
Creating a Havannah Playing Agent

B. Joosten

August 27, 2009

Abstract

This paper delves into the complexities of Ha-
vannah, which is a 2-person zero-sum perfect-
information board game. After determining
these complexities an appropriate technique for
creating a Havannah agent is introduced viz.
Monte-Carlo Tree Search (MCTS). The Near-
est Neighbour preference enhancement to the
MCTS’ simulation strategy does not lead to
a major increase of performance. The MCTS
agent does however have a 76% win rate against
a greedy Monte-Carlo based player.

Keywords: Havannah, Monte-Carlo Tree
Search, Upper Confidence bound applied to
Trees

1 Introduction

Havannah is a 2-person, zero-sum, perfect-information,
converging, sudden-death, connection game as explained
in [1], which has recently drawn the attention of re-
searchers in the field of AI [11]. Havannah was invented
by Christian Freeling in 1976 [6] and is played on a board
with 271 cells. It has some similarities with the game of
Hex. Although Havannah has other goals and a differ-
ently shaped board the idea of virtual connections in
Hex [10] is quite relevant to Havannah [4, 5]. One of the
interesting aspects of the game is that humans are quite
capable of quickly understanding the game and its goals.
The deceivingly simple goals are extremely hard to pro-
gram in a computer agent capable of playing Havannah
autonomously. The inventor Christian Freeling thinks it
is so hard he has even put out a challenge. Anyone who
is able to write a Havannah program by 2012 that is ca-
pable of beating him once out of ten games will receive
e1000. It is not the winning connections which pose a
difficulty to represent but the strategic and tactical ob-
jectives to achieve these connections. The way humans
are capable of evaluating the course of the game is fasci-
nating and holds the key to solving the game. What is
difficult in building a Havannah agent is the lacking of
certain game aspects. For instance:

• the game has no material imbalance

• there is no general direction

The absence of these aspects makes it harder to derive
heuristics for an agent. This also poses a challenge in
examining the capabilities of present AI algorithms used
in other 2-person zero-sum perfect-information games.

Giving the high complexity of Havannah, which will
be discussed in Section 3, the experiments in this paper
have all been conducted on a board with 61 cells. The
goal is to create a Havannah game-playing agent. There-
fore the following problem statement is formulated:

Which algorithms and heuristics are valuable for the
construction of a Havannah game-playing agent?

This leads to the following three research questions
which will be answered in this paper:

• What is Havannah’s state-space complexity and
game-tree complexity?

• Taking these complexities into account, which algo-
rithms are the most promising to develop a computer
agent that is capable of playing Havannah?

• Which adjustments and extensions of these algo-
rithms make the agent more advanced?

This paper is organized as follows. Section 2 will
explain the game of Havannah in more detail. Section 3
will elucidate the concepts of state-space complexity and
game-tree complexity by applying them to Havannah.
The architecture and a description of the Monte-Carlo
Tree Search algorithm are discussed in Section 4. Section
5 will present the results of the experiments conducted.
Conclusions and future research are outlined in Section
6.

2 The Game of Havannah

Havannah is usually played on a hexagonal board that
consists of 271 hexagonal cells. This is called a 19×19
board. The board allows for a maximum of six directions
to expand a connection. The goal of the game is to con-
struct a winning connection before the opponent does.
There are three winning connections, viz. the bridge, the
fork and the ring. Figure 1 shows these connections on
a 9×9 board. A bridge is a connection between any two
corners of the board. A fork is a connection between any
three different sides. This connection may not contain

B. Joosten Creating a Havannah Playing Agent

(a) Bridge (b) Fork (c) Ring

Figure 1: End positions

corner cells which are indispensable for this connection.
A ring is a circular connection enclosing at least one cell,
occupied or not. The minimum length of a ring therefore
is six. When a player reaches one of these connections
the game is won. A draw is theoretically possible, when
the complete board is occupied by white and black stones
and no winning connection is reached.

