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Abstract

We introduce Deep Repeated Update Q-Network (DRUQN) and Deep Loosely Coupled

Q-Network (DLCQN). Two novel variants of Deep Q-Network (DQN). These algorithms

are designed with the intention of providing architectures that are more appropriate

for handling interactions between multiple agents and robust enough to deal with

the non-stationarity produced by concurrent learning. We approach this from two

different fronts. DRUQN tries to address Q-Learning’s tendency to favor the update

of certain action-values which may lead to decreased performance in rapid changing

environments. Meanwhile, DLCQN learns to decompose the state space into two: (1)

states where it is sensible or necessary to act independently and (2) those where acting

in coordination with another agent may lead to a better outcome. We use Pong as testing

environment and compare the performance of DRUQN, DLCQN and DQN on different

competitive and cooperative experiments. The results demonstrate that for some tasks

DLCQN and DRUQN outperform DQN which hints at the necessity to develop and

using architectures capable of coping with richer and more complex dynamics.
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Chapter 1

Introduction

1.1 Overview

Humans and other animals are actively engaged with their surroundings. They take

actions that carry consequences, affecting their environment and future observations.

Frequently, these actions are purposeful and they can be understood as a series of

sequential decision making steps leading to an outcome. Reinforcement learning (RL)

is concerned with the study of goal directed behavior. Basically, in RL an agent is

embedded in an environment. From there we then consider what actions need to be

selected in order to achieve certain outcome. An agent facing a new task learns about

the effect of its actions in the environment, by observing how it changes and contrasting

how much these observations differ with respect to its expectations.

A significant portion of the RL literature has focused on single agents, however

most realistic situations involve the presence of multiple agents. Some tasks can

only be solved or conceived by the interaction between different actors. Multi-agent

reinforcement learning (MARL) incorporates advancements from single agent RL but

poses additional challenges. For example, the definition of suitable collective and/or

individual goals (Agogino and Tumer, 2005; Buşoniu et al., 2008), how to deal with

heterogeneous learners (Panait and Luke, 2005) or the design of compact representations

that can scale to a large number of agents (Buşoniu et al., 2008). This dissertation is

concerned with non-stationarity, which is one of the main difficulties in the study of

MARL. Non-stationarity occurs because the interaction of multiple agents constantly

reshapes the environment. Unlike in single agent RL, where the agent is observing

only the effect of its own actions. In MARL, agents are interacting and learning

simultaneously in the same environment. An agent begins to associate not only its

2
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action to certain outcomes but also to the behavior observed in other agents. At the same

time the other agents also start adjusting their own behavior. Consequently associations

that were learned by the agent in the past may no longer hold in the present. Thus in a

non-stationary environment the estimation of potential benefits of an action can become

obsolete.

Several RL algorithms have been developed to estimate the value of an action in the

context of a specific situation. Among them Q-Learning (Watkins, 1989; Watkins and

Dayan, 1992) stands out for its popularity, for being intuitive and easy to implement.

Q-Learning, as it is the case with other RL algorithms, is restricted to operate in small

state spaces. This limitation has been overcome with the use of function approximators

(Kaelbling et al., 1996). Recently, Q-Learning was integrated with a deep convolutional

neural network to conceive the Deep Q-Network (DQN) architecture (Mnih et al., 2013,

2015). The DQN was trained to learn Atari 2600 games by receiving only the pixels

from the screen. Some of the games DQN was tested on, featured simultaneous multi-

player mode. Q-Learning has been used in multi-agent scenarios in the past. However

it was not designed for the non-stationary environments that result from the interaction

between multiple agents. Furthermore, the theoretical convergence guarantees that

Q-Learning provides, do not extend to non-stationary environments.

In this dissertation, we introduce two novel variants of DQN specifically intended

to handle the non-stationarity inherent to multi-agent environments. Our research is

then concerned with analyzing and comparing the performance of these variants to the

original DQN in a multi-agent context. The first algorithm, Deep Repeated Update

Q-Network (DRUQN) is based on the work by Abdallah and Kaisers (2013, 2016). It

tries to address an issue in the way Q-Learning estimates the value of an action. The

second algorithm, Deep Loosely Coupled Q-Network (DLCQN), inspired by Yu et al.

(2015), assumes that an agent is not capable of observing the full information content

of the environment. Therefore an agent has to learn under which circumstances it has to

act independently and when in coordination with other agents or the information they

provide.

1.2 Outline

The rest of the dissertation is structured as follows. In the next chapter we provide

a brief introduction of the theoretical foundations of Markov Decision Processes, a

mathematical framework necessary to formalize our notions of sequential decision
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making. Partially Observable Markov Decision Processes and Decentralized Markov

Decision Processes are also described as extensions to subclasses of problems where the

assumptions made by the Markov Decision Processes are not enough or do not hold. In

addition, the underlying notions of Reinforcement Learning are provided as well as how

it is adapted to deal with large state spaces. In addition the Deep Q-Network algorithm

is described. Chapter 3 gives an overview of the issues afflicting the action value

estimation in Q-Learning. Then we continue with Repeated Update Q-Learning, and

coordinated learning algorithms which form the basis for the novel variants introduced

in Chapter 4. In Chapter 5 we describe the methodology, architecture and experiments

considered for the comparison of the different algorithms. Chapter 6 presents the results

and experimental findings. Finally, Chapter 7 discusses the results, limitations and

potential avenues of further research.



Chapter 2

Preliminaries

2.1 Markov Decision Processes

Markov Decision Processes (MDP) are a mathematical framework used to represent

sequential decision making in situations where outcomes are uncertain. They have

been widely used in optimization, economics, control and robotics. For the work here

presented, they offer the possibility to model the dynamics of an agent interacting with

its environment. More formally, an MDP is defined by a tuple 〈S,A,P,R〉 where,

• S is a set of states si ∈ S|i = 1...n

• A is a set of actions ai ∈A|i = 1...m

• P is the transition matrix and contains the probabilities of going from state s to

state s′ if selecting action a.

Pa
ss′ = P[St+1 = s′|St = s,At = a]

• R is the reward function received after selecting action a in state s.

Ra
s = E[R|St = s,At = a]

From above, it is now established that an MDP can be used to model the process by

which an agent will receive a reward depending on the action, and current state of the

environment. The state can be understood as the information that is available for the

agent. MDPs simplify the computation of the transition distribution from the current

state to the next one by satisfying the Markov property. This means that an MDP is

memoryless and history independent. A future state will only be determined by the

current state ignoring or treating as irrelevant all previous states that happened before.

Thus,

5
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P[St+1 = s′|St = s] = P[St+1 = s′|S1 = s1...St = st ]

The current state is assumed as sufficient statistic to predict the future as it captures

all necessary information, this implies that an MDP assumes full observability of the

environment at any given state. If taking into account an action at a given state the

Markov property is reflected as,

P[St+1 = s′|St = s,At = a] = P[St+1 = s′|S1 = s1,A1 = a1...St = st ,At = at ]

MDPs evaluate and use policies to decide what action to take at each state. A

policy π is a plan or a sequence of actions and define the behavior of the system. In

its deterministic form a policy is given by π : S→ A by contrast, a stochastic policy

is a distribution over possible actions at a given state where π : S×A→ [0,1]. In the

stochastic case the transition function that describes the probability to move from state

s to state s′ is,

Pπ

s,s′ = ∑
a∈A

P[s′|s,a]π(s,a)

In order to solve an MDP an optimal policy π∗ has to be found. From the perspective

of the agent, this translates into finding a sequence of actions from the initial to the

terminal state, that maximizes a long term measurement or reward. Accordingly, the

reward function based on a stochastic policy is,

Rπ
s = ∑

a∈A
Ra

s π(s,a)

The total reward that an MDP obtains from time t onwards is the expectation of

accumulated rewards,

Rt = E[
∞

∑
t

rt ]

However if a problem has no defined termination, the sum becomes infinite as t→∞.

In order to overcome this issue and make it tractable, a finite time horizon is defined. In

some cases this may not be possible therefore a preferable alternative is to introduce

a discount factor γ , where γ ∈ [0,1]. The discount factor will determine the weight of

future rewards in relation to how far they are into the future by decaying exponentially.

The more γ is close to 1 the more it will take into consideration future rewards. On
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the other hand, if γ is close to 0, the focus is on immediate rewards. This may lead a

system to miscalculate the future. An MDP that is discounted is defined by the tuple

〈S,A,P,R,γ〉. The total reward in its discounted form becomes,

Rt = E[rt + γrt+1 + ...] = E[
∞

∑
t=0

γ
trt ] (2.1)

Equation 2.1 can also be decomposed as,

Rt = E[rt + γRt+1] (2.2)

2.1.1 Solving Markov Decision Processes

Although MDPs are able to follow different policies, it was mentioned earlier that we

ideally want to find policies that maximize the cumulative rewards as much as possible.

For every MDP there is an optimal policy π∗ and consequently no other policy will

do better. To differentiate among policies a state value function is needed as a way to

evaluate and measure how well a policy performs,

Vπ(s) = Eπ [Rt |S= st ] (2.3)

It will denote the value V as the expected total discounted reward from the current

state s when following policy π . From equation 2.1 it is known that the total discounted

reward is the expected immediate reward and all future discounted rewards when

following the same policy π . Accordingly if following an optimal policy π∗ the state

value V∗ obtained at each state is guaranteed to be the best possible. From equation 2.2

and equation 2.3, we obtain the Bellman equation as follows (Bellman, 1954, 1956),

Vπ(s) = Eπ [rt + γVπ(s′)]

= rt + ∑
s′∈S

γPπ(s′|s)Vπ(s′)

Thus a policy is optimal when the state value function satisfies the Bellman optimal-

ity equation,

Vπ(s) = max
a∈A

rt(s,a)+ ∑
s′∈S

γPπ(s′|s,a)Vπ(s′) (2.4)

Knowing the optimal value then, the optimal policy corresponds to,
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π
∗(s) = argmax

a∈A
rt(s,a)+ ∑

s′∈S
γPπ(s′|s,a)V∗(s′)

To solve the system of optimal equations, iterative techniques such as dynamic pro-

gramming must be used. Policy iteration (Howard, 1960) and value iteration (Bellman,

1956) are included among the most well known methods.

Algorithm 1 Policy Iteration

1: Initialize π to arbitrary π0

2: for i = 1... do
3: Solve: Vi−1 = rt +∑s′∈S γPπ(s′|s)Vπ(s′)

4: for s ∈ S do
5: π i(s) = argmaxa∈A rt(s,a)+∑s′∈S γPπ(s′|s,a)Vπ(s′)

6: end for
7: π = π i

8: end for

In the case of policy iteration, an optimal policy is found in at most |A||S| steps.

