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Summary

The focus of the thesis is the analysis and implementation of an artifical player for the game Stratego.
Stratego is a deterministic imperfect-information board game for two players. The problem statement
of this thesis is: How can we develop informed-search methods in such a way that programs significantly
improve their performance in Stratego? To answer this problem statement the state-space and game-tree
complexity is calculated. For the development of the program, the following backward pruning techniques
are implemented: α-β pruning, iterative deepening, the history heuristic, transposition tables and the *-
minimax algorithms such as Star1, Star2 and StarETC. A forward pruning technique called multi-cut
is tested. Additionally the evaluation function uses features as described by De Boer (2007).

It is shown that Stratego is a complex game when compared to other games, such as chess and
Hex. The game-tree complexity of 10535 exceeds the game-tree complexity of Go. The state-space
equals 10115. The use of Star1, Star2 and StarETC improve the reachable search depth compared
to the expectimax algorithm that is normally used in games with non-determinism. Expectimax with
the history heuristic, α-β and transposition tables is able to prune 74.06%. The results show
that Star1 and Star2 can improve the node reduction by 75.18% compared to expectimax with α-β,
History Heuristic and Transposition Tables. The *-minimax algorithms get their advantage from
pruning in chance nodes. The performance gain gives the artificial player a possibility to search deeper
than an artificial player without a *-minimax algorithm. The Multi-Cut algorithm does not perform
significant better. The best performance of multi-cut is a score percentage of 53.3% in self play. In the
worst case the score percentage is 46.69%.

The conclusion of the thesis is that informed-search techniques improve the game playing of an artificial
player for Stratego. However, because of the high complexity of the game, a intermediate or expert level
of Stratego is hard to realize.
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Samenvatting

Het doel van deze thesis is de analyse en implementatie van een computer speler voor het spel Stratego.
Stratego is een deterministisch onvolledig-informatie bordspel voor 2 spelers. De hoofdvraag van deze the-
sis is: Hoe kunnen we gëınformeerde zoektechnieken ontwikkelen zodat de prestatie van een programma sig-
nificant verbeterd in Stratego? Om deze vraag te beantwoorden worden de toestandsruimte-complexiteit
en de zoekboom-complexiteit berekend. Voor de ontwikkeling van het programma zijn meerdere backward
pruning technieken gebruikt: α-β snoëıng, iterative deepening, de History Heuristiek, Trans-
positie Tabellen en de *-minimax algoritmen zoals Star1, Star2 en StarETC. Er is een forward
pruning techniek gebruikt, namelijk Multi-Cut. Ook zijn er nog evaluatie functie eigenschappen getest
zoals beschreven door De Boer (2007).

Het blijkt dat Stratego een complex spel in vergelijking met andere spellen, zoals schaak en Hex. De
zoekboom-complexiteit van 10535 is groter dan die van Go. De toestandsruimte-complexiteit is 10115.
Het gebruik van Star1, Star2 en StarETC verbeteren de zoekdiepte vergeleken met het expectimax-
algoritme dat normaal gebruikt wordt in spellen met onvolledige informatie of kansknopen. Expectimax
met de history heuristiek, α-β en transpositie tabellen kan tot 74.06% van de knopen snoeien.
De resultaten laten zien dat Star1 met Star2 de reductie kan verbeteren met 74.18% in vergelijking
met expectimax met α-β snoëıng, History Heuristiek en Transpositie Tabellen. De *-minimax
algoritmen halen hun voordeel bij het snoeien van kansknopen. De prestatiewinst geeft de computer speler
de kans dieper te zoeken dan een computer speler zonder *-minimax. Het programma met Multi-Cut
presteert niet significant beter. Het beste resultaat, in spellen tegen zichzelf, is een scorings-percentage
van 53.3%. In het slechtste geval is het scorings-percentage 46.69%.

De conclusie van deze thesis is dat gëınformeerde zoektechnieken het spel van een computer speler
voor Stratego verbeteren. Hoewel, door de hoge complexiteit van het spel is het lastig om een speler van
een gemiddeld of hoog niveau voor Stratego te maken.
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Chapter 1

Introduction

This chapter introduces the subject of the thesis, Stratego. A historical overview of the game is given
in Section 1.2. Section 1.3 discusses the related work done in this area. The research questions of this
thesis are presented in Section 1.4. Finally, 1.5 gives an outline of this thesis.

1.1 Games and AI

Games in different forms have fascinated people all over the world since civilization emerged. Board
games come in all different kind of forms. For example, if chance is involved or how much information
the player has. Games make it possible for people to challenge their intellect against other humans.

With increasing computational power humans attempted to let computers play games. Chess was
one of the first games that received attention from science. The first persons to describe a possible chess
program were Shannon (1950) and Turing (1953). Research on abstract games such as chess has led to the
chess engine Deep Blue, which defeated the World Champion of chess Kasparov in 1997, (Hsu, 2002).
Computers improved their play in several games since the first chess program (Van den Herik, Uiterwijk,
and Van Rijswijck, 2002) appeared. Some games have already been completely solved, such as Connect-
Four, (Allis, 1988), Checkers (Schaeffer, 2007) and Fanorona (Schadd et al., 2008). Moreover, researchers
investigated also less deterministic games. Stochastic (non-deterministic) games, such as Backgammon
that included an element of chance and Poker, a game which includes chance and imperfect information.

1.2 Stratego1

The game of Stratego is a board game for two players. The players each have 40 pieces with military
ranks that remain hidden for the opponent. The pieces can move around the board and attack opponent’s
pieces. The player whose Flag is captured loses the game. The rank of a piece is only revealed when
attacked or attacking.

Stratego was created by Mogendorff during World War II. It registered as a trademark in 1942 by the
Dutch company Van Perlestein & Roeper Bosch NV. In 1958 the license was granted to Hausemann an
Hötte. The first version of Stratego was distributed by Smeets and Schippers in 1946 (United States Court,
2005). In 1961 the game was sublicensed to Milton Bradley, which was acquired by Hasbro in 1984, and
first published in 1961 in the United States.

The game is popular in the Netherlands, Belgium, Germany, Britain, the United States of America and
Ukraine. Since 1997, there is a world championship of Stratego every year. In 2007, 44 people participated
in this championship and since 2007 the USA Stratego Federation holds the Computer Stratego World
Championship (USA Stratego Federation, 2009).

1STRATEGO is a registered trademark of Hausemann & Hötte.
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1.3 Related Work

Some research has been done for the game of Stratego. There are several publications which describe
their research about this topic. The first publication is by Steng̊ard (2006) who has done research in
a minimax-based approach of Stratego and created an algorithm called P-E-minimax. This algorithm
implements a null-move like technique to calculate if a move results in a similar position. The evaluation
function used is unknown.

The second publication about Stratego is by De Boer (2007), former (human) World Champion
Stratego. De Boer focuses on Stratego board set-ups and uses plans to play the game instead of search
techniques. Like most of the current Stratego bots, this implementation does not use minimax-based
algorithms but is based upon a more human-like approach (USA Stratego Federation, 2009). By selecting
a strategy (attacking a piece, defending a piece, etc) the algorithm creates short-term plans to realise its
goals. However, this implementation heavily depends on the evaluation function.

A multi-agent implementation has been done by Treijtel (2000) & Ismail (2004). These publications
approach Stratego using a rule based agent system to which assigns scores to the generated moves of the
pieces. The main focus of these publication lies on the implementation of the agents and their behaviour.

Furthermore there is a B.Sc thesis about opponent modelling in Stratego by Stankiewicz (2009) and
Stankiewicz and Schadd (2009). This thesis researches the modelling of the opponent by examening the
moves of the opponent and tries to discover the rank of the pieces by using these observations.

Another B.Sc. thesis is by Mohnen (2009) which implements domain-dependent knowledge of Stratego
in the evaluation function. The evaluation function is used to see if better domain knowledge results in
a higher number of α-β cutoffs.

The technique ChanceProbCut is applied in Stratego by Schadd, Winands, and Uiterwijk (2009).
This papers describes a forward-pruning technique in expectimax which reduces the size of the search
tree significantly.

The final paper on Stratego is by Schadd and Winands (2009) where an adapted version of Quiesence
Search is applied

A game similar to Stratego is the game Si Guo Da Zhan (The Great Battle of Four Countries) (Xia,
Zhu, and Lu, 2007). This game is intended for four players. Each player has an army with pieces of
different ranks, similar as in Stratego.

Kriegspiel (Ciancarini and Favini, 2007) is a chess game where the location of the opponent’s pieces is
unknown. The standard chess set-up stays unchanged. However, the player will need to guess or estimate
the location of the opponent’s pieces.

1.4 Problem Statement and Research Questions

In this thesis we investigate the relevance of informed search to improve computer game-play. The
following problem statement guides the research:

Problem Statement. How can we develop informed-search methods in such a way that programs
significantly improve their performance in Stratego?

To understand the complexity of Stratego we can use the state-space and the game-tree complexity as
measure and define Stratego in the game-space (Allis, 1994). The position of Stratego in the game-space
indicates if the solvability of the game and informs us if we can use a knowledge-based or search-based
approach (Van den Herik et al., 2002).

Research Question 1. What is the complexity of Stratego?

Several informed search techniques exist in order to improve the game play. The most famous one
is the minimax-based α-β search technique. Unfortunately, α-β is only applicable for deterministic
perfect-information games. A derivative of minimax has been developed to address stochastic games
called expectimax (Michie, 1966). It has been successfully been applied in the stochastic game of
Backgammon (Hauk, Buro, and Schaeffer, 2004). A direct successor of expectimax is the group of
algorithms called *-minimax (Ballard, 1983), which is able to prune substantial parts of the search tree.
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The characteristics of Stratego indicate that *-minimax might be a successful approach for Stratego.
This leads to our second research question:

Research Question 2. To what extent can *-minimax techniques be utilized in order to realize
competitive game play in Stratego?

1.5 Outline of the thesis

• Chapter 1 explains the subject of the thesis and presents the research questions.

• Chapter 2 introduces the basics of Stratego, such as the pieces, the game board, the rules and
strategies for the game.

• Chapter 3 gives an insight in the complexity of Stratego and answers the first research question.
This chapter also compares the complexity of Stratego with other games.

• Chapter 4 explains the search techniques and enhancements used in the implementation of Stratego.

• Chapter 5 gives an insight into the different aspects of the evaluation function, such as piece value,
information value and strategic positions.

• Chapter 6 lists the tests and their results. These results will answer the second research question.

• Chapter 7 concludes the thesis and answers the research questions.
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Chapter 2

The Game of Stratego

In Section 2.1 the rules of Stratego will be discussed. In Section 2.2 the notation of Stratego will be
introduced. It will also look at strategies and knowledge in Stratego in Section 2.3.

2.1 Rules

The rules of the game are described by Hasbro (2002). The goal of the game is to capture the opponent’s
flag. The detailed rules are given below.