A property of hexagonal boards is the possibility of
creating virtual connections. Consider the stones in Fig-
ure 2. There is no real connection between any of the
stones, yet White will not be able to prevent Black from
connecting them. These stones are virtually connected
by a so called 2-bridge. The stones in Figures 2a and
2b are not only virtually connected, but they also con-
stitute a virtual winning connection. Such a connection
is called a frame. A frame is the most important strate-
gic concept in Havannah [4]. The speed of a frame is
the number of stones necessary to complete the winning
connection. An opponent’s frame can only be parried
by a faster frame. Attempts to obstruct the frame lead
to a certain loss. The ring threats in Figure 3a are not

(a) Virtual Bridge (b) Virtual Fork

Figure 2: Frames

frames. The upper threat can be eliminated from the
inside while the lower threat can be canceled from the
outside as is shown in Figure 3b. While a fork frame
can be created using less than half the stones required
for the fastest fork, a ring frame needs more than the
minimum stone length of a ring.

(a) Ring Threats (b) Parried Ring Threats

Figure 3: Parriable Ring Threats

3 Havannah’s Complexities

An important property which distinguishes classic board
games is complexity [1]. This property implicates two
measures, viz. state-space complexity and game-tree
complexity. These measures are relevant to give an indi-
cation of the approach and computational strain neces-
sary to solve the game. Subsections 3.1 and 3.2 will deal
with state-space complexity and game-tree complexity,
respectively. First an understanding of the concept is
created and then its value for Havannah is determined.

3.1 State-Space Complexity

State-space complexity is a measure for all different legal
states a game can have. For most classic board games
this state-space is usually too large for a computer to
enumerate all positions. This means a brute-force ap-
proach to solve these games is inapplicable. Therefore
a broad understanding of the underlying mathematical
structures and complex strategies is necessary to narrow
the search for a good move, like is done for chess [9]. For
most games calculating an exact state-space complexity
is infeasible, therefore approximations are used. Start-
ing with a rough estimated upper bound they are refined
until a satisfactory upper bound is found.

To create an upper bound to Havannah’s state-space
complexity a few observations have to be made. Ha-
vannah is a game with no movement or capture. This
means we can derive an upper bound by summing all the
possible combinations for every number of stones. See
Formulas 1 and 2.

271
∑

i=1

Num

(

i + i mod 2

2
,
i− i mod 2

2

)

, (1)

where

Num(w, b) =

(

271

w

)

×

(

271− w

b

)

(2)

In this formula w and b stand for white and black stones,
respectively, in the i-th move. For Havannah this means

(v. August 27, 2009, p.2)

Creating a Havannah Playing Agent B. Joosten

a state-space complexity of 10128. This upper bound
can be improved by observing that Havannah is played
on a hexagonal board. Therefore there are six mirror po-
sitions possible and six transformations which are sym-
metrical identical. Through dividing by twelve the state-
space complexity is refined to 10127. This is still a rough
estimation, because it does not take into account posi-
tions with multiple winning connections.

3.2 Game-Tree Complexity

The game-tree complexity is an estimate of the size of the
minimax search tree which has to be built to solve the
game [1]. To explain game-tree complexity two auxiliary
definitions have to be introduced.

Definition 1. The solution depth of a node J is the
minimal depth (in ply) of a full-width search sufficient
to determine the game-theoretic value of J.

This is the number of plies in which the game will be
decided in optimal play. Where a ply is one move of an
opponent. In contrast to a turn, which represents two
plies.

Definition 2. The solution search tree of a node J is the
full-width search tree with a depth equal to the solution
depth of J.

Combining these two definitions leads to a more for-
mal definition of the game-tree complexity.

Definition 3. The game-tree complexity of a game is
the number of leaf nodes in the solution search tree of
the initial position(s) of the game.

This states that if such a tree could be created the
course of the game would already be determined from
the start. Calculating the game-tree complexity for
most games is not feasible let alone creating the solution
search tree of the initial position. Therefore an approxi-
mation has to be made.

According to [1] an approximation of the game-tree
complexity can be made in the following way. First
observe the average game length in ply. For Havan-
nah this is experimentally done by playing a large num-
ber of games in self-play simulations with the most ad-
vanced Havannah agent. This resulted in an average
game length of 66. Finally the branching factor per
depth of the game tree must be determined. For Ha-
vannah this is 271 - depth i. Now the game-tree com-
plexity can be approximated by the number of leaf nodes
of the search tree with as depth the average game length
and as branching factor the branching factor per depth.
Thus Havannah has an estimated game-tree complexity
of 271!