The algorithm finishes once the policy stops improving (Algorithm 1). In the second

algorithm, for value iteration, the state value functions are used to indirectly obtain a

good policy simply by updating Equation 2.4. Since it is uncertain when the state value

functions can converge to an optimal V∗, different forms of stopping criteria have been

proposed (Puterman, 1994; Sutton and Barto, 1998).

Algorithm 2 Value Iteration

1: Initialize to arbitrary V0

2: for i = 1... do
3: for s ∈ S do
4: Vi(s) = maxa∈A rt(s,a)+∑s′∈S γP(s′|s,a)Vi−1(s′)

5: end for
6: end for

2.1.2 Partially Observable Markov Decision Processes

A crucial aspect in solving MDPs is to assume full observability. This supposes that

accurate and fully visible information is available at every time step and that this in-

formation is contained in the current state. However in many complex or real world
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scenarios this assumption is unfeasible. For multi-agent environments for instance, it

is easy to imagine situations where an agent may rely on the knowledge from other

agents in order to make a decision. Even with single agents, in very large or constrained

environments, the access to information may be limited to a local region. Partially

Observable Markov Decision Processes (POMDP) (Åström, 1965) is an extension to

classical MDPs designed to account for situations where the information that can be ac-

cessed at a given state is incomplete. A POMDP is defined by the tuple 〈S,A,P,R,O,Z〉
where S,A,P,R follow from the original elements of an MDP. For the new elements O

and Z,

• O is a set of observations.

• Z is an observation function describing the probability of observing o′ if action a

is executed and the environment transitions to unobservable state s′.

Za
s′o = P[Ot+1 = o′|St+1 = s′,At = a]

This extension to MDPs however increase the complexity required to solve them.

POMDPs stop being Markovian, as the current state cannot be inferred solely by the set

of observations from a process. Frequently POMDPs will rely on the whole sequential

history of actions, observations and rewards Ht = a0,o2,r1...at−1,ot ,rt that have been

observed in order to construct a belief state b(s). Thus these belief states summarize

the particular experience by representing probability distributions over the states of the

system. Belief states will act as sufficient statistics allowing POMDPs to satisfy the

Markov property. The Bellman equation with belief states can be obtained as,

Vπ(b) = ∑
s∈S

b(s)rt + ∑
o∈O

γPπ(o|b)Vπ(bo)

Algorithms similar to those used by MDPs can be applied to maximize the outcome,

with the main difference that POMDPs will take into consideration the current belief

as opposed to a state. A potential problem occurs when the number of states of the

problem is large. Finding a good policy becomes intractable as evaluating state value

function over the space of beliefs is unmanageable due to their high dimensionality and

continuity (N. Roy, 2003). In order to solve them, some properties of the problem can

be exploited to simplify it. However in many instances to solve the POMDPs we will

have to approximate the belief states. Several techniques exist such as QMDP (Littman

et al., 1995), Monte Carlo (Thrun, 2000), Augmented-MPDs (N. Roy and Thrun, 1999)

and belief state compression (N. Roy, 2003).
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2.1.2.1 Decentralized Markov Decision Processes

In multi-agent domains, an agent may not only depend on the information it has

gathered about its environment. It will also be influenced by the choices of other agents.

Naturally, these problems are partially observable. Decentralized Partially Observable

Markov Decision Processes (Dec-POMDP) (Bernstein et al., 2000) have been developed

as an extension of POMDPs to address situations where agents can exploit levels of

coordination among them. Using this framework a process may act as dependent or

as independent depending on the degree of coordination required by the agents. In a

similar way to POMDPs, a Dec-POMDP is defined by a tuple 〈S,A,P,R,O,Z〉 where,

• A= i∈IAi, is the set of joint actions, where Ai is the set of actions from agent i.

• Accordingly the transition function P~ass′ and the reward function R~a
s consider the

joint action~a = 〈a1, ..aI〉.

• O= i∈IOi, is the set of joint observations.

• Z is an observation function describing the probability of observing joint~o given

joint action~a leading to state s′.

Z~as′~o = P[~o|s′,~a]

In some cases the full observability of a state can be assumed by combining the

information from each member. In particular for some of the tasks presented in this

dissertation, a 2-agent factored Dec-MDP (Allen and Zilberstein, 2009; Roth et al.,

2007) is used to model multi-agent decision making. Thus it is said that a Dec-MDP

is a Dec-POMDP that is jointly fully observable. Thus state S can be retrieved by the

individual observations Oi of each agent. The tuple can be simplified to 〈S,A,P,R〉 by

considering Oi as the state space of agent i, Si. The system state can the be collectively

determined (Pynadath and Tambe, 2002) and defined as S= S0×Si× ...×SI , where

S0 could be a portion of the state that is shared among all agents and Si the local state

of agent i. The local state of an agent at a given time then is~si = 〈s0,si〉.

2.2 Reinforcement Learning

Previously we discussed how MDPs can be solved through the use of dynamic pro-

gramming techniques. By iterating, evaluating and calculating state value functions it is

possible to find optimal policies. Dynamic programming techniques assume knowledge
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of the model and the environment since they require the reward function and the transi-

tion probabilities. This is possible only in ideal conditions. For the large majority of the

cases these quantities must be discovered.

Reinforcement learning (RL) offers a framework to represent interactive based

learning. It is inspired by insights from classical and operant conditioning experiments

where the subjects learn certain behavior based on its outcome. Recent scientific

evidence in the identification of dopaminergic neurons as well as their role in coding

error signals and event prediction, have also helped to consolidate RL as modeling tool

in neuroscience (Dayan and Niv, 2008; Schultz et al., 1997). Essentially in RL an agent

discovers the structure of an unknown environment by interacting with it by trial and

error. At each time step, the agent performs an action. It then receives feedback about it

which comes in the form of updated perceptual information and rewards.

Figure 2.1 The reinforcement learning sensory-action loop (Sutton and Barto, 1998).

For solving MDPs, RL algorithms can be used for obtaining optimal policies without

previous knowledge of the model (i.e. transition and reward functions). RL explores

the state space and learns a policy from observing the outcomes. Depending on the

algorithm choice there are two ways to proceed: (1) learn a model of the environment

or (2) use a policy implicitly by estimating only value functions. Due to its appealing

generative properties model-based RL may be preferable for planning and for data

efficiency, however acquiring the model is computationally expensive. For model-free

algorithms it is enough to know the state and the actions the agent has at its disposal.

This is one of the reasons that has contributed to the popularity of model-free RL in the

literature.

A fundamental difference with respect to value and policy iteration is that in those

techniques an MDP visits each state to update their respective value. By contrast RL

algorithms sample the environment updating the information of only those states that are

experienced. This leads to the exploration - exploitation dilemma. An agent should use

its knowledge to select the most profitable actions (exploitation), and at the same time
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attempt to discover better courses of action and areas of the state space. Exploration is

specially necessary when facing a new environment since a correct value estimation

depends on the knowledge of it. A balance between exploration and exploitation is

required. Most common strategies rely on controlling a parameter that regulates the

balance between exploration and exploitation. For example, a temperature parameter τ

using a Boltzmann distribution or ε in ε-greedy. In the case of ε-greedy, an exploratory

action is selected with probability ε and a greedy action with 1-ε . There is not a final

solution for this dilemma and more sophisticated exploration approaches have been

proposed (Abel et al., 2016; Asmuth et al., 2012; Jung and Stone, 2012; Osband et al.,

2014).

2.2.1 Q-Learning

Several reinforcement learning methods such as SARSA (Rummery and Niranjan,

1994), actor-critic variants (Barto et al., 1983), REINFORCE (Williams, 1992) and

other policy gradient algorithms (Silver et al., 2014) have been developed throughout

the years. In this section, Q-Learning is introduced as a foundation of subsequent

algorithms presented in this work. Q-learning (Watkins, 1989; Watkins and Dayan,

1992) is a popular model-free RL algorithm noted for its simplicity. A Q-function or

action value function can be expressed as,

Qπ(s,a) = Eπ [Rt |S= st ,A= at ]

Although similar to the value function from Equation 1.4, it is observed that there

is an explicit consideration of the action being selected. In other words, a Q-value

measures the quality or the value of an action at a given state. Correspondingly,

Q(s,a) = r+ γ max
a

Q(s′,a′) (2.5)

Since there is no assumption about prior knowledge of a model, the algorithm will

sample the state and action space, as in lines 4-5 of Algorithm 3. Then the Q-values are

updated according to what has been observed,

Q(s,a)← Q(s,a)+α[r+ γ max
a

Q(s′,a′)−Q(s,a)] (2.6)

Where α is the learning rate that controls the amount that the values are updated.

The learning rule is said to use temporal difference (Sutton, 1988). It involves refining
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Algorithm 3 Q-Learning

1: Initialize to arbitrary Q(s,a)

2: Observe current state s

3: repeat
4: Select an action a according to policy π(s,a)

5: Execute action a

6: Observe reward r and next state s′

7: Q(s,a)← Q(s,a)+α[r+ γ maxa Q(s′,a′)−Q(s,a)]

8: until Termination

the values from previous estimations. The process is repeated until the predictions

start matching the observations. Given certain conditions such as a properly decaying

learning rate (Kaelbling et al., 1996), specific environments and a finite MDP, Q-learning

will converge and find the optimal values limt→∞ Q(s,a) = Q∗(s,a). Q-learning is also

considered an off policy algorithm because the Q-values are estimated assuming that

for the next state a greedy policy will be followed regardless of the actual policy that is

being followed.

2.3 Approximating Action Value Functions

In their most basic form, dynamic programming and reinforcement learning techniques

compute values belonging to a specific state of an MDP. Up to this stage, it has been

assumed that all these states are known or can be listed beforehand. For instance, value

and policy iteration sweep through the states to update their estimation. In the case of

Q-learning we observe in equation 2.5, that a value is computed for each state-action

pair. For both cases, value functions are stored and represented through lookup tables.

