

ANALYSIS AND IMPLEMENTATION
OF THE GAME ARIMAA

Christ-Jan Cox

Master Thesis MICC-IKAT 06-05

THESIS SUBMITTED IN PARTIAL FULFILMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE OF KNOWLEDGE ENGINEERING
IN THE FACULTY OF GENERAL SCIENCES

OF THE UNIVERSITEIT MAASTRICHT

Thesis committee:

prof. dr. H.J. van den Herik
dr. ir. J.W.H.M. Uiterwijk

dr. ir. P.H.M. Spronck
dr. ir. H.H.L.M. Donkers

Universiteit Maastricht
Maastricht ICT Competence Centre

Institute for Knowledge and Agent Technology
Maastricht, The Netherlands

March 2006

 II

 III

Preface

The title of my M.Sc. thesis is Analysis and Implementation of the Game Arimaa. The
research was performed at the research institute IKAT (Institute for Knowledge and Agent
Technology). The subject of research is the implementation of AI techniques for the rising
game Arimaa, a two-player zero-sum board game with perfect information. Arimaa is a
challenging game, too complex to be solved with present means. It was developed with the
aim of creating a game in which humans can excel, but which is too difficult for computers.
 I wish to thank various people for helping me to bring this thesis to a good end and to
support me during the actual research. First of all, I want to thank my supervisors, Prof. dr.
H.J. van den Herik for reading my thesis and commenting on its readability, and my daily
advisor dr. ir. J.W.H.M. Uiterwijk, without whom this thesis would not have been reached the
current level and the “accompanying” depth. The other committee members are also
recognised for their time and effort in reading this thesis.

Finally, I would like to thank Omar Syed (inventor of the game Arimaa) for supplying
the basic interface for playing Arimaa. Moreover, I would like to express my gratitude
towards David Fotland, who provided me with relevant information on the game and how to
include positions. Also, I want to thank my former student fellow Mark Winands for sharing
his knowledge about the Java language. All in all, I am pleased that the research has been
completed and the thesis has been written. I look back at a pleasant time with IKAT and
forward to a future as Knowledge Engineer.

Christ-Jan Cox

Hoensbroek, March 2006

 IV

 V

Abstract

Computers that play board games are still intriguing phenomena. For many years they
are thoroughly studied with the aim to defeat the strongest humans. Of course, the most
illustrious example of all in the game of Chess is where DEEP BLUE won against Kasparov in
1997. Computer-Chess research started in 1950 when Claude E. Shannon wrote the first
article on computer Chess.
 This thesis describes the problem domain and the intricacies of the game of Arimaa.
Arimaa is a two-player zero-sum board game with perfect information. In this thesis Arimaa
will be analysed and implemented. The name of the program is COXA. We begin to compute
the complexities of the game Arimaa: (1) the state-space complexity of Arimaa is)10(43O
and (2) the game-tree complexity is)10(300O .

Then, an alpha-beta search with iterative deepening and a little knowledge of Arimaa
is performed. This algorithm is refined with transposition tables and heuristics. Finally, some
experiments are performed to fine-tune the basic and extended evaluation functions.
 Material balance, piece-square tables, and mobility are important components in basic
evaluation concerning Arimaa. The large weight of the elephant piece-square table is striking,
indicating that it is important to keep the elephant in the centre. For the extended evaluation
the rabbit evaluation is by far the most important one, with a weight of 50 for free files.
 Principal variation search, transposition tables, and the killer-move heuristic are
enhancements that have positive influence on the standard alpha beta with iterative-
deepening.

For future research we recommend a further fine-tuning of the weights, the inclusion
of more elaborate knowledge in the evaluation function, and investigating the usefulness of
more search enhancements.

 VI

 VII

Contents
PREFACE..III
ABSTRACT...V
CONTENTS..VII
LIST OF FIGURES .. IX
LIST OF TABLES ..X
1 INTRODUCTION.. 1

1.1 HISTORY OF COMPUTER-GAME PLAYING.. 1
1.2 THE GAME OF ARIMAA ... 3

1.2.1 The Rules of the Game Arimaa ... 4
1.2.2 Match Rules of Arimaa ... 6
1.2.3 Notation .. 8

1.3 PROBLEM STATEMENT AND RESEARCH QUESTIONS .. 10
1.4 THESIS OUTLINE.. 11

2 COMPLEXITY ANALYSIS ... 13
2.1 STATE-SPACE COMPLEXITY... 13
2.2 GAME-TREE COMPLEXITY ... 17
2.3 COMPARING ARIMAA TO OTHER GAMES... 18
2.4 CHAPTER CONCLUSION ... 20

3 EVALUATION OF POSITIONS ... 21
3.1 THE BASIC EVALUATION... 21

3.1.1 Material .. 21
3.1.2 Piece-square Tables ... 22
3.1.3 Mobility... 23

3.2 THE EXTENDED EVALUATION .. 24
3.2.1 Rabbit Evaluation ... 24
3.2.2 Goal-threat Evaluator .. 24
3.2.3 Trap-control Evaluator... 25

3.3 CHAPTER CONCLUSION ... 26
4 SEARCHING THE TREE .. 27

4.1 BUILDING THE TREE.. 27
4.1.1 Alpha-beta .. 27
4.1.2 Iterative Deepening .. 28
4.1.3 Principal Variation Search... 28
4.1.4 Null-move Search ... 28

4.2 TRANSPOSITION TABLE ... 29
4.2.1 Hashing... 30
4.2.2 Use of a Transposition Table.. 30
4.2.3 Probability of Errors .. 31

4.3 MOVE ORDERING .. 32
4.3.1 Game-specific Heuristics.. 32
4.3.2 Killer-move Heuristic ... 32
4.3.3 History Heuristic .. 33

4.4 OVERALL FRAMEWORK... 33
5 TUNING THE EVALUATION FUNCTION .. 35

5.1 SETUP OF THE TUNING... 35
5.1.1 Random Factor... 35

5.2 TUNING THE BASIC EVALUATION.. 36
5.2.1 Material Weight.. 37
5.2.2 Piece-square Tables ... 38
5.2.3 Mobility... 44

 VIII

5.3 TUNING THE KNOWLEDGE EVALUATOR .. 45
5.3.1 Rabbit Evaluation ... 46
5.3.2 Goal-threat Evaluator .. 48
5.3.3 Trap-control Evaluator... 49

5.4 CHAPTER CONCLUSION ... 51
6 TESTING OF SEARCH ALGORITHM ... 53

6.1 WINDOWING TECHNIQUES .. 53
6.1.1 Principal Variation Search... 53
6.1.2 Null-move Search ... 54

6.2 TRANSPOSITION TABLE ... 54
6.2.1 Only using Exact Table Hits ... 55
6.2.2 Only using Upper and Lower Bound Pruning .. 55
6.2.3 Only using Move Ordering ... 55
6.2.4 Full use of the Table. .. 56

6.3 MOVE ORDERING .. 56
6.3.1 Killer-move Heuristic ... 57
6.3.2 History Heuristic .. 59

6.4 CHAPTER CONCLUSIONS ... 59
7 CONCLUSIONS .. 61

7.1 PROBLEM STATEMENT AND RESEARCH QUESTIONS REVISITED .. 61
7.2 FUTURE RESEARCH POSSIBILITIES .. 62

REFERENCES.. 63
APPENDIX A: EXAMPLES OF TIME CONTROL IN ARIMAA ... 65
APPENDIX B: ALL UNIQUE PATTERNS AND THEIR HITS FOR EACH n .. 67

 IX

List of Figures
Figure 1.1: The Arimaa board. ... 3
Figure 1.2: A sample position with Gold to move. .. 5
Figure 1.3: Position after Gold’s move. ... 5

Figure 2.1: Average branching factor per ply. ... 18
Figure 2.2: Estimated game complexities. ... 20

Figure 4.1: A starting position.. 29
Figure 4.2: Position after moves e2-e3, e3-f3, d2-d3, d3-d4. .. 29

Figure 5.1: Influence of the random weight on the difference of moves for each depth. 36
Figure 5.2: Winning % of the random value. ... 36
Figure 5.3: Winning % of the material value. .. 37
Figure 5.4: Winning % of the material value (zoomed in)... 37
Figure 5.5: Winning % of the rabbit piece-square table. ... 38
Figure 5.6: Winning % of the rabbit piece-square table (zoomed in). 38
Figure 5.7: Winning % of the cat piece-square table. .. 39
Figure 5.8: Winning % of the cat piece-square table (zoomed in)... 39
Figure 5.9: Winning % of the dog piece-square table.. 40
Figure 5.10: Winning % of the dog piece-square table (zoomed in). 40
Figure 5.11: Winning % of the horse piece-square table. .. 41
Figure 5.12: Winning % of the horse piece-square table (zoomed in)..................................... 41
Figure 5.13: Winning % of the camel piece-square table. ... 42
Figure 5.14: Winning % of the camel piece-square table (zoomed in). 42
Figure 5.15: Winning % of the elephant piece-square table. ... 43
Figure 5.16: Winning % of the elephant piece-square table (zoomed in). 43
Figure 5.17: Winning % of the frozen-weight value.. 44
Figure 5.18: Winning % of the frozen-weight value (zoomed in). .. 44
Figure 5.19: Winning % of the partial-mobility weight value. .. 45
Figure 5.20: Winning % of the partial-mobility weight value (zoomed in)............................. 45
Figure 5.21: Winning % of the solid-wall weight value. ... 46
Figure 5.22: Winning % of the solid-wall weight value (zoomed in)...................................... 46
Figure 5.23: Winning % of the free-file weight value. .. 47
Figure 5.24: Winning % of the free-file weight value (zoomed in). .. 47
Figure 5.25: Winning % of the goal-threat weight value. .. 48
Figure 5.26: Winning % of the goal-threat weight value (zoomed in). 48
Figure 5.27: Winning % of the trap-control weight value. .. 49
Figure 5.28: Winning % of the trap-control weight value (zoomed in). 49
Figure 5.29: Winning % of the bonus weight value... 50
Figure 5.30: Winning % of the bonus weight value (zoomed in). ... 50

 X

List of Tables
Table 2.1: An overview of results needed for the State-Space Complexity............................. 14
Table 2.2: Summation of the number of illegal positions where one gold piece is trapped. ... 15

Table 3.1: Material values. ... 21
Table 3.2: Material values for the Rabbits on the board. ... 21
Table 3.3: Rabbit piece-square table for Gold. .. 22
Table 3.4: Cat/Dog piece-square table for Gold... 22
Table 3.5: Horse/Camel/Elephant piece-square table for Gold.. 23
Table 3.6: Mobility values according to the piece strength. .. 23
Table 3.7: Free files bonus according to the Rabbit rank... 24
Table 3.8: Bonuses first and second pieces controlling a trap. .. 25

Table 5.1: Overview of the weight values of the tuned evaluation function............................ 51

Table 6.1: Principal Variation Search (all steps) test results.. 53
Table 6.2: Principal Variation Search (last step) test results.. 54
Table 6.3: Null-move search test result.. 54
Table 6.4: TT (exact) test results.. 55
Table 6.5: TT (upper / lower bound) test results.. 55
Table 6.6: TT (ordering) test results... 56
Table 6.7: TT (full) test results... 56
Table 6.8: Killer-move heuristic (record one) test results.. 57
Table 6.9: Killer-move heuristic (record two) test results.. 57
Table 6.10: Killer-move heuristic (record three) test results.. 58
Table 6.11: Killer-move heuristic (record four) test results... 58
Table 6.12: Killer-move heuristic (record five) test results. .. 58
Table 6.13: History-heuristic test results.. 59

 1

1 Introduction

Games have always been one of humans’ favourite ways to spend time, not only
because they are fun to play, but also because of their competitive element. This competitive
element is the most important impetus for people to excel in the games they play. In the past
few centuries, certain games have gained a substantial amount of status, which resulted in
even more people endeavouring to become the best in the game. Many games have evolved
from just a way to spend some free time to a way of making a reputation. For some people
games have even become their profession. This is an evolution, which will probably not stop
in the foreseeable future. One of the trends which we have seen in the last few years is that
people start to use computers to solve small game problems so that they can understand the
problems and learn how to handle them. Computers are thus being used as a tool for people to
help them in their quest for excellence.

In this chapter we will first give a chronological overview of the history of computer-
game playing in section 1.1. Next we will introduce the game of Arimaa in section 1.2. This is
largely adopted from the Arimaa official website (Syed and Syed, 1999). In section 1.3 we
give the research questions and section 1.4 provides the outline of this thesis.

1.1 History of Computer-Game Playing

One of the consequences of the foreseeable computer use is that, in the long run,
computers will be able to play a game superior to any human being. This has already
happened in a number of games, with the most illustrious example of all being Chess where
DEEP BLUE won against Kasparov in 1997 (Schaeffer and Plaat, 1997). Computer-Chess
research started in 1950 when Claude E. Shannon wrote the first article on computer Chess
(Shannon, 1950). Shannon noted the theoretical existence of a perfect solution to Chess and
the practical impossibility of finding it. He described two general strategies that were both
based on a heuristic evaluation function for guessing whether a position is in favour of one
person or the other. Modern chess programs still follow the lines laid out by Shannon. In 1951
Alan Turing described and hand-simulated a computer chess program (Turing, 1953). Its play
is best described as “aimless”; it loses to weak players.

In 1956, the first documented account of a running chess program was published,
containing experiments on a Univac Maniac I computer (11,000 operations per second) at Los
Alamos. The machine played Chess on a 6×6 chess board and a chess set without Bishops. It
took 12 minutes to search 4 moves deep. Adding the two Bishops would have taken 3 hours to
search 4 moves deep. Maniac I had a memory of 600 words, storage of 80 K, 11 KHz speed,
and had 2,400 vacuum tubes. The team that programmed Maniac was led by Stan Ulam. Its
play defeated weak players (Kister et al., 1957). Alex Bernstein at MIT (Bernstein et al.,
1958) wrote a chess program for an IBM 704 that could execute 42,000 instructions per
second and had a memory of 70 K. This was the first time that a full-fledged game of Chess
was played by a computer. It did a 4-ply search in 8 minutes and its play was like a passable
amateur.

The alpha-beta pruning algorithm for Chess was first published in 1958 by three
scientists at Carnegie-Mellon (Newell, Shaw and Simon, 1958). It is the general game-search
technique which effectively enlarges the length of move sequences one can examine in a
considerable way. In 1959 Arthur Samuel wrote his first article on experimenting with
automatic-learning techniques to improve the play of a checkers program (Samuel, 1959,
1967).

 2

In 1962 the Kotok-McCarthy MIT chess program was written. It was the first chess
program that played regular chess credibly. It was written by Alan Kotok for his B.Sc. thesis
project (Kotok, 1962), assisted by John McCarthy who at that time moved to Stanford.
Another MIT program called MACHACK by Greenblatt (1967) ran on an IBM 7090 computer,
examining 1100 positions per second. Five years later in the spring of 1967, MACHACK VI
became the first program to beat a human (1510 USCF rating), at the Massachusetts State
Championship. By the end of that year, it had played in four chess tournaments. It won 3
games, lost 12, and drew 3. In 1967 MACHACK VI was made an honorary member of the US
Chess Federation. The MACHACK program was the first widely distributed chess program,
running on many of the PDP machines. It was also the first to have an opening chess book
programmed with it.