Start of the Game

Stratego is played on a 10 × 10 board with two lakes of size 2 × 2 in the middle of the board. The players
place their 40 pieces with the back of the piece toward the opponent in a 4 × 10 area. One player takes
the blue pieces, called the blue player, and the other player takes the red pieces, called the red player.
The movable pieces are divided in ranks (from the lowest to the highest): Spy, Scout, Miner, Sergeant,
Lieutenant, Captain, Colonel, Major, General, Marshal. The player also has two unmovable piece types,
the Flag and the Bomb. Table 2.1 shows the number of pieces for each player. After the pieces of both
players are placed on the board, the red player makes the first move. A player can either choose to move
a piece or attack an opponent’s piece.

1 Flag 6 Bombs
1 Spy 8 Scouts
5 Miners 4 Sergeants
4 Lieutenants 4 Captains
3 Colonels 2 Majors
1 General 1 Marshal

Table 2.1: Available Stratego pieces for each player

Movement

• Alternately the Red player and the Blue player moves.

• Pieces are moved one square at the time to orthogonally-adjacent vacant squares. The Scout is an
exception to this rule, as explained below.

• The lakes in the center of the board contain no squares, therefore a piece can neither move into nor
cross the lakes.

• Only one piece can occupy a square.

• Each turn only one piece may be moved.
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• Scouts can be moved across any number of vacant squares either forward, backward or sideways.

• The player must move or attack in his turn.

Attack

• A player can attack if a player’s piece is orthogonally adjacent to a square occupied by an opponent’s
piece.

• A Scout can attack from any distance in a straight line provided that the squares between itself
and the attacked piece are vacant.

• It is not required for a player to attack an adjacent opponent’s piece.

• The piece with the lowest rank loses the attack and will be removed from the board. If the attacking
piece wins, it will be moved on to the square it attacked. If the attacking piece loses no piece will
be moved.

• If a piece attacks an opponent’s piece of the same rank, both pieces are removed from the board.

• The Spy defeats the Marshal if it attacks the Marshal. Otherwise the Spy will lose the attack.

• Every movable piece, except the Miner, that attacks the Bomb will lose the attack and will be
removed from the board. When a Miner attacks a Bomb, the Bomb will lose and will be removed
from the board. The Miner now moves to the square which the Bomb occupied.

• The Bomb and Flag cannot attack.

Two-squares rule

To avoid repetition a player’s piece may not move back and forth on the same two-squares in a row for
more than five times. This is called the two-squares rule. If the player moves a new piece the two-squares
rule is interrupted and starts again for the new piece. The actions of the opponent do not influence the
two-squares rule for the player. If the player moves to a square other than the previous square then the
two-squares rule is interrupted and the two-squares rule applies to the current and previous square.

In case of the Scout the rules are extended. The first of the five moves set the range where the two-
squares rule will apply. Where a normal piece is only allowed to move five times between two-squares,
the Scout is only allowed to move five times within the range of his first move.

Chasing rule

An additional tournament rule defined by the International Stratego Federation (2009) is the chasing
rule. This rule prevents the players to end up in a continuous chase of two pieces by non-stop threatening
and evading. The threatening piece may not play a move such that the game ends up in a state that has
been visited already during the chase. The only exception occurs when a threatening piece moves back
to the previous square as long is does not violate the two-squares rule.

End of the game

The game ends when the Flag of one of the players is captured. The player whose Flag is captured loses
the game. If one player is not able to move or attack, this player forfeits the game. If both players cannot
move or attack, the game is a draw.

2.2 Notation

There is no official notation in the game of Stratego. Several notations are available but rely on perfect
information of the initial piece set-up of both players. We will use a chess-like notation for Stratego.



2.2 — Notation 7

KJHGFEDCBA

1

2

3

4

5

6

7

8

9

10

~

~

~

~

~

~

~

~

Figure 2.1: Stratego board with coordinates

We first define the game board in a chess form, see Figure 2.1, where the ten files are labeled A to K.
To prevent confusion between the letters I and J, the letter I has been skipped in the notation. The ten
ranks are numbered starting at 1. The last rank is labeled 0 instead of 10.

A move will be indicated with the origin and the destination of the piece separated by a hyphen. E.g.
a move of a piece from square d8 to square e8 is notated as: d8-e8, see Figure 2.2a.

Attack moves will be denoted with “x” instead of a hyphen between the moves. An additional feature
in Stratego would be the revealing of the pieces. The ranks will be notated in a numerical form for
convenience from high to low starting with the number 1 for the Marshal. Only the Spy will be written
down as “S”, the Bomb as “B” and the Flag as “F”. The rank of the piece will be placed after the square
and a “#”. An attack of the Marshal at square d8 towards a piece at square e8, which is occupied by a
Colonel will be written down in the following notation: d8#1xe8#4, see Figure 2.2b.

Moves of pieces from which the rank is known will indicate the rank in a similar form, e.g., a Marshal
moving from e8 to e7 will be notated as e8#1-e8, see Figure 2.2c.
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(a) Normal move: d8-e8
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(b) Attack move: d8#1xe8#8
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(c) Normal move with known piece:
e8#1-e7

Figure 2.2: Notation of moves in Stratego
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2.3 Strategies and Knowledge

This section will give an overview of human strategies and knowledge in the game of Stratego. The setup
of the pieces and the play of the pieces have a great influence on the game.

2.3.1 Flag Position

The goal of the game is to capture the opponent’s Flag. Therefore it is important to guard the Flag
against the opponent’s pieces. The main strategy used is to place the Flag adjacent to the edge or in
the corners. In this way the Flag can only be reached by two or three directions. When a player places
Bombs around the Flag the opponent can only reach the Flag by using a Miner.

A player could create a diversion by placing a similar structure guarding a non-important piece along
the backline. This requires the player to play more moves to find the opponent’s Flag.

2.3.2 Miner

When the opponent’s Flag is surrounded by Bombs the player must make sure it is still able to capture
the Flag by removing the Bombs using his Miners. To prevent a loss on forehand some of the player’s
Miners have to remain on the board until the possible location of the Flag has been discovered.

2.3.3 The Spy

The only movable piece that the Spy is able to defeat is the Marshal and the Marshal is the only movable
piece that can defeat the General. If the General is defeated by the Marshal, the Marshal is known and
the Spy can try to defeat the Marshal. To defeat the Marshal as quick as possible the Spy would need
to be close to the General, preferable an adjacent square to attack immediately after the defeat of the
General. However, if the General would travel around the board with an adjacent unknown piece, this
piece is most likely the Spy.

2.4 Other Versions

There are a few variations on Stratego. There is a Stratego game made for 4 players, where each player
has 21 pieces and all 4 players play on a 9 × 9 board, excluding the setup squares. A similar variant
exists for 3 and 6 players.

Hertog Jan Stratego, specially developed for the beer brewery Hertog Jan, has 12 pieces on an 10 ×
10 board with similar rules. But it has 12 custom pieces, such as an Archer, a piece that can attack over
a small distance and the Duke, which represents the Flag but can move.

A 3D Stratego, called Stratego Fortress which includes multiple levels of board and trap doors and
is set in medieval atmosphere. Players can build a custom fortress where they need to hide a treasure
instead of the Flag.

These days Stratego comes in different forms, besides the original Stratego, there have been themed
variations, such as a Star Wars-theme, Lord of the Rings-theme and many more.



Chapter 3

Complexity Analysis

In this chapter we investigate different complexity measures for Stratego and compare the results to other
games. In Section 3.1 we look at the complexity of choosing a board setup, in Section 3.2 we will analyze
the state-space complexity of the game and in Section 3.3 we will analyze the game tree complexity,
(Allis, 1994).

3.1 Board-setup Complexity

A player is able to place his own 40 pieces on the board. The player places his pieces in a 4 × 10 area.
We can calculate the number of possible board setup configurations in Stratego by calculating all the
combination to place the 40 pieces:(

40

1, 1, 2, 3, 4, 4, 4, 5, 8, 1, 6, 1

)
=

40!

(1!)42!3!(4!)35!8!6!
(3.1)

By excluding mirrored setups the number of different board setups equals 533 ≈ 1023. Compared to
the complexity of other games as in Table 3.1 we can see that the initial possible game states of Stratego
exceeds the complexity of games such as checkers.

3.2 State-space Complexity

The state-space complexity is the collection of all reachable board configurations a game can have. This
number is difficult to compute exactly, therefore we compute an upper bound by counting all the legal
positions in Stratego, this also includes unreachable positions. There is a difference between the concept
of an illegal configuration and an unreachable position. An illegal configuration in Stratego would be a
board where both flags are missing or a board where the two flags are placed next to each other. A legal
but an unreachable position is a board configuration where all the lanes are blocked by bombs but a piece
has passed the bombs.

As a result of variable empty spaces and removed pieces we can use a similar but more complex
formula than Formula 3.1 for the computation of the state-space complexity. To calculate this upper
bound of the state-space complexity we need to summate over 24 variables. Every variable is one of
the twelve either blue or red pieces. Every variable can vary between zero and the maximum amount of
pieces of that type in the game. For every possible combination we need to calculate a formula similar
as Formula 3.1:

(
92

# of free positions,# red flags,# red bombs, . . . ,# blue flags, . . . ,# blue marshals

)
(3.2)

However because we are dealing with variables in this formula we need to summate over the different
variables as indicated by Formula 3.3. This Formula takes into account that Bombs may only be placed
within the 4× 10 start area and the fact that both players need their Flag to be on the game board. The
computation was done using hashed values to decrease the computation time.
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40× 40×

 y∑
red

bombs

z∑
blue

bombs

39!

(39− y)!× y!
× 39!

(39− z)!× z!

× i∑
red
spies

j∑
red

scouts

· · ·
w∑

blue
generals

x∑
blue

marshals

(90− y − z)!
(90− y − z − i)!× i!

× (90− y − z − i)!
(90− y − z − i− j)!× j!

× · · · × (90− y − z − i− j − · · · − w)!

(90− y − z − i− j − · · · − w − x)!× x!

(3.3)

The number of free squares depends on the number of pieces on the board. There are 92 (where 2
of them are always occupied by both the Flags) available squares minus the number of pieces on board.
The upper bound of the state-space of Stratego is 10115.

3.3 Game-tree complexity

Based on approximately 4,500 games from the Gravon Stratego (2009) database which did not result in
a forfeit, the average number of moves in a Stratego game is calculated. This average is 381.134 ply, a
ply is a turn for one player.
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Figure 3.1: Average branching factor of Stratego per move number

The branching factor in the beginning of a Stratego game is approximate 23 and slowly decreases to
15 towards the end of the game. Figure 3.1 shows the average branching factor per move. These values
are based upon the same games from Gravon Stratego. At around 150 moves the branching factor reaches
its peak with an average of 25. Then the branching factor almost linearly decreases towards 15. After
700 moves the branching factor increases again and fluctuates. Because there are fewer games that last
longer than 700 moves the significance of these branching factors decreases.