(271−66)! ≈ 10157.

In order to put Havannah’s complexities into perspec-
tive Figure 4 outlines them between a number of classic
board games based on Table 1. Havannah is somewhere

Table 1: State-space and game-tree complexities for
some well known games and Havannah [7]

ID Game State-space Game-tree

1 Awari 1012 1032

2 Checkers 1021 1031

3 Chess 1046 10123

4 Chinese Chess 1048 10150

5 Connect-Four 1014 1021

6 Dakon-6 1015 1033

7 Domineering (8×8) 1015 1027

8 Draughts 1030 1054

9 Go (19×19) 10172 10360

10 Go-Moku (15×15) 10105 1070

11 Havannah (19×19) 10127 10157

12 Hex (11×11) 1057 1098

13 Kalah(6,4) 1013 1018

14 Nine Men’s Morris 1010 1050

15 Othello 1028 1058

16 Pentominoes 1012 1018

17 Qubic 1030 1034

18 Renju (15×15) 10105 1070

19 Shogi 1071 10226

between Go-Moku (15×15) and Renju (15×15) on the
one side and Go (19×19) on the other side.

1.4 1.6 1.8 2 2.2 2.4 2.6

1

1.5

2

2.5

1

2

3 4

5
67

8

9

10

11

12

13

14

15

16

17

18

19

log log
state−space complexity

log log
game−tree complexity

Figure 4: Approximate positions of games of table 1 in
the game space [7]

4 The Havannah Agent

In order to construct a Havannah playing agent there
first has to be a robust architecture which incorporates
a fast representation of the game and its rules. Because
the methods to determine a winning connection are non-
trivial Subsection 4.1 will be devoted to explain these
methods. Subsection 4.2 will describe the Monte-Carlo

(v. August 27, 2009, p.3)

B. Joosten Creating a Havannah Playing Agent

Tree Search (MCTS) algorithm as described in [2] which
is used in the Havannah agent to search for the best
move. This subsection will be divided into the differ-
ent strategies of which this algorithm consists. Finally,
Subsection 4.3 will explain an enhancement made to the
agent with the purpose of achieving a more realistic sim-
ulation.

4.1 Winning Connections

To keep the representation of the game as fast as possi-
ble, it is best to examine only the newly formed connec-
tions when a new piece is placed on the board. Therefore
whenever a new piece is placed this can only mean three
things viz. (1) an isolated piece is placed, (2) an existing
connection is extended or (3) two or three existing con-
nections are connected to form a new connection. Only
in the last two cases the architecture will test these con-
nections for a winning situation. Now to test for a bridge
or a fork on the one hand is straightforward. In the first
case it checks whether the connection contains two differ-
ent corner cells. In the second case it checks whether the
connection contains cells of at least three different board
sides and whether the connection contains any corner
cells which can be omitted so that a winning connection
can still be formed. To check if the connection is a ring
on the other hand is not straightforward. A ring can
be regarded as a connection of stones which all have at
least two neighbours. Moreover, if a stone has exactly
two neighbours they should not be neighbours of each
other. These conditions are the basis for this method.
Any stone which does not comply to these conditions is
iteratively removed from the connection. If this results
in a connection length of at least six, a ring must ex-
ist. Figure 5a shows a side effect of this method which
does not affect the outcome. The method does not re-
move the centre black stone, for it has six neighbours. It
regards the complete seven stone connection as a ring.
The connection in Figure 5b will not be considered a
ring. Starting with removing the leftmost or rightmost
stone this connection will be reduced to zero stones. This
method of iteratively removing stones from the connec-
tion is a lot cheaper with regard to computation time
than an expensive cycle path-finding algorithm.