The first Go program was written by Zobrist in 1968 (Zobrist, 1969). Its play was like
a complete beginner.

The TECHNOLOGY chess program won 10 pts out of 26 in six tournaments in 1971.
This was the first chess program written in a high-level programming language (Gillogly,
1972). It ran on a PDP-10 (1 MHz), and examined 120 positions/second.

Programmers Slate and Atkin revised their overly complicated chess program in
preparation for the Computer Chess Championships in 1973. There their program CHESS 4.0
won. On a CDC 6400 a later version (CHESS 4.5) processed from 270 to 600 positions/second
(Atkin and Slate, 1977).

The development of CRAY BLITZ started in 1975 by Robert Hyatt (Hyatt, Gower and
Nelson, 1985). For a long time it was the fastest program and from 1983-1989 the World
Computer Chess Champion. It was searching 40-50K positions/second in 1983, only a little
slower than current programs on fast Pentiums. Hyatt is still very active today in computer
Chess with his free program CRAFTY.

In 1977, BELLE was the first computer system to use custom-design chips to increase
its playing strength. It increased its search speed from 200 positions per second to 160,000
positions per second (8 half moves or ply). Over 1,700 integrated circuits were used to
construct BELLE (Thompson, 1982). The chess computer was built by Ken Thompson and Joe
Condon. The program was later used to solve endgame problems. In the same year CHESS 4.6
beat a grandmaster (Stean) at speed chess.

IAGO played Othello at world-championship level (according to then human champion
Jonathan Cerf) in 1982 but did not actually play against championship-level human
competition.

In 1988 DEEP THOUGHT, predecessor of DEEP BLUE, was created by a team of
Carnegie-Mellon University graduate students. The basic version of DEEP THOUGHT’s chess
engine contained 250 chips and two processors on a single-circuit board and was capable of
analyzing 750,000 positions per second or 10 ply ahead. That same year DEEP THOUGHT
became the first computer that defeated a Grandmaster in a tournament (Bent Larsen, who had
at one time been a contender for world champion, being defeated by Bobby Fischer in a
preliminary championship round). An experimental six-processor version of DEEP THOUGHT
in 1989, searching more than two million positions/second, played a two-game exhibition
match against Gary Kasparov, the reigning world champion, and was beaten twice (Hsu,
2004).

In Checkers the CHINOOK checkers program lost a match to the human world
champion in 1992, Marion Tinsley, 4-2 (with 33 draws). CHINOOK became world checkers
champion, in 1994, because Tinsley forfeited his match to CHINOOK due to illness (Schaeffer,
1997). Thereafter, CHINOOK has defended its world title several times successfully.

 3

DEEP THOUGHT defeated Judit Polgar, at the time the youngest Grandmaster in history
and still the strongest female player in the world (ranked in the top 20 grandmasters), in
another two-game exhibition match in 1993.

DEEP BLUE, the new IBM’s chess machine from 1996 onwards (a 32-processor
parallel computer with 256 VLSI chess engines searching 2-400M moves/second), beat
reigning world champion Gary Kasparov in the first game of a six-game match, but lost the
match. And then there was the moment on May 11, 1997, when DEEP BLUE defeated Garry
Kasparov in a six-game match held in New York. This was the first time a computer defeated
a reigning world champion in a classical chess match. DEEP BLUE had 30 IBM RS-6000 SP
processors coupled to 480 chess chips. It could evaluate 200 million moves per second
(Schaeffer and Plaat, 1997).

It was clear that computers had finally become at a par with the strongest humans in
the game of Chess. Millions of people around the world watched and wondered if computers
were really getting to be as intelligent as humans. But have computers really caught up to the
intelligence level of humans? Do they now have real intelligence (Syed and Syed, 1999)?

1.2 The Game of Arimaa

In an attempt to show that computers are not even close to matching the kind of real
intelligence used by humans in playing strategy games, Omar and Aamir Syed created a new
game called Arimaa.

Arimaa is a two-player zero-sum game with perfect information. The game can be
played using the same board and pieces provided in a standard chess set. The game is played
between two sides, Gold and Silver. To make the game easier to learn for someone who is not
familiar with Chess the chess pieces are substituted with well-known animals. The
substitution is as follows: Elephant for King, Camel for Queen, Horse for Rook, Dog for
Bishop, Cat for Knight and Rabbit for Pawn, see figure 1.1. It shows the Arimaa board with
on top the standard chess setup and at the bottom the corresponding Arimaa pieces (a possible
Arimaa setup). The 4 traps are shaded (c3, c6, f3, f6).

Figure 1.1: The Arimaa board.

 4

The rules of the game are a bit different from Chess. All of a sudden the computers are
left way behind. How is this Possible? Even the fastest computers at this moment can not beat
a good human player, according to Syed and Syed (1999). For humans the rules of Arimaa are
quite easy to understand and more intuitive than Chess, but to a computer the game is more
complex. To the best of their knowledge Arimaa is the first game that was designed
intentionally to be difficult for computers to play. The rules of Arimaa were chosen to be as
simple and intuitive as possible while at the same time it served the purpose of making the
game interesting to play and yet difficult for computers. There are several reasons why
Arimaa is difficult for computers to play. We will highlight them in Chapter 2. for this reason
Syed made an Arimaa Challenge. A prize of $10,000 USD would be awarded to the first
person, company or organization that developed a program that defeats a chosen human
Arimaa player in an official Arimaa challenge match before the year 2020 (Syed, 1999). The
official challenge match will be between the current best program and a top-ten-rated human
player.

1.2.1 The Rules of the Game Arimaa

Goal of the game

The goal of the game Arimaa is to be the first to get one of your Rabbits to the other
side of the board.

Setup of Arimaa

The game starts with an empty board. The player with the gold pieces (called Gold
from now on) sets them on the first two rows. There is no fixed starting position, so the pieces
may be placed in any arrangement. However, it is suggested that most of the stronger pieces
be placed in front of the weaker Rabbits. Once Gold has finished, the player with the silver
pieces (Silver) sets the pieces on the last two rows. Again the pieces may be placed in any
arrangement within these two rows.

The play

The players take turns moving their pieces with Gold going first. All pieces move the
same way: forward, backward, left and right (like Rooks in Chess but only one step at a time),
but the Rabbits cannot move backward. On each turn a player can move the pieces a total of
four steps. Moving one piece from its current square to the next adjacent square counts as one
step. A piece can take multiple steps and also change directions after each step. The steps may
be distributed among multiple pieces so that up to four pieces can be moved. A player can
pass some of the steps, but at least one step must be taken on each turn to change the game
position. There are no captures in Arimaa.

The stronger pieces are able to move adjacent opponent’s weaker pieces. The Elephant
is the strongest followed by Camel, Horse, Dog, Cat and Rabbit in that order. For example, in
figure 1.2 the gold Dog (e4) can move the opponent’s Cat (f4) or Rabbit (e5 or d4), but the
Dog (a4) cannot move the opponent’s Dog (a5) or any other piece that is stronger than it, like
the Camel (b4). An opponent’s piece can be moved by either pushing or pulling it. To push an
opponent’s piece with your stronger piece, first move the opponent’s piece to one of the
adjacent empty squares and then move your piece into its place, like the Dog (e4) in figure 1.2
pushes the Cat (f4) to g4 in figure 1.3 To pull an opponent’s piece with your stronger piece,
first move your piece to one of the adjacent empty squares and then move the opponent’s
piece into its place like the Cat (d5) in figure 1.2 pulls the Rabbit (d4) to d5 in figure 1.3. A
push or pull requires two steps and must be completed within the same turn. Any combination

 5

of pushing and pulling can be done in the same turn. However, when your stronger piece is
completing a push it cannot pull an opponent’s weaker piece along with it.

A stronger piece can also freeze any opponent’s piece that is weaker than it. A piece
which is next to an opponent’s stronger piece is considered to be frozen and cannot move, like
the Dog (a4) in figure 1.2 that is frozen by the Camel (b4) However, if there is a friendly
piece next to it the piece is unfrozen and is free to move like the Horse (b3) in figure 1.2 with
the friendly Cat (b2) next to it.

There are four distinctly marked trap squares on the board. Any piece that is on a trap
square is immediately removed from the game unless there is a friendly piece next to the trap
square to keep it safe. To give an example we take a look at figures 1.2 and 1.3. Here we see a
Rabbit (f3) in figure 1.2 because of the friendly Cat (f4) next to the trap, but after the turn of
Gold, resulting in the position of figure 1.3, we see that the Rabbit is gone because of the fact
that there is no friendly piece next to the trap. Be careful not to lose your own pieces in the
traps.

Figure 1.2: A sample position with Gold
to move.

Figure 1.3: Position after Gold’s move.

There are some special situations.
 1. If both players lose all the Rabbits then the game is a draw.
 2. If a player is unable to make a move because all the pieces are frozen or have no place

to move, then that player loses the game.
 3. If after a turn the same board position is repeated three times, then the player causing

the position to occur the 3rd time loses the game.
 4. A player may push or pull the opponent’s Rabbit into the goal. If at the end of the turn

the Rabbit remains there the player loses. However if the Rabbit is moved back out of
the goal row before the end of the turn, the player does not lose.

 5. If at the end of the turn Rabbits from both players have reached the goal, then the
player who made the move wins. [This rule is added after confronting the designer
with the problem that there was no solution for this situation.]

 6

1.2.2 The Rules of Arimaa Matches

The following rules apply to official Arimaa games that are played for ranks,
tournaments, contests, championships, etc. We will take a look at the general meaning of
those rules and than turn to a tournament example for the Arimaa challenge.

Match Game Requirements

1) Players may not offer a draw.

An official Arimaa match is to be considered similar to a real sporting event. As such
the players may not agree to end the match into a draw. But one of the players may resign at
any time to end the match.

2) Time controls must be used.

An official Arimaa match must be played with some form of Arimaa time control.
Details of time controls are given below.

3) If a game must be stopped then the Arimaa scoring system must be used.

When the preset time limit or move limit for the game expires and the game has not
finished, the winner is determined by score. Details of the Arimaa scoring system are given
below.

4) Games must be recorded.

All moves made in the game must be recorded using the notation for recording Arimaa
games (see subsection 1.2.3).

Scoring System

If the amount of time which was set for the game runs out, then the following scoring
system is used to determine a winner. The player with the higher score wins the game. In case
the score of both players is the same, the game is a draw.

The score for each player is determined as follows:

)1(+×+= CPRScore

R denotes the points given for how far the player’s Rabbits have progressed. The row to
which each Rabbit has progressed is cubed (i.e., raised to the power of 3) and these values are
summed up to determine R . The first row (from the player’s perspective) is 1 and the goal
row is 8.
C equals the number of Rabbits the player still has on the board.
P denotes the points given for the pieces the player still has on the board. The value of each
piece on the board is summed. The value of each piece is:
 1. Rabbit
 2. Cat
 3. Dog
 4. Horse
 5. Camel
 6. Elephant

 7

Time Controls

The Arimaa time controls were chosen to achieve the following.
1. Keep the game moving, by not allowing a player to take forever to make a move and bore
the spectators.
2. Allow a great deal of flexibility in specifying the time controls.
3. Allow for a fixed upper limit on the total game time for practical reasons.
4. Attempt to prevent a player from losing the game due to time while imposing these time
limits.
5. Preserve the quality of the game while imposing these time limits.
6. Allow for the most common time controls used in Chess. Thus the Arimaa time controls
support all the common time controls used in Chess and more.

The time control used for Arimaa is specified as:

M/R/P/L/G/T

M is the number of minutes:seconds per move,
R is the number of minutes:seconds in reserve,
P is the percentage of unused move time that gets added to the reserve,
L is the number of minutes:seconds to limit the reserve,
G is the number of hours:minutes after which time the game is halted and the winner is
determined by score. G can also be specified as the maximum number of moves.
T (optional) is the number of minutes:seconds within which a player must make a move.

On each turn a player gets a fixed amount of time per move (M) and there may be
some amount of time left in the reserve (R). If a player does not complete the move within the
move time (M) then the time in reserve (R) is used. If there is no more time remaining in
reserve and the player has not completed the move then the player automatically loses. Even
if there is time left in the move or reserve, but the player has not made the move within the
maximum time allowed for a move (T) then the player automatically loses. If a player
completes the move in less than the time allowed for the move (M), then a percentage (P) of
the remaining time is added to the player’s reserve. The result is rounded to the nearest
second. This parameter is optional and if not specified, it is assumed to be 100%. An upper
limit (L) can be given for the reserve so that the reserve does not exceed L when more time is
added to the reserve. If the initial reserve already exceeds this limit then more time is not
added to the reserve until it falls below this limit. The upper limit for the reserve is optional
and if not given or set to 0 then it implies that there is no limit on how much time can be
added to the reserve.

For practical reasons a total game time (G) may be set. If the game is not finished
within this allotted time then the game is halted and the winner is determined by scoring the
game. This parameter is optional and if not given (or set to 0) it means there is no limit on the
game time. Also, instead of an upper limit for the total game time, an upper limit for the total
number of turns each player can make may be specified. After both players have taken this
many turns and the game is not finished, the winner is determined by scoring the game.

For games which use a time per move of less than 1 minute, both players are always
given 1 minute of time to setup the initial position in the first move of the game. If the setup
is not completed in 1 minute then the reserve time (R) is also used. The unused time from the
setup move is not added to the reserve time unless the player completes the setup in less time
than the time per move (M) set for the game. If so, then a percentage (P) of the unused time

 8

after deducting the time used from the time per move set for the game is added to the reserve
time.

Let us look at an example for the Arimaa challenge which also will be used in the
experiments. In the tournaments the time control ‘3/3/100/15/8’ will be used (Syed and Syed,
1999). This means that on each turn a player gets 3 minutes per move. If a move is not
completed in this time then the reserve time may be used. There is a starting reserve of 3
minutes. If the reserve time is used up and the player has still not made a move then the player
will lose on time. If the move is made in less than 3 minutes then 100% of the remaining
move time is added to the reserve. The reserve may not exceed more than 15 minutes. If the
game is not completed within 8 hours, it will be stopped and the winner determined by score.

In Appendix A more examples of time controls are given.

1.2.3 Notation

For reviewing games, the games have to be recorded. To do this recording we will use
the notation for recording the Arimaa games and positions that is also used on the internet.
We will outline these notations in this subsection.

Notation for recording Arimaa games

The pieces are indicated using upper or lower case letters to specify the piece colour
and piece type. Upper case letters are used for the gold pieces and lower case letters are used
for the silver pieces. For example, E means gold Elephant and h means silver Horse. The
types of pieces are: Elephant, Camel, Horse, Dog, Cat and Rabbit. The first letter of each is
used in the notation, except in the case of Camel the letter M (for Gold) or m (for Silver) is
used.