The average branching factor of Stratego is approximately 21.739. And the game has an average
of 30.363 chance nodes where each chance node has an average branching factor of 6.823. The game-
tree upper bound is the branching factor to the power of the average game length. In other words
21.739381.134 × 6.82330.363 ≈ 10535. The game-tree complexity is independent of the starting position.

3.4 Stratego Compared to Other Games

In Section 3.2 and 3.3 we computed the state-space complexity (10115) for Stratego and the game-tree
complexity (10535). In Table 3.1 Stratego is compared to other games (Van den Herik et al., 2002) and
it is clear that Stratego is a complex game. The game-tree complexity is large because of the high game
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Game State-space Game-tree
Nine Men’s Morris 1010 1050

Pentominoes 1012 1018

Awari 1012 1032

Kalah(6,4) 1013 1018

Connect-Four 1014 1021

Domineering (8 × 8) 1015 1027

Dakon-6 1015 1033

Checkers 1021 1031

Othello 1028 1058

Qubic 1030 1034

Draughts 1030 1054

Chess 1046 10123

Chinese Chess 1048 10150

Hex (11 × 11) 1057 1098

Shogi 1071 10226

Renju (15 × 15) 10105 1070

Go-Moku (15 × 15) 10105 1070

Stratego 10115 10535

Go (19 × 19) 10172 10360

Table 3.1: Complexity of several games

length (381 ply). The high game-tree complexity requires us to use more search based approaches to play
the game of Stratego.
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Chapter 4

Search

This chapter introduces the search techniques used to find a best possible move in Stratego. Section
4.1 till Section 4.6 will introduce basic techniques such as minimax, iterative deepening search,
α-β pruning and negamax. Section 4.7 will introduce the family of *-minimax algorithms developed
by Ballard (1983). Furthermore the transposition table and the enhancements for *-minimax is
discussed in Section 4.8 Finally we will discuss move ordering techniques in Section 4.9 and the forward-
pruning technique multi-cut in Section 4.10.

4.1 Introduction

The decisions that a player can take during the course of a game can be represented as a tree, where the
current position is the root node. When the player has multiple moves available the tree branches. If a
node succeeds another node that node is called a child node. Terminal positions (i.e., positions where
the game has ended) have no branches and are called leaf nodes. The computer can now back up from
that leaf node until it finds a branch that was not visited yet. In this way the computer creates a game
tree with branches and leaf nodes.

When the player finds the result of a leaf node (win or loss) it can backup the value to the parent
branch and eventually to the root node. It is now possible to create a path to a leaf node with the best
results.

This becomes more complicated when two players are involved in the game because the second player
also wants to win. Therefore the second player will try to make the first player lose the game. This
means that, in the game-tree, the second player will choose a branch that results in a loss.

However, in practice it is infeasible to create the whole game tree because of its size. To compensate
this, the players will evaluate their position in the game tree. This evaluation function, depending on its
correctness, can forecast whether the current branch is a heading towards a win, loss or draw.

4.2 Minimax

Computers can use the minimax algorithm (Von Neumann and Morgenstern, 1944) to deal with a game
tree. The algorithm searches the game tree to find the best possible move. The first player will try
to maximize the score, and is called the MAX player, while the second player, the MIN player, tries
to minimize the score. The algorithm will recursively alternate between the MAX player and the MIN
player until it reaches a terminal node. The game tree will be searched in a depth-first way meaning that
the algorithm will search the deepest unvisited branch until a terminal node is reached. The value of the
terminal node is then returned to the parent node. When all the branches of a node have been visited,
the player can now choose the best branch from that node and return the value of that branch to the
parent node again up to the root node.

As stated before, the size of the game tree is usually too large to search through the complete game
tree. Instead of searching the game tree until the minimax algorithm finds a terminal node, it is possible to
end the search when it has reached a certain depth. This is called a depth-limited search. If the algorithm
has reached a certain depth without encountering a terminal node it cannot back up a terminal value
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(win, loss or draw). Therefore it needs to evaluate its current position using an evaluation function that
estimates the value of the reached node. This value will then be backed up instead of the terminal value.
The optimal game or principal variation is the game where the MAX player always selects the move with
the highest evaluation value and the MIN player the move with the lowest evaluation value.

An example of such a search tree limited to depth 3 can be seen in Figure 4.1. The top node is the
root node and the bottom nodes are the leaf nodes. The MAX player will explore the left most branch.
Now the MIN player explores a branch, again the left most branch. This continues until a leaf node is
found. The MAX player finds a leaf node with a value of 6. Next, the MAX player explores the second
branch and finds the value −7. The MAX player will choose the move with the highest value, max(6,−7)
= 6. The value of 6 is returned to the MIN player and the MIN player will explore the second branch.
Again, the MAX player will choose the highest value of the two leaf nodes, max(7,−8) = 7. The MIN
player chooses the node with the lowest value min(7, 6) = 6. This process will be repeated until all the
children of the root node are explored. Eventually the best move will give a value of 6.

The pseudo code of minimax can be found in Algorithm 1.

Algorithm 1 Minimax algorithm

function minimax(depth, board)
value = max-value(depth, board)
return value

function max-value(depth, board)
if depth = 0 or terminal then

return evaluate()
end if
max = −∞
for all moves do
doMove()
value = min-value(depth− 1, board)
undoMove()
if value > max then
max = value

end if
end for
return max

function min-value(depth, board)
if depth = 0 or terminal then

return evaluate()
end if
min =∞
for all moves do
doMove()
value = max-value(depth− 1, board)
undoMove()
if value < min then
min = value

end if
end for
return min

4.3 Iterative Deepening Search

In advance it is not known how much time the search will cost. Iterative deepening search (Russell
and Norvig, 1995) used in combination with depth-first search makes it possible to find the best search
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Figure 4.1: Game tree generated by the minimax algorithm with corresponding values of the nodes

depth within a predetermined amount of time.
The algorithm will increase the search depth until it runs out of time. It starts a search with a depth

limit of 1. If the search is finished and there is time left the limit is increased by a certain amount (e.g.
one). When there is no time left for the search, it backs up the best move found so far. Iterative
deepening is also known as an anytime algorithm because it has a best move at anytime.

At first this search method seems wasteful, because it visits several states multiple times. However,
the majority of the nodes are at depth the maximum search depth. The nodes generated at depths lower
than the maximum search depth are a small fraction of the total number of nodes generated during the
search.

The nodes at the maximum search depth d are only generated once during a search. All the nodes
with a depth lower than d are generated multiple times. Nodes at depth d - 1 are generated twice,
first when the maximum depth is d - 1 and second when the maximum depth equals d. Nodes at depth
d - 2 are generated tree times, this continues until the root, which are generated d times. The total
number of nodes generated at depth d with a branching factor of b, as defined by Russell and Norvig
(1995) is (d)b + (d − 1)b2 + · · · + (1)bd. For d = 5 and b = 10 the total number of nodes generated
is 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450. If we compare this to a depth-first search with a
complexity of bd. This generates a total amount of 10+100+1, 000+10, 000+100, 000 = 111, 110 nodes.

Without search enhancements such as ordering of the nodes (Section 4.9) and pruning (Section 4.5)
iterative deepening performs worse than a depth-first search. With search enhancements iterative
deepening is able to select the optimal path found so far to continue its search at a new depth. This
eventually leads to nodes that do not need to be visited anymore and a lower number of generated nodes.

A visual representation of iterative deepening can be seen in Figure 4.2. Figure 4.2a depicts a
situation where the algorithm finished the first iteration and only the root node is visited. In Figure 4.2b
the search method has now finished the second iteration, the algorithm can now sort the child node of
the root nodes and possible prune a child node. The algorithm continues until it runs out of time or
when all the nodes are visited.

4.4 Negamax

A variation on the minimax algorithm is the negamax (Knuth and Moore, 1975) algorithm. Both the
MIN player and the MAX player choose their optimal line of play. The MIN and MAX player can be
interchanged with respect to the line of play when the values are negated.

Suppose the MAX player starts the search. The MIN player will make a move on the second turn. If
we interchange the MIN player and MAX player on ply two we only have to negate the values to achieve
the same result. However, the original MAX player has become the MIN player now. On the next ply we
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Figure 4.2: Iterative deepening until ply 3

can interchange the players and negate the values again to compensate this problem. This process can
be repeated until the end of the search.

In practice this is a simplified version of the minimax algorithm where both players use the same
code to choose the optimal line of play. For coding purposes this a more simple and efficient manner to
implement the minimax algorithm.

The pseudo code example is shown in Algorithm 2. By negating the outcome for each player we can
reduce the amount of code needed to retrieve the same result. This results in better maintainable code.

Algorithm 2 Negamax algorithm

function negamax(depth, board)
if depth = 0 or terminal then

return evaluate()
end if
max = −∞
for all moves do
doMove()
value = −negamax(depth− 1, board)
undoMove()
if value > max then
max = value

end if
end for
return max
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Figure 4.3: α-β pruning in action. The principal variation is red

4.5 α-β Search

A widely used technique for backwards-pruning nodes which are not interesting for the player is the α-β
enhancement for negamax (Knuth and Moore, 1975).

If we take another look at the game-tree in Figure 4.1, it is possible to prune some nodes that will not
influence the results of the game-tree. The fourth leaf node with a value of −8 is irrelevant for the result.
We will show why, when the third leaf node is found the MAX player can play a move with value 7. Now
we substitute the value of the fourth leaf node with x. The value of the MIN node can be computed by
min(6, max(7, x)). This means that the MAX player will play a move with a value of at least 7. The
value of 6 that the MIN player found by exploring the first branch is always a better move for the MIN
player then. Therefore the MIN player does not need to know the value of node x to determine his value
and this branch can be pruned.

A similar situation occurs at the second branch of the root node. The MAX player chooses to play the
leaf node with the value 1. This value is returned to the MIN player before searching the second branch
of the MIN player. Again we substitute the value of the second branch with a variable, y. The value of
the root node can be computed by max(6, min(1, y)). The MIN player will play a move with a value of
at most 1. However the MAX player can play a move with a value of 6 at the root. Therefore the second
branch of the MIN player does not need to be explored and can be pruned. A visual representation can
be seen in Figure 4.3

In practice the minimum feasible value for the MAX player is stored in α and the maximum feasible
value for the MIN player is stored in β. These values are passed down in the search method.

The pseudo code of the negamax implementation of α-β pruning is shown in Algorithm 3. A similar
variant exists for minimax however it will take more code to produce the same result.

4.6 Expectimax

To deal with chance nodes we cannot use the standard negamax algorithm, instead the expectimax
(Michie, 1966) algorithm can be used. The method is similar to negamax in the sense that it visits all
nodes in the game tree. The difference is that expectimax deals with chance nodes in addition to MIN
and MAX nodes.