Each state-action pair has a corresponding cell in this table from where the value can

be retrieved or updated. However this type of representation is only amenable for a

reduced subset of problems with discrete and small state spaces. From a computational

perspective holding in memory the lookup table representing the state-action of a large

MDP results impractical. Function approximation can be used to substitute the lookup

table for problems dealing with continuous domains or where the number of states is

unknown or very large. Besides making for a more compact representation, the main

aspect that makes function approximation useful, is that it allows to generalize to unseen

states based on what has been experienced previously. Instead of learning the value
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of each cell individually, it learns the parameters of a model which in turn allows to

exploit the similarity between states. The approximation can be performed through

various methods such as decision trees (Pyeatt and Howe, 1998), linear combinations

with the application of different bases, for instance polynomial (Lagoudakis and Parr,

2003), RBF or Fourier (Konidaris and Osentoski, 2008) and non-linear such as neural

networks (Tesauro, 1995; Tsitsiklis and B. V. Roy, 1997). Considering the case of a

linear combination, an action-value would be given by,

Q̂(s,a,w) =
n

∑
i

wiφi(s,a) (2.7)

Where Q̂(s,a,w)≈Q(s,a) is the approximation of a state, w is the vector of weights

w = [w1, ...wn] which corresponds to the learnable parameters necessary to perform the

approximation. Instead of updating directly a Q-value, these are the parameters that

will be updated. This type of approximation (which also applies to non-linear) is easily

differentiable which facilitates the update of the parameters with gradient descent. From

equation 2.6, it is known that the temporal difference,

α[r+ γ max
a

Q(s′,a′)−Q(s,a)] (2.8)

Measures the prediction error between the new estimate and the previous one. This

allows to define a loss function to be minimized,

L(w) = [r+ γ max
a

Q(s′,a′,w)− Q̂(s,a,w)]2 (2.9)

Where r+ γ maxa Q(s′,a′,w), is considered as the target. Then the loss function is

differentiated with respect to w in order to obtain the gradient,

∇wL(w) =
[(

r+ γ max
a

Q(s′,a′,w)− Q̂(s,a,w)
)

∇wQ̂(s,a,w)
]

(2.10)

To finally obtain the parameter update rule,

w← w+α∇wL(w) = w+α

[(
r+ γ max

a
Q(s′,a′,w)− Q̂(s,a,w)

)
φi(s,a)

]
(2.11)

2.3.1 Deep Learning

Function approximation alleviates some of the issues associated to large state spaces.

However, in order to solve an MDP, state representation would still rely on the researcher
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choices. Features are commonly hand crafted and adapted to a specific problem. A

considerable part of the success in solving a problem then is determined by how well the

features capture the peculiar intricacies of the situation. This is a concern not particular

only to reinforcement learning but one that affects every area of machine learning. In

recent years, the application of deep learning principles has provided new avenues

of research into tackling these fundamental issues. Deep learning consists on the

construction of multiple layers of artificial neurons with the objective of automatically

learning features from data (Fukushima, 1980; LeCun et al., 2015; Schmidhuber, 2015).

The increase of computational resources in combination with a better understanding

of the properties of the networks or the design of more efficient non-linear functions

(Nair and G. E. Hinton, 2010) have sparked a series of developments. Convolutional

networks, for instance, attempt to mimic some of the mechanisms behind simple

receptive fields and have become state of the art in image recognition (Krizhevsky et al.,

2012). Autoencoders allow to obtain more condensed representations of the original

data (Bengio et al., 2007), LSTM recurrent networks, model short term dependencies

(Hochreiter and Schmidhuber, 1997), and more recently adversarial networks are being

used as generative models (Goodfellow et al., 2014). A large majority of success

stories from deep learning have come from areas such as vision (Krizhevsky et al.,

2012), speech recognition (G. Hinton et al., 2012; Mohamed et al., 2012) or language

processing (Bordes et al., 2014; Collobert et al., 2011; Jean et al., 2014; Sutskever et al.,

2014), the interest has also expanded into other areas, including reinforcement learning.

This has lead to an increasing interest into how to integrate these approaches.

2.3.1.1 Deep Q-Learning

Neural networks and reinforcement learning have been used in conjunction in the

past (Riedmiller, 2000; Tesauro, 1995) as a mean to approximate action or state value

functions. Positive results, however, had been limited to specific applications. The

main problem observed was their instability. Networks would learn slowly or very

inefficiently which in turn would lead to divergence in the values. Riedmiller (2005)

introduced Neural Fitted Q-Iteration (NFQ) to try to address some of these issues. In

principle, in previous approaches the divergence of values would be caused in part by

updating the parameters on-line. NFQ instead, takes a concept called experience replay

(Lin, 1992). It stores a set of previous transition experiences in tuples and then uses

them to update the parameters off-line via batch gradient descent.
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Figure 2.2 The architecture of the Deep Q-Network. The input of the network consists of the four most

recent frames from the game. The space is subsequently transformed through three convolutional and

two fully connected layers. The network outputs one of 18 possible actions (Mnih et al., 2015).

Mnih et al. (2013, 2015) extended further this approach. In their work they intro-

duced an algorithm called Deep Q-Learning (DQN) and designed a convolutional deep

neural network intended to play Atari 2600 games (Figure 2.2). The novel aspect of the

work was that the same network architecture was used across the games, with only few

changes between them (i.e. Space Invaders) or the inclusion of prior knowledge (e.g.

reward clipping). For all games the input received by the network were the pixels from

the screen. The network would then model the action-values particular to the screen

scene, outputting an specific action to execute. Using only minimal pre-processing such

as gray scaling and down sampling, the network was able to learn high level features

that were relevant to learn how to play the games. The network achieved human or

above human performance in 29 out of 49 games (Mnih et al., 2015).

As implied earlier, DQN uses experience replay to stabilize its behavior and deal

with non-stationarity. The network randomly samples a minibatch from the stored

memories. This is also intended to remove the correlations between the observations,

assuming independence and smoothing their distribution, which is essential for the

gradient based learning in which it relies on. DQN similarly to NFQ, keeps fixed the

parameters from previous iterations in order to measure the error with respect to the

updated parameters. In a second version of DQN, presented in Mnih et al. (2015), the

model considers an additional network which serves as the target. The parameters in

this network are held fixed and they are only updated after certain number of iterations
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Algorithm 4 Deep Q-Learning
1: Initialize replay memory D to hold N transitions

2: Initialize action-value function Q with random weights

3: for episode=1...M do
4: Initialize a sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)

5: for episode=1...T do
6: Select a random action at with probability ε

7: Otherwise select at = maxa Q∗(φ(st),a;θ)

8: Execute action at

9: Observe reward rt and next frame xt +1

10: Set st+1 = st ,at ,xt+1 and preprocess φt+1 = φ(st+1)

11: Store transition (φt ,at ,rt ,φt+1) in D

12: Sample random minibatch of transitions (φ j,a j,r j,φ j+1) from D

13: Set y j =

{
r j if terminal φ j+1

r j + γ maxa′ Q̂(φ j+1,a′;θ−) otherwise

14: Perform gradient descent on (y j−Q(φ j,a j;θ))2 wrt θ

15: Every C steps set Q̂ = Q . If using an extra target network

16: end for
17: end for

have passed. The purpose is to increase the robustness of the network.

The principles used by DQN follow closely those described in section 2.3. A loss

function for each iteration i is defined as,

Li(θi) = E(s,a,r,s′)∼U(D)[r+ γ max
a

Q(s′,a′;θ
−
i )−Q(s,a;θi)]

2 (2.12)

Where θi are the parameters of the network at iteration i, θ
−
i are the parameters of

the target network and D is the replay memory that holds observations of the agent. The

transitions (s,a,r,s′) are randomly sampled from D. The expression is differentiated

with respect to the parameters θ ,

∇θiLi(θi) = E(s,a,r,s′)∼U(D)[(r+ γ max
a

Q(s′,a′;θ
−
i )−Q(s,a;θi))∇θiQ(s,a;θi)] (2.13)

And they are updated according to Equation 2.11,

θi+1← θi +α∇θiL(θi) (2.14)
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2.3.1.2 Other Extensions

The publication of DQN has motivated a series of improvements to the original al-

gorithm. Prioritized experience replay (Schaul et al., 2015) has been proposed as an

alternative to uniform sampling from replay memory. The mechanism determines

which transition to sample using stochastic prioritization and importance sampling.

The transitions that have caused the most surprise in the past have a higher chance

to be selected. The deep double Q-network presented by van Hasselt et al. (2015)

tries to address overoptimistic estimation in Q-Learning. The study addresses it by

decoupling the selection and the evaluation of actions. Wang et al. (2015) opt for

altering the architecture of the network and divide it into two estimators, a state value

function and an advantage function that determines the benefits from selecting specific

action. In Sorokin et al. (2015), they extend DQN to LSTM networks to represent areas

of attention. Other work extends beyond the application of deep neural networks to

Q-learning as it is the case in Lillicrap et al. (2015), where they present an algorithm

that generalizes to continuous spaces using deterministic policy gradients.
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Multi-Agent Reinforcement Learning

Most of real world problems are of a distributed nature or can be framed as such.

They are based on the interaction between multiple parts or participants. Distributed

environments can benefit from the communication and sharing information through

imitation or teaching (Buşoniu et al., 2010). Furthermore decomposing large tasks into

smaller ones or taking advantage of their decentralized properties allows for parallel

and more expedited solutions. However, the complexity and richness in the dynamics of

these kind of environments makes it problematic to design solutions that can encompass

all potential scenarios. Ideally then, one should opt instead for designing agents that

can be adaptable and robust enough to deal with a constantly changing environment.

As we have seen, reinforcement learning provides an alternative to deal with such

environments. RL agents learn from experience by observing their environment and the

effect of their actions. Nonetheless the transition from single agent RL to multi-agent

RL offers a series challenges.

The reward that the agent may receive will not only depend on its interaction with

a passive environment. In multi-agent environments, it is intertwined with the actions

made by the others. This first supposes that the type of tasks occurring has to be

identified. A task can be competitive or cooperative. However, most environments will

usually contain a combination of both. In the case of a competitive task, an agent tries

to maximize its reward even if it affects other agents utilities. In the cooperative case,

the success of the agent depends on the success of the other agents as well. Therefore

there is a shared reward function that is maximized in conjunction with all agents.

Defining a goal becomes complex because the rewards are correlated and cannot simply

be maximized independently (Buşoniu et al., 2008, 2010). An agent trying to maximize

its reward may not imply a collective maximization. In this sense, the optimal behavior

19
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of an agent may not correspond to the most desirable joint policy. Simple scenarios

have been studied from a game theoretic perspective (Panait and Luke, 2005). Under

this optic single MDPs are extended to account for joint actions and are denominated as

Markov or Stochastic Games (Littman, 1994). In most analyses it is assumed the agents

are fixed at certain state which is then repeated multiple times. A stochastic game is then

solved when a joint strategy finds a Nash equilibrium (Nash, 1950; Von Neumann and

Morgenstern, 1944). Joint strategies satisfy this requirement when the action selected

by the agent is the best possible action when considering the actions taken by the others.

Thus changing to another action would offer no possible benefit.

Another challenge comes with the nature of the individual tasks assigned to each

agent. Although the global goal may be cooperative, each agent could have its own

individual decision making. It becomes fundamental to define what actions can be car-

ried on with some degree of independence and which have to be taken in a coordinated

manner. Similarly to single agent RL, where the structure of the environment is learned,

in multi-agent RL part of learning said structure entails learning about the existence of

other agents, their actions and their goals. Thus the level of awareness of the agent will

have an impact in its performance (Tuyls and Weiss, 2012). Some tasks may not require

any while for other tasks knowing information about the other agents is primordial.

One of the biggest open issues in multi-agent environments is how to deal with

non-stationarity. A policy is optimal and stationary when it is the best possible policy

and it remains fixed over time. Due to the dependence of the reward function on the

actions taken by other agents, good policies at a given point could not be so in the future.