Each square on the board is indicated by the column and row, like in Chess. The lower
case letters a to h are used to indicate the columns and the numbers 1 to 8 are used to indicate
the rows. The square a1 must be at the bottom left corner of the board for Gold.

Each player’s move is recorded on a separate line. The line starts with the move
number followed by the colour of the side making the move. For example 3w means move 3
for Gold; this would be followed by 3b which is move 3 for Silver. In the move numbers, ‘w’,
White, is used for Gold, and ‘b’, Black, for Silver.

The initial placement of the pieces is recorded by indicating the piece and the square
on which it is placed. For example Da2 means the gold Dog is placed on square a2.

The movement of the pieces is recorded by indicating the piece, the square from which
it moves followed by the direction in which it moved. The directions are north, south, east and
west with respect to the gold player. For example, Ea3n means the gold Elephant on a3 moves
north (to square a4). The notation hd7s means that the silver Horse on square d7 moves south
(to square d6).

Steps which are skipped are left blank. See the second move 3w (after the take back)
in the example below where only three steps are taken and the last step is skipped.

When a piece is trapped and removed from the board it is recorded by using an x to
indicate removal. For example cf3x means the silver Cat on square f3 is removed. When a
piece is trapped as a result of a push, the removal is recorded before the step to complete the
push. For example: rb3e rc3x Hb2n.

When a player resigns the word ‘resigns’ is used. If a player loses because an
opponent’s Rabbit has reached his first row then the word ‘lost’ is used. If the players agree to
a draw then the word ‘draw’ is used.

 9

If a move is taken back the word ‘takeback’ is used and the move count of the next
move is that of the previous move.

The following example shows the Arimaa notation used to record the moves of a
game.

1w Ra2 Rb2 Mc2 Dd2 ...
1b ra7 rb7 rc7 rd7 ...
2w Ra2n Ra3e Rb3n Rb4e
2b ra7s ra6s ra5e rb5e
3w Dd2n Dd3n Mc2e Rc4s Rc3x
3b rc7s rc5e rc6x rd5e re5s
4w takeback
3b takeback
3w Rb2n Rb3n Rb4n
3b ...
...
16b resigns

The seven tags from the PGN (Portable Game Notation) format (as well as other tags)

used in Chess can be used prior to the recording of the moves. These are Event, Site, Date,
Round, White, Black and Result. The format is simply the tag name followed by a ‘:’ and a
space character followed by the tag value. A blank line separates the tags from the move list.
All tags are optional.
Here is a sample recording of a game:

Event: Casual Game
Site: Cleveland, OH USA
Date: 1999.01.15
Round: ?
White: Aamir Syed
Black: Omar Syed
Result: 1-0

1w ...
1b ...
2w ...
2b ...
...
16b resigns

A tag which requires multiple lines should have the string -=+=- after the tag name.

All lines until a line that begins with this same string are considered to be the value of the tag.
For example:

Chat: -=+=-
2b White: hi, how are u
2b Black: fine, thanks
-=+=-

The 2b just indicates that this chat was done when it was move 2b (Silver’s second

move).

 10

Notation for recording Arimaa positions

The gold pieces are shown in upper case letters and silver pieces are shown in lower
case letters. The assignment of letters is the first letter of the piece name, except in the case of
the Camel, when the letter m or M is used. The position file should simply be laid out as the
board would appear with square a1 at the bottom left corner. The rows and columns of the
board must be labelled and the board must be framed with ‘-’ and ‘|’ characters. Spaces are
used to indicate empty squares. X or x can be used to mark the trap squares when a piece is
not on it. However, marking the trap squares is optional and not required. Here is a sample
position file:

7w Da1n Cc1n
 +-----------------+
8| r r r r |
7| m h e c |
6| r x r r x r |
5| h d c d |
4| E H M |
3| R x R R H R |
2| D C C D |
1| R R R R |
 +-----------------+
 a b c d e d g h

The first line of the file indicates the move number and which player to move. By

default it is assumed that no steps have been taken and the player has 4 steps left. If any steps
have already been taken to reach the position shown they are listed on the first line of the file
using the notation for recording Arimaa games described earlier.

1.3 Problem Statement and Research Questions

 In computer game-playing, the goal is to make a computer play a certain game as good
as possible. So the problem statement for this thesis is the following:

Can we build an efficient and effective program to play the game of Arimaa?

 There are three research questions that come up to answer this problem statement. The
first research question is:

What is the complexity of Arimaa?

To answer this research question, the complexity of Arimaa needs to be computed.

The second research question is:

Can we use knowledge about the game of Arimaa in an efficient and effective
implementation of an Arimaa program?

 11

We will gather some specific knowledge about the game, and use it to implement different
parts of an evaluation function for playing the game. This evaluation will be optimized using
many tuning experiments.

The third research question is:

Can we apply and adapt relevant techniques, developed for computer-game playing,
to the game of Arimaa?

 We will investigate how we can adapt several existing game-playing techniques to fit
the game of Arimaa. These techniques will be tested for their effectiveness. We will also
explore new techniques and ideas, which could be beneficial in playing the game of Arimaa.

1.4 Thesis Outline

The content of this thesis is as follows. Chapter 1 is an introduction to this thesis
containing an overview of the matters under discussion including a presentation of the game
Arimaa. This is also the chapter in which the problem statement and the research questions of
this thesis are formulated.

In Chapter 2 we will go into detail on the complexity of Arimaa. Chapter 3 covers the
evaluation function and the knowledge behind it. This chapter is closely related to chapter 4
where we will discuss the techniques investigated and implemented in our Arimaa program.

In Chapter 5 we will discuss the tuning of the evaluation functions described in
Chapter 3. In Chapter 6 we will show some experimental results considering the techniques
described in chapter 4. Its purpose is not only to find the best combination of techniques to
play Arimaa but also to determine the influence of the individual techniques on the playing
strength.

Chapter 7 will present the conclusions and will formulate answers to the research
questions and problem statement. Moreover some ideas about future research on the subject
will be presented.

 12

 13

2 COMPLEXITY ANALYSIS

The complexity of a game is measured by two different factors, the state-space
complexity and the game-tree complexity (Allis, 1994). Together they provide some
information on how difficult the game at hand is. The state-space complexity roughly
indicates the number of different board positions that are possible in principle.

The game–tree complexity gives more insight into the decision complexity of the
game. It is an indication of how many nodes there are in the solution tree. The number
depends on the specific search techniques used. Below we discuss in more details these two
measures of complexity and we will compare them with the complexities of other games.

2.1 State-space Complexity

The state-space complexity is an approximation of the number of different positions
possible in Arimaa. The expected result for the state-space complexity must be close to that of
Chess with)10(46O (Chinchalkar, 1996), since a Chess-set is used for Arimaa. To compute
the state-space complexity for Arimaa, we have to do a number of calculations. First we have
to deal with how many pieces are on the board? There can be theoretically 1 piece on the
board and this can go up to 32 pieces. When we put the number of pieces in a row we get the
following pattern:

112228/112228

In this pattern the first part stands for the gold player and the second for the silver
player. Each part is then built up with the number of Elephants, Camels, Horses, Dogs, Cats,
and Rabbits. In this example we have used all 12 types of pieces of Arimaa together with their
appearance on the board. So we have: 1 Elephant, 1 Camel, 2 Horses, 2 Dogs, 2 Cats, and 8
Rabbits of each colour. When we will create the other patterns we will start with pattern
112228/112228. By removing one piece of the board we can remove this on every position in
the pattern. For example, we can remove the gold Elephant (012228/112228) or we can
remove a silver Rabbit (112228/112227). We have 12 positions in the pattern were we can
remove a piece but on every position we can remove a piece until there are 0 pieces left. E.g.,
we can remove one of the 8 Rabbits on position 6 in the pattern, but it does not matter which
Rabbit we remove because in the pattern there still would remain 7 Rabbits. The total number
of pieces we can remove is therefore the summation of the pieces on the 12 positions in the
pattern, which will be 32. When we go on until we have removed 32 pieces from the board
the remaining pattern will be 000000/000000.

In table 2.1 we see in column 1 the total number of pieces that we have on the board.
In the second column is the result of the number of possibilities to remove n−32 pieces from
the board.

When we remove a silver Rabbit from the number of pieces on the board it does not
matter which silver Rabbit is removed for the pattern. When we remove silver Rabbit-1 we
get pattern 112228/112227, and by removing silver Rabbit-2 we get also 112228/112227,
because we hold the same set of pieces. This means that the numbers of possibilities in
column 2 do not refer to unique patterns only, but also contain duplicates. These duplicate
patterns have been filtered out and the numbers of unique patterns are given in column 3 of
Table 2.1.

 14

n # possibilities # unique patterns
sorted

unique patterns)_(nStateSpaceO

32 1 1 1 4.63473 4210×

31 32 12 3 4.49428 4210×

30 496 74 7 2.30497 4210×

29 4960 310 13 8.31347 4110×

28 35960 987 22 2.35457 4110×

27 201376 2540 33 5.52581 4010×

26 906192 5499 48 1.10607 4010×

25 3365856 10314 63 1.92039 3910×

24 10518300 17163 80 2.92329 3810×

23 28048800 25866 94 3.92962 3710×

22 64512240 35955 108 4.6863 3610×

21 129024480 46818 116 4.96954 3510×

20 225792840 57774 123 4.68714 3410×

19 347373600 68022 123 3.92605 3310×

18 471435600 76569 122 2.91258 3210×

17 565722720 82314 114 1.90708 3110×

16 601080390 84348 107 1.09793 3010×

15 565722720 82314 94 5.536 2810×

14 471435600 76569 84 2.43527 2710×

13 347373600 68022 70 9.30991 2510×

12 225792840 57774 60 3.08072 2410×

11 129024480 46818 47 8.78575 2210×

10 64512240 35955 38 2.1486 2110×

9 28048800 25866 28 4.47876 1910×

8 10518300 17163 22 7.89728 1710×

7 3365856 10314 15 1.16634 1610×

6 906192 5499 11 1.4239 1410×

5 201376 2540 7 1.41124 1210×
4 35960 987 5 11066979168
3 4960 310 3 66079104
2 496 74 2 282240
1 32 12 1 768
0 1 1 1 1

Table 2.1: An overview of results needed for the State-Space Complexity.

In column 4 we see the numbers of unique patterns that occur when the patterns in
column 3 are sorted. This sorting disregards the colour and type of the pieces. For example,
the unique pattern 112228/112227 yields after sorting the pattern 111122222278. Every
pattern has a number of hits, i.e., the summation that that pattern occurs when a pattern in
column 3 is sorted. As another example, when we have only 1 piece on the board, we can
create 12 different unique patterns (column 3), the summation of each type from each colour.
But when we disregard the types and colours and sort the pattern there will be only one
pattern (000000000001) left. The only difference is that this pattern occurs 12 times (hits)

 15

when the patterns in column 3 with n = 1 are sorted. All patterns and their hits can be found in
Appendix B. The sorting we used is allowed because the order of the pattern has no influence
on the result of formula (1). To compute the results for each pattern we use formula (1).

� ∏ �
= =

−

=

�
�
�

�

�

�
�
�

�

� −
×��
�

�
��
�

�
×=

m

i k
ki

k

j

ji

i
i

p

p

p
HnStateSpaceO

1

12

2
,

1

1

,

1,

6464
)_((1)

In this formula iH is the number of hits (Appendix B) from pattern ,i jip , is the value

of the j th element in pattern ,i n is the number of pieces on the board, and m is the number
of sorted unique patterns (column 4 of table 2.1) for n pieces. The results for each n are
given in column 5 of table 2.1.

This results in a total of 431051.2 × number of possible board positions according to
formula (2). Here we also take into account the player to move.

43
32

0

1051.2)_(2)_(×=×= �
=n

nStateSpaceOPositionsStateSpaceO (2)

Next we have calculated some number of illegal positions reducing this state-space

complexity. The first group is when a piece comes on a trap without a friendly piece next to
the trap, resulting in a piece less on the board. We have to calculate these situations and
reduce the state-space complexity with this result. We only have to calculate when there is at
least one piece on a trap that will be removed. This situation includes then also the other
positions where two, three or four pieces are standing on a trap and will be removed.

To calculate this number of illegal positions we started with the pattern
822211/822211. Assume that there is one gold piece on a trap. We split the pattern into the
patterns in table 2.2 where one gold piece is on a trap.

Possible Patterns
Gold Silver # positions

722211 822211 411050.7 ×
812211 822211 411087.1 ×
821211 822211 411087.1 ×
822111 822211 411087.1 ×
822201 822211 401037.9 ×
822210 822211 401037.9 ×

total 421050.1 ×

Table 2.2: Summation of the number of illegal positions where one gold piece is trapped.

Because there can be an unfriendly piece next to the trap we have to calculate these

possibilities. These patterns look like emhdcr nnnnnn , where rn is the number of unfriendly
rabbits adjacent to the trap, etc. The maximum value for each position in the pattern is 4, 2, 2,
2, 1, and 1.The maximum for rn is 4 in stead of 8 is because there can only be 4 pieces next
to the trap. We generate all patterns where there are no pieces next to the trap up to the

 16

maximum of four pieces. When we take, e.g., the pattern 822210/822211 from table 2.2, we
have to subtract each generated pattern for the unfriendly pieces that could stand next to the
trap, from the silver part (822211), because a gold piece is standing on the trap. For example
the silver part will be split into the pattern 722211/100000, where 100000 is one of the
generated patterns, for an unfriendly piece (Silver) standing next to the trap. We take these
two together with the gold part which results in 822210/722211/100000. Now we use formula
(3) where m is the number of patterns we get from the splitting of the silver part.

∏ �
� ∏ �

=

−

=
= =

−

=

�
�
�

�

�

�
�
�

�

� −
×��
�

�
��
�

�
×
�
�
�

�

�

�
�
�

�

� −
×��
�

�
��
�

�
×=

18

14
,

1

13

,

1 13,

12

2
,

1

1

,

1,

445959
4)_(

k
ki

k

j

jim

i ik
ki

k

j

ji

i
p

p

p
p

p

p
trapStateSpaceO (3)

In the last column of table 2.2 we see the summation of these results according to the

gold part of the pattern. All these positions result in at least one gold piece and none or more
silver pieces on the traps without a friendly piece next to the gold piece. When we also take
into account which player has to move we have to apply a factor of two.

As we can see we have to do a great dead of calculations because we have 944,784
(summation column 3 table 2.1) possible starting patterns such as 822211/822211 for which
we have to apply formula (3). We are going to make an assumption. When we have 32 pieces
on the board there are 4242 1026.91063.42 ×≈×× possible positions and

4242 1000.31050.12 ×≈×× are illegal positions according to the trap rule, being a factor
of 323.0 . When there is only one piece left on the board there is only a factor of 0625.0
illegal. Now we assume that a factor of 323.0 is the upper bound of illegal positions
according to the trap rule. The result will then be 4243 1008.81051.2323.0 ×≈×× illegal trap
positions.