To define the value of a chance node we cannot simply select the highest or lowest value from one of
the successors. Instead an expected value has to be calculated. Every child node has a weight equal to
the probability that the child node occurs. The expectimax value of a node is the weighted sum of the
successors’ values:

E(x) =
∑

Pi × E(i) (4.1)
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Algorithm 3 Negamax algorithm with α-β pruning

function negamax(depth, board, α, β)
if depth = 0 or terminal then

return evaluate()
end if
for all moves do
doMove()
α = max(α,−negamax(depth− 1, board,−β,−α))
undoMove()
{beta cutoff}
if α ≥ β then

return α
end if

end for
return α

Algorithm 4 The negamax formulation of the expectimax method

function negamax(depth, board)
if depth = 0 or terminal then

return evaluate()
end if
max = −∞
for all moves do
doMove()
if chanceEvent() then
value = −expectimax(depth− 1, board)

else
value = −negamax(depth− 1, board)

end if
undoMove()
if value > max then
max = value

end if
end for
return max

function expectimax(depth, board)
if depth = 0 or terminal then

return evaluate()
end if
sum = 0
for all chance events do
doChanceEvent(board, event)
sum+ = probability(event)×−search(depth, board)
undoChanceEvent(board, event)

end for
return sum

here E(i) is the evaluation value of node i and Pi is the probability of node i. Algorithm 4 shows an
example of expectimax used in a negamax implementation.

Figure 4.4 shows an example of the expectimax algorithm (Hauk, 2004). The MAX player encounters
a chance node. There are six possible (uniform) chances nodes, node B till G. The MIN player will choose
the node with the lowest value. Therefore node B will get the value −5, node C will get −10, etc.

In the next step we multiply the chance of every node, 1
6 , with the value of the node and summate
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the outcomes. This results that the value of node A equals −3.5.

J K L M N O P Q R S T UH I

-5 5 -10 -9 0 5 1 3 -10 -1 2 5 4 3

MAX

CHANCE

MIN

MAX

-5 -10 0 1 -10 3

-3.5

1
6
_ 1

6
_ 1

6
_ 1

6
_ 1

6
_ 1

6
_

B C D E F G

A

Figure 4.4: An expectimax tree with uniform chances

4.7 *-Minimax Algorithms

Expectimax is a suitable algorithm to handle chance events. However the negamax algorithm is able
to prune a great number of nodes using the α-β enhancement. We would like a similar technique for
expectimax but we cannot know the value of a chance node before we have visited all the children
nodes. However, if the upper and lower bound on the game values are known and the α and β values of
the parent node were passed down it is possible to calculate if the theoretical possible value for the chance
node falls outside the bounds. Ballard (1983) introduced an α-β enhancement for expectimax called
*-minimax. These type of nodes are referred to as *nodes by Ballard. The procedure for the standard
MIN and MAX nodes will stay unchanged.

Ballard has proposed two versions of this algorithm, called Star1 and Star2. These will be discussed
in Section 4.7.1 and 4.7.2. An extended version called Star2.5 is a refined version of the Star2 algorithm
and will be discussed in Section 4.8.2.

4.7.1 Star1

This section will introduce the idea of α-β pruning in chance nodes. With every new piece of information
in a chance node, the theoretical bounds of the chance node can be narrowed until a cutoff occurs or all
child nodes are visited. The Star1 algorithm will first be explained using uniform chances and afterwards
non-uniform chances will be introduced.

As an example, consider an evaluation function which is bounded by the interval [-10, 10]. The
current chance node has four children (with equal probability) of which two have been visited. This
situation is depicted in Figure 4.5. We can calculate the lower bound of the chance node , namely
1
4 (5 + 3 +−10 +−10) = −3. The upper bound of the chance node is 1

4 (5 + 3 + 10 + 10) = 7. If an α value
≥ 7 was passed down to the chance node a pruning can take a place. Even in the best possible case the
value of the complete chance node will not influence the principal variation. Similarly, if a β value ≤ −3
was passed down, a pruning occurs.

The lower and upper bound of the evaluation function are denoted as L and U . V1, V2 · · ·Vn are the
values of the N successors of the current chance node, whose ith successor is being searched.

The lower bound of the chance node is

(V1 + V2, · · ·+ Vi−1) + Vi + L× (N − i)
N

(4.2)

and the upper bound is

(V1 + V2, · · ·+ Vi−1) + Vi + U × (N − i)
N

(4.3)
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Figure 4.5: A chance node

When the α and β values are passed down from the parent node it is possible to get a pruning. Like
in the α-β enhancement for negamax a cutoff occurs when the upper bound of the chance node is less
or equal to α.

(V1 + V2, · · ·+ Vi−1) + Vi + U × (N − i)
N

≤ α (4.4)

or if the lower bound is larger or equal to β.

(V1 + V2, · · ·+ Vi−1) + Vi + L× (N − i)
N

≥ β (4.5)

This creates a possibility of an α-β-like cutoff in the chance node. Star1 gives also the possibility to
calculate a new α and β for child nodes of a chance node. This method can be generalized for all chance
nodes. This cutoff will not influence the principal variation. By rewriting Formulas 4.4 and 4.5 a new
window for the child node is calculated which can trigger a cutoff in the child node. If we denote Ai as
the lower bound of the ith successor then

Ai = N × α− (V1 + V2 · · ·Vi−1)− U × (N − i) (4.6)

where α is the same α as passed down to the chance node. For the upper bound, denoted as Bi we
have

Bi = N × β − (V1 + V2 + · · ·Vi−1)− L× (N − i). (4.7)

Again β stays unchanged.
Initially the value of A1 is N × α − U × (N − 1) or N × (α − U) + U and the value for B1 equals

N × β−L× (N − 1) of N × (β−L) +L. The upcoming values of A and B can computed using Formula
4.6 and Formula 4.7. Ballard uses an iterative method to update the values of A and B after calculating
the initial values.

Ai+1 = Ai + U − Vi (4.8)

Bi+1 = Bi + L− Vi (4.9)

The implementation of these formulas in pseudo-code can be seen in Algorithm 5. The values A and
B are reused every iteration and therefore have no index i. AX and BX represent the values that will
be passed down to the children. These values are limited by the bounds of the evaluation function.

We take a look at the example in Figure 4.6. The node A is entered with a lower bound (α) of 3
and an upper bound (β) of 4. We will write this as [3, 4]. The game values vary between L = −10 and
U = 10. When the first child of A is searched we calculate the upper and lower bound of the node. α
equals 1

3 (3 × L) = L and the β value equals 1
3 (3 × U) = U , this means that the bounds for child B are

[−10, 10]. After searching node B, we find a value of 2. If we move on to the second child, C, we can
calculate the range of values for node A, a lower bound of 1

3 (2 + 2 × L) = 1
3 × −18 = −6 and an upper

bound of 1
3 (2 + 2×U) = 1

3 × 22 = 7 1
3 . This does not result in a cutoff because −6 is not greater or equal
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Algorithm 5 The negamax formulation of the Star1 algorithm with uniform chances

function search(depth, board)
if depth = 0 or terminal then

return evaluate()
end if
max = −∞
for all moves do
doMove()
if chanceEvent() then
α = max(α,−star1(depth− 1, board,−β,−α))

else
α = max(α,−negamax(depth− 1, board,−β,−α))

end if
undoMove()
if α ≥ β then

return α
end if

end for
return α

function star1(depth, board, α, β)
if depth = 0 or terminal then

return evaluate()
end if
N = generateChanceEvents();
A = N × (β − U) + U
B = N × (α− L) + L
vsum = 0

for i = 1, i ≤ N, i++ do
AX = max(A,L)
BX = min(B,U)
doChanceEvent(board, event)
value = −search(depth, board,−BX,−AX)
undoChanceEvent(board, event)
vsum+ = v

if v ≤ A then
vsum+ = U × (N − i)
return vsum/N

end if
if v ≥ B then
vsum+ = L× (N − 1)
return vsum/N

end if

A+ = U − value
B+ = L− value

end for
return vsum/N
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to 4 and 7 1
3 is not smaller or equal to 3. Before visiting node C we calculate the new α and β values we

will pass down using Formula 4.6,

Ai = 3× 3− 2− 10 = −3 (4.10)

Bi = 3× 4− 2 + 10 = 20 (4.11)

The β value for node C is 20, however the highest possible value of a leaf node is 10. Therefore the
β value will be set to 10 instead of 20. The node C will be passed down a window of [−3, 10].

The first node visited is the node E, which returns a value of −8. Since −8 ≤ −3 this will cause a
cutoff at node C. In node A we check again if a cutoff has occurred by using Formula 4.4 and Formula
4.5

(2− 8 + 10)

3
≤ α = 1

1

3
≤ 3 (4.12)

It is clear that 1 1
3 ≤ 3 and there will also be a cutoff at node A. The upper bound is not calculated

because it is not important anymore. We cannot return the exact value of node A because node D
is pruned. The original α value is returned as the value of node A. This ensures that node A will
automatically be pruned at a lower depth.
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Figure 4.7: The Star1 algorithm in action
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Figure 4.7 depicts the expectimax tree example of Figure 4.4, now visited by the Star1 algorithm.
The evaluation function is still bounded by the bounds [−10, 10]. The node A is entered with a window
of [−2, 2]. The bounds for the first node, node B, are computed using Equations 4.6 and 4.7: A1 =
6×−2− 10× (6− 1) = −62 and B1 = 6× 2−−10× (6− 1) = 62. The values of A1 and B1 are limited
to the bounds of the evaluation function, therefore the node B will be entered with the bounds [−10, 10].
Node B returns the value −5 and the new window for node C can be calculated using Formula 4.8 and
4.9: A2 = −62 + 10 + 5 = −47 and B2 = 62 − 10 + 5 = 57. Again the window will be bounded by
the evaluation function. When the search continues with the other children, the windows are updated
for every child accordingly. Up until node F the windows will fall outside the bounds of the evaluation
function. Node F will be entered with a window of [−8, 36]. When node P is visited the nodes Q and
R will be pruned because the value of node P, −10 falls outside the window of [−8, 36]. This will also
trigger a cutoff in node A, which has a window of [−2, 2] and therefore node G will also be pruned. In
Figure 4.4 it was clear that node A has the value −3.5 and indeed falls outside the window [−2, 2].

Up to known the theory and examples assume that the probabilities of each child are uniform. In
practice this is not always the case therefore non-uniform probabilities are introduced into the Star1
algorithm.