They are only good policies in relation to what the other agents have learned at the

time the policy is applied. The exploration-exploitation dilemma becomes even more

relevant under these settings. Information gathering is not only important initially but

has to be done with certain recurrence while at the same time being careful that it does

not destabilize the agent or agents when an appropriate coordination is required.

When dealing with non-stationarity, the Markov property does not hold anymore.

Consequently, theoretical convergence guarantees offered by single agent RL will

not necessarily apply to most multi-agent RL problems. Further extensions to MDPs

have been developed to account for multiple agents and convergence proofs have been

provided (Bowling, 2000; Hu and Wellman, 1998; Littman, 1994, 2001a). However

these proofs relax the assumptions to a large extent assuming that rewards and actions

are observable or that agents learn equally. These assumptions turn out to be too strong

and not very realistic (Tesauro, 2003).
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In practice, convergence in most complex multi-agent problems tends to be empiri-

cally verified. In some cases single RL algorithms such as Q-Learning have been used

with no modification (Claus and Boutilier, 1998; Crites and Barto, 1998; Tan, 1993).

However several extensions to a multi-agent domain have been proposed for cooperative

tasks (Kapetanakis and Kudenko, 2005; Lauer and Riedmiller, 2000; Littman, 2001b),

competitive tasks (Littman, 1994) as well as mixed tasks (Tesauro, 2003). In this chapter

two extensions to Q-Learning are presented. Each of them tries to address a concern or

weakness of Q-Learning when dealing with multi-agent or non-stationary tasks. These

two algorithms will serve as the basis of novel extensions to large state spaces that will

be introduced in the next chapter.

3.1 Repeated Update Q-Learning

3.1.1 Q-Learning Overestimation

In Thrun and Schwartz (1993) an analysis was presented that uncovered issues in the

way Q-Learning estimates the action-values. From Equation 2.5 it is known that,

Q(s,a) = r+ γ max
a

Q(s′,a′)

If it is assumed that in order to estimate a Q-value, Qtarget(s′,a) its current approxi-

mation, Qapprox(s′,a) equals,

Qapprox(s′,a) = Qtarget(s′,a)+Y a
s′ (3.1)

Where Y a
s′ is the noise, given by a family of random variables with zero mean. This

noise factor causes an error at the time of updating Q(s,a). Using Equation 2.5 we

assign the result to a random variable Zs as,

Zs = γ(max
a

Qapprox(s′,a)−max
a

Qtarget(s′,a)) (3.2)

Due to the noise, often Zs will have positive mean such E[Zs] > 0. These cases

lead to an overestimation of the actual Q(s,a). The argument above considers a single

update. As the update rule is applied multiple times in order to estimate an action-

value this translates into a systematic overestimation effect. A second problem in

Q-Learning estimation is linked to overestimation and it is referred to as transient

bias (Lee and Powell, 2012) or policy bias (Abdallah and Kaisers, 2013). The use
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of maxa Q(s′,a) in the estimator favors the selection of larger action-values, because

Q(s,a) are biased upwardly this leads to a cascading effect accelerating overestimation

for certain state action pairs. For function approximation max induced bias could lead

to severe destabilization (Kaelbling et al., 1996).

3.1.2 Addressing Overestimation with RUQL

Repeated Update Q-Learning (RUQL) (Abdallah and Kaisers, 2013, 2016) is an algo-

rithm based on Q-Learning and designed with the intention of addressing its overestima-

tion issues. It follows intuitively from the idea of policy bias. Since in Q-Learning only

the action that is selected is updated, then it is said that the effective rate of updating an

action-value will depend on the probability of selecting that action. It was described in

the previous section, that Q-Learning tends to be upwardly biased. Systematic overesti-

mation self reinforces the tendency to select certain actions by updating them frequently.

In non-stationary environments this issue is exacerbated further because previously

optimal actions would still be constantly selected even if they are no longer beneficial.

Ideally, if an agent could execute every possible action in parallel but identical

environments at each time step, then information about all possible actions could be

gathered in order to update every action value simultaneously. From this conjecture,

RUQL proposes that an action value must be updated inversely proportional to the

probability of the action selected given the policy that is being followed. Thus when

an action with low probability is selected, the corresponding action-value is updated

more than once. By contrast, if an action with high probability is selected, then the

action-value may be updated only once. For example consider two actions A and

B, with probability of selecting them P(A) = 0.8 and P(B) = 0.2 respectively. If

action A is selected then its action-value is updated only once, on the other hand if

action B is selected then it will be updated five times. Algorithm 5 provides an initial

way to formalize this intuition. Where an action-value is updated by b 1
π(s,a)c. This

implementation however becomes unbounded in computation time as π(s,a)→ 0.
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Algorithm 5 Repeated Update Q-Learning: Intuition

1: Initialize to arbitrary Q(s,a)

2: Observe current state s

3: repeat
4: Compute policy π using Q(s,a)

5: Select an action a according to policy π(s,a)

6: Execute action a

7: Observe reward r and next state s′

8: for b 1
π(s,a)c times do

9: Q(s,a)← Q(s,a)+α[r+ γ maxa Q(s′,a′)−Q(s,a)]

10: end for
11: Set s← s′

12: until Termination

Algorithm 6 Repeated Update Q-Learning: Practical Implementation

1: Initialize to arbitrary Q(s,a)

2: Observe current state s

3: repeat
4: Compute policy π using Q(s,a)

5: Select an action a according to policy π(s,a)

6: Execute action a

7: Observe reward r and next state s′

8: Q(s,a)← [1−α]
1

π(s,a) Q(s,a)+ [1− (1−α)
1

π(s,a) ][r+ γ maxa Q(s′,a′)]

9: Set s← s′

10: until Termination

In Abdallah and Kaisers (2013, 2016) a closed form expression is derived from the

recursive expansion of lines 8-10 from Algorithm 5. The new expression,

Qt+1(s,a) = [1−α]
1

π(s,a) Qt(s,a)+ [1− (1−α)
1

π(s,a) ][r+ γ max
a

Qt(s′,a′)] (3.3)

Integrates repeated updates into a single line (Algorithm 6 line 8), and also it

removes the need for a floor notation. This provides additional accuracy to obtain the

proportion in which action-values should be updated.

In Equation 3.3 it is observed that if an action has a very high chance of being

selected then 1/π(s,a)→ 1 and standard Q-Learning is recovered. On the other hand



Chapter 3. Multi-Agent Reinforcement Learning 24

when an action is rarely selected then not only the action-value is updated inversely

proportional but also the new estimates carry more weight. This addresses the fact that

infrequently used actions may contain estimates that are obsolete. This property could

lead to more robust behavior in non-stationary environments.

3.1.3 Related Work

A few variants of Q-Learning have been proposed to address overestimation. In Kaisers

and Tuyls (2010) an algorithm called Frequency Adjusted Q-Learning (FAQL) is

introduced to overcome policy-bias. FAQL and RUQL share similarities as both attempt

to update the action-values inversely proportional to the probability of selecting an

action. In FAQL the update rule is given by,

Qt+1(s,a) = Qt(s,a)+
1

π(s,a)
α[r+ γ max

a
Qt(s′,a′)]

In the same manner as in the preliminary version of RUQL, this implementation is

impractical. As π(s,a)→ 0 the update values become unbounded. The authors offer a

practical version by adding a hyperparameter β ∈ [0,1),

Qt+1(s,a) = Qt(s,a)+min
(

1,
β

π(s,a)

)
α[r+ γ max

a
Qt(s′,a′)]

From the expression above, it is observed that once π(s,a) goes below β , FAQL will

behave as standard Q-Learning. In addition the hyperparameter β reduces the actual

learning rate to βα .

In van Hasselt (2010), Double Q-Learning is proposed to deal with the overestima-

tion produced by the max operator. The algorithm decouples the process of selecting an

action from that of evaluating the action. It defines two functions QA and QB. At each

update one of the functions is selected while using the value stored from the other one,

QA(s,a)← QA(s,a)+α[r+ γQB(s′,argmax
a

QA(s,a))−QA(s,a)]

QB(s,a)← QB(s,a)+α[r+ γQA(s′,argmax
a

QB(s,a))−QB(s,a)]

Another algorithm tackling overestimation related to the use of max operator is Bias

Corrected Q-Learning (Lee and Powell, 2012). A correction term B is introduced to

cancel the error in the estimation. The term is derived from the bounds of the bias of

the system, leading to an update of the form,
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Qt+1(s,a)← Qt(s,a)+α[r+ γ max
a

Qt(s′,a′)−Qt(s,a)−Bt(s,a)]

3.2 Loosely Coupled Learning

3.2.1 Overview

We now consider dealing with non-stationary environments from another perspective.

Instead of addressing bias or overestimation in Q-Learning as the algorithms presented

in the previous section, the following algorithm (Yu et al., 2015) makes explicit consid-

erations about multiple agents. In cooperative distributed environments, agents will find

themselves with the necessity to coordinate their actions. Depending on the region or

the state of the environment some actions will require a high degree of coordination. In

contrast, an agent might find that in other situations coordination with other agents does

not improve in any way the decision making process. For this reason, some research

has focused on developing more efficient coordinated learning paradigms in which

degrees of independence can be exploited by defining cooperation levels (Ghavamzadeh

et al., 2006). Given that the state and the action space grows with every agent in an

environment, determining when an agent can act independently allows to decompose

large distributed problems into smaller decision making processes. In Yu et al. (2015)

an algorithm is proposed to determine the degree of independence of an agent. This

measure of independence is also dynamically adapted and learned by the agent. In this

manner an agent only coordinates or shares information only when it is necessary.

3.2.1.1 Agent independence

An independence degree ξ k
i ∈ [0,1] for agent i in state sk

i determines the probability of

an agent carrying on an action independently. The closer ξ k
i is to the upper bound, the

more certainty there is for an agent to act based on its individual information regardless

of the presence of other agents.

3.2.1.2 Determining Independence Degree ξ k
i

The beliefs of an agent to act independently at a given state are adjusted in relation to

the negative outcomes it receives. At every state where a negative reward is received,

the extent of responsibility of a previous state is determined. A Gaussian-like diffusion

function,
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f r
s∗(s) =

1√
2π

e−
1
2 ζ〈s,s∗〉2 (3.4)

Measures the contribution of preceding state s after receiving a reward at state s∗,

where ζ〈s,s∗〉 quantifies the similarity between states. A large value in f r
s∗(s) is obtained

when the level of similarity between the states is high which indicates a substantial

involvement of state s in causing a negative reward. However even if there is a level of

similarity between states, it becomes important to recognize what states belong to the

state trajectory leading to a negative reward. Through eligibility traces, credit can be

assigned to the states involved in a negative reward.