The second group of illegal board positions are the board positions that will never be
reachable. We distinguish three categories of illegal positions within this group. In the first
category are those positions with at least one own Rabbit and two opponent Rabbits that have
reached their goals at the end of turn, since such position would require at least five steps. To
calculate this we generated the pattern from table 2.1 again but with a difference in the
sorting. In stead of disregarding the colour and type of the piece we now put the Rabbits in the
front two places and we sort the rest disregarding the colour and type again. Then we split
every first two positions (Rabbits) of the pattern.

 ML,K,J,I,H,G,F,E,D,C,B1),-BB2(A1),-AA2(B1,A1,ML,K,J,I,H,G,F,D,C,B,A, ==�

In this pattern A1 is two and B1 is one. Then we remove all patterns where A2 or B2 are
below zero, because those patterns have not enough Rabbits to put in the goals. Now we can
apply formula (4). Here we do not take into account which player is going to move because as
we have seen the minimum condition to calculate this is depending on which player is to
move. It results in 411013.3 × illegal positions according to the number of Rabbits in the goal.

As a second category we have those positions where the player who moved last has at
least three Rabbits of his own and at least one of his opponent Rabbits in the goal. Also here
we apply the new patterns, but now A1 becomes three and B1 one. Again we remove all
patterns where A2 and B2 are below zero. Using formula (4) we get 411084.1 × illegal
positions which are not reachable for the player to move.

 17

�� ∏ �
= = =

−

=

�
�
�

�

�

�
�
�

�

� −
×��
�

�
��
�

�
×��
�

�
��
�

�
×=

32

0 1

14

3
,

1

1

,64

1B
8

1A
8

)1B_1A__(
n

m

i k
ki

k

j

ji
i

p

p
HgoalStateSpaceO (4)

 The third category of unreachable positions is when we have five or more Rabbits
from one player in the goal at the end of a turn. Here we must give A1 the value five and B1
the value zero. This yields 391001.10 × illegal positions. A part of these positions we have
already calculated above, where A1 is also five and B1 is one which results in 391071.1 × . So
there are 393939 1030.81071.11001.10 ×=×−× positions where five Rabbits of one player and
no Rabbits of the other player are in the goal. These positions are unreachable disregarding
which player finished his move so we have 4039 1066.11030.82 ×=×× illegal positions.
 We have 411013.3 × and 411084.1 × and 401066.1 × unreachable positions for both
players together at the end of their move. This gives in total 411004.5 × unreachable positions.
 Using the values above we can say that the state-space complexity can be
approximated by 43414243 1066.11004.51008.81051.2 ×≈×−×−× .

2.2 Game-tree Complexity

 The game-tree complexity can be approximated by the number of leaf nodes of the
game tree with as depth the average game length (in ply), and as branching factor the average
branching factor during the game. It is not hard to calculate the last. There is a database
available with 6,075 Arimaa games played. These are not all usable, so we have selected
games that have finished by:

1. a Rabbit reached the goal.
2. a player had no moves.
3. no Rabbit on the board.
4. a position repeated three times.

After this selection we have a database of 4,251 records. From the records we have

determined the average branching factor at 276,386. In the beginning of the game the average
branching factor is 23,026. The branching factor will increase for the first five ply, because
we will have more moves per piece on average (figure 2.2). After that we see that the
branching factor slowly goes down, but still stays extremely high.

With the same database we have determined the average game length. The result is an
average of 55.2 ply (moves of four steps).

The formula to calculate the game-tree complexity is ,db where b is the average
branching factor and d the average depth. Using the values above, the game-tree complexity
for Arimaa is calculated as 3002.55 101.3386,276 ×≈ .

 18

0

50000

100000

150000

200000

250000

300000

350000

400000

2 8 14 20 26 32 38 44 50 56 62 68 74 80 86 92

Figure 2.1: Average branching factor per ply.

2.3 Comparing Arimaa to Other Games

As mentioned in Chapter 1 there are at least four reasons why Arimaa is difficult for

computers to play. First the branching factor runs into the twenty-thousand as compared to an
average of about 35 for Chess. With a much bigger range of possibilities at each turn it
becomes extremely hard for computers to use the brute-force look-ahead method to search
through all of them to find the best moves. For example at the start of chess games White has
20 possible moves. In Arimaa a player has about 2,000 to 3,000 moves in the first turn
depending on the way they chose to setup the pieces. During the mid-game the number of
possible moves ranges from about 5,000 to 40,000. If we assume an average of 20,000
possible moves at each turn, looking forward just 2 moves (each player taking 2 turns) means
exploring about 160 million billion positions. Even if a computer is 5 times faster than DEEP
BLUE and could evaluate a billion positions per second it would still take more than 5 years to
explore all those positions. However, modern game-playing programs use pruning algorithms
to reduce significantly the number of positions that need to be explored. Even with such
pruning the number of positions that need to be evaluated is still sufficiently large to make it
extremely difficult for a program to search very deep.

Second, endgame databases have also significantly improved the performance of
computers in many traditional strategy games. When the number of pieces remaining on the
board is reduced to just a few, computers can play a perfect ending by simply looking up the
best move for the current position from a precomputed database of endgame positions.
However a typical Arimaa game can end with most of the pieces still on the board. It is not
uncommon for a game to end without any pieces ever being exchanged. Thus building
endgame databases for Arimaa will not be useful.

Third, important factor is that the starting position of Arimaa is not fixed as it is in
Chess. The number of different ways in which each player can setup their pieces at the start of
the game can be computed with formula (5).

 19

800,864,64
1
1

1
2

2
4

2
6

2
8

8
16

)1,_(=��
�

�
��
�

�
×��
�

�
��
�

�
×��
�

�
��
�

�
×��
�

�
��
�

�
×��
�

�
��
�

�
×��
�

�
��
�

�
=playerSetupStateSpaceO (5)

This formula results from the placing of 8 Rabbits at 16 possible squares, 2 Cats at the

remaining 8 squares, 2 Dogs at the remaining 6 squares, 2 Horses at the remaining 4 squares,
1 Camel at the remaining 2 squares and placing the Elephant at the last remaining square. As
we can see there are almost 65 million different ways in which each player can setup his
pieces at the start of the game. The total of the setup state-space complexity for both players is
given by formula (6). It follows that it is very difficult to develop complete databases of
opening moves. One of the difficulties that humans have when playing Chess against
computers is that they can easily fall into an opening trap. To avoid this the human player
must be extremely familiar with a very large number of chess openings. This basically boils
down to a problem of memorization which computers are extremely good at and humans are
not. Even Bobby Fischer, a former World Champion, has proposed allowing different starting
positions in Chess to counter the problem of computers having an opening book advantage.
Because of the many different ways in which a player can set up his pieces in Arimaa these
databases of opening moves are not complete so the computer is also not aware of every
opening trap like in Chess.

() 152 10207.4800,864,64)_(×==SetupStateSpaceO (6)

Fourth, computers will have difficulty with Arimaa because it is much more a
positional game and has much less tactics than Chess. Computers are great at spotting tactics
and taking advantage of them, but they have a much harder time trying to determine if a
materially equivalent position is more advantageous for one side or the other. Chess
Grandmasters are continnously trying to bring their computer opponents into a positional
disadvantage while trying to avoid tactical mistakes. After playing DEEP BLUE, Garry
Kasparov wrote that the experience was like walking through a mine field. Arimaa tips the
scale in favour of humans, by reducing tactics and giving more importance to positional
features.

In figure 2.2 we have compared the complexity of Arimaa with other games. This
figure is based on a table from Van den Herik et al. (2002). We have only added the
complexity of Amazons, Lines of Action and Arimaa. If we have a closer look at figure 2.2,
we see that Arimaa’s state-space complexity is almost the same as that of Chess, but its game-
tree complexity is more like that of Go. When we have a look on both complexities it is
closely related to Amazons, where the established game-playing techniques do not work well
due to a very high branching factor. In that game some other solutions have to be found. This
is true for Arimaa as well and led to the current thesis

 20

10

100

1000

N
in

e
M

en
's

 M
or

ri
s

P
en

to
m

in
oe

s

A
w

ar
i

K
al

ah
 (6

,4
)

C
on

ne
ct

-F
ou

r

D
om

in
ee

ri
ng

 (8
x8

)

D
ak

on
-6

C
he

ck
er

s
Li

ne
s

of
 A

ct
io

n

O
th

el
lo

Q
ub

ic

D
ra

ug
ht

s

A
m

az
on

s
A

ri
m

aa

C
he

ss

C
hi

ne
se

 C
he

ss

H
ex

 (1
1x

11
)

S
ho

gi
G

o-
M

ok
u

(1
5x

15
)

R
en

ju
 (1

5x
15

)

G
o

(1
9x

19
)

log-10 of
 complexity

state-space complexity

game-tree complexity

Figure 2.2: Estimated game complexities.

2.4 Chapter Conclusion

We may safely conclude that Arimaa is computationally an extremely complex game,
especially since the game tree is huge. Because of the huge game-tree complexity, a
conventional brute-force approach will not work. In chapter 4 we will therefore discuss a few
search enhancements needed to make search a feasible approach in this game. In the next
chapter we will see how we can use knowledge about the game in the evaluation.

 21

3 Evaluation of Positions

Even the fastest search will not be useful in a complex game like Arimaa if it is not
guided into the right direction. The ultimate goal of the search is to find a forced win for the
player to move. This is usually impossible to achieve, because a search is only performed
until a certain depth due the time limit. Therefore we will have to rely on an estimation of
what is the most promising move in the current position. This estimation is based on an
evaluator. The leaf nodes are valued using the evaluation function. It is therefore important
that the evaluator gives a good estimation of a position. In this chapter we will examine
“Arimaa knowledge” and discuss the construction of the evaluation function. In section 3.1
some basic evaluation techniques will be headed. Some advanced knowledge will then be
discussed in section 3.2

3.1 The Basic Evaluation

According to many other games, Arimaa has some basic evaluations such as material
values, piece-square tables, and mobility. We will discuss them below.

3.1.1 Material

Some Arimaa pieces are stronger than others. The element of material is concerned
with this relative strength of the pieces. After some personal communication with David
Fotland, we use a fixed set for the material values in the evaluation function (shown in table
3.1). The material values for the rabbits do not match with Fotlands part.

For the Rabbits the value is fluctuating and will be adjusted depending on how many
Rabbits are left on the board, as we can see in table 3.2. Since we need at least one Rabbit for
winning the game, we need to protect this piece to keep it on the board. Therefore we give the
final Rabbit the highest material value. When we have more Rabbits on the board we can
make more goal-threats to the opponent since he has more places to defend. Moreover we can
defend better against a goal-threat by the opponent. So as the number of Rabbits on the board
goes down, the material value for each Rabbit goes up.

Material

Value

Elephant 16
Camel 11
Horse 7
Dog 4
Cat 2

Rabbit Variable,
 see table 3.2

Table 3.1: Material values.

Number of Rabbits

on the board
Summation of
rabbit values

1 40
2 47
3 53
4 58
5 62
6 65
7 67
8 68

Table 3.2: Material values for the Rabbits
on the board.

 22

 Furthermore, we use a single weight for these values to determine how heavy the
influence of the fixed material values must be to the total evaluation. This material weight
will be tuned, which will be discussed in Chapter 5.

3.1.2 Piece-square Tables

Piece-square tables are used to indicate where each piece is located best on the board
on average. We made three groups for the six different pieces. First, we have the rabbit piece-
square table shown in table 3.3. On the one hand Rabbits have to be encouraged to stay at
their own side to defend it. At the other hand, it is of course even more important for Rabbits
to advance to the opponent side, but they best advance along the edges of the board and stay
out of the centre.

8 8 8 8 8 8 8 8 8

7 7 6 5 4 4 5 6 7

6 6 2 -1 0 0 -1 2 6

5 5 1 0 0 0 0 1 5

4 4 1 0 0 0 0 1 4

3 3 1 -1 0 0 -1 1 3

2 2 2 1 1 1 1 2 2

1 2 2 2 2 2 2 2 2

 a b c d e f g H

Table 3.3: Rabbit piece-square table for Gold.

Second, we have the group of Cats and Dogs. To have control over the traps and it is

encouraged to use the Cats and Dogs. So they stay therefore close to the traps, which we see
in table 3.4.

8 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 0

6 0 0 -1 0 0 -1 0 0

5 0 0 1 0 0 1 0 0

4 1 1 2 1 1 2 1 1

3 3 5 -1 5 5 -1 5 3

2 2 4 5 4 4 5 4 2

1 1 2 3 2 2 3 2 1

 a b c d e f g h

Table 3.4: Cat/Dog piece-square table for Gold.

 23

Third, in table 3.5 we show the stronger pieces, i.e., Horse, Camel and Elephant. They

are encouraged to stay close to the centre from where they can cross the board quickly.
Overall all pieces are encouraged to stay off the traps. The figures 3.3, 3.4 and 3.5 are

the piece-square tables for Gold. For Silver, the piece-square tables are the opposite.

8 0 0 1 2 2 1 0 0

7 0 0 2 3 3 2 0 0

6 1 2 -1 4 4 -1 2 1

5 2 3 4 5 5 4 3 2

4 2 3 4 5 5 4 3 2

3 1 2 -1 4 4 -1 2 1

2 0 0 2 3 3 2 0 0

1 0 0 1 2 2 1 0 0

 a b c d e f g h

Table 3.5: Horse/Camel/Elephant piece-square table for Gold.

 For piece-square tables we also introduce a weight, but now with the difference that
each piece type has a separate weight that must be tuned. So, whereas a Horse has the same
piece-square table as the Elephant, it can be that it is less important for the Horse to be in the
middle of the board than for the Elephant.

3.1.3 Mobility

How many different steps does each player have available? The idea is that if you
have more moves to choose from, it is much more likely that at least one of them will lead to
a good position. We made two ways of promoting mobility in COXA. First frozen pieces get
penalized according to piece strength, the stronger the piece the bigger its penalty. The
penalty for a frozen piece is the negative mobility value of the piece according to table 3.6.
The source for the values from table 3.6 comes from a personal communication with David
Fotland.

Material Value
Elephant 0.4
Camel 0.2
Horse 0.15
Dog 0.1
Cat 0.1

Rabbit 0.02

Table 3.6: Mobility values according to the piece strength.

 24

Second when the piece is not frozen we take a look on how mobile the piece is, i.e.,
we calculate its empty neighbour squares. The piece gets a bonus according to the strength
and mobility of the piece. It is calculated as the mobility value from table 3.6 times the
number of accessible neighbour squares. Both mobility types get an own weight that will be
tuned.

3.2 The Extended Evaluation

Besides basic evaluations we have to put knowledge into the evaluation function to
achieve a strong Arimaa playing program. Of course, there is the problem that when we put
too much knowledge into the evaluator we can reach the point where the evaluation of a
position takes so much time that we can search less deep than with the basic evaluation. So
we have to decide in the balance between speed and knowledge. Our decision is on adding
extended knowledge into our evaluation function regarding the rabbit evaluation (3.2.1), goal-
threat (3.2.2) and having control of the traps on the board (3.2.3).