Formula 4.2 and Formula 4.3 can be rewritten to calculate the new lower and upper bound of the
chance nodes. Here, Pi is the probability of node i occurring:

(P1 × V1 + P2 × V2, · · ·+ Pi−1 × Vi−1) + Pi × Vi + L× (1− P1 − P2 − · · · − Pi)

Pi
(4.13)

and

(P1 × V1 + P2 × V2, · · ·+ Pi−1 × Vi−1) + Pi × Vi + U × (1− P1 − P2 − · · · − Pi)

Pi
. (4.14)

Formula 4.6 and Formula 4.7 can be rewritten to calculate the values for Ai and Bi:

Ai =
α− U × (1− P1 − P2 − · · · − Pi)− (P1 × V1 + P2 × V2 + · · ·+ Pi−1 × Vi−1)

Pi
(4.15)

where α is the same α as passed down to the chance node. For the upper bound, denoted as Bi

Bi =
β − L× (1− P1 − P2 − · · · − Pi)− (P1 × V1 + P2 × V2 + · · ·+ Pi−1 × Vi−1)

Pi
. (4.16)

Again these formulas can be computed incrementally. To simplify the equations, Y = (1 − P1 −
P2 − · · · −Pi) can be substituted where Y can be computed incrementally, Yi+1 = Yi −Pi+1 and Y1 = 0.
Secondly, X = (P1×V1+P2×V2+· · ·+Pi−1×Vi−1) is replaced, which can also be computed incrementally,
Xi+1 = Xi +Pi×Vi and where X1 = 0. By using X and Y it is possible to rewrite in a compact manner
the incremental update of A and B:

Ai =
α− U × Yi −Xi

Pi
, Bi =

β − L× Yi −Xi

Pi
. (4.17)

4.7.2 Star2

The Star1 algorithm is an enhancement for expectimax but still needs to visit a large number of nodes
to realize a cutoff. This is a result of the fact that Star1 assumes the worst-case scenario about unseen
children’s value. Star1 does not and cannot use any information about the structure of the game tree.
Therefore Ballard (1983) has also introduced the Star2 algorithm.

In most search trees of board games the order of play is always the same, a MIN player follows a MAX
player and vice versa. Games involving chance events can add an additional step between the MIN player
and the MAX player, a chance event. Ballard (1983) refers to this type of trees as regular *-minimax
trees. In negamax a MIN players follows a MAX player. Star2 can use this information to improve the
lower bound before searching the children. Instead of assuming that the child has a value equal to the
lower bound or upper bound of the evaluation function, a more accurate lower bound could be calculated
by searching a k number of successors of the child node. This will improve the search window because
it is not likely that all the values of the child’s successors equal the lower and upper bound values, the
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terminal values of the evaluation function. This is called the probing phase of the algorithm. If k is equal
to 0 than Star2 has no effect.

The effectiveness of the probing phase depends on the selection of the successor that will be probed.
This can be done in several ways, e.g. selecting a random move, the first generated move. Using move
ordering as described in Section 4.9 will most likely return the best move to probe. However, even a
random move can reduce the search window because it has a high probability that it is not equal to the
lower or upper bound of the evaluation function. In the worst case Star2 causes a search overhead.

The probed values for each child node will be stored in the array W and will be used to check for
cutoffs and calculate the new initial bounds. For simplicity it is assumed that the probabilities are
uniform. The Formula 4.5 is modified in such a way that instead of using the lower bound, L , the probed
values are used:

(V1 + V2 + · · ·+ Vi−1) + Vi + (Wi+1 + · · ·+WN )

N
≥ β. (4.18)

The values of W1 to Wi−1 can be substituted by the real values of the corresponding nodes. In practice
it is easier to retain the values W1, . . . ,Wi−1 and replace them with the values V1, . . . , Vi−1.

Because of the probing phase is not possible to calculate the values for B using 4.3. Therefore the
value of B will be calculated using the following formula:

Bi = N × β − (V1 + V2 + · · ·+ Vi−1)− (Wi+1 + · · ·+WN ). (4.19)

The value of B is initialized in a similar manner as done in Star1 by adjusting Formula 4.19. B1 =
N × β − (W1 +W2 + · · ·+WN ) and can be updated incrementally by Bi+1 = Bi +Wi − Vi.

Algorithm 6 shows the pseudo-code of the Star2 algorithm. The probe method is a simple method
that selects k number of children at random or by the means of move ordering and searches them. Another
possibility is to adapt the standard search method to deal with probing.

In Figure 4.8 (Hauk, 2004) the Star2 algorithm visits the search tree from Figure 4.4. By only
visiting the probed nodes, Star2 creates a cutoff before searching all the nodes of the child. Eventually
the search window becomes [−8, 62] or [−8, 10] when the window is bound to the lower and upper bound.
When node F returns the value −10 this value falls outside the window [−8, 62] and a cutoff occurs.
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Figure 4.8: The Star2 algorithm in action

For the probing phase only the calculation for B needs to be updated. This can be done iteratively:

Bi =
β −Wi −Xi

Pi
(4.20)

where Wi = (Wi+1 + · · ·+WN ), the sum of the unvisited nodes not yet probed.
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Algorithm 6 The negamax formulation of the Star2 algorithm with uniform chances

function star2(depth, board, α, β)
if depth = 0 or terminal then

return evaluate()
end if
N = generateChanceEvents();
W [N ] = array()
A = N × (β − U) + U
B = N × (α− L) + L
AX = max(A,L)
vsum = 0

for i = 1, i ≤ N, i++ do
BX = min(B,U)
value = −probe(depth, board,−BX,−AX)
vsum+ = value
W [i] = value
if value ≥ B then
vsum+ = L× (N − 1)
return vsum/N

end if
B+ = L− value

end for
for i = 1, i ≤ N, i++ do
B+ = W [i]
AX = max(A,L)
BX = min(B,U)
doChanceEvent(board, event)
value = −search(depth, board,−BX,−AX)
undoChanceEvent(board, event)
vsum+ = v

if value ≤ A then
vsum+ = U × (N − i)
return vsum/N

end if
if value ≥ B then
vsum+ = L× (N − 1)
return vsum/N

end if

A+ = U − value
B− = value

end for
return vsum/N
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4.8 Transposition Tables

During a search identical board positions can occur, called transpositions. Instead of searching the board
position again it is possible to store the result of the previous search in a so-called transposition table
(Greenblatt, Eastlake, and Crocker, 1967 and Slate and Atkin, 1977). The transposition table stores the
board position, using a generated key with information of the board, such as the best move and the value
of the best move. To prevent storing the complete board the transposition table stores a 64-bit hash value
of the board position using the Zobrist hash (Zobrist, 1970). This will be discussed in Section 4.8.1. In
Section 4.8.2 an improved version of the Star2 algorithm will be presented using transposition tables.

4.8.1 Zobrist Hashing

Zobrist hashing (Zobrist, 1970) is a method that generates a hash value for a game board. For each piece
at each square the hash method needs a unique value. In Stratego there are 12 ranks and 3 possible states
of every piece: not known and not moved; not known and moved; and known. There are 92 reachable
squares on the game board. This gives a total of 12 × 3 × 92 = 3,312 unique 64-bit values. These values
will be generated at the initialization of the computer player using a random generator.

The game hash can change on four occasions, piece placement, piece movement, piece removal and
change of player.

1. On piece placement, when players add the pieces to the game board, the new hash value is computed
by a XOR operation on the board with the hash value of a certain piece at a certain square.

2. On piece removal the same procedure is executed. The hash value is computed by a XOR operation
of the hash value of a certain piece at a certain position with the current hash value.

3. When a piece moves from a square to another square, the piece is first removed from the old position
and replaced at the new position. It is similar to a piece removal and a piece placement.

4. Every time the players change turns, the hash will be updated and thus keeping track of each
players turn.

Initially the empty board hash has the value 0. The advantage of the XOR operation is that it is a
bitwise operation and therefore a fast operation for a machine.

The computed hash value now serves as the key for the associated board position in the transposition
table. Instead of using the complete 64 bit key, the first n bits of the hash value are used as the key,
the hash index. The remaining bits, the hash key, are used to discriminate between different positions
mapping the same hash index.

Components of the table

A transposition table will need the following components to be effective (Breuker, 1998):

key the remaining bits of the hash value

move the best move found so far for the current position

score the score associated with the best move

flag defines the type of score: lower bound, upper bound or an exact value

depth the relative depth at which the best move was found

During a search the positions are retrieved from the transposition table before searching the board
position and afterwards when the information of the position will be stored in the transposition table.

If the position exists in the transposition table before the position is searched the algorithm can check
if the information is useful, this depends on the flag and the depth.
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Algorithm 7 Negamax with transposition tables

function negamax(depth, board, α, β)
oldα = α
retrieve(board, depth)
{if the position is not found, TTdepth will be -1}
if TTdepth ≥ depth then

if flag = EXACTVALUE then
return score

else if flag = LOWERBOUND then
α = max(α, TTvalue)

else if flag = UPPERBOUND then
β = min(β, TTvalue)

end if
if α ≥ β then

return α
end if

end if
if depth = 0 or terminal then

return evaluate()
end if
bestvalue = −∞
for all moves do
doMove()
value = −negamax(depth− 1, board,−β,−α)
undoMove()
α = max(α, value)
if value ≥ bestV alue then

bestValue = value
end if
if α ≥ β then

break
end if

end for
if bestValue ≤ oldα then
flag = UPPERBOUND

else if bestValue ≥ β then
flag = LOWERBOUND

else
flag = EXACTVALUE

end if
store(board, depth, bestMove, bestV alue, flag)
return α
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1. When the remaining search depth is lower than the search depth of the transposition table entry
the information can be used, because it guarantees that the information in the transposition table
gives at least the same information as a search would do. If the value is an exact value this value
can be returned immediately and the position does not have to be searched anymore.

2. When the remaining search depth is lower than the search depth of the transposition table entry
and the value is an upper or lower bound, the value can be used to narrow the α-β window. The α
value can be adjusted if the value is a lower bound and the value is larger than α. The same holds
for β when the value is an upper bound and the value is smaller than β. Furthermore a cutoff can
occur when α is larger or equal to β.

3. When the remaining search depth is higher than the search depth of the transposition table entry
the information in the transposition table is not useful, except the best move. The best move can be
searched first and could possibly lead to an early cutoff. See also Section 4.9 for more information
about move ordering.

After searching the position the information found can be stored in the transposition table. When
the transposition table does not have an entry with the same key the information can be stored directly.
However, when the entry already exists, called a collision, a choice has to be made which information is
more important to preserve. Breuker, Uiterwijk, and Vd Herik (1994) have proposed several replacement
schemes:

1. Deep
In case of a collision, this scheme preserves the board position with the deepest subtree. The
scheme assumes that a deeper search has resulted in more nodes visited than a shallower search
and therefore gives a better estimate of the utility of the board position.

2. New
In this case the transposition table will always replace the old entry with the information of the
current search. This is based upon the observation that changes occur locally.

3. Old
This scheme works in a similar way as the New replacement scheme. However this scheme will
never replace any entry in the transposition table.

4. Big
When the board position contains many forced moves or many cutoffs, in case of good move ordering,
the depth of the search is not a good indicator of the amount of search done on the board position.
Thus instead of keeping track of the depth, one can keep track of the amount of nodes visited during
the search. This scheme will therefore preserve the entry with the largest subtree. A drawback is
that the number of nodes visited in the subtree also has to be stored in the transposition table.

The Deep scheme was implemented based upon the experiments by Breuker et al. (1994).