4.2 Monte-Carlo Tree Search

Because building an adequate evaluation function in Ha-
vannah is quite complex, traditional search algorithms
applied to the game tree will perform poorly when lack-
ing this function. To bypass this shortcoming Monte-
Carlo Tree Search is applied which mainly uses the re-
sult of an actual game played in self-play as an evaluation
function [3]. The more games won in the game tree going
through a certain node the more probable it is that this
is the best node. To explain how MCTS works it is best

(a) Ring with Centre
Stone

(b) Not a Ring

Figure 5: Ring and Non-ring Examples

to describe it by its four parts outlined in Figure 6. The
most important parts are the selection strategy and the
simulation strategy. These strategies mainly determine
the strength of the MCTS agent.

Selection
 Expension
 Simulation
 Backpropagation

The selection function is applied

recursively

One (or more) leaf

nodes are created

The result of this game is

backpropagated in the tree

One simulated

game is played

Selection
 Expansion
 Simulation
 Backpropagation

The selection function is

applied recursively until

the end of the tree

One (or more) leaf nodes

are created

The result of this game is

backpropagated in the tree

One simulated

game is played

 Repeated X times

Figure 6: Outline of a Monte-Carlo Tree Search [2]

Selection

Selecting which route to travel down the path of the
game tree is an essential part of MCTS. For MCTS
to find the optimal move it needs to have a good bal-
ance between exploring the search space and exploiting
a promising move. When the algorithm tends too much
towards exploration, a broad game tree is constructed,
which might take too long to converge to the optimal
move. When a single path is exploited too fast a subop-
timal move might be found which is not the best move
overall. This happens when the algorithm is too ex-
ploitative. Hence a good strategy has to be found, which
uses an optimal balance between these two properties. In
this paper the Upper Confidence bound applied to Trees
(UCT) [8] is used. UCT is easy to implement and works
as follows. Let I be the set of nodes reachable from the
current node p. UCT selects the child k of node p that
satisfies Formula 3 as in [2]:

k ∈ arg maxi∈I

(

vi + C ×

√

lnnp

ni

)

(3)

(v. August 27, 2009, p.4)

Creating a Havannah Playing Agent B. Joosten

where vi is the value of the node i, ni is the visit count
of i and np is the visit count of p. The constant C deter-
mines the balance between exploration and exploitation.
This value is tuned experimentally, which will be de-
scribed in Section 5 and is set to C = 1.2. Thus when a
certain node in the path often leads to success the more
likely it is this node will get selected. UCT is usually
only applied when a node exceeds a certain visit count
threshold. For this research the threshold T ≥ 50 is
used. When the node is below this threshold the simu-
lation strategy determines which node gets selected.

Expansion

After the selection strategy has selected an appropriate
node which is not already in the game tree this node is
created and added to the game tree. Unless this node is
a terminal state, the simulation strategy discussed in the
next paragraph will simulate the game from here until it
reaches the end of the game. This part of the algorithm
is called expansion.

Simulation

The simulation strategy picks the moves to be played in
self-play until the game ends. This strategy is not only
applied when a simulated game is played. It is also ap-
plied as the selection strategy when a certain node has
not exceeded the threshold of required visits. In this pa-
per the main strategy consists of pure random play. This
strategy was used to test against a greedy Monte-Carlo
agent and to tune the previously mentioned C constant.
The next section describes an enhancement or heuristic
made to the simulation strategy to make it more real-
istic. On the one hand these heuristics are necessary
to create a strong MCTS agent. On the other hand, if
these enhancements or heuristics are too deterministic
this can lead to too much exploitation, hence a weaker
agent. Moreover, the application of heuristics takes time,
this may slow down the simulations. Therefore a good
balance has to be found between time spent on heuristics
and time spent on simulations.

Backpropagation

When the simulated game in self-play has ended, the leaf
node and the parent nodes up until the root of this leaf
node have to be updated with the result. This procedure
is called backpropagation. A game can be a win, a loss
or a draw, which propagates +1, −1 or 0, respectively
through the nodes backwards.

Final Move Selection

The four steps described in the previous paragraphs are
one iteration of the MCTS algorithm. These steps are
repeated as long as there is time left. As described in [2]
a number of ways to select the final move are present.
The Havannah MCTS agent selects the node with the
highest value. The actual value of a node is calculated

as the sum of the results divided by the number of visits
through this node.