3.2.1 Rabbit Evaluation

In section 3.1.2 we said that the Rabbits are encouraged to stay in the back to defend
the goal. With Rabbit Evaluation we go a little deeper on the rabbit part. First, to defend the
goal we give a bonus of 0.1 multiplied by a weight to encourage Rabbits to have friendly
pieces on all four neighbour squares. This tends to keep a solid wall of rabbits and pieces
across the board to make it harder for the opponent to reach the goal. Second, there is a bonus
if a Rabbit has no enemy Rabbits ahead on its file (column) or adjacent files ahead. Rabbits
that are closer to the goal, according to table 3.7, get larger bonuses when these files are free
from opponent Rabbits ahead.

Rabbit on rank Bonus
1 0.1
2 0.2
3 0.3
4 0.4
5 0.5
6 0.65
7 0.8
8 1.0

Table 3.7: Free files bonus according to the Rabbit rank.

3.2.2 Goal-threat Evaluator

The basic idea behind our goal-threat evaluator is to see for each Rabbit if it has a free
walk to the opponent’s goal. Since our goal threat is not needed directly in the beginning of a
game we use a point were we start using goal-threat knowledge in our evaluation. This point
is the moment when a Rabbit reaches the fourth rank from his side.

 25

Then we calculate how many steps a Rabbit needs to reach the goal without
intervening moves from the opponent. We calculated the bonus as the number of steps needed
times a standard bonus of 5 points times the tuning weight.

3.2.3 Trap-control Evaluator

 Using trap control we decide which colour is controlling each trap. Therefore we
determine if both colours are present near a trap. If no pieces are present then there is also no
bonus for that trap. Else we have two possibilities. First when there is only one colour then we
only give points to the two strongest pieces near the trap because only 2 pieces are needed to
control a trap without that it can be taken over completely by the opponent in one turn. When
there are for example 2 Dogs and 1 Cat near a trap we give points for 1 Dog and 1 Cat
because we can use the second Dog maybe better somewhere else. But when there are only 2
Dogs then there is a bonus also for the second Dog. This is done in the evaluation by giving
points to each piece. For the first piece of a type we give points according to column 1 of
table 3.8. For the second piece of a type we use column 2 of table 3.8. Each bonus that occurs
times a weight is added to the bonus for trap control.

Piece First piece Bonus Second Piece
Bonus

Elephant 12 *
Camel 11 *
Horse 10 4
Dog 9 3
Cat 8 2

Rabbit 7 1

Table 3.8: Bonuses first and second pieces controlling a trap.

 A second possibility is when both colours are near a trap. Here we have to determine
which player is the strongest player and if the opponent has enough pieces to compromise
against the pieces of the strongest player.
 For every trap we loop for every piece, starting with the Elephant, if both colours have
or not have present that piece a weaker piece is searched. When a colour has a piece present
and the opponent has not, that is the stop-piece.
 Having a friendly piece with the stop-piece next to the trap with the same piece-type,
that colour is the strongest player for that trap. The opponent is not stronger there he only can
have maximum two piece that are weaker than the stop-piece.
 If it is not the same piece-type as the stop-piece, the opponent is the strongest player
when he has two pieces that are stronger than the friendly piece of the stop-piece, but weaker
than the stop-piece it self.
 When there is not a friendly piece with the stop-piece, the opponent is the strongest
player when he has at least two weaker pieces present at the trap.

When we determine the strongest player we add a bonus of 1, multiplied with a
weight, for trap control.

Here we tune both weights for each possibility separated.

 26

3.3 Chapter Conclusion

 In COXA’s final evaluator we use the basic evaluation together with the extended
evaluation. Therefore the separated weights attached to every evaluation (basic and extended)
part must be tuned. By tuning these weights we will see how important the separated weights
will be. The tuning will be discussed in chapter 5.

 27

4 Searching the Tree

In this chapter we introduce the search algorithms and heuristics tested, aiming to
answer the first research question: How can we apply and adapt relevant techniques,
developed for computer-game playing, to the game of Arimaa? The search implementation
and the evaluation are the main fields of research for game playing. These two parts of the
program can be compared to the heart and the brain in the human body. No human can do
without either one of these, just like no game-playing program can do without them. This is
also the reason why chapters 3 and 4 are tied together very closely and therefore cannot be
read separately. However, before we dive into details concerning the search, we will describe
how we build the tree which the program has to traverse.

4.1 Building the Tree

 To search a search tree efficiently, our principal algorithm is the well-known alpha-
beta algorithm, to be discussed below. Before we can find the best move using alpha-beta, we
have to generate all the moves. This is done by the move generation code in the program. It is
a straightforward procedure for all squares occupied by pieces of the player to move. All the
possible moves are enumerated in a list. This takes a bit of time, but still the amount of time
that is used to generate moves during search is on average less than 5% of the total search
time for a typical Arimaa position. We therefore believe there is not much to gain in trying
more efficient techniques like incremental move generation or move generation using pre-
filled databases.

4.1.1 Alpha-beta

 In the game Arimaa building the search tree is fairly straightforward. The root node
corresponds to the current position, while every possible move in this position leads to a child
node. The tree is constructed by recursively generating all the children of each position. Of
course, we need a stopping criterion. The straightforward one is when we encounter a
terminal position, which means that one of the players has won the game. If such a position is
reached, we will backtrack and generate the remainder of the tree. A second stopping criterion
is a maximum depth, set before the search started. If we reach this depth we will not generate
any children but instead go on generating the remainder of the tree to this depth.

As can be deduced from the former paragraph we use a depth-first algorithm to
traverse the game tree, a depth-first iterative-deepening algorithm to be more exact. The
algorithm of our choice is alpha-beta. It has been conceived by McCarthy in 1956 (McCarthy,
1961), but the first person to use it in an actual program was Samuel (1959, 1967). When first
proposed it was denoted a heuristic, since it was not clear whether it guarantees the best
possible result. A few years later, when Knuth and Moore (1975) proved the correctness of
alpha-beta, it was no longer seen as a heuristic, but promoted to the status of an algorithm.

By using the alpha-beta algorithm, we implicitly assume that both players play
optimally according to the evaluation function in use. The idea behind this is that if the
opponent does not play the best move, the current player will often be able to achieve more
profit in terms of evaluation scores. Of course, it then is of the utmost importance that a
position is evaluated as accurately as possible.

 28

The success of alpha-beta in game playing is mainly achieved by cut-offs it enables. It
effectively prunes away large uninteresting chunks of the game tree. These cut-offs are
realised by the alpha and beta bounds, where alpha is a lower and beta is an upper bound on
the evaluation score. The reduction of the game tree can be as high as 99% when the moves
are perfectly ordered. For a detailed description of the alpha-beta algorithm we refer to
(Marsland, 1986).

4.1.2 Iterative Deepening

Iterative deepening is a method of consecutively searching to increasing depths 1…N.
The evaluations in the previous search depth can be used to sort the moves of the next
iteration. The overhead when using this method is minimal since the game-tree complexity
is)(dbO , where b is the branching factor and d is the depth. This means that in each search
there are always more leaf nodes than there are internal ones. So the majority of the nodes
encountered in each search are leaf nodes. Therefore the number of nodes examined during a
search process is only a fraction of the nodes to be examined in the next iteration. Moreover,
using results from previous iterations can enhance the move ordering and thus efficiency. The
killer move, history heuristic and transposition tables are examples of techniques which use
the concept of iterative deepening to optimise the search. They do this by sorting the moves
from best to worst using the evaluations found in the previous search. As an effect, node
counts with iterative deepening can be even less than searching to the same depth without
iterative deepening.

4.1.3 Principal Variation Search

It seems unreasonable to set the initial bounds of alpha and beta at ∞− and ∞ ,

respectively. If we use some initial bounds (called a window), it is possible to get more cut-
offs. But the disadvantage is that sometimes those bounds do not enclose the minimax value,
and a re-search is needed. The problem is to find a window that provides overall more cut-offs
including possible re-searches. There are several methods to do this. We will take a look at
principal variation search (PVS).

Principal variation search uses the concept to close the window as much as possible.
This means that the beta value equals alpha + 1. The basic idea behind this method is that it is
cheaper to prove a subtree inferior, instead of determining its exact value. It has been shown
that this method does well for trees like in chess. Because the branching factor of Arimaa
(276,386) for four steps comes down to 23 for each step, in the same range as in chess (35),
we can safely assume that PVS will work fine in Arimaa too. Provided we have a good move-
ordering mechanism, PVS reduces the size of the search tree. For a more detailed description
of the algorithm, see again (Marsland, 1986).

4.1.4 Null-move Search

The null move means changing who is to move without any other change to the game
state. It is thus different to passing, which is legal. Passing can happen on any step except the
first in a turn, and causes a pass for all the remaining steps in that turn. The null move is

 29

illegal because it passes already on the first step of a turn. The reason for doing a null move
in our search is that we hopefully can narrow our window resulting in a smaller search tree.
 The null move is performed before any other move and it is searched to a lower depth
than we would do for other moves. The search depth of the null move is reduced by the factor
R, which we have set at 8 (4 steps for each player) in Arimaa. If the null move produces no
cut-off or improvement of alpha, some unnecessary search has been done. This has to be
avoided and in the following situations the null move is not performed:
 1. the previous move was a null move.
 2. the search is at the root.
 3. the side to move is at a considerable disadvantage, the chances for a cut-off or

 an improvement of alpha being low.

For a more detailed description of the algorithm see (Donninger, 1993).

We have assumed that doing a null move is a poor move: there is always a move that
is better than the null move. That is the reason why we can safely use a null move. Problems
occur when the null move is the best move. It is possible then that we get different outcomes
for the search when doing null moves or not. This situation is called zugzwang (Uiterwijk and
Van den Herik, 2000) and occurs mostly in endgames. However, in Arimaa zugzwang is
unlikely, since the game usually ends with many pieces still on the board.

4.2 Transposition Table

When we are searching for a good move, programs build large trees. Since a position
can sometimes be arrived at by several distinct move sequences, the size of the search tree can
be reduced considerably if the results of a position are stored. The position showed in figure
4.2 can be reached by 1. e2-e3, e3-f3, d2-d3, d3-d4, but also by 1. d2-d3, d3-d4, e2-e3, e3-f3,
or by many other move sequences, all starting in the position showed in figure 4.1. Assume
this position appears in a search tree. After exploring this position, we know its score and the
best move. Because this position exist somewhere else in the tree it is beneficial to save the
relevant information in a transposition table.

Figure 4.1: A starting position.

Figure 4.2: Position after moves e2-e3,
e3-f3, d2-d3, d3-d4.

 30

When we encounter one of these positions again somewhere else in our search, we can

use this information to narrow down the rest of the search. This heuristic has proven to be
very successful, for example in Chess where the search tree can be reduced up to 90%
depending on the game phase. In the next subsection we explain how we use transposition
tables in Arimaa.

4.2.1 Hashing

 We would like to save every position encountered in the search tree, but unfortunately
this is not possible due to memory restrictions of most nowadays computers. Therefore a
transposition table is implemented as a hash table using some hashing method.
 In Arimaa there are six different pieces (Elephant, Camel, Horse, Dog, Cat, and
Rabbit), two colours (Gold and Silver) and 64 squares. For any combination of a piece and a
square a random number is generated. Thus, in total 768 (2664 ××) random numbers are
available and there is one generated for the player that has to move in the position. The hash
value for a position is computed by doing an XOR operation on the numbers associated with
the piece combination of that position. This method is called Zobrist Hashing (Zobrist, 1970).
It is not only fast, but it can also be done incrementally.

)____(hashvalue
XOR)____(hashvalue
XOR)_(hashvalue)_(hashvalue

movedpieceofsquareto

movedpieceofsquarefrom

positionoldpositionnew =

Normally we have to do only two XOR operations in Arimaa. For push and pull moves, we
have to do this for both pieces.

If in a move a piece gets lost on a trap, then we have also to XOR the square of the trapped
piece.
 If the transposition table consist of n2 entries, the n lower-order bits of the hash value
are used as a hash index. We used n = 24 in COXA. The remaining bits (the hash key) are
used to distinguish among different positions mapping on the same hash index. In Arimaa we
use a 64-bits hash value.

4.2.2 Use of a Transposition Table

 Each entry in the transposition table is 64 bits long. The following traditional
components are stored in an entry:

)_2___(hashvalue
XOR)_2___(hashvalue
XOR)_1___(hashvalue
XOR)_1___(hashvalue
XOR)_(hashvalue)_(hashvalue

movedpieceofsquareto

movedpieceofsquarefrom

movedpieceofsquareto

movedpieceofsquarefrom

positionoldpositionnew =

 31

key contains the hash-key part of the hash value. There are 34 bits reserved for the key.
move contains the best move in the position obtained from the search. There are 12 bits

reserved for the best move.
score contains the value of the position obtained from the search. The score can be an exact

value, an upper bound or a lower bound. There are 11 bits reserved for the score.
flag the flag indicates whether the score is an exact value, an upper bond or a lower bound.

 There are 2 bits reserved for the flag.
depth contains the depth of the searched subtree. There are 5 bits reserved for the depth.

The key value is used to check if the retrieved board position is the same as the current.
Sometimes using the key value cannot detect that the retrieved board position is different.
Therefore we always check if the move stored in the transposition table is valid in the position
concerned.

We use the transposition table at three different levels:

1. The depth still to be searched is less than or equal to the depth retrieved from the table
and the retrieved value is an exact value. In this case the position is not further
analysed and the value and move retrieved are returned. This is the main raison why
transposition tables are used.

2. The depth still to be searched is less than or equal to the depth retrieved from the table

and the retrieved value is not an exact value. The retrieved value can be used to adjust
either the alpha value (if the retrieved value is a lower bound) or the beta value (if the
retrieved value is an upper bound). Thus, we can use this value to adapt the alpha-beta
window. A cut-off is possible, otherwise the retrieved move can be used as a first
candidate, since it was considered best previously.

3. The depth still to be searched is greater than the depth retrieved from the table. The

retrieved move is used as first move in the move ordering. Because iterative deepening
is used, this situation occurs often. Iterative deepening and transposition tables are
used in combination to speed up the alpha-beta search.

For a more detailed description of the algorithm, see (Marsland, 1986).