4.8.2 StarETC

Ballard has proposed several enhancements for the Star2 algorithm, among them the use of a transpo-
sition table in *-minimax (Ballard, 1983). The transposition table can be used in the process of probing
for values (Veness, 2006). StarETC is the stochastic variant for Enhanced Transposition Cutoff (ETC).
The values for the chance node children may be retrieved from the transposition table and stored in the
array W as described in Section 4.7.2. Instead of searching the child node’s successors a bound or exact
value can be retrieved from the transposition table. However, the information in the transposition table
is only used when the relative depth of the table entry has at least a depth of d - 1. The probe phase
normally returns an exact value of the child’s successor. The transposition table does not only store
exact values but also lower and upper bounds. To use this information, Star2 also needs to keep track
of the separate lower and upper bounds. The array W, as described in Section 4.7.2, is extended to two
dimensions, one for each bound. When the value of the table entry is an exact value, the upper and lower
bound of W are both equal to the entry value.
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The second advantage of the transposition table is a chance on a preliminary cutoff. Every time a
useful table entry is found and W is updated, the lower bound of the board position is calculated using:
P ·Wlower and the upper bound is calculated using P ·Wupper.
P is an array containing the probabilities of each chance event. When the lower bound is ≤ α or the
upper bound is ≥ β a cutoff occurs.

Finally, it is possible to store extra information in the transposition table when the Star1 creates a
cutoff. In the case of a fail low the position is stored as an upper bound with a value equal to A.

Algorithm 8 shows the pseudo-code for the probing enhancement for Star2. It makes use of two
extra functions, lowerbound() and upperbound(), to calculate the lower and upper bound of the probed
cq. retrieved values for the nodes using Formula 4.19 and a similar formula for the lower bound. Also
there are two functions to calculate the successor values. Depending on the implementation of these four
functions, the algorithm can handle uniform and non-uniform probabilities. The array of stored values
is expanded with a separate lower and upper bound to deal with the information from the transposition
table.

4.9 Move Ordering

As stated before, move ordering is important in α-β based search. It can reduce the search tree signifi-
cantly. When searching it is preferable to search the best moves first because it will be more likely that
they create a cutoff.

The moves can be ordered using two approaches, static or dynamic. Static move ordering happens
according to some predefined rules, mostly based on human strategies and knowledge of the game. The
History Heuristic (Schaeffer, 1989) and transposition table ordering are dynamic ways of ordering the
moves. This means that the move ordering depends on the positions visited so far.

The moves will be weighted depending on the ordering, the possible best move will have the highest
value and the worst move has the lowest value. Moves suggested by dynamic ordering will have the
highest value because they have proven to be a good move in previous searches. A move that is in the
transposition table will be searched first. Winning moves or capturing moves are increased with a large
value ensuring a win or a capture of a piece. Next the value of the move is incremented with the value of
the history heuristic. Finally the value is slightly increased or decreased with values determined by the
static ordering.

4.9.1 Static Ordering

Static ordering uses information about the type of piece and the goal and destination of the move. In
Stratego we have ordered the moves as follows

1. A move that results in a direct win, capturing the opponent’s Flag.

2. An attacking move with a sure win.

3. A move attacking an unknown piece.

4. A move towards the opponent

5. A move sideways

6. A move backwards

7. An attacking move with a sure loss

The moves that result in a win, attack an unknown piece have a large positive influence in the move
ordering. Non-capturing moves towards the opponent cause a slight increase of the value, moving away
from the opponent is penalized. Finally, a clear loss results in a large decrease of the move’s value.
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Algorithm 8 The negamax formulation of the StarETC algorithm

function starETC(depth, board, α, β)
if depth = 0 or terminal then

return evaluate()
end if
if retrieve(board, depth) == success then

if entry = EXACTVALUE then
return entry.value

end if
if entry = LOWERBOUND then

if entry.value ≥ β then
return entry.value
α = max(α, entry.value)

end if
end if
if entry = UPPERBOUND then

if entry.value ≤ α then
return entry.value
β = min(β, entry.value)

end if
end if

end if

N = generateChanceEvents();
W [N ] = array()

for i = 1, i ≤ N, i++ do
if retrieve(event[i], depth− 1) == success then

if entry = LOWERBOUND OR EXACTVALUE then
W [i].lower = entry.value
if lowerbound(W ) ≥ β then
store(board, depth, LOWERBOUND, lowerbound(W )
return lowerbound(W )

end if
else if entry = UPPERBOUND OR EXACTVALUE then
W [i].upper = entry.value
if upperbound(W ) ≤ α then
store(board, depth, UPPERBOUND, upperbound(W )
return upperbound(W )

end if
end if
if entry = LOWERBOUND then

if entry.value ≥ β then
return entry.value
α = max(α, entry.value)

end if
end if
if entry = UPPERBOUND then

if entry.value ≤ α then
return entry.value
β = min(β, entry.value)

end if
end if

end if
end for

Algorithm continued on next page
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Algorithm 8 continued

for i = 1, i ≤ N, i++ do
B = successorMax(W,β)
BX = min(B,U)
value = −probe(depth− 1, board,−BX,−W [i].lower)
W [i].lower = value
if value ≥ B then
store(board, depth, LOWERBOUND, lowerbound(W ))
return lowerbound(W )

end if
end for
for i = 1, i ≤ N, i++ do
A = successorMin(W,α)
B = successorMax(W,β)
AX = max(A,L)
BX = min(B,U)
doChanceEvent(board, event)
value = −search(depth, board,−BX,−AX)
undoChanceEvent(board, event)
W [i].lower = value
W [i].upper = value

if v ≤ A then
store(board, depth, UPPERBOUND, upperbound(W ))
return upperbound(W )

end if
if v ≥ B then
store(board, depth, LOWERBOUND, lowerbound(W ))
return lowerbound(W )

end if
end for

store(board, depth,EXACTV ALUE, lowerbound(W ))

return lowerbound(W )
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4.9.2 History Heuristic

Schaeffer (1989) introduced this technique to increase the effectiveness of move ordering. When a certain
move m is the best move in a certain position, possibly creating a cutoff, it has the possibility of being
the best move in another similar position. Therefore it would be interesting to start the search with move
m. The History Heuristics stores all these move in a history table, where each entry is a move with
associated value. Every time a move creates a cutoff or is the best move after searching the tree, the
table entry of the move is incremented with a value, e.g. 2d, d or 1 (Winands et al., 2006), where d is
the depth of the search tree so far. The history table is emptied every time the search is initialized.

Based upon the literature, our implementation of Stratego updates the values in the history heuris-
tic are with the value d.

4.9.3 Transposition Table Ordering

When the transposition table has an entry of the current position visited with a higher depth, the
information in the entry is used to return an exact value or adjust the lower and upper bound for the
search. When the entry in the transposition table is not an exact value, the move from the entry can be
searched first and might lead to a cutoff. If the search depth of the entry is lower than the search depth
remaining for the current position, this information is not useful to update the lower and upper bounds
but the best move of the entry may still be the best move when searched deeper and possibly creating a
cutoff (Breuker, 1998). Therefore the search algorithm will visit the transposition table move first. When
the transposition table entry is useful, the corresponding move will not be visited anymore.
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. . . . . .n
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Figure 4.9: Multi-cut pruning

4.10 Multi-Cut

Multi-Cut (Björnsson and Marsland, 2001) is a forward-pruning technique which may improve the
playing strength of a program. It is used in a combination with α-β pruning.

The nodes of a tree, using a negamax implementation, can be identified as follows:

1. The pv-node is a node that is a part of the principal variation, e.g. the root node. At least one
child of the pv-node must have a minimax value and is the next pv-node, all remaining children are
then cut-nodes.
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2. A child of a cut-node which has a value higher than the value of the principal variation value,
becomes an all-node.

3. Every child of an all-node is a cut-node.

In α-β it is possible that the first move of a cut-node will create a cutoff and the other children do
not have to be searched anymore. The idea of multi-cut is that a cut-node has many successors that
cause a β cutoff and therefore will be pruned. Multi-cut will visit some of the successors at a reduces
search depth and determine if the node can be pruned in advance.

Björnsson and Marsland (2001) combines Multi-Cut with a principal variation search and searches
the principal variation first before applying multi-cut. Winands et al. (2005) created a Multi-Cut
that is able to prune at all-nodes and shows it is safe to forward prune at all-nodes and gives a reduction
of the search. This version of multi-cut is implemented in our Stratego player.

In Multi-Cut, M children of a possible cut-node are searched with a depth of d − 1 − R, where d
is the search depth remaining and r is a search reduction. When C moves of the total M moves return
a value larger than β the node is pruned in advance, where 1 ≤ C ≤ M . This is depicted in Figure 4.9
(Björnsson and Marsland, 2001). The dotted area below n1 the children after nM are the savings that
multi-cut creates when a successful pruning was created. If a cutoff occurs, the node will return the β
value. Otherwise, the node will be searched in full-depth. When no cutoff occurs the nodes visited by
Multi-Cut are extra overhead but could lead to move ordering information for the remaining search.
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Chapter 5

Evaluation Function

A game with a full search-based approach would not need a complex evaluation function because the only
outcomes the leaf nodes have is win, loss or draw. However, when a game is too complex, such as Stratego,
only a search-based approach does not suffice. Therefore a combination of search and knowledge, in the
form of an evaluation function, is needed.

An evaluation function can implement human knowledge and strategies of the game or computer
generated information such as an end-game database. An end-game database for Stratego would be too
large to create. The evaluation function of Stratego mostly depends on human knowledge.

5.1 Piece Value

An evaluation function returns a numerical value to express the utility of the current position. Therefore,
a value is assigned to each position. A way to do this is by counting the material on the board.

A piece value can be static, a predetermined value that does not change over time, or dynamic, a
value that changes over time. In Stratego the importance of the pieces changes over time. For example,
the Spy is important when the opponent still has its Marshal in play. When the Marshal is removed
from the board the Spy is only useful to capture the Flag or sacrifice the piece to discover the identity of
an unknown piece. Therefore the Spy will lose a large deal of its value because it cannot use its special
ability anymore, capturing the Marshal.

De Boer (2007) suggested a formula for the relative values of pieces in Stratego:

• The Flag has the highest value of all

• The Spy’s value is half of the value of the Marshal

• If the opponent has the Spy in play, the value of the Marshal is multiplied with 0.8

• When the player has less than three Miners, the value of the Miners is multiplied with 4−#left.

• The same holds for the Scouts

• Bombs have half the value of the strongest piece of the opponent on the board

• The value of every piece is incremented with 1
#left to increase their importance of the piece when

only a few are left

In the situation when the opponent has a Sergeant as highest rank, it does not matter for the player if
he has a General or Colonel as highest rank, because they both defeat all the pieces left of the opponent.
The value of General or Colonel should be relative to the number of pieces they can capture. In Figure
5.1 such situation is depicted. The blue General (the “2”) is the highest ranked piece on the board.
However it would as just be valuable if it was, for example, a Marshal or Major, because it would still
defeat the same number pieces.