ε
k
i (t +1) =

{
γλ εk

i (t)+1 if sk
i ∈ Sc

γλ εk
i (t) otherwise

(3.5)

Here εk
i (t) is the eligibility trace value of agent i in state sk

i , γ ∈ [0,1) is the discount

rate, λ ∈ [0,1] is a decay parameter and Sc is a state trajectory, indicating a series

of states involved in a negative reward. If state sk
i is found in the trajectory, its εk

i (t)

increases implying its involvement in an event.

The outcomes from the diffusion function and the eligibility trace are then combined

to obtain a value ψk
i indicating the necessity for cooperation,

ψ
k
i (t +1) = ψ

k
i (t)+ ε

k
i (t) f r

s∗(s
k
i ) (3.6)

ψk
i is initialized ψk

i (0) = 0. A larger value of ψk
i corresponds to a more considerable

need for cooperating. That is, ψk
i is inversely related to independence degree ξ k

i . Thus

ψk
i is mapped and bounded to ξ k

i with a normalization function,

ξ
k
i (t +1) = G(ψk

i (t +1)) (3.7)

Where the larger the value of ψk
i the lower and closer to zero, the independence

degree ξ k
i is. The process of adjusting the independence degrees for each agent i at each

state k can be summarized in Algorithm 7.

For illustration purposes, Algorithm 7 uses a normalization function G(.) where

a tracking variable maxtemp saves the largest observation of ψk
i (Lines 11-13). This

variable is later used to scale them in order to be used to obtain an independence degree

ξ k
i (Line 15-17). Similarity between the states is calculated using Euclidean distance

(Line 9). Depending on the particular problem, similarity and the normalization function

can be modified as required.
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Algorithm 7 Independence Degree Adjustment

1: if negative reward in si(t) then
2: maxtemp← 0

3: for sk
i ∈ Si do

4: if sk
i ∈ Sc

i then
5: εk

i (t) = γλ εk
i (t−1)+1

6: else
7: εk

i (t) = γλ εk
i (t−1)

8: end if
9: f r

s∗(s
k
i ) =

1√
2π

e−
1
2 [(xk−xu)

2+(yk−yu)
2]

10: ψk
i (t) = ψk

i (t−1)+ εk
i (t) f r

s∗(s
k
i )

11: if ψk
i (t)≥ maxtemp then

12: maxtemp = ψk
i (t)

13: end if
14: end for
15: for sk

i ∈ Si do
16: ξ k

i (t) = 1− ψk
i (t)

maxtemp

17: end for
18: end if

3.2.1.3 Coordinated Learning

Once the elements to determine the need for coordinated action have been established,

it is now analyzed how it is included into the learning process. Supported by the

Dec-MDP framework introduced in Section 2.1.2.1, the case of full joint observability

is considered when combining the local observations of every agent. For simplicity and

for future empirical testing, only two agents i and j are considered. Thus the joint action

is given by a =< ai,a j > and the joint state by a factored representation S = Si×S j

or S = S0×Si×S j depending on the existence of an agent independent component S0.

With the inclusion of an independence degree then the problem can be decomposed

into sub-problems where an MDP is solved when an agent is acting individually and

another MDP with a fully observable joint state when acting in coordination with the

other agent. As it has been the case, reinforcement learning algorithms can be used to

find policies for these MDPs.

Two Q-functions are defined for calculating action values for an agent i, Qi when

acting individually and Qc when acting in coordination with the other agent. Using the
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Algorithm 8 Coordinated Learning for agent i

1: Initialize Qi(si,ai) and Qc( jsi,ai)

2: Initialize ξ k
i (t) = 1, εk

i (t) = 0 and Sc← /0

3: repeat
4: Generate random number τ ∼ U(0,1)

5: if ξ k
i ≤ τ then

6: if agent j is observed then
7: Set perceptionFlag = True

8: Set joint state jsi← 〈si,s j〉 to try to coordinate with agent j

9: Select an action ai according to policy π w.r.t. Qc( jsi,ai)

10: else
11: Select an action ai according to policy π w.r.t. Qi(si,ai)

12: end if
13: else
14: Select an action ai according to policy π w.r.t. Qi(si,ai)

15: end if
16: Include state si in trajectory states Sc

17: Execute action ai

18: Observe reward ri and next state s′i
19: if (ξ k

i ≤ τ) AND (perceptionFlag == True) then
20: Qc( jsi,ai)← Qc( jsi,ai)+α[ri + γ maxai Qi(s′i,a

′
i)−Qc( jsi,ai)]

21: else
22: Qi(si,ai)← Qi(si,ai)+α[ri + γ maxai Qi(s′i,a

′
i)−Qi(si,ai)]

23: end if
24: Adjust ξ k

i using Algorithm 7

25: Set si← s′i
26: until Termination

Q-Learning update rule from equation 2.6,

Qi(si,ai)← Qi(si,ai)+α[ri + γ max
ai

Qi(s′i,a
′
i)−Qi(si,ai)] (3.8)

Which estimates the action-value for an agent i acting independently. Meanwhile

when acting in a coordinated manner, a joint state jsi is considered. The joint state can

be understood as the information shared between the agents about their observations of

the environment. Using again the Q-learning update rule,
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Qc( jsi,ai)← Qc( jsi,ai)+α[ri + γ max
ai

Qi(s′i,a
′
i)−Qc( jsi,ai)] (3.9)

It has to be emphasized that it is Qc the Q-function used to estimate in case of a

coordinated action. However in its max operator, the estimate uses the individual Qi to

account for the value of future actions. From Algorithm, 8 it is observed that an action

that considers shared information could only be taken when the other agent j is in a

situation where it is observed, or is in a position to transmit its information (Line 6-9).

Thus when agent j is unavailable, agent i will act independently regardless of its need

to coordinate (Line 10-12).

3.2.2 Related Work

Previous research has tried to address the issue of equilibrating independence and

coordination. In Roth et al. (2007), using factored Dec-MDP as in (Yu et al., 2015)

they provide a different approach by building and computing tree structured policies.

They describe a mechanism to transform factored joint policies into factored individual

policies. Another influential method in multi-agent learning, involves using graph

structures and solving the MDP through a message passing scheme (Guestrin et al.,

2002). The structure of the graph describes the relevant variables that an agent should

take into account in order to maximize a joint action. Kok and Vlassis (2004) presented

a similar approach to the one exposed here. In their paper they describe the Sparse

Cooperative Q-Learning algorithm, each agent considers an individual and a collective

Q-function. However it differs from Yu et al. (2015) in that it relies on a coordination

graph to determine in which states the agents must act jointly, and to extract value rules

that are added to the global Q-function. In subsequent work, Kok et al. (2005) attempt

to learn automatically the structure of the coordination graphs. Initially all agents start

acting independently and as they discover states in need of coordination, value rules

are added to the coordination graph. Coordination requirements are calculated based

on statistics about the actions selected by the other agents. These methods based on

coordinated graphs assume a predefined interaction structure. In other relevant work by

De Hauwere et al. (2009), they propose a more general approach. The decision making

process is decoupled into two layers. A first layer uses generalized linear automata to

learn associations between rewards and state information. Then a second layer decides

to use standard Q-learning or a multi-agent algorithm. They provide an alternative

approach in De Hauwere et al. (2010), in which the agent builds a representation of
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the task by computing statistics about the change in rewards in visited states. However

there is the assumption that an agent has already learned an individual optimal policy

before it can start learning to coordinate with other agents.



Chapter 4

Extending to Multi-Agent Deep

Reinforcement Learning

In the previous chapter, two algorithms designed to deal with non-stationarity were

reviewed. Repeated Update Q-Learning (RUQL) tackles policy bias observed in Q-

Learning. The second algorithm, which will be now referred to as Loosely Coupled

Q-Learning (LCQL), attempts to balance independent decision making with coordinated

action for multi-agent environments. In this chapter two variants inspired by these

algorithms are presented. The objective is to extend and generalize to multi-agent

domains with large state spaces using deep neural networks.

4.1 Deep Repeated Update Q-Learning

The update rule of RUQL is given by Equation 3.3 as,

Qt+1(s,a) = [1−α]
1

π(s,a) Q(s,a)+ [1− (1−α)
1

π(s,a) ][r+ γ max
a

Q(s′,a′)]

Setting zπ(s,a) = 1− (1−α)
1

π(s,a) and ω = 1− zπ(s,a) the equation can be expressed

as (Appendix A),

Qt+1(s,a) = Q(s,a)+ zπ(s,a)[r+ γ max
a

Q(s′,a′)−Q(s,a)] (4.1)

For function approximation, it has been established that a lookup table with a

correspondence of 1 to 1 for each state action pair is substituted by an approximation of

the action-value. In this case,

31
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Q̂(s,a;θ) = g
( n

∑
j

θ
( j)

φ
( j)(s,a)

)
θ is a vector of parameters or weights for the neural network, φ is the input and

constitutes any form of pre-processing or transformation applied to the state, and the

function g(.) is a nonlinearity. For updating the parameters θ , an expression of the

following form must be obtained,

θi+1← θi +α∇θiL(θi)

Where i is the current iteration, α is a learning rate and L(.) is a loss function. From

Equation 4.1 the following loss function can be defined,

Li(θi) = E(s,a,r,s′)∼U(D)[r+ γ max
a

Q(s′,a′;θ
−
i )−Q(s,a;θi)]

2

State s, action a, reward r and next state s′ are uniformly sampled from replay

memory D that stores transitions. θ
−
i contains the parameters of a previous iteration

thus we can set yi = E(a,r,s′)∼U(D)[r+ γ maxa Q(s′,a′;θ
−
i ) as the target. Differentiating

the above loss function with respect to the parameters,

α∇θiLi(θi) = E(s,a,r,s′,zπ(s,a))∼U(D)[zi(yi−Q(s,a;θi))∇θiQ(s,a;θi)] (4.2)

In this expression, the learning rate has been included to clarify its use in RUQL.

Standard gradient descent considers a global learning rate α for all parameters. However,

for RUQL we require more granularity. A vector zi contains the effective learning rates

or step sizes zπ(s,a) = 1− (1−α)
1

π(s,a) . Each of these is associated to an individual

element of a minibatch. The reason is that zπ(s,a) is calculated in relation to the action

selected when following a determined policy at a given time step. Thus πθ (s,a) =

P[a|s;θ ] which depends on the exploration strategy used and its hyperparameter values

at the time of selecting an action.