4.2.3 Probability of Errors

 Using a transposition table as a hash table introduces two types of errors. The first type
of error is a type-1 error (Breuker, 1998). A type-1 error occurs when two different positions
have the same hash value. This mistake will not be recognised and can lead to wrong
evaluations in the search tree.
 Let N be the number of distinguishable positions, and M be the number of different
positions to be stored. The probability that this error will happen is given by the following
equation (Gillogly, 1989):

N
M

eerrorsnoP 2

2

)_(
−

≈ (4.1)

 32

 As an example we consider COXA, which searches 20000 nodes per second (nps). If it
plays Arimaa using a 3-minute search, the number of nodes investigated is 6106.3 × . Assume
that an attempt is made to store them all in the transposition table. If the hash value consists of
58 bits (index + key), the probability of at least one type-1 error is:

522

3600000

102.21 58

2

−×
−

×≈− e

 Because the transposition table is small, we cannot store all the positions occurred in
the search. It happens that a position is to be stored in an entry, which is already occupied by
another position. This is called a type-2 error or a collision. A choice has to be made which of
the two involved positions should be stored in the transposition table. There are several
replacement schemes (Breuker et al., 1994), which tackle the collision problem. We use the
familiar Deep replacement scheme. If a collision occurs, the one with the greatest depth is
kept. Notice that for every new search process the transposition table is cleared.

4.3 Move Ordering

 By sorting the moves generated in the alpha-beta search we can maximize the number
of cut-offs in the process. Therefore we have to create an ordering function, which tries
plausible moves first. The idea behind this is that if the best move is evaluated first, then the
alpha and beta bounds will leave only a small window in which moves are not pruned. In
effect every move which violates these bounds will be pruned. However, we do not know
which the plausible moves are, since that is why we are searching in the first place. We can
solve this problem by determining those by heuristics. There are two kinds of heuristics that
exist: game-specific and game-independent. Game-specific heuristics are based on
characteristics of the game and are discussed in section 4.3.1. Game-independent heuristics do
not take characteristics of the game into consideration, but their applicability can depend on
the kind of game. Besides the transposition move we will use two other game-independent
move-ordering techniques, discussed in sections 4.3.2 and 4.3.3.

4.3.1 Game-specific Heuristics

 The characteristics of Arimaa we used are that push and pull move will be investigated
before single steps. This is done because this can give a material advantage and can open or
close ways for other pieces. Another heuristic we used for the push and pull moves is that the
moves of the stronger pieces will be tried first. The single steps will be generated also in order
of the strongest pieces first. These single steps will be reordered when we use the history
heuristic, as discussed in section 4.3.3.

4.3.2 Killer-move Heuristic

 The killer-move heuristic (Huberman, 1968) is one of the most efficient move-
ordering heuristics. It has proved to be quite successful and reliable in all sorts of games. The
logic behind this heuristic is based on the assumption that the best move for a given position
could well be a very good or even the best move in another position encountered at the same
depth during the search process. Normally the last pruning or best move is stored, but more

 33

killer moves can be stored. Pruning by the killer move is mostly due to information gathered
at the same depth in the same subtree. The heuristic is cheap: for k moves at n plies, the
memory cost is nk × entries in a move table. For more information on the killer-move
heuristic we refer to (Akl and Newborn, 1977).

4.3.3 History Heuristic

The history heuristic was invented by Schaeffer (1983). The working of the history
heuristic is in some way similar to that of the killer moves. Unlike the killer heuristic, which
only maintains a history of one or a few best killer moves at each ply, the history heuristic
maintains a history for every legal move seen in the search tree. The best move at an interior
node is the move which either causes an alpha-beta cut-off, or which causes the best score.
With only a finite number of legal moves, it is possible to maintain a score for each move in
two (Gold and Silver) tables. At every interior node in the search tree the history-table entry
for the best move found is incremented by d2 where d is the depth of the subtree searched
under the node. When a new interior node is examined, moves are re-ordered by descending
order of their history scores.

The logic behind the history heuristic is that a move, often preferred over other moves,
has a high likelihood of causing a large number of cut-offs. Moreover, a move that is good at
this depth might very well also be good at other depths. A well-known problem that we
stumble upon here is that the history table keeps building up and what appear to be good
moves now can still be overshadowed by the good moves earlier in the game. To
counterbalance this we divide all the counters by 2 at the start of a new search process.

This heuristic does not cost very much memory. The history tables are defined as two
tables with 4096 entries (s to_square res from_squa 6464 ×), where each entry is 4 byte
large. The total memory cost is only 32.7 kilobytes.

4.4 Overall Framework

 In this chapter we have discussed several methods which are used in the experiments
to create COXA. The pseudo code of Marsland (1986) and Donninger (1993) are combined. In
which way alpha-beta, PVS, transposition tables, null move and tree construction are used is
described by them. Before the null move is tried, the transposition table is used to prune a
subtree or to narrow the window. As far as move ordering is concerned, the transposition
move, if applicable, is always tried first. Next, the killer moves are tried. After that the push
and pull moves are tried in the order as generated (i.e., according to the piece strength). All
the other moves are ordered decreasingly to their scores in the history table.

 34

 35

5 Tuning the Evaluation Function

For optimal performance of the evaluation function we have to tune the weights that
we added to the different parts of the evaluation function. In this chapter we will discuss the
tuning of the evaluation function.

5.1 Setup of the Tuning

There are 14 weights and 1 bonus value that we have to tune. We choose for two type
of players. One will be the standard player, were as the other (the variable player) will be the
player were we vary the weights every time. The standard player will get the value 1.0 for all
weights. The variable player will get also all weights set to 1.0 except the weight to be tuned.
Each weight will be tuned separately. For the weight to be tuned we try a large negative value
and then we play a tournament against the standard player were each player will be 50 times
playing Silver and 50 times playing Gold. We also do this with a large positive value and
some weight values in between. From the results we determine an optimum value.

When the optimum is reached we give both players the optimum value for that weight
and we go on to the next weight.

5.1.1 Random Factor

 Before the tuning can start, we need a random value that we add to every evaluation of
a position, since otherwise we get the same result for every game. This random value makes
the games every time a little bit different. The impact of the random value may not be too big
to prevent determining the outcome of a search. Therefore we optimize this value first.
 Every evaluation we start with a random number between 0 and 10. This number will
be multiplied with a factor ‘x’ to be tuned. The outcome of the two numbers will then be
added to the evaluation value.
 For tuning this weight, we set the search depth to 4 without any time limit. This gives
us a better look on how big the influence of the random factor is. For the standard player we
used the value 0.0 for the weight so he will not have any influence on the results of the
variable player. We made steps of 0.1 and investigated the number of different steps for move
2. Like we have discussed before also here we had to do with transpositions. These
transpositions are deleted and the results are shown in figure 5.1.
 As we can see in figure 5.1 for depth 4 the influence of a very small random factor has
already much influence on the number of different moves. This is stabilized around 0.2. For
depth 3 this is around 0.3. For depths 2 and 1 there is no influence at all in the beginning, and
a random factor of at least 0.7 is needed for enough variation.

We chose for a random weight of 0.3, because there it has almost a stable influence on
depth 3 and, as we can see in figure 5.2, 0.3 is the point were the random variable still has not
too much influence on the outcome of the games.

 36

0

5

10

15

20

0.0 0.5 1.0 1.5 2.0

Weight Value

D

if
fe

re
nt

 m
ov

es

1 2 3 4

Figure 5.1: Influence of the random weight on the difference of moves for each depth.

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1 1.2

Weight Value

W
in

 %

Average Gold Silver

Figure 5.2: Winning % of the random value.

5.2 Tuning the Basic Evaluation

 After determining the random variable we will tune the other weights of our evaluator
according to the setup described. Now we take a look at the weights of the basic evaluation
parts.

 37

5.2.1 Material Weight

 In this experiment we set for both players the random value at 0.3 and the remaining
weights at 1.0; only the material weight of the variable player receives the values -20, -10, 0,
10, 20, 30, and 40. From the result depicted, figure 5.3, we see a top around 10. This is the
area were we have used more values.

0
10
20
30
40
50
60
70

-30 -20 -10 0 10 20 30 40 50

Weight Value

W
in

 %

Average Gold Silver

Figure 5.3: Winning % of the material value.

By zooming in step by step to the top we get the results shown in figure 5.4. As

optimum we settled to use the value of 4 for the material weight.

0
10
20
30
40
50
60
70
80

-15 -10 -5 0 5 10 15 20 25

Weight Value

W
in

 %

Average Gold Silver

Figure 5.4: Winning % of the material value (zoomed in).

 38

5.2.2 Piece-square Tables

 As said in chapter 3, we have three different piece-square tables for all six pieces, but
six weights that we have to tune. We start with the piece-square table weight for the rabbit.
 Here we also started with some sparsely distributed values to locate the top. These
values ranged from -10 to 40 with steps of 10 and plus the value of 60. the results are shown
in figure 5.5.

0
10
20
30
40
50
60
70
80

-20 0 20 40 60 80

Weight Value

W
in

 %

Average Gold Silver

Figure 5.5: Winning % of the rabbit piece-square table.

We see a top around 10 and that is the point where we zoomed in. From the results

shown in figure 5.6 we decided for the value 6 as the optimum.

30

40

50

60

70

80

0 5 10 15 20 25

Weight Value

W
in

 %

Average Gold Silver

Figure 5.6: Winning % of the rabbit piece-square table (zoomed in).

 39

 After the weight of the rabbit piece-square table, we tuned the weight of the cat piece-
square table. The results are shown in figure 5.7, were we see that the top is located around 0.
Zooming in on 0 we obtain figure 5.8 where we see that the optimum is at 0 or 1. We decided
to use the value 1 as the best value for the cat piece-square table weight, since for that value
the difference between the gold and silver winning percentage is smaller.

0

10

20

30

40

50

60

-40 -30 -20 -10 0 10 20 30 40

Weight Value

W
in

 %

Average Gold Silver

Figure 5.7: Winning % of the cat piece-square table.

20
25
30
35
40
45
50
55
60

-15 -10 -5 0 5 10 15

Weight Value

W
in

 %

Average Gold Silver

Figure 5.8: Winning % of the cat piece-square table (zoomed in).

 40

The next weight is that of the piece-square table of the Dog. Also here we did many
test runs. We found a best value of 0, as we can see in figures 5.9 and 5.10. This means that
the dog piece-square table that we use at the moment is no improvement to the player.

0

10

20

30

40

50

60

-30 -20 -10 0 10 20 30

Weight Value

W
in

 %

Average Gold Silver

Figure 5.9: Winning % of the dog piece-square table.

0

10

20

30

40

50

60

-15 -10 -5 0 5 10 15

Weight Value

W
in

 %

Average Gold Silver

Figure 5.10: Winning % of the dog piece-square table (zoomed in).

 41

 After training the weight for the dog piece-square table we similarly tuned the weight
for the Horse. Just like by the Dog, this piece-square table did not give any improvement to
the player, as we can see in figures 5.11 and 5.12.

0
10
20
30
40
50
60
70

-30 -20 -10 0 10 20 30

Weight Value

W
in

 %

Average Gold Silver

Figure 5.11: Winning % of the horse piece-square table.

0
10
20
30
40
50
60
70

-15 -10 -5 0 5 10 15

Weight Value

W
in

 %

Average Gold Silver

Figure 5.12: Winning % of the horse piece-square table (zoomed in).

 42

 Next we tuned the value of the weight of the camel piece-square table. This table
seems to be an improvement to our player because, as we can see in figures 5.13 and 5.14, we
find the value 3 to be the best value.

0

10

20

30

40

50

60

-30 -20 -10 0 10 20 30 40

Weight Value

W
in

 %

Average Gold Silver

Figure 5.13: Winning % of the camel piece-square table.

0
10
20
30
40
50
60
70

0 5 10 15 20 25

Weight Value

W
in

 %

Average Gold Silver

Figure 5.14: Winning % of the camel piece-square table (zoomed in).

 43

 For the last weight of the piece-square table, that of the Elephant, we performed the
test runs and found the value of 15 to be the best for the player. This is a large value, which is
explainable since the Elephant is the strongest piece on the board and has to get access to each
side as quick as possible. Therefore it strongly wants to stay in the middle of the board just as
the piece-square table indicates.

0

10

20

30

40

50

60

-30 -20 -10 0 10 20 30 40

Weight Value

W
in

 %

Average Gold Silver

Figure 5.15: Winning % of the elephant piece-square table.

0
10
20
30
40
50
60
70

0 5 10 15 20 25 30 35

Weight Value

W
in

 %

Average Gold Silver

Figure 5.16: Winning % of the elephant piece-square table (zoomed in).

 44

5.2.3 Mobility

As said in chapter 3 we split mobility in two, namely a weight for the frozen part, and
one for the partial mobility.

First we tuned the frozen part. Here we find a negative weight, which is correctly
indicated that a piece is penalized for being frozen. A can be seen in figures 5.17 and 5.18 we
found the value -8 for this weight.

0
10
20
30
40
50
60
70

-40 -30 -20 -10 0 10 20 30

Weight Value

W
in

 %

Average Gold Silver

Figure 5.17: Winning % of the frozen-weight value.

40

45

50

55

60

65

70

-25 -20 -15 -10 -5 0

Weight Value

W
in

 %

Average Gold Silver

Figure 5.18: Winning % of the frozen-weight value (zoomed in).

 45

 Second we tuned the partial-mobility part. Here we see that the effect of this weight
hardly depends on its value, except for the optimum value 0. See figures 5.19 and 5.20.

0
10
20
30
40
50
60
70

-30 -20 -10 0 10 20 30

Weight Value

W
in

 %
Average Gold Silver

Figure 5.19: Winning % of the partial-mobility weight value.

0
10
20
30
40
50
60
70

-15 -10 -5 0 5 10 15

Weight Value

W
in

 %

Average Gold Silver

Figure 5.20: Winning % of the partial-mobility weight value (zoomed in).

5.3 Tuning the Knowledge Evaluator

 Besides the basic evaluator we also had the knowledge-evaluation part which we
described in section 3.2. The tuning of this part will be described in this section, similarly as
we did for the basic evaluator.

 46

5.3.1 Rabbit Evaluation

 Like we have seen in chapter 3 we had two parts in the rabbit evaluation. First we had
a weight to encourage the Rabbits to from solid walls. The results for this weight can be seen
in figures 5.21 and 5.22, where it is tuned to the value 10.

40

45

50

55

60

-20 -10 0 10 20

Weight Value

W
in

 %

Average Gold Silver

Figure 5.21: Winning % of the solid-wall weight value.

30
35
40
45
50
55
60
65

0 5 10 15 20

Weight Value

W
in

 %

Average Gold Silver

Figure 5.22: Winning % of the solid-wall weight value (zoomed in).

 47

 Second we had to tune the weight rewarding Rabbits on free files to the goal. This
weight is tuned in figures 5.23 and 5.24 and resulted in the value 50.

30

35

40

45

50

55

60

-50 -30 -10 10 30 50

Weight Value

W
in

 %
Average Gold Silver

Figure 5.23: Winning % of the free-file weight value.

35

40

45

50

55

60

65

40 45 50 55 60

Weight Value

W
in

 %

Average Gold Silver

Figure 5.24: Winning % of the free-file weight value (zoomed in).

 48

5.3.2 Goal-threat Evaluator

 Like the other tuning experiments we did a rough investigation first (figure 5.25), and
then zoomed in around value 10 (figure 5.26). The value 5 was found to be the best for the
goal-threat evaluator weight.

0

10

20

30

40

50

60

-20 -10 0 10 20

Weight Value

W
in

 %

Average Gold Silver

Figure 5.25: Winning % of the goal-threat weight value.