Similar is a situation when the opponent would lose his Marshal and the player’s General becomes the
highest rank on the game board. Initially the General would have a low value because it can be defeated
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by the Marshal. When the Marshal is removed from the game board the General is undefeatable and its
value needs to be changed accordingly.

A player loses if his Flag is captured and therefore the piece will be assigned a static terminal value
which is larger than the bounds of the evaluation function to ensure a cutoff in case of a win or loss.
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Figure 5.1: Example where the rank of the highest piece is not important

5.2 Value of Information

Initially the pieces of the opponent are unknown to the player and the other way around. Most Stratego
players will try to keep the identity of their pieces unknown as long as possible (De Boer, 2007). With
imperfect information the players can mislead the opponent to make a bad move. This prevents the
opponent to play the best move possible. E.g. if there is a situation where the opponent has an unknown
Marshal and a few low-ranked unknown pieces left. When the opponent knows which piece is the Marshal,
his General could safely attack the remaining unknown pieces.

In Figure 5.2 the Red player has two unknown pieces left, one is the Marshal and the other piece is a
Miner. The Blue player is now in the situation where he can attack both pieces. When the Blue player
uses the Spy to attack and it shows that the attacked piece is the Marshal, the game will result in a
definite win for Blue. However, if the blue Spy attacks the Miner, the Blue player loses his Spy and the
Red player can easily capture one of the opponent’s Miners. This results in a clear loss for Blue.

5.3 Strategic Positions

The game board of Stratego contains three small areas with a size of two by two connecting both sides of
the game board, separated by water, these are called lanes. Every piece going to the opposite side needs
to pass these lanes. In some situations it is beneficial to control these lanes, preventing the opponent to
cross the board. Especially in the end game, when Miners need to remove the Bombs surrounding the
Flag. A player can defend these lanes with only one piece per lane and preventing a loss. In Figure 5.3
the Red player is outnumbered and can only hope for a draw. The Red player is defending the lanes such
that the Blue player cannot use its Miners to approach the Flag. Therefore the player forces a draw.
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Figure 5.2: Example where the Red player has a Miner and the Marshal left. If the Blue player attacks
the Marshal with the Spy he wins, otherwise the Red player wins
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Figure 5.3: Example where the Red player controls all three lanes

5.4 Implementation

The key points mentioned in the previous section have been implemented as different independent features
in an evaluation function.
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• First feature is multiplying the value of the Marshal (both player and opponent) with 0.8 if the
opponent has a Spy on the game board.

• Second feature multiplies the value of the Miners with 4−#left if the number of Miners is less
than three.

• Third feature sets the value of the Bomb to half the value of the piece with the highest value.

• Fourth feature sets divides the value of the Marshal by two if the opponent has a Spy on the
board.

• Fifth feature gives a penalty to pieces that are known to the opponent

• Sixth feature increases the value of a piece when the player has a more pieces of the same type
than the opponent.

Eventually the value of a piece is multiplied with the number of times that the piece is on the board,
and summated over all the pieces. The default values of each piece can be found in Table 5.1. These
values are based upon the M.Sc. thesis by Steng̊ard (2006).

Marshal 400 Sergeant 15
General 200 Miner 25
Colonel 100 Scout 30

Major 75 Spy 200
Lieutenant 50 Bomb 20

Captain 25 Flag 10000

Table 5.1: Default values of the evaluation function for each piece



Chapter 6

Experimental Results

This chapter presents the experiments, and their results, done in this research. Section 6.1 describes the
experimental design, Section 6.2 shows the results of using different pruning techniques in MIN/MAX
nodes. Section 6.3 measures the performance of the *-minimax algorithms from Ballard (1983) and the
Transposition Table enhancement by Veness (2006). Section 6.4 gives an overview of the performance
of evaluation function features. Finally Section 6.5 presents the experiments and results of Multi-Cut.

6.1 Experimental Design

The implemented techniques are tested using two approaches. The first approach is the testing the
performance of the technique with respect to the number of nodes visited. The test set consists of
300 board positions, where the first 100 board positions are taken from the begin game of Stratego,
100 midgame positions and 100 positions are endgame positions. See Figure 6.1 for example board
configurations.

The second approach is using self play, where two programs play a match against each other. Here
11 predefined setups (see Appendix A), from which each player is appointed a board setup, are used.

6.2 Pruning in MIN/MAX Nodes

This section focusses on pruning in deterministic nodes. Section 6.2.1 shows the results of Iterative
Deepening. The effect of the History Heuristic is shown in Section 6.2.2. The results of the Trans-
position Table is described in Section 6.2.3 and Section 6.2.4 shows the result of combination of the
History Heuristic and the Transposition Table. The techniques are compared to a default program
using α-β pruning by default or if not mentioned otherwise. For computational reasons, all experiments
are performed up to 5 ply.

6.2.1 Iterative Deepening

Table 6.1 shows that Iterative Deepening (ID) without enhancements provides a little overhead,
4.10% on a 5-ply search, when compared to a fixed depth search. However, the advantage of Iterative
Deepening is that it can be stopped anytime during the search at depth n and then is able to return
the best move on a n− 1 depth search.

Ply Without ID With ID Overhead
1 10,344 10,344 0.00%
2 264,264 274,608 3.91%
3 5,994,388 6,268,996 4.58%
4 215,558,850 221,827,846 2.91%
5 5,408,948,866 5,630,776,712 4.10%

Table 6.1: Overhead of Iterative Deepening
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Figure 6.1: Example positions used in the test set

6.2.2 History Heuristic

The History Heuristic (HH) sorts the nodes dynamically based upon previous search results. Stratego
is a game with an average branching factor of around 30, where some moves lead to already seen board
configurations and some moves do not result in progression of the game. Static move ordering is used
to make an initial ordering based on domain knowledge (see Section 4.9.1. The dynamic move ordering
improves the static move ordering.

The History Heuristic improves the performance of Iterative Deepening as shown in Table 6.2.
The overhead of Iterative Deepening is still noticeable at ply 2 where the overhead is 3.26%. The
gain of the dynamic move ordering in combination with Iterative Deepening begins at ply 3. The
History Heuristic improves the node reduction up to 55.46% on a 5-ply search.

Ply Without HH & With HH & Gain
without ID with ID

1 10,344 10,344 0.00%
2 264,264 273,141 -3.36%
3 5,994,388 5,322,698 11.21%
4 215,558,850 141,060,175 34.56%
5 5,408,948,866 2,409,129,708 55.46%

Table 6.2: Node reduction by History Heuristic

The table reveals that the dynamic move ordering has a positive effect on top of the static ordering as
described in Section 4.9. The performance of the History Heuristic increases every ply. By looking
at the trend of the gain we can assume that the performance of the History Heuristic improves even
more when searching deeper than 5 ply.
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6.2.3 Transposition Table

The Transposition Table (TT) is able to reduce the number of nodes by keeping track of previous
visited board configurations, the corresponding upper bound, lower bound and the best move. Every time
an equal board configuration appears, the program can immediately retrieve the previously calculated
upper and lower bound. These values are compared to the current α and β values and a cutoff can occur.
If these values do not provide a cutoff, the Transposition Table can provide a best move which is
searched first. In Table 6.3 shows the gain of Transposition Tables in combination with Iterative
Deepening.

Ply Without TT & With TT & Gain
without ID with ID

1 10,344 10,344 0.00%
2 264,264 227,938 13.75%
3 5,994,388 5,001,828 16.56%
4 215,558,850 134,654,093 37.53%
5 5,408,948,866 3,375,802,619 37.59%

Table 6.3: Node reduction by a Transposition Table

The performance is already noticeable on a 2-ply search. This can be explained by the advantage of move
ordering in combination with Iterative Deepening. The move ordering at the second iteration uses
the information from the first iteration and is already able to prune 13.75%. By looking at the trend of
the gain we can assume that the performance of the Transposition Table improves even more when
searching deeper than 5 ply.

6.2.4 History Heuristic and Transposition Table

In the next experiment the Transposition Table and the History Heuristic are combined. These
techniques combine their strength to perform better. The combination of Transposition Tables, the
History Heuristic and Iterative Deepening is able to reduce the number of nodes by 74.06% as
shown in Table 6.4.

Ply Without TT & With TT & Gain
without HH & with HH &
without ID with ID

1 10,344 10,344 0.00%
2 264,264 224,387 15.09%
3 5,994,388 4,123,300 31.21%
4 215,558,850 87,384,008 59.46%
5 5,408,948,866 1,403,260,491 74.06%

Table 6.4: Node reduction by HH & TT

Table 6.5 shows the strength of Iterative Deepening. A 5-ply search with Iterative Deepening
improves the node reduction by 32.65% when compared without Iterative Deepening. Iterative
Deepening successfully uses information from lower depth searches to improve the move ordering and
hence reduces the number of nodes. The effectiveness of Iterative Deepening with move ordering
enhancements increases every ply. Again we may assume that the gain increases further when the search
depth grows.

6.3 Pruning in Chance Nodes

Section 6.3.1 looks at the result of the Star1 algorithm. In Section 6.3.2 the result of Star2 with
and without Star1 are shown. The results of the StarETC algorithm is shown in Section 6.3.3 The
experiments with *-minimax make use of Iterative Deepening, the History Heuristic and the
Transposition Table.



42 Experimental Results

Ply With TT & With TT & Gain
with HH & with HH &
without ID with ID

1 10,344 10,344 0.00%
2 262,796 224,387 14.62%
3 4,658,616 4,123,300 11.49%
4 100,656,880 87,384,008 13.19%
5 2,083,669,650 1,403,260,491 32.65%

Table 6.5: Node reduction using HH & TT with Iterative Deepening and without Iterative Deep-
ening

6.3.1 Star1

The Star1 algorithm is able to backward prune chance nodes using an α-β window and information
about the theoretical lower and upper bound of the evaluation function.

The Star1 algorithm is able to prune 32.54% at the first ply as can be seen in Table 6.6. This can
be explained by the fact that a chance node is not a counted as a ply but the children of the chance node
are. Therefore the Star1 algorithm is able to prune at a 1-ply search. On a 5-ply search Star1 reduces
the node count by 90.13%.

Ply Default With Star1 Gain
1 10,344 6,978 32.54%
2 264,264 188,423 28.70%
3 5,994,388 1,607,955 73.18%
4 215,558,850 61,256,939 71.58%
5 5,408,948,866 533,925,113 90.13%

Table 6.6: Node reduction by Star1

6.3.2 Star2

Star2 probes 1 or more children of a node to tighten the bounds of a chance node. This also helps
Star1 to prune. With a good move ordering Star2 can be quite effective. Table 6.7 presents the results
of the Star2 algorithm with a probe factor of 1. At depth 2 and 3 Star2 has no significant effect on
the search. The reason for this result is that Star2 probes children of nodes which do not give good
information for Star2 to adjust the bounds and hence only increase the number of nodes. However, on
a 5-ply search Star2 is able to prune 93.56%.