4.3 Nearest Neighbour Preference

As mentioned, the main parts of the MCTS algorithm
are the selection strategy and the simulation strategy.
There are several ways in which enhancements to the
method can be made. For instance, when incorporat-
ing perfect knowledge into the algorithm, this can prove
that certain paths down the tree are wins or losses. This
kind of enhancement is not applied in this paper but
will be discussed in the final section. For this paper an
enhancement to the simulation strategy is made. The
basic version of the MCTS agent uses pure random sim-
ulations when a node is played out in self-play. This
random play hardly resembles any realistic human play.
Observing that Havannah is a connection game it would
be more logical to focus the simulation near the previ-
ously played move or the opponent’s previously played
move. This leads to the Nearest Neighbour (NN) prefer-
ence. This heuristic ranks available moves according to
their distance to the previously played move. This can
either be based solely on the player’s own last move, or
on both players’ last moves. In the last case a coin toss
decides whether to focus on the player’s own move or the
opponent’s move. Now moves closest to the last played
move have the highest chance to be selected for the next
move.

5 Performance
In order to discuss the results of the Monte-Carlo Tree
Search (MCTS) agent it is necessary to describe the way
this agent evolved from simpler agents. These evolving
steps are discussed in the next section. On the basis
of these steps the experimental setup will become clear.
The last section will give a detailed overview of the actual
conducted experiments and the outcomes.

5.1 Experimental Setup

The first step in the creation of a more advanced agent
is to create a simple autonomously playing Havannah
agent. This is a pure randomly playing agent. Any ad-
vancement made to the agent should outperform this
agent. The random agent is only capable of making le-
gal moves. The second step was the creation of a simple
Monte-Carlo simulation based agent. This agent will
serve as the main reference for tuning the MCTS agent.
Its strategy is a very greedy one, based merely on its own
success. Therefore it will be referenced as the Greedy
agent. It uses random play to simulate games for every
available position until there is no more time left. The
position with the highest score is selected as the move to
be played. This opportunistic strategy ignores the oppo-
nent’s certain winning moves. Nevertheless this simple

(v. August 27, 2009, p.5)

B. Joosten Creating a Havannah Playing Agent

aggressive play is often hard to parry especially when a
frame is created. The lacking of defensive play by the
Greedy agent is compensated by the MCTS agent. Im-
plementing the MCTS algorithm is also the final step
in the agent’s refinement. The strength of this agent is
determined by its capability to foresee the creation of a
frame or to create a faster one. Although neither the
Greedy nor the MCTS agent have formal knowledge of
frames or frame threats, creating or detecting them is in-
trinsic to the Monte-Carlo approach and the underlying
mathematical structure of Havannah. The only thing
uncertain is how fast it will find them.

The above mentioned three agents viz. Random
agent, Greedy agent and MCTS agent, are the basis
for the experiments conducted. A number of experi-
ments have been conducted to optimize the strength of
the MCTS agent against the Greedy agent. Another
number of experiments have been conducted to test an
enhancement made to the simulation strategy. These
experiments will be outlined in the next subsection.

5.2 Experiments and Results

The first experiment conducted is to test how well the
Greedy agent and the MCTS agent play against the Ran-
dom agent. The experiments are performed on a 9×9
and a 19×19 board by playing 200 games. In every
experiment the agent tested plays an equal amount of
games as white and black to compensate for the possible
advantage of moving first. Both agents get 5 seconds to
think about their move. Both the Greedy and the MCTS
agent achieve a 100% win rate on every board.

The second experiment is to optimize the C constant
used in Formula 3 as discussed in Section 4. The same
conditions of the first experiment apply in this experi-
ment. The only exception is that the 19×19 board is
excluded from the experiments. The C constant is var-
ied from 0.2 to 1.8 in steps of 0.2. For every constant
value 100 games are played. The results are displayed in
Table 2. Based on the results the C constant is set to
1.2 in any further experiments.