This process can be observed in Algorithm 9 where after selecting an action the

individual effective learning rate is computed (Line 8). This information is then stored

together with the rest of the agent experience in the replay memory D (Line 12). Once

the network is about to update its parameters the transitions are sampled from the stored

memory (Line 13). In the particular case of the effective learning rates zπ(s,a), they are

used to populate the vector zi which is then used to determine how to scale the gradient

(Lines 15-17).
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Algorithm 9 Deep Repeated Update Q-Learning
1: Initialize replay memory D to hold N transitions

2: Initialize action-value function Q with random weights θ

3: for episode=1...M do
4: Initialize a sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)

5: for episode=1...T do
6: Select an action at according to policy π

7: Compute effective learning rate zπ(st ,at)

8: Execute action at

9: Observe reward rt and next frame xt+1

10: Set st+1 = st ,at ,xt+1 and preprocess φt+1 = φ(st+1)

11: Store transition (φt ,at ,rt ,φt+1,zπ(s,a)t ) in D

12: Sample random minibatch of transitions (φ j,a j,r j,φ j+1,zπ(s,a) j+1) from D

13: Set y j =

{
r j if terminal φ j+1

r j + γ maxa′ Q̂(φ j+1,a′;θ−) otherwise

14: Populate zi with sampled zπ(s,a)

15: Perform gradient descent on (y j−Q(φ j,a j;θ))2 wrt θ

16: Update θi+1← θi + zi∇θiL(θi)

17: Every C steps set Q̂ = Q . If using an extra target network

18: end for
19: end for

4.2 Deep Loosely Coupled Q-Learning

4.2.1 Determining a Single Independence Degree ξk

To decide when an agent must coordinate or act independently, LCQL defined an

independence degree ξ , which itself relied on calculating an eligibility trace ε and a

coordination measure ψ . All these variables assumed a small state space where every

possible state is known or can be stored and retrieved. In practice this is unfeasible.

This section presents a Deep Loosely Coupled Q-Network (DLCQN). The issue of

calculating these measures is tackled by defining a single measure of independence for

all states. As in the case of the original formulation of LCQL, the independence degree

is automatically adjusted when a negative outcome is observed.

A diffusion function is defined from the state s∗k where a negative outcome is received

by agent k. Instead of determining the responsibility of its own previous states, the
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Algorithm 10 Independence Degree Adjustment for agent k (DLCQL)

1: if negative reward in si(t) then
2: idSteps← idSteps+1

3: if agent j was observed then
4: f r

s∗k
(s j) =

1√
2π

e−
1
2 [(xk−x j)

2+(yk−y j)
2]

5: εk(t) = γλ εk(t−1)+1

6: ψk(t) = ψk(t−1)+ εk(t) f r
s∗(sk)

7: else
8: εk(t) = γλ εk(t−1)

9: ψk(t) = γλ ψk(t−1)

10: end if
11: if ψk(t)≥ maxtemp then
12: maxtemp = ψk(t)

13: end if
14: if idSteps%U == 0 then . Every U steps ξ is updated

15: ξk(t) = 1− ψk(t)
maxtemp

16: maxtemp = 0

17: end if
18: end if

agent calculates the influence of the state information shared by the other agent j. First

the similarity ζ〈s j,s∗k〉2
between states is computed, then a diffusion function can be

calculated with,

f r
s∗k
(s j) =

1√
2π

e
− 1

2 ζ〈s j ,s
∗
k 〉

2 (4.3)

Similarly, the eligibility trace εk is constrained to only one per agent instead of one

per state. The eligibility trace remains unchanged however it serves a distinct role from

LCQL. Originally the eligibility trace was intended to assess the influence of previous

states leading to a negative outcome. In the case of a DLCQN, the factor εk, helps to

establish a measure or association between receiving a negative reward and observing

another agent.

εk(t +1) =

{
γλ εk(t)+1 if agent j was observed

γλ εk(t) otherwise
(4.4)

γ ∈ [0,1) is the discount rate and λ ∈ [0,1] is a decay parameter. In the same manner

ψk that gauges the necessity for coordination, increases when there is a correlation
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between receiving a negative reward and observing another agent and decreases when it

is received and no agent has been observed.

ψk(t +1) =

{
ψk(t)+ εk(t) f r

s∗k
(s j) if agent j was observed

γλ ψk(t) otherwise
(4.5)

Algorithm 10 describes the steps necessary to update the independence degree ξk for

agent k. As was the case in LCQL, a larger ψk will correspond to a lower independence

degree. However instead of normalizing ψk with respect to every state available for

an agent, it is normalized against the highest psik calculated during the U previous

observations of negative rewards (Line 11-17).

4.2.2 Approximating the Local and Global Q-functions

The same basic principles applied to RUQL regarding function approximation using

neural networks are then followed for LCQL. In this case however, there are two Q-

functions: (1) Q̂k approximates action-values when agent k acts independently and (2)

Q̂c which will be defined as a global Q-function when agents act coordinately. Thus,

Q̂k(s,a;θ
k) = g

( n

∑
j

θ
( j)

φ
( j)(s,a)

)
Q̂c( js,a;θ

c) = g
( n

∑
j

θ
( j)

φ
( j)( js,a)

)
Since every individual function represents a separate network, each of them uses

their own set of parameters θ . In addition, Qc computes its value using an extended

joint state js that incorporates the state information of each agent. A target can be set as

yk
i = E(a,r,s′)∼U(D)[r+ γ maxa Q(s′,a′;θ

k−
i ) for agent k. This same target yk

i is also used

when agent requires to coordinate and receives information from another agent. Based

on the original equations 3.8 and 3.9 used to update the Q-values, these are adapted to

obtain the following loss functions,

Lk
i (θ

k
i ) = E(s,a,r,s′)∼U(D)[(y

k
i −Qk(s,a;θ

k
i ))]

2 (4.6)

Lc
i (θ

c
i ) = E( js,a,r,s′)∼U(D)[(y

k
i −Qc( js,a;θ

c
i ))]

2 (4.7)
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Algorithm 11 Deep Loosely Coupled Q-Learning for agent k
1: Initialize replay memory D to hold N transitions

2: Initialize Qk to random θ i and Qc to random θ c

3: Initialize ξk(t) = 1, εk(t) = 0

4: Initialize maxtemp = 0, idSteps = 0

5: for episode=1...M do
6: Initialize a sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)

7: for episode=1...T do
8: Set perceptionFlag = False

9: Generate random number τ ∼ U(0,1)

10: if (ξk ≤ τ) AND (agent j is observed) then
11: Set perceptionFlag = True

12: Set joint state jsk← 〈sk,s j〉 to try to coordinate with agent j

13: Preprocess sequence φ( jsk)

14: Select an action ak according to policy π w.r.t. Qc(φ( jsk),ak)

15: else
16: Select an action ak according to policy π w.r.t. Qk(φ(sk),ak)

17: end if
18: Execute action ak

19: Observe reward rt and next frame xt+1

20: Set sk,t+1 = st ,at ,xt+1 and preprocess φt+1 = φ(st+1)

21: Store transition (φt ,at ,rt ,φt+1) in D

22: Sample random minibatch of transitions (φ j,a j,r j,φ j+1) from D

23: Set yk
j =

{
r j if terminal φ j+1

r j + γ maxa′ Q̂(φ j+1,a′;θ k−) otherwise

24: if (ξk ≤ τ) AND (perceptionFlag == True) then
25: Build joint representation φ( jsk) from sampled φ(sk)

26: Perform gradient descent on (yk
j−Qc(φ( jsk) j,a j;θ))2 wrt θ

27: Update θ c
i+1← θ c

i +∇θ c
i
Lc(θ c

i )

28: else
29: Perform gradient descent on (yk

j−Qk(φ(sk) j,a j;θ))2 wrt θ

30: Update θ k
i+1← θ k

i +∇
θ k

i
Lk(θ k

i )

31: end if
32: Every C steps set Q̂ = Q . If using an extra target network

33: Adjust ξk using Algorithm 10

34: Set sk← s′k
35: end for
36: end for
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Then similarly to Equation 4.2, the gradients for each loss function are given by,

∇
θ k

i
Lk

i (θ
k
i ) = E(s,a,r,s′)∼U(D)[(y

k
i −Qk(s,a;θ

k
i ))∇θ k

i
Qk(s,a;θ

k
i )] (4.8)

∇θ c
i
Lc

i (θ
c
i ) = E( js,a,r,s′)∼U(D)[(y

k
i −Qc( js,a;θ

c
i ))∇θ c

i
Q( js,a;θ

c
i )] (4.9)

Where c indicates the elements belonging to a coordinated action and k to those of

a corresponding agent k.

4.3 Prior Research

Although Deep Reinforcement Learning is a new area of research, interest in multi-

agent environments has grown quickly. The earliest precedent on multi-agent deep

reinforcement learning (MADRL) is from Tampuu et al. (2015). Their work is also

the most closely related to our own. They considered two agents in Pong, testing

various rewarding schemes. Each agent was controlled by its own DQN but no further

modification was done. Thus their work was a direct extension to the game mode rather

than an extension to the DQN architecture. In Egorov (2016), MADRL was explored in

the context of a pursuit evasion task. Image-like representation were created from the

grid in which the agents were located, and then split into different channels. Each of

them corresponding to a mapping either to obstacles, allies, opponents or the current

location of the agent. Although the architecture diverged from the original DQN by

using Residual networks, the mechanisms behind the RL component remained the same.

In addition, each agent was trained and learned individually as opposed to in parallel.

Other recent studies have explicitly integrated communication as an essential compo-

nent to address partial observability between the agents. In these models communication

is not predefined but learned (Sukhbaatar et al., 2016). Foerster et al. (2016a) build on

the single agent Deep Recurrent Q-Network (Hausknecht and Stone, 2015) and extend

it to a multi-agent domain where network parameters are shared. Foerster et al. (2016b)

added to this approach by passing gradients through the agents. These architectures

fundamentally differ from DLCQN and other research dealing with POMDPs (Egorov,

2015) in that they use or partially depend on recurrent neural networks to process

non-Markovian states.

In the same manner that DRUQN generalizes RUQL from tabular lookup tables to

large state spaces using deep convolutional neural networks, Double Q-Learning was

also recently applied to adapt the original DQN parameter update rule (van Hasselt
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et al., 2015). The resulting network, Double DQN, surpassed the performance of DQN

in the Atari 2600 games.



Chapter 5

Methodology

5.1 Experimental Setup

The performance of the models is tested in the two-player game Pong. Recent research

in reinforcement learning has used extensively the Arcade Learning Environment

(Bellemare et al., 2012) as a testbed for Atari 2600 games. However the framework

does not currently support multi-player control. For these experiments an open source

version of Pong, available from the Pygame repositories is used as a substitution. Using

this alternative also permitted customizing the game to explore different modalities.