30

40

50

60

70

80

0 5 10 15 20

Weight Value

W
in

 %

Average Gold Silver

Figure 5.26: Winning % of the goal-threat weight value (zoomed in).

 49

5.3.3 Trap-control Evaluator

 For the trap control evaluator we had two ways to determine the bonus. First we had a
weight when there was only one colour present at the goal. This weight we tuned according to
figures 5.27 and 5.28. Here we see that the best value is 0. This means that the current trap
control for one colour present is no improvement to our player.

0
10
20
30
40
50
60
70

-20 -10 0 10 20

Weight Value

W
in

 %

Average Gold Silver

Figure 5.27: Winning % of the trap-control weight value.

0
10
20
30
40
50
60
70

-10 -5 0 5 10

Weight Value

W
in

 %

Average Gold Silver

Figure 5.28: Winning % of the trap-control weight value (zoomed in).

 50

 Second we had the possibility that both colours are present near a trap. For this we
determine how big the weight should be for the strongest player. This tuning can be seen in
figures 5.29 and 5.30. Here we see again that the best value is 0. This means also that this
brings no improvement to our player.

0

10

20

30

40

50

60

70

-20 -15 -10 -5 0 5 10 15 20

Weight Value

W
in

 %

Average Gold Silver

Figure 5.29: Winning % of the bonus weight value.

20

30

40

50

60

70

-10 -5 0 5 10

Weight Value

W
in

 %

Average Gold Silver

Figure 5.30: Winning % of the bonus weight value (zoomed in).

 51

5.4 Chapter Conclusion

 We have tuned the weights of the evaluation function, the results of which are
gathered in table 5.1. We see that some parts of the evaluation (viz. with weight 0) are no
improvement to COXA. So we removed the dog piece-square table, horse piece-square table,
and the partial mobility for the basic evaluator, and trap control for single and two player(s)
for the extended evaluator.

Furthermore, we see that the piece-square table for the Elephant is very important with
a weight of 15, meaning that it is important for the Elephant to be in the middle of the board.
 Another point that gets our attention is the rabbit evaluation. Here we see that solid
walls with weight 10 are important. We also see that free files become very important when
they are present (weight 50).
 Overall we see that the basic evaluation does good work to give improvement. The
extended evaluation also gives improvement except the trap control. This needs more
attention before it can become part of a better playing program.

 Weight Value
material balance 4
rabbit piece-square table 6
cat piece-square table 1
dog piece-square table 0
horse piece-square table 0
camel piece-square table 3
Elephant piece-square table 15
frozen pieces -8

Basic

partial mobility 0
Rabbit's solid walls 10
Rabbit's free files 50
goal threat 5
trap control single player 0

Extended

trap control two players 0

Table 5.1: Overview of the weight values of the tuned evaluation function.

 52

 53

6 Testing of Search Algorithm

This chapter describes some numerical tests about the search techniques described in
chapter 4. All results in this chapter are taken from a series of 100 games of Arimaa. Each
algorithm played 50 times as Gold, and 50 times as Silver. The small random factor of 0.3
was also added to the evaluation function to avoid playing the same game 100 times. For each
experiment, the search depth of the algorithm was fixed at depth 5, and iterative deepening
was enabled.

First, the results for the various windowing techniques are described in section 6.1.
The best algorithm is then extended with the transposition tables (see section 6.2) and then the
move ordering techniques are added (see section 6.3). Finally, in section 6.4 a short
conclusion is given about all search-algorithm experiments.

In all tests, the results are displayed as the average number of nodes searched per
search depth, the time in seconds to reach that depth and the percentage of nodes gained when
using two different search algorithms.

6.1 Windowing Techniques

 Two windowing techniques were implemented: principal variation search (PVS), and
the null move. First PVS is tested in two ways against plain Alpha Beta in subsection 6.1.1,
and then the best algorithm is tested against itself with the null move enabled in subsection
6.1.2. These tests were run at a fixed search depth of 5 plies, as it almost takes three days to
complete a test run of 100 games at this depth.

6.1.1 Principal Variation Search

 Principal variation search was tested in two ways. In the first test, plain Alpha Beta
played against PVS, where PVS is applied on every step of a move.

 Alpha Beta PVS all steps
depth # sec # nodes # sec # nodes % gain

1 0.0 20 0.0 23 -15.0
2 0.0 483 0.0 494 -2.3
3 1.7 10943 1.6 10825 1.1
4 41.7 251166 36.8 244461 2.7
5 65.6 352949 61.1 351604 0.4

Table 6.1: Principal Variation Search (all steps) test results.

 As table 6.1 shows, PVS performs much like Alpha Beta, with only a small
enhancement at depth 4.
 In the second test, Alpha Beta was compared to PVS, where PVS was only used on the
last step of a move.

 54

 Alpha Beta PVS only last step
depth # sec # nodes # sec # nodes % gain

1 0.0 19 0.0 19 0.0
2 0.0 438 0.0 431 1.6
3 1.5 9383 1.4 9206 1.9
4 33.6 203392 32.7 196009 3.6
5 60.0 322094 58.7 316579 1.7

Table 6.2: Principal Variation Search (last step) test results.

 As shown in table 6.2, principal variation search, only on the last step, performs
slightly better than PVS on all steps. Here we see an improvement on depth 4, which is where
the last step of the first player occurs.

6.1.2 Null-move Search

 In the last test of this series, two different versions of principal variations search
played against each other. One used the null move heuristic, and the other did not. For the null
move, R (the reduced- depth parameter) was set to 0, because here the null move is only
applied at depth 5. When the null move is used the depth springs from 5 to 9 directly because
switching from player means omitting 4 steps. On the others steps it is allowed to pass
anyway and adding a null move.

 Null move Disabled Null move enabled
depth # sec # nodes # sec # nodes % gain

1 0.0 20 0.0 20 0.0
2 0.0 479 0.0 475 0.8
3 1.7 10782 1.7 10625 1.5
4 40.2 240242 40.3 241485 -0.5
5 64.4 345210 66.4 356405 -3.2

Table 6.3: Null-move search test result

 As table 6.3 clearly shows, when the null move is used (see depth 5) it is bad for our
search. To test the null move really good we have to go much deeper in the search, since it
only can be used at depths like 5, 9, 13, 17, etc. But depths 9 and above are unreachable at the
moment.

6.2 Transposition Table

 To test the effect of transposition tables on Arimaa, each of its components was
enabled separately and tested against the reference player from now on: PVS on the last step
without null move. In subsection 6.2.1 the transposition table is only used when an exact hit
has been found. In subsection 6.2.2 only upper/lower bound hits in the table are used. In
subsection 6.2.3 the table is only used as a move ordering mechanism, and finally in
subsection 6.2.4 all components are enabled and the table is fully used.

 55

6.2.1 Only using Exact Table Hits

 In this test, the transposition table pruning was only enabled when the value stored in
the table was an exact value. The number of tthits is therefore defined as the number of times
that exact values in the tables were used to cut off the search.

TT disabled TT enabled (exact)
depth # sec # nodes # sec # nodes # tthits % gain

1 0.0 20 0.5 20 0 0.0
2 0.0 454 0.6 257 205 43.4
3 1.6 10053 1.4 2821 7442 71.9
4 38.1 223364 15.1 20127 211669 91.0
5 60.3 323719 38.8 38889 411411 88.0

Table 6.4: TT (exact) test results.

 As table 6.4 shows, only pruning the tree when an exact hit is found in the
transposition table reduces the number of nodes with about 90% at search depth 5.

6.2.2 Only using Upper and Lower Bound Pruning

 In this test, only upper and lower bound hits in the table were used to speed up the
search process. These values are obtained from previous Alpha and Beta values and can be
used to adjust the search window. In this case, the tthits count is the number of upper and
lower bound hits that were used to prune the tree.

TT disabled TT enabled (upper/lower bound)
depth # sec # nodes # sec # nodes # tthits % gain

1 0.0 20 0.5 20 0 0.0
2 0.0 479 0.6 484 0 -1.0
3 1.7 10708 1.1 6146 348 42.6
4 39.8 241324 6.1 58676 3872 75.7
5 64.9 353936 12.2 78206 43241 77.9

Table 6.5: TT (upper / lower bound) test results.

As shown in table 6.5, using upper and lower bound reduces the number of nodes with
about 78% at search depth 5.

6.2.3 Only using Move Ordering

 In this test, the transposition table was only used as a move ordering mechanism. If the
current position has a value and a move stored in the table, that move is tried first when
searching the position, even if the value stored in the table could have been used to cut off the
tree. The tthits value stands for each time the transposition table is used to re-order the moves.

 56

TT disabled TT enabled (ordering)
depth # sec # nodes # sec # nodes # tthits % gain

1 0.0 20 0.5 21 0 -5.0
2 0.0 471 0.6 486 217 -3.2
3 1.6 10489 1.4 10902 8664 -3.9
4 39.3 235967 15.9 248376 236015 -5.3
5 63.2 341181 41.6 488458 686605 -43.2

Table 6.6: TT (ordering) test results.

As the results in table 6.6 shows, only using the move ordering feature of the
transposition table yields a negative reduction in nodes searched of about 43% at search depth
5.

6.2.4 Full use of the Table.

 In the last test of this series, the transposition table was fully enabled, combining all
three features tested in the previous tests. This time, tthits is the number of times some
information stored in the table was used in the search. This can either be an exact hit, an
upper/lower bound hit or a re-ordering hit.

TT disabled TT enabled (full)
depth # sec # nodes # sec # nodes # tthits % gain

1 0.0 20 0.5 21 0 -5.0
2 0.0 452 0.6 273 221 39.6
3 1.6 9896 1.1 2508 4143 74.7
4 36.2 217874 6.3 21143 43759 90.3
5 62.7 340407 12.5 40531 84999 88.1

Table 6.7: TT (full) test results.

As table 6.7 shows, using the full transposition table lowers the number of nodes

searched with about 90% at depth 5. This is the same as in table 6.4 where we only used the
exact feature. However, the full feature searches uses for a similar number of nodes
considerably less time, a gain of almost 68% at search depth 5. The reason is that the number
of times information is retrieved from the table, as indicated by the number of hits, is
considerably lower when the full feature is used. Consequently, we opted to use the full
feature from now on.

6.3 Move Ordering

 As said in chapter 4 we put the game-specific heuristics directly into the code. Two
different game-independent move-ordering techniques were implemented for Arimaa: the
killer-move heuristic, and the history heuristic. (The use of the transposition move as move
ordering was already tested in subsection 6.2.3.) The best algorithm so far, PVS only on the
last step of a move with the null move disabled and the transposition table fully used, will
play against its counterpart with the killer move enabled in subsection 6.3.1, where a few
variants of the killer-move heuristic are tested.

 57

Furthermore, in subsection 6.3.2 the history heuristic is tested. In all these tests, most
settings remain unchanged, but the search depth was fixed at ply 6 since use of the
transposition table enabled a considerable speed-up in search time.

6.3.1 Killer-move Heuristic

 To test the impact of the killer-move heuristic, five tests were run. In test 1, the best
algorithm so far, PVS only on the last step of a move with the null move disabled and the
transposition table fully used, played against its counterpart with killer-move heuristic
enabled. For this first test, only one killer was recorded per search depth. For the other four
tests each time one killer extra will be recorded per search depth, so in the last test we have 5
killers recorded.

Killer disabled Killer enabled (record one)
depth # sec # nodes # sec # nodes % gain

1 0.5 19 0.5 20 -5.3
2 0.6 230 0.6 244 -6.1
3 1.0 1983 1.1 2144 -8.1
4 4.9 15783 5.4 17358 -10.0
5 9.7 30685 10.7 34060 -11.0
6 15.1 43201 16.8 49181 -13.8

Table 6.8: Killer-move heuristic (record one) test results.

As shown in table 6.8. using the killer heuristic as move ordering on top of PVS and

transposition table yields an increase of up to 14 % at depth 6.
 In test 2, we record two killers for one player and none for the other.

Killer disabled Killer enabled (record two)
depth # sec # nodes # sec # nodes % gain

1 0.5 20 0.5 19 5.0
2 0.6 247 0.6 242 2.0
3 1.1 2194 1.1 2124 3.2
4 5.5 18029 5.3 17198 4.6
5 11.0 34918 10.4 33262 4.7
6 16.9 47045 16.2 45547 3.2

Table 6.9: Killer-move heuristic (record two) test results.

Table 6.9 shows a little improvement of around 4-5 % at depth 5.

In test 3, again we recorded one extra killer, i.e., three for one player and none for the

other.

 58

Killer disabled Killer enabled (record three)

depth # sec # nodes # sec # nodes % gain
1 0.5 19 0.5 19 0.0
2 0.6 239 0.6 240 -0.4
3 1.1 2093 1.1 2115 -1.1
4 5.2 17023 5.2 17112 -0.5
5 10.3 33031 10.4 33410 -1.1
6 15.9 45483 16.4 47763 -5.0

Table 6.10: Killer-move heuristic (record three) test results.

As shown in table 6.10 it gives no improvement in node reduction. It searches

throughout more nodes.
 In test 4, the fourth killer will also be recorded for one player and none for the other.

Killer disabled Killer enabled (record four)
depth # sec # nodes # sec # nodes % gain

1 0.5 19 0.5 20 -5.3
2 0.6 236 0.6 243 -3.0
3 1.0 2061 1.1 2143 -4.0
4 5.1 16521 5.3 17388 -5.2
5 10.1 32062 10.5 33584 -4.7
6 15.9 46557 16.2 45050 3.2

Table 6.11: Killer-move heuristic (record four) test results.

Once again, as table 6.11 shows, more recording of killers gives no reduction of nodes

searching. Only a little improvement at depth 6 of some 3%.
Finally in test 5, we recorded five killers for one player.

Killer disabled Killer enabled (record five)
depth # sec # nodes # sec # nodes % gain

1 0.5 20 0.5 20 0.0
2 0.6 242 0.6 244 -0.8
3 1.1 2126 1.1 2162 -1.7
4 5.3 17186 5.4 17646 -2.7
5 10.4 33306 10.7 33977 -2.0
6 16.4 47658 16.4 45445 4.6

Table 6.12: Killer-move heuristic (record five) test results.

 As shown in table 6.12, we see here no improvement in reducing nodes, except for a
small gain at depth 6 of almost 5%. This could mean that deeper searches will give more
reducing of nodes. Further research is needed to answer this question.

 59

6.3.2 History Heuristic

 In the history test, PVS only on the last step of a move with the null move disabled,
the transposition table fully used and the killer move enabled using two killers per depth was
equipped with the history heuristic enabled. For this test, the values in the history tables were
incremented with d2 .

History disabled History enabled
depth # sec # nodes # sec # nodes % gain

1 0.5 19 0.5 20 -5.3
2 0.6 230 0.6 251 -9.1
3 1.0 2009 1.1 2256 -12.3
4 5.0 16281 5.7 18645 -14.5
5 9.9 31639 11.4 35768 -13.1
6 15.3 43205 16.8 41972 2.9

Table 6.13: History-heuristic test results.