Table 2: Tuning of MCTS C constant against Greedy
agent

C constant

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Average win 0.41 0.55 0.7 0.66 0.66 0.76 0.71 0.68 0.69

The third series of experiments determines the
strength of the Nearest Neighbour (NN) preference en-
hancement made to the simulation strategy. This is
tested by playing 200 games with a Greedy and an
MCTS agent with the NN preference against a Greedy

and an MCTS agent without the preference. Both with
the preference focusing solely on the player’s own last
move and the coin toss method discussed in Section 4.
Both agents again have 5 seconds to think about their
move. For reference the results of the Random agent
with the NN preference against the one without the pref-
erence are also added. These are obtained by simulating
100,000 games. Table 3 shows the results of this ex-
periment. To test whether the enhancement performs

Table 3: Strength of the NN preference on 9×9

NN enhancement

Random agent Greedy agent MCTS agent

Average win
Coin toss 0.51 0.43 0.43
Own Last Move 0.51 0.46 0.48

better on a 19×19 board, experiments with similar con-
ditions as in the previous series are conducted. Due to
fact that the Havannah agent is in infancy and testing
it for 19×19 is time consuming only 100 games for the
Greedy and MCTS agent are played. Table 4 reveals the
outcome of this experiment.

The results indicate that the Nearest Neighbour pref-
erence does not improve the Greedy and MCTS agent’s
play on 9×9. On 19×19 only the Greedy agent seems to
perform better when preferring only his own last move.
Focusing on the own last move seems to be the best
strategy for the Greedy and MCTS agent on any board.

Table 4: Strength of the NN preference on 19×19

NN enhancement

Random agent Greedy agent MCTS agent

Average win
Coin toss 0.55 0.41 0.35
Own Last Move 0.55 0.55 0.47

6 Conclusions
With a state-space complexity of 10127 and a game-tree
complexity of 10157, Havannah is a difficult game to
solve. Because evaluating Havannah positions is very
difficult traditional Tree Search algorithms are hard to
apply. Monte-Carlo simulations are a suited alternative.
The Greedy Monte-Carlo agent and the MCTS agent
both have a 100% win rate against the Random agent.
Using Monte-Carlo Tree Search with the Upper Confi-
dence bound applied to Trees even shows a 76% win
rate against the Greedy agent. This is a considerable
improvement. An idea is to revise the pure random sim-
ulation strategy to make the agent more advanced. By
introducing the Nearest Neighbour preference the per-
formance of the agent did not improve. With the excep-

(v. August 27, 2009, p.6)

Creating a Havannah Playing Agent B. Joosten

tion of the Greedy agent with own last move NN pref-
erence on 19×19 the performance of the Monte-Carlo
based agents dropped. The coin toss property shows an
overall drop of performance.

To summarize the results: given Havannah’s com-
plexities and difficulty of developing an evaluation func-
tion, MCTS is a well-suited technique for creating a Ha-
vannah agent. The pure random character of the sim-
ulation remains a huge point of improvement. Apply-
ing the Nearest Neighbour preference to the simulation
strategy did not have the intended result. The strongest
agent developed is the MCTS agent with the pure ran-
dom simulation strategy. This agent is assumed to be
a good opponent for a beginning Havannah player. A
more skilled player will exploit the agent’s inability to
create or prevent a frame and is therefore no match for
the MCTS agent.

7 Future Research

Future research on and improvements to the Havannah
agent should focus on expanding it with knowledge. As
discussed in Section 2 frames are the most important
strategic goals to pursue. If an agent is capable of de-
tecting frames the MCTS algorithm could be extended
with perfect knowledge. This could lead to the agent
being able to prove wins or losses in certain paths. The
first step in gaining this knowledge is for the agent to
have notion of virtual connections, since a frame is a
virtual connection. The current idea of keeping track
of connections could easily be extended to incorporate
virtual connections. Therefore a different representation
of the board is needed and a few observations. Figure
7 shows the representation intended, which leads to the
following array representation.





