Pong is a table tennis game in which each player controls a paddle at opposing sides

of the screen in order to hit a ball. In the original form of the game a point is awarded

every time the opponent fails to hit the ball back. There are three possible actions for

each paddle: (1) to move up, (2) to move down and (3) not to move. In a similar way to

the experiments in Mnih et al. (2013, 2015) a game finishes when one of the two players

reaches 20 points. Although other multi-player Atari games are available, Pong was

selected because it allows a simultaneous two player mode. This is necessary to test the

application of the algorithms in non-stationary environments and in situations that may

require certain level of coordination. In addition, the reward structure of the game can

be intuitively modified to test different goals. Pong was also one of the games that DQN

learned to play efficiently thus it allows to establish initial comparisons between the

different approaches presented in this work. In the rest of this section, the three type of

testing scenarios designed to evaluate the performance of the algorithms are described.
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5.1.1 1-Player Control

The first experimental modality studied is when only one of the players is controlled

by a network and the other by the game AI. Three different instances for this task are

considered:

• DQN: The test serves for baseline results, to try to establish the performance of a

network based on Mnih et al. (2013, 2015) under these particular experimental

conditions.

• DRUQN: In a similar way to DQN, a single network controls a player against

the game AI.

• DLCQN: In contrast to the other two algorithms, DLCQN explicitly assumes the

existence of multiple players. In this case there are two networks that are trained

simultaneously. A local network that corresponds to the network controlled player

and a second network that holds joint state information. This second network is

only used by the network-controlled player when the game AI is observed.

The default competitive game mode is used for this set of experiments. Table 5.1

shows the rewards obtained by the network controlled player when it scores and when

the game AI scores.

Network scores Game AI scores

Network reward +1 -1

Table 5.1 Reward structure in Pong. Competitive game mode with a single network controlled player.

5.1.2 2-Player Control

Although for the previous modality the network is learning to interact in a multi-

agent environment. The agent provided by the game AI has already a well defined

behavior. We now want to test the performance of the algorithms in a truly non-

stationary environment where both agents are continuously modifying their behavior.

Thus we now consider a cooperative task, where each agent is controlled by its own

neural network. In this modality, the objective of the task is to keep the ball bouncing

between the paddles. Therefore the agents must try to learn policies that allow them

to coordinate with each other. The reward scheme is changed to reflect the objectives
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of the task (Table 5.2). Every time the ball passes through one of the players both are

penalized regardless of who scored. Hitting the ball does not warrant a positive reward,

consequently the agents can only minimize their losses in conjunction with each other.

Net. 1 scores Net. 2 scores Net. 1 hits ball Net. 2 hits ball

Network 1 reward -1 -1 0 0

Network 2 reward -1 -1 0 0

Table 5.2 Reward structure in Pong in a cooperative coordination game mode. Both players are

controlled by their own network.

Three experimental instances are again considered for this modality:

• DQN: Two networks of the same type (DQN) are trained simultaneously. Each

of them corresponds to an individual agent.

• DRUQN: Two networks also of the same type (DRUQN) each controlling one

agent are trained simultaneously.

• DLCQN: For this case three DLCQN networks are trained in parallel. Two

individual networks, each corresponding to a player, and used only when the

agents are acting based on their own independent observations. The third one, is a

joint state network shared between both agents. This network attempts to emulate

collective decision making when the agents are in a position in which they can

transmit their information. Thus this network is used by any of the agents when

it requires to act coordinately by integrating its observations with those coming

from the other agent.

5.1.3 2-Player Control Mixed

The third set of experiments is intended to establish a direct comparison between

different learners in the same environment. For this purpose a standard competitive

game mode is considered as described in Table 5.3. The following three instances are

tested:

• DQN vs DRUQN: The two networks are trained simultaneously, each controlling

an agent.
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• DQN vs DLCQN: Three networks are trained in parallel. An agent is controlled

by the DQN. Meanwhile, the other agent has two networks at its disposal for

decision making (DLCQN). The first of those is used when the agent decides to

act based on its own observations. The second network is used when information

originating from the other player is available and the agent decides to use that

information to determine how to act.

• DRUQN vs DLCQN: In the same manner as above. One of the agents is con-

trolled by a DRUQN. The other agent can either act using only its own information

or if available, use joint state information (DLCQN).

Network 1 scores Network 2 scores

Network 1 reward +1 -1

Network 2 reward -1 +1

Table 5.3 Reward structure in Pong in a competitive game mode. Both players are controlled by their

own network.

5.2 Architecture

Figure 5.1 Network architecture for DRUQN and DLCQN (local). The input consists on the four most

recent frames. The input is then transformed by two hidden convolutional+max-pool layers. Then

followed by another hidden fully connected hidden layer. The output layer contains the Q-value

estimated for each of the three possible actions.

In essence, the networks receive as input the raw pixels of the screen and output

the Q-values of the actions available to an agent. The most recent four frames from

the game are first preprocessed by grayscaling and downsampling them. Although the
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original architecture in Mnih et al. (2013, 2015) receives frames of 84× 84, for our

networks we consider frames of 40× 40 for memory efficiency purposes. Then the

frames are stacked together to form an input of 40×40×4 and fed into the network.

The architecture as shown in Figure 5.1, consists of a first hidden convolutional layer

with 32 filters of shape 8×8 with stride of 4×4. The layer applies ReLU and then goes

through max-pooling of 2×2. The second hidden convolutional layer has 64 filters of

4×4 with stride 2×2 applying ReLU nonlinearities and then max-pooling of 2×2.

Then a final hidden layer of 512 fully connected ReLU neurons. The output layer is

a fully connected linear layer that outputs the predicted Q-value for each of the three

actions: (1) move up, (2) move down and (3) stand still.

5.2.1 DLCQN Joint Network

For DLCQL, in addition to the agent’s own local network (which follows the specifica-

tion described above) a global network may be used. This network is shared between

both agents and contains the joint state information from combining the observations

from each of them when they are in each other’s field of vision. The original algorithm

DLCQN is based on by Yu et al. (2015), was originally intended to solve two robot

navigation tasks. The extension proposed here should also work on those tasks. In

those scenarios the agents combine the observations of the local region in which they

are located. However the nature of those tasks is very different when compared to

Pong. Thus the criteria used to determine if an agent is observed by the other has to

be redefined. We consider that an agent is observed when at least part of its paddle is

aligned in parallel with the paddle of the other agent. An example of a situation when

an agent uses its local network, and when it has the option to use the shared network is

depicted in Figure 5.2 left and right respectively.

The joint state will be constituted by eight preprocessed and stacked frames. The

first four are the most recent frames observed by the agent. For the rest it is assumed

that the other player has information about the four previous frames. Thus the joint

state is given by stacking the most recent eight frames. Accordingly the architecture of

the joint state network is augmented to accommodate for a larger input of 40×40×8.

The rest of the layers remain the same and as specified in the previous section.
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Figure 5.2 Left: The paddle of the agents are not aligned in parallel and it is considered that they are not

in each other’s field of vision. Only the four most recent frames are sent as input to the agent local

network. Right: Here, the paddles are aligned and information about the previous four frames can be

shared between the agents. If the agent decides to act based on the shared information, eight frames are

passed to the global shared network.

5.2.2 Training

All networks are trained for 102 epochs of 20,000 time steps each for a total of 2 million

and 40 thousand frames. Every network is trained using the same parameters and

procedures. During the first 50,000 time steps the network starts by executing random

actions in order to start populating the replay memory, which holds up to 500,000

transitions. The exploration policy is ε-greedy annealing ε from 1 to 0.05 during the first

500,000 time steps and remaining at ε= 0.05 thereafter. The discount rate is γ = 0.99

Frame skipping is set to k = 4 which indicates that the agent selects an action every kth

frame and repeats it. ADAM (Kingma and Ba, 2014) is used for stochastic optimization,

with a minibatch of size 200 and a learning rate α = 1×10−6. As explained in Section

3.1 and 4.1, for DRUQN the effective learning rate is zπ(s,a) = 1− (1−α)
1

π(s,a) , where

π(a|s) = P[a|s]. The full list of parameters can be found in Appendix C.

5.2.2.1 Parameters Specific to DLCQN

For training the DLCQN networks we require additional parameters. The initial in-

dependence degree ξk(0) = 1, εk(0) = 0, ψk(0) = 0 and λ = 0.8 where k is the agent.

The agent updates its independence degree after receiving 250 negative rewards.

5.3 Evaluation

At the end of every epoch, the weights are saved and stored in order to evaluate the

performance of the networks at that specific point. For each checkpoint, the networks
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are evaluated by playing 30 games with a fixed ε-greedy exploration policy of ε= 0.01.

The reward and the scores per game are then averaged. For the cooperative task also the

number of bounces per point is calculated using the same methodology described in

Tampuu et al. (2015). They are averaged first over a single a match and then over the 30

matches. In the competitive 2-player mixed modality, the mean average reward over a

range of epochs is also computed.

However, as has been noted in Mnih et al. (2013, 2015) these metrics tend to be

noisy and may give the impression that learning is not occurring. Thus we also follow

the approach specified there and in related work. We calculate the average maximal

Q-values. This will also give us an indication of whether or not a network is converging.

To calculate them, first 500 frames are randomly selected before any training starts.

Then similarly to the other metrics, for each checkpoint the 500 frames are passed to

the network. The average maximal Q-value is calculated with,

1
N

N

∑
n=1

argmax
a

Q(s,a;θ)

where N = 50 is the number of frames fed into the network. It has to be mentioned

that the same frames are always presented to each network.
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Emprical Evaluation

6.1 1-Player Control

During the first evaluation the performance of the algorithms was very similar. DRUQN

and DLCQN agents obtain larger rewards earlier than DQN (Figure 6.1 Top). Although

as it was mentioned earlier, averaged rewards tend to be a noisy behavioral descriptor,

the three agents learn how to play successfully obtaining full scores routinely.

Figure 6.1 Performance comparison between DQN, DRUQN and DLCQN in the 1-Player control task.

Top left: Average rewards of DQN and DLCQN. Top right: Average rewards of DQN and DRUQN.

Bottom: Average maximal Q-values.
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In Figure 6.1 Bottom, we can observe the convergence of the Q-values. The results

surprisingly illustrate that DQN and DLCQL using the standard Q-Learning update rule,

estimate the values at a lower level than DRUQN. However it is worth to remember that

at this stage the environment is stationary. The agents are facing the game AI which has

a defined static behavior from the first epoch to the last. Thus amplification effects on

the estimation of the values may not be as severe during these instances.

Table 6.1 below, shows the results from each agent in their respective best performing

epoch. It can be appreciated that the difference in performance is minimal. The three

agents were capable of winning their 30 matches with a score of 20 and conceding less

than one point on average. The only significant difference between the agents is that

DRUQN and DCLQN achieve their best performance sooner than DQN.

Mean Reward Mean Score Mean Game AI Score Epoch

DQN 19.63±0.75 20 0.36±0.75 83

DRUQN 19.3±0.86 20 0.7±0.86 43

DLCQN 19.33±1.07 20 0.66±1.07 56

Table 6.1 DQN, DRUQN and DLCQN performance comparison in the 1-Player control task.

6.2 2-Player Control

Figure 6.2 Performance comparison between DQN, DRUQN and DLCQN in the 2-Player control

cooperative task. Left: Average paddle bouncing for DQN and DRUQN. Right: Average paddle

bouncing between DQN and DLCQN.