Ply Default With Star2 & Gain
with Star1

1 10,344 6,978 32.54%
2 264,264 190,389 27.95%
3 5,994,388 1,650,350 72.47%
4 215,558,850 36,888,491 82.89%
5 5,408,948,866 348,235,823 93.56%

Table 6.7: Node reduction using Star2 with a probing factor of 1

In Table 6.8 the Star1 and Star2 algorithm are compared. For a 1-ply search Star2 is not useable.
Therefore Star2 does not provide any gain compared to Star1. The results show the overhead of Star2
on a shallow search. It also shows the gain compared to Star1 on a deeper search. The gain increases
to 39.78% on a 4-ply search but drops to 34.78. A 6 ply search is likely to improve the performance of
Star2 again. The Star2 algorithm is able to probe a different number of children in every node. By
default Star2 probes 1 child per chance node. Depending on the quality of the move ordering, the gain
increases or decreases by incrementing the probe factor.
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Ply Without Star2 & With Star2 & Gain
with Star1 with Star1

1 6,978 6,978 0.00%
2 188,423 190,389 -1.04%
3 1,607,955 1,650,350 -2.64%
4 61,256,939 36,888,491 39.78%
5 533,925,113 348,235,823 34.78%

Table 6.8: Node reduction by Star1 and Star2 with a probe factor of 1

In Table 6.9 we compare different probe factors. The first probe factor of 0 equals the Star1 algorithm
and has therefore no gain. The values 1 and 2 have a positive gain when compared to Star1, 34.78% and
16.44% respectively. Higher values for the probe factor increase the node count up to 35.59%. A probe
factor of 1 has the best reduction of nodes, this means that the move ordering (the History Heuristic
and Transposition Table) performs well in combination with Star2.

Probe factor Nodes Gain
(Star1) 0 533,925,113 -

1 348,235,823 34.78%
2 446,157,703 16.44%
3 543,629,215 -1.82%
4 628,570,608 -17.73%
5 723,955,888 -35.59%

Table 6.9: Node reduction using different probe factor values for Star2

6.3.3 StarETC

The StarETC algorithm makes use of information from chance nodes. StarETC stores the lower and
upper bounds computed by the Star1 and Star2 algorithms, as similar as the Transposition Table.
StarETC is able to reduce the number of nodes by 93.52% as can be seen in Table 6.10.

Ply Default With StarETC Gain
1 10,344 6,978 32.54%
2 264,264 190,389 27.95%
3 5,994,388 1,649,015 72.49%
4 215,558,850 36,796,717 82.93%
5 5,408,948,866 350,754,377 93.52%

Table 6.10: Node reduction using StarETC

It performs almost identical like Star2 as can be seen in Table 6.11. The relative gain of StarETC
compared to Star2 is almost 0. On a 5-ply search there seems to be a little additional overhead when
compared to Star2. The StarETC is likely to perform better than Star2 on a deeper search.

Overview

The results of the node reduction experiments are summarized in Table 6.12. The table compares the
techniques on a 5-ply search. Each technique makes use of Iterative Deepening. Every new experiment
is extended with the previous mentioned techniques. The gain of the mean can be found in the tables
previously mentioned. Worth noting is the fact that each technique improves the worst-case.

The Star1 and Star2 improve the node reduction compared to α-β pruning with the History
Heuristic and Transposition Table with an additional 75.18%.
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Ply Star2 StarETC Gain
1 6,978 6,978 0.00%
2 190,389 190,389 0.00%
3 1,650,350 1,649,015 0.08%
4 36,888,491 36,796,717 0.25%
5 348,235,823 350,754,377 -0.72%

Table 6.11: Node reduction using StarETC

Total Mean Median Std. Dev. Min Max
Alpha-Beta 5,630,776,712 18,769,256 2,243,814.5 53,356,557.85 34 559,492,043
History Heuristic 2,409,129,708 8,030,432 716,116.0 24,486,486.38 34 229,001,460
Transposition Table 1,403,260,491 4,677,535 573,530.5 14,574,204.75 34 127,506,016
Star1 533,925,113 1,779,750 294,901.0 5,144,435.40 31 45,979,029
Star2 348,235,823 1,160,786 230,650.5 3,640,867.21 31 34,938,971
StarETC 350,754,377 1,169,181 231,281.0 3,670,205.21 31 33,607,267

Table 6.12: Number of nodes searched on 5-ply search

6.4 Evaluation Function Features

This section looks at the performance of the features as presented in Section 5.4. First, the node reduction
is compared and second, the strength of the evaluation features is compared to the default evaluation
function. The search function is extend with all previous mentioned techniques: Iterative Deepening,
History Heuristic, Transposition Table, Star1, Star2 and StarETC.

In self play the program will play 121 games of Stratego. Each program has a search time of one
second to compute a move. There are 11 predefined board setups, which can be found in Appendix B.
Every game starts with a unique combination of two setups (therefore results in a total of 112 = 121
games). The game ends by the game rules or after 1,200 plies.

First, we compare the node reduction of the different features compared to the default version in Table
6.13. It shows that the third feature can reduce the nodes visited by the current evaluation function with
7.84%. The fifth feature decreases the gain by −7.92%. The other features have no significant increase
or decrease impact on the performance.

Extension Nodes Gain
None 350,754,377 -

1st feature 344,586,412 1.76%
2nd feature 351,781,359 -0.29%
3rd feature 323,241,276 7.84%
4th feature 350,270,127 0.14%
5th feature 378,522,770 -7.92%
6th feature 344,157,660 1.88%

Table 6.13: Node reduction using evaluation function features

Second, we take a look at the performance of these features in self play. For evaluating the features,
every feature has been tested individually against a program without any features. The results are
shown in Table 6.14. The column ‘Score percentage’ is the sum of the win percentage and half of the
draw percentage. The features do not provide much improvement as compared to the default evaluation
function. The second feature, where the weight of the Miners increases as their number on the board
decreases, has the best performance with a 44.44% win rate and a 33.33 % loss rate. With the current
number of tests it is not possible to state that this feature is significant better than the default evaluation
function.
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Extension Win Loss Draw Score percentage
1st feature 38.89 % 47.22% 13.89% 45.84%
2nd feature 44.44 % 33.33% 22.22% 55.55%
3rd feature 36.11 % 47.22% 16.67% 44.45%
4th feature 27.78 % 52.78% 19.44% 37.50%
5th feature 25.00 % 38.89% 36.11% 43.06%
6th feature 25.00 % 52.78% 22.22% 36.11%

Table 6.14: Comparison of different evaluation function features

6.5 Multi-cut

In this section the program plays 121 games similar as described in Section 6.4. Again the search time
has been set to one second. In this experiment the search function, with all pruning techniques active
and without any function features, is extended using Multi-Cut.

M is the maximum number of moves that Multi-Cut considers, C is the number of moves that
result in a cut-off before Multi-Cut prunes the complete subtree. R is the search depth reduction.

M C R Wins Loss Draw Score percentage
8 2 2 38.84% 42.15% 19.01% 48.36%
8 3 2 45.45% 40.15% 14.05% 52.48%
8 4 2 36.36% 42.98% 20.66% 46.69%

10 2 2 42.15% 35.54% 22.31% 53.31%
10 3 2 45.45% 39.67% 14.88% 52.89%
10 4 2 37.19% 42.98% 19.83% 47.11%

12 2 2 40.50% 39.67% 19.83% 50.42%
12 3 2 41.32% 37.19% 21.49% 52.07%
12 4 2 41.32% 41.32% 17.36% 50.00%

8 3 3 42.98% 40.40% 16.53% 51.25%
10 3 3 37.19% 42.98% 19.83% 47.11%
12 3 3 41.32% 40.50% 18.18% 50.41%

Table 6.15: Self play results using Multi-Cut

In Table 6.5 the results are shown. The column ‘Score percentage’ is the sum of the win percentage
and half of the draw percentage. Multi-Cut shows some improvement over the default search method,
but not significantly enough to state that Multi-Cut is an essential improvement. The best performing
parameters (M,C,R) are (8,3,2 ),(10,2,2 ),(10,3,2 ),(12,3,2 ).
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Chapter 7

Conclusions

In this chapter the Research Questions and the Problem Statement, as stated in Chapter 1 are answered
based upon the research done in this thesis. Section 7.1 gives answers to the Research Questions, Section
7.2 and future research ideas are given in Section 7.3

7.1 Answering the Research Questions

The first Research Question that was stated is:

Research Question 1. What is the complexity of Stratego?

The complexity of the state-space and the game-tree complexity of Stratego have been calculated in
Chapter 3. First the complexity of the board setup is 1023. Second, the calculated upperbound of the
state-space complexity is 10115 and the game-tree complexity equals 10534. The state-space complexity
is an upperbound because some positions are calculated that would never be reached in practice. The
game-tree complexity is calculated based upon human played Stratego games. The complexity of Stratego
is one of the highest complexities in board games (See Table 3.1). Based upon these numbers it is not
likely that Stratego will be solved in the near future and that a search-based approach with an evaluation
function can be used.

The second Research Question was:

Research Question 2. To what extent can *-minimax techniques be utilized in order to realize
competitive game play in Stratego?

Expectimax with the history heuristic, α-β and transposition tables is able to prune 74.06%.
Additionally, Star1 and Star2 give a node reduction of 75.18%. The *-minimax algorithms get their
advantage from pruning in chance nodes. Chapter 3 shows that Stratego has a relative low number of
chance nodes. However an improvement in performance is quite drastic. The performance gain gives the
artificial player a possibility to search deeper than an computer player without a *-minimax algorithm.

7.2 Answering the Problem Statement

After answering our Research Questions it is possible to answer the Problem Statement:

Problem Statement. How can we develop informed-search methods in such a way that programs
significantly improve their performance in Stratego?

The answer to Research Question 1 shows that Stratego is a complex game. Therefore, it is not
possible to solve the game. The program will have to use informed-search techniques to be able to play
Stratego.
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The answer to Research Question 2 shows that informed-search methods decrease the number of nodes
that need to be visited compared to expectimax. This allows the player to search deeper in a given
time frame and thus increase his potential to better evaluate search branches. However because of the
relative high complexity, intermediate or even expert level game play is hard to realize.

7.3 Future Research

Most research in this thesis is based upon well-known techniques such as, expectimax and α-β pruning.
Although the *-minimax algorithms have been developed 20 years ago there is still little research available
on this topic. More research in different areas is needed to increase the further understanding of these
algorithms. Perhaps it is possible to develop new techniques based upon the current research.

There is little research in the field of Stratego itself, the current papers available do not provide
enough scientific insight into Stratego. Especially Stratego is a very complex game where humans still
have the upper hand in playing. This gives insight into the fact that humans play games very differently
than artificial players. For future research one could think of a different approach of search. Moreover
more research could be done in the evaluation function for Stratego. Not only finding better weights and
features but perhaps one could take into account a short-term plan or the structure in the game.
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Appendix A

Board Setups

The board set-ups are used in the self play experiments of 6.
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