 6: F# Debrief

	E Code Examples
	E.1 A Less Viscous Implementation of Unit Management