• • • • •

• • • • • •

• • • • • • •

• • • • • • • •

• • • • • • • • •

• • • • • • • •

• • • • • • •

• • • • • •

• • • • •





























Here a • means a legal tile. The upper left corner stands
for position (1, 1). Now observe that a position in the ar-
ray can have up to eight neighbours, viz. left (←), right
(→), up (↑), down (↓), top-left (տ), bottom-left (ւ),
top-right (ր), bottom-right (ց). The arrows can be
regarded as simple array transformations. Only neigh-
bours ←,→, ↑, ↓,տ and ց correspond to actual neigh-
bours on the Havannah board. Neighbours ր and ւ
correspond to 2-bridge connected tiles. A Havannah tile

can have up to six 2-bridge connected tiles. Position
(1, 1) has two 2-bridge connected tiles: (3, 2) and (2, 3).
Some 2-bridge connected tiles can be reached via two
routes, for example ↑տ and տ↑ lead to the same tile.
For any position in the array, the following transforma-
tions are, if legal, 2-bridge connected tiles: ր,ւ, (↑տ
orտ↑), (տ← or←տ), (→ց orց,→) and (ց↓ or ↓ց).
These simple array transformations allow for a fast check
of 2-bridges. Instead of using a Nearest Neighbour pref-
erence in the simulation strategy, a 2-bridge preference
could be implemented. This could lead to a more real-
istic simulation. Detecting 2-bridges is also essential in
evaluating positions. Analogue to keeping track of real
connections, placing a stone can mean either three things
viz. (1) a new virtual connection of size 1 is created, (2)
an existing virtual connection is extended, (3) two vir-
tual connections are connected to form a single virtual
connection. Being able to keep track of the virtual con-
nections is the first step in recognizing frame or terminal
state threats.

Figure 7: Alternative board representation

References
[1] Allis, L.V. (1994). Searching for Solutions in

Games and Artificial Intelligence. Ph.D. thesis,
Maastricht University.

[2] Chaslot, G.M.J-B., Winands, M.H.M., Herik,
H.J. van den, Uiterwijk, J.W.H.M., and Bouzy,
B. (2008). Progressive Strategies for Monte-Carlo
Tree Search. New Mathematics and Natural
Computation, Vol. 4, No. 3, pp. 343–357.

[3] Coulom, R. (2007). Efficient Selectivity and
Backup Operators in Monte-Carlo Tree Search.
Proceedings of the 5th International Conference
on Computer and Games (eds. H.J. van den
Herik, P. Ciancarini, and H.H.L.M. Donkers),
Vol. 4630 of Lecture Notes in Computer Science
(LNCS), pp. 72–83, Springer-Verlag, Heidelberg,
Germany.

(v. August 27, 2009, p.7)

B. Joosten Creating a Havannah Playing Agent

[4] Freeling, C. (2003a). Basic Tactics Part 1. Ab-
stract Games, pp. 14–15. Issue 15.

[5] Freeling, C. (2003b). Basic Tactics Part 2. Ab-
stract Games, pp. 18–20, 24. Issue 16.

[6] Freeling, C. (2003c). Introducing Havannah. Ab-
stract Games, p. 14. Issue 14.

[7] Herik, H.J. van den, Uiterwijk, J.W.H.M., and
Rijswijck, J. van (2002). Games solved: Now
and in the future. Artificial Intelligence, Vol. 134,
No. 1–2, pp. 277–311.

[8] Kocsis, L. and Szepesvári, C. (2006). Bandit
Based Monte-Carlo Planning. Machine Learning:
ECML 2006 (eds. J. Fürnkranz, T. Scheffer, and
M. Spiliopoulou), Vol. 4212 of Lecture Notes in
Artificial Intelligence, pp. 282–293.

[9] Marsland, T.A. (1992). Computer Chess
and Search. Encyclopedia of Artificial Intelli-
gence (ed. S. Shapiro), pp. 224–241, J. Wiley &
Sons, 2nd edition.

[10] Rijswijck, J. van (2000). Are Bees Better Than
Fruitflies - Experiments with a Hex Playing Pro-
gram. Advances in Artificial Intelligence: 13th
Biennial Conference of the Canadian Society for
Computational Studies of Intelligence, pp. 13–25.

[11] Teytaud, F. and Teytaud, O. (2009). Creating an
Upper-Confidence-Tree program for Havannah.
ACG 12 (eds. H.J. van den Herik and P.H.M.
Spronck), To appear in Lecture Notes in Com-
puter Science (LNCS), Springer-Verlag, Berlin,
Germany.

(v. August 27, 2009, p.8)