As table 6.13 shows, the history heuristic brings no improvement to our search. Once

again, like with the killer-move heuristic, it gives however a small improvement at depth 6.

6.4 Chapter Conclusions

 As seen throughout this chapter, most search enhancements yield a positive result in
nodes reduction. So far, only null move search, some killer-move heuristic variations and the
history heuristic had a negative influence. Therefore, the recommended search algorithm will
use the following enhancements:

• principal-variation search but only at the last step;
• the transposition table fully used;
• the killer-move heuristic with 2 killers per depth.

 60

 61

7 Conclusions

This chapter contains the final conclusions on our research. Section 7.1 revisits the
problem statement and research questions, and section 7.2 lists possibilities for future
research.

7.1 Problem Statement and Research Questions Revisited

 In section 1.3 we have defined the following research questions:

What is the complexity of Arimaa?

 In chapter 2, we have seen that the state-space complexity of Arimaa is)10(43O , and
the game-tree complexity is)10(300O . These numbers are only an approximation, since the
state-space complexity includes some unreachable positions as shown, and the game-tree
complexity is based on games between humans and is subject to change once more Arimaa
programs are created. Both the state-space complexity and the game-tree complexity of
Arimaa are comparable to that of the game of Amazons. Completely solving Arimaa is,
probably impossible in a foreseeable future.

 The second research question was:

Can we use knowledge about the game of Arimaa in an efficient and effective
implementation of an Arimaa program?

 The evaluation function described in chapter 3 implements different strategies. The
basic evaluation, i.e., material balance, piece-square tables, and mobility, are useful in
Arimaa, with the exception of the dog and horse piece-square tables. Also the partial mobility
did not work.

 For the extended evaluation the rabbit evaluation and the goal threats appeared to be
useful in Arimaa, but trap control not.

The third research question was:

Can we apply and adapt relevant techniques, developed for computer-game playing,
to the game Arimaa?

 As described in chapter 4, many known techniques can be used for Arimaa. Compared
to standard Alpha Beta search, PVS on the last step, transposition tables and killer move
heuristic all cause a more or less substantial reduction in nodes searched.

 Now that the research questions have been answered, we can also formulate an answer
to the problem statement:

Can we build an efficient and effective program to play the game of Arimaa?

 62

To build a program to play Arimaa, known search algorithms like Alpha Beta search,
PVS on the last step, transposition tables and killer move heuristic can be used. Game
knowledge in the form of a static evaluation function based on game strategies also has to be
used.
 A program with these features plays reasonably well against amateur human players.
This at least is indicative for a positive answer to the problem statement.

7.2 Future Research Possibilities

 The search algorithms and enhancements can be more fine-tuned. The null move is not
used in the game, but probably when the search depth is large enough it will give better
results. More research can be done with the history tables, a different method for upgrading or
reducing the counts. They can be used on more steps besides the single steps, like the push
and pull moves. And maybe other techniques that are not described here can be applied to
Arimaa. Furthermore, it can be possible to create a more efficient or faster implementation of
Arimaa.
 The evaluator is still a crude estimate of the value of a board position. A more
elaborate (and perhaps faster) evaluator might possibly be created. Since besides basic
evaluation so far only the rabbit evaluation and the goal-threat strategy worked, it is likely
that a more elaborate evaluation function can be created.

 63

References

Akl, S.G. and Newborn, M.M. (1977). The Principal Continuation and the Killer Heuristic.
1977 ACM Annual Conference Proceedings, pp. 466-473. ACM, Seattle.

Allis, L.V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph. D. thesis,
Rijksuniversiteit Limburg, Maastricht, The Netherlands.

Atkin, L.R. and Slate, D.J. (1977). CHESS 4.5 – The Northwestern University Chess Program.
Frey P. W. (ed.), Chess Skill in Man and Machine, pp. 82-118. Springer-Verlag, New York.

Bernstein, A., Roberts, M. De V., Arbuckle, T. and Belsky, M.A. (1958). A Chess Playing
Program for the IBM 704. Proceedings of the Western Joint Computer Conference, pp. 157-
159

Breuker, D.M., Uiterwijk, J.W.H.M. and Herik, H.J. van den (1994). Replacement schemes
for Transposition Tables. ICCA Journal, Vol. 17, No.4, pp. 183-193.

Breuker, D.M. (1998). Memory versus Search in Games. Ph. D. thesis, University of
Maastricht, The Netherlands.

Chinchalkar, S. (1996). An Upper Bound for the Number of Reachable Positions. ICCA
Journal, Vol. 19, No. 3, pp. 181-183.

Donninger, C. (1993). Null Move and Deep Search: Selective-Search Heuristics for Obtuse
Chess Programs. ICCA Journal, Vol. 16, No.3, pp. 137-143.

Gillogly, J.J. (1972). The TECHNOLOGY Chess Program. Artificial Intelligence, vol. 3, pp.
145-163.

Gillogly, J.J. (1989). Transposition Table Collisitions. Workshop on New Directions on
Game-Tree Search (pre prints) (ed. T.A. Marsland), p.12. Printing Services, University of
Alberta, Edmonton.

Greenblatt, R.D., Eastlake, D.E. and Crocker, S. D. (1967). The Greenblatt Chess Program,
Proceedings of the Fall Joint Computer Conference, pp. 801-810.

Herik, H.J. van den, Uiterwijk, J.W.H.M. and Rijswijck, J van (2002). Games Solved: Now
and in the future. Elsevier, Artificial Intelligence, Vol. 134, pp. 277-311.

Huberman, B. J. (1968). A Program to Play Chess End Games. Ph. D. thesis, Stanford
University, Computer Science Department, USA. Technical Report no.CS-106.

Hyatt, R.M., Gower, A. and Nelson, H. (1985). CRAY BLITZ. Beal, D. F. (ed.), Advances in
Computer Chess 4, pp. 8-18. Pergamon Press, Oxford.

Hsu, F-h. (2004). Behind Deep Blue: Building the computer that defeated the world Chess
champion. Princeton university press.

 64

Kister, J., Stein, P., Ulam, S., Walden, W. and Wells, M. (1957). Experiments in Chess.
Journal of the ACM, Vol. 4, pp. 174-177

Knuth, D.E. and Moore, R.W. (1975). An Analysis of Alpha-Beta Pruning. Artificial
Intelligence, Vol. 6, No. 4, pp. 293-326.

Kotok, A. (1962). A Chess Playing Program for the IBM 7090, B.S. Thesis, MIT. Computer
Chess Compendium, pp. 48-55.

Marsland, T.A. (1986). A Review of Game-Tree Pruning. ICCA Journal. Vol. 9, No.1, pp.3-19

McCarthy, J. (1961) A Basic for a Mathematical Theory of Computation. In Proc. Western
Joint Computer Conference, pp. 225-238.

Newell, A., Shaw, J.C. and Simon, H.A. (1958). Chess Playing Programs and the Problem of
Complexity, IBM Journal of Research and Development, Oct 1958, pp. 320-335.

Samuel, A.L. (1959). Some studies in machine learning using the game of Checkers. IBM
Journal of Research and Development, Vol. 3, No. 3, pp. 210-229.

Samuel, A.L. (1967). Some Studies in Machine Learning using the Game of Checkers. II-
Recent Progress. IBM Journal of Research and Development, Vol. 2, No. 6, pp. 601-617.

Schaeffer, J. (1983). The History Heuristic. ICCA Journal, Vol. 6, No. 3, pp. 16-19.

Schaeffer, J. (1997). One Jump Ahead. Springer-Verlag, New York.

Schaeffer, J. and Plaat, A. (1997). Kasparov versus Deep Blue: The Rematch. ICCA Journal,
vol. 20, No. 2, pp. 95-101.

Shannon, C. (1950). Programming a Computer for playing Chess. Philosophical Magazine,
vol. 41, pp. 256-275.

Syed, O. and Syed, A. (1999). Arimaa Official Homepage. http://www.Arimaa.com/Arimaa/.

Thompson, K. (1982). Computer Chess Strength. Advances in Computer Chess 3, Clarke,
M.R.B. (ed.), pp. 55-56. Pergamon Press, Oxford.

Turing, A.M. (1953). Chess. Digital Computers Applied to Games. Faster than Thought,
Bowden B.V. (ed.) pp. 286-310. Pitman

Uiterwijk, J.W.H.M. and Herik, H.J. van den (2000). The Advantage of the Initiative.
Information Sciences, Vol. 122, No.1, pp. 43-58.

Zobrist, A.L. (1969). A Model of Visual Organisation for the Game of Go. Proceedings of the
Spring Joint Computer Conference 69, pp 103-112.

Zobrist, A.L. (1970). A New Hashing Method with Application for Game Playing. Technical
Report 88, Computer Science Department, The University of Wisconsin, Madison, WI, USA.
Reprinted (1990) in ICCA Journal, Vol. 13, No. 2, pp.69-73.

 65

APPENDIX A: Examples of time control in Arimaa

Example 1: 0/5 means 0 minutes per move with 5 minutes in reserve (per player). This is
equivalent to G/5 in Chess; it means each player has a total of 5 minutes of time to play. If a
player runs out of time before the game is over, the player loses. This is known as Blitz or
"Sudden Death" time control in Chess.

Example 2: 0:12/5 means 12 seconds per move with 5 minutes in reserve and all of the unused
time from each move is added to the reserve time. It is similar to "5 12" in Chess which
means "Game in 5 minutes with a 12 second increment". After each move 12 seconds is
added to the remaining time. This is known as Incremental time control in Chess.

Example 3: 3/0 means 3 minute per move and no reserve time, but 100 percent of the unused
time for each move is added to the reserve. This guarantees that each player will make at
least 40 moves in 2 hours. This is similar to the "40/2" Quota System time control used in
Chess.

Example 4: 0:30/5/100/3 means 30 seconds per move with 5 minutes in reserve and 100% of
the unused time from each move is added to the reserve time. When the reserve already
exceeds the limit, more time is not added to it. When the reserve falls below 3 minutes more
time can be added to it, but the reserve is capped at 3 minutes.

Example 5: 4/2/50/10/6 this means 4 minutes per move with a starting reserve of 2 minutes.
After the move 50% of the time remaining for the move (rounded to the nearest second) is
added to the reserve such that it does not exceed 10 minutes. There is a limit of 6 hours for the
game after which time the game is halted and the winner is determined by score.

Example 6: 4/4/100/4/6 this means 4 minutes per move and a starting reserve of 4 minutes.
100% percent of the unused move time gets added to the reserve such that it does not exceed
4 minutes. There is a time limit of 6 hour for the game after which the winner is determined
by score.

Example 7: 4/4/100/4/90t this is the same as above, but the game ends after both players have
made 90 moves. Thus it ends after move 90 of Silver is completed.

Example 8: 4/4/100/4/90t/5 This is the same as above, but the players may not take more than
5 minutes for each turn even if there is still time remaining in reserve.

Different time units for any of the time control fields can be specified by adding one of the
following letters after the numbers. In such cases the letter serves as the separator and :
should not be used.
s - seconds
m - minutes
h - hours
d - days
For example: 24h5m10s/0/0/0/60d means 24 hours, 5 minutes and 10 seconds per move and
the game must end after 60 days. Such a time control may be used in a postal type match.
The game time parameter (G) can also be specified in terms of maximum number of turns
each player can make by adding the letter t after the number.

 66

 67

APPENDIX B: All unique patterns and their hits for each n

N sorted unique pattern # hits)_(nStateSpaceO
only the unique
pattern

)_(nStateSpaceO

0 1 1 1 1 2 2 2 2 2 2 8 8 1 4.63473E+42 4.63473E+42
1 0 1 1 1 2 2 2 2 2 2 8 8 4 5.61785E+41 4.49428E+42
 1 1 1 1 1 2 2 2 2 2 8 8 6 1.68536E+42
 1 1 1 1 2 2 2 2 2 2 7 8 2 2.24714E+42

2 1 1 1 1 2 2 2 2 2 2 7 7 1 2.64369E+41 2.30497E+42
 0 1 1 1 2 2 2 2 2 2 7 8 8 2.64369E+41
 1 1 1 1 1 2 2 2 2 2 7 8 12 7.93108E+41
 1 1 1 1 2 2 2 2 2 2 6 8 2 4.62647E+41
 1 1 1 1 1 1 2 2 2 2 8 8 15 2.47846E+41
 0 1 1 1 1 2 2 2 2 2 8 8 30 2.47846E+41
 0 0 1 1 2 2 2 2 2 2 8 8 6 2.47846E+40

3 0 0 0 1 2 2 2 2 2 2 8 8 4 4.72088E+38 8.31347E+41
 0 1 1 1 2 2 2 2 2 2 7 7 4 3.02136E+40
 0 0 1 1 2 2 2 2 2 2 7 8 12 1.13301E+40
 1 1 1 1 1 1 1 2 2 2 8 8 20 1.88835E+40
 0 0 1 1 1 2 2 2 2 2 8 8 60 1.41626E+40
 0 1 1 1 1 1 2 2 2 2 8 8 90 4.24879E+40
 1 1 1 1 1 2 2 2 2 2 7 7 6 9.06409E+40
 1 1 1 1 1 1 2 2 2 2 7 8 30 1.13301E+41
 0 1 1 1 1 2 2 2 2 2 7 8 60 1.13301E+41
 1 1 1 1 2 2 2 2 2 2 6 7 2 1.05748E+41
 0 1 1 1 2 2 2 2 2 2 6 8 8 5.28739E+40
 1 1 1 1 1 2 2 2 2 2 6 8 12 1.58622E+41
 1 1 1 1 2 2 2 2 2 2 5 8 2 7.93108E+40

4 1 1 1 1 2 2 2 2 2 2 6 6 1 1.0281E+40 2.35457E+41
 0 0 0 0 2 2 2 2 2 2 8 8 1 3.27839E+36
 0 0 1 1 2 2 2 2 2 2 7 7 6 1.2589E+39
 0 0 0 1 2 2 2 2 2 2 7 8 8 2.09817E+38
 0 1 1 1 2 2 2 2 2 2 6 7 8 1.17498E+40
 1 1 1 1 1 1 2 2 2 2 7 7 15 1.2589E+40
 0 1 1 1 1 2 2 2 2 2 7 7 30 1.2589E+40
 1 1 1 1 1 2 2 2 2 2 6 7 12 3.52493E+40
 1 1 1 1 2 2 2 2 2 2 5 7 2 1.76246E+40
 0 1 1 1 2 2 2 2 2 2 5 8 8 8.81231E+39
 1 1 1 1 1 2 2 2 2 2 5 8 12 2.64369E+40
 1 1 1 1 2 2 2 2 2 2 4 8 2 1.10154E+40
 1 1 1 1 1 1 2 2 2 2 6 8 30 2.20308E+40
 0 1 1 1 1 2 2 2 2 2 6 8 60 2.20308E+40
 0 0 1 1 2 2 2 2 2 2 6 8 12 2.20308E+39