For the cooperative task, Figure 6.2 depicts the average number of bounces per point

achieved when the agents are trying to coordinate with each other. The graphs followed
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Figure 6.3 Convergence in the 2-Player control cooperative task. Top left: DQN networks. Top right:

DRUQN networks. Bottom: DLCQN shared and local networks.

closely the evolution of the joint reward function. DQN and DRUQN agents roughly

exhibit the same performance. In the case of DLCQN agents, they start learning at a

similar rate to DQN. However the performance of these agents plateaus prematurely. It

can even be noticed that the agents tend to a decrease their performance in later epochs.

Table 6.2 offers a comparison between each group. The results confirm the observations

from the graph. At their peak, the DRUQN agents are able to coordinate the most by

maximizing the joint rewards. DLCQN agents on the other hand achieve inferior returns

compared to the other two groups, even when considering their best performing epoch.

Mean Reward Mean Bouncing Epoch

DQN -1.9±1.97 1.84±0.15 38

DRUQN -1.3±1.96 1.89±0.14 68

DLCQN -8.9±4.96 1.37±0.25 41

Table 6.2 DQN, DRUQN and DLCQN performance comparison in the 2-Player control cooperative task.

From observing Figure 6.3 it is appreciated that DQN and DRUQN attain certain

convergence. For DLCQN only one of the local network reaches an initial degree

of stability. The joint and the second network does not fully stabilize as they keep
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increasing their estimates. The lack of convergence from these two networks is probably

what ultimately affects the first one (green). The volatility in the estimates may explain

the declining performance observed for the DLCQN agents. Among the three groups,

only in DRUQN, both networks tend towards convergence simultaneously. Unlike in

the previous experiments with only one network, this scenario also serves to verify the

impact of non-stationarity in the estimates. In fact DQN and DLCQN overestimate

in relation to DRUQN. Their values rise above 2 and sometimes beyond 3, whereas

DRUQN networks estimate below 2. Nonetheless for this example overestimation does

not necessarily have an adverse effect in the learning of the task. This is exemplified by

DQN, which exhibits comparable performance to DRUQN.

6.3 2-Player Control Mixed

6.3.1 DQN vs DLCQN

Figure 6.4 DQN vs DLCQN competitive mode. Left: Q-value convergence. Right: Reward when

competing against each other.

Mean Reward Mean Score Mean Score Opp. Epoch

DQN (vs DLCQN) 6.73±10.13 17.86±4.57 11.13±6.63 102

DLCQN (vs DQN) 19.43±1.25 20 0.56±1.25 51

Table 6.3 DQN vs DLCQN competitive mode. First row shows the results when DQN performed the

best against DLCQN. The second row is the best performing epoch of DLCQN against DQN.

We first compare a DQN agent competing against another using a local and a joint

state DLCQN. Both agents start learning and playing against each other and it is noticed
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that the agents start estimating rather large Q-values. The DLCQN networks start

lowering their estimates, stabilizing and learning more efficiently. By contrast, DQN

keeps oscillating throughout the epochs (Figure 6.4 left). Since we are interested in

comparing their performance against each other during a match, we discard the first

39 epochs and consider only 40 and onwards. The reason is that as it is illustrated

by the Q-values, during the first initial epochs the networks are still doing most of

their learning and consequently the results from those matches are not informative.

Figure 6.4 Right shows the average rewards for both agents, starting from the 40th

epoch. Over those episodes, DLCQN obtains a mean average reward of 5.24±7.19

and accordingly DQN obtains −5.24±7.19. DLCQN best performance is registered at

epoch 51. Obtaining an average reward of 19.43 and winning the 30 matches against

DQN (Table 6.3). Meanwhile the best performing DQN epoch is the last one where it

obtains a 6.73 average reward per match.

6.3.2 DQN vs DRUQN

Figure 6.5 DQN vs DRUQN competitive mode. Left: Q-value convergence. Right: Reward when

competing against each other.

Mean Reward Mean Score Mean Score Opp. Epoch

DQN (vs DRUQN) 16.73±5.38 19.73±1.43 3±4.22 101

DRUQN (vs DQN) 13.93±1.67 20 6.06±1.67 51

Table 6.4 DQN vs DRUQN competitive mode. First row shows the results when DQN performed the

best against DRUQN. The second row is the best performing epoch of DRUQN against DQN.

The next comparison shows again a DQN agent performing worse against its multi-

agent counterpart. Compared to DLCQN, DRUQN is not as dominant over DQN
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(Figure 6.5 right). In fact, the largest mean reward during any epoch (after discarding

the first 40), is obtained by the DQN agent (16.73). However averaging over all epochs

DRUQN obtains a mean average reward of 2.18±7.14 against−2.18±7.14 from DQN.

Similarly to DLCQN, DRUQN starts converging as it enters the 30th epoch. However

DRUQN is able to maintain the Q-values at the same level until the last epoch. DQN

as in the previous experiments show that the algorithm struggles to converge properly

when multiple agents are involved. Figure 6.5 (left) illustrates how Q-values fluctuate

throughout the learning process.

6.3.3 DRUQN vs DLCQN

Figure 6.6 DRUQN vs DLCQN competitive mode. Left: Q-value convergence. Right: Reward when

competing against each other.

Mean Reward Mean Score Mean Score Opp. Epoch

DRUQN (vs DLCQN) 15.05±4.85 20 4.93±4.85 95

DLCQN (vs DRUQN) 10.23±5.56 19.93±0.35 9.7±5.42 59

Table 6.5 DRUQN vs DLCQN competitive mode. First row shows the results when DRUQN performed

the best against DLCQN. The second row is the best performing epoch of DLCQN against DRUQN.

The final comparison is between the algorithms that are better equipped to deal

with non-stationarity. Figure 6.6 (left) depicts the evolution of the Q-values. After

an initial period where both agents overestimate the value of the actions, they start

to stabilize. Although DLCQN exhibits slight fluctuations as it was the case when it

competed against DQN, it tends to stabilize faster. On the other hand, DRUQN not only

stabilizes but also seems to converge. The estimates it computes remain between the

same range until the last epoch. Overall DRUQN acts more efficiently, its best epoch
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surpasses the performance of its DLCQN equivalent. It is also capable of winning all

games and conceding less points. In addition when averaging mean rewards over all

epochs, DRUQN obtains 1.70±5.21 against −1.70±5.21 from DLCQN.
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Discussion

7.1 Summary

The main focus of this dissertation was the study of decision making in the presence of

other actors in changing environments. We first started by discussing Markov Decision

Processes (MDP) as the theoretical foundation needed to formalize decision making

under uncertainty. This also established necessary terminology such as agent, policy,

reward, state or action. Policy and value iteration, the two classical approaches to solve

MDPs were also briefly described. To solve MDPs one must make at least two very

strong assumptions.

The first is the Markovian property which establishes that the next state depends

only on the current one. MDPs presume that at any given time step an agent has full

observability of the current state. In most realistic situations this presumption falls apart.

In large environments, agents may be reduced to observe and gather information only

within their local region. Thus the next state cannot be inferred based exclusively on

the current information. Partially Observable Markov Decision Processes (POMDP)

has been proposed as an extension to MDPs as a way to generalize them to describe

those situations. POMDP solving is an open area of research and several subclasses

have branched out to address specific niches. One of those subclasses is Decentralized

Markov Decision Processes (Dec-MDP). It assumes that full observability can be

attained by gathering the observations from each agent.

A second presumption of MDPs is to expect that there is already a model that can

inform about the rewards and the transition probabilities. Reinforcement learning (RL)

offers the possibility to circumvent this assumption. RL methods learn from trial and

error, trying to discover the underlying structure of the problem by selecting actions
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and observing the consequences.

One of the most popular RL algorithms in the literature is Q-Learning. It is known

for its simplicity and for the convergence guarantees it provides given certain conditions.

It was precisely one of the biggest concerns in this dissertation that those guarantees do

not necessarily hold up in multi-agent environments. When different agents are part

of the same environment, policies that were beneficial at some point may not be in the

future. This type of environments are called non-stationary.

Two RL algorithms designed to deal with non-stationarity were presented. Repeated

Update Q-Learning (RUQL) (Abdallah and Kaisers, 2013, 2016) and Loosely Coupled

Q-Learning (LCQL) (Yu et al., 2015). These algorithms try to handle non-stationarity

by focusing on different aspects. RUQL tries to fix a deficiency in Q-Learning. More

specifically, in the way it estimates action values. It proposes to update the action value

estimates inversely proportional to the probability of selecting an action given the policy

in use. This is done in order to avoid a policy bias. It is specially relevant in non-

stationary environments because we ideally want to avoid having obsolete estimations

with a highly dynamic environment. Therefore in RUQL estimates for infrequent state-

action pairs are updated in a larger proportion than those that are more frequent. In

the case of LCQL, an explicit characterization of multiple agents is considered. The

main principle is that an agent may act independently or in coordination with other

agents depending on the circumstances. For this LCQL defines an independence degree,

adjusted depending on the negative rewards and the observations gathered by the agent.

The independence degree gives a probability for an agent to act solely on its own

observations or to integrate the observations provided by other agents.

The original formulations of Q-Learning, RUQL and LCQL all assume small

state spaces where individual action values are updated in a lookup table. As the

state space grows this representation becomes unpractical. An overview of function

approximation was provided to illustrate how RL algorithms can be used in large state

spaces. Instead of learning individual action value estimates, the algorithms learn a

set of parameters. Our interest focused on the recent use of deep neural networks as

function approximators for RL, and more specifically in the Deep Q-Network (DQN)

by Mnih et al. (2013, 2015). DQN uses the Q-Learning update rule and therefore our

concerns about the shortcomings of standard Q-Learning in multi-agent non-stationary

environments extended to DQN.

In this dissertation we introduced two new algorithms: Deep Repeated Update

Q-Network (DRUQN) and Deep Loosely Coupled Q-Network (DLCQN). They are
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based on RUQL and LCQL respectively, and provide a generalization to large discrete

state spaces. Due to its reliance on state enumeration, for DLCQN this also involved

redesigning the mechanisms to calculate an independence degree. The game Pong

was used for benchmarks and three different type of tasks were devised to compare

the performance among the networks. The tasks involved either competing or shared

goals. In the first one, only one of the paddles is controlled by a network. This is the set

up where DQN was originally tested in Mnih et al. (2013, 2015). The three networks

performed roughly similar. The second task was cooperative, having as objective to

keep bouncing the ball as much as possible. For this task both paddles were controlled

by their own network and learning occured simultaneously. DRUQN was the best

performer however DLCQN was the worst. In the final task the algorithms were tested

against each other in a competitive scenario. Overall DRUQN and DLCQN surpassed

DQN in their general performance on this task. Nonetheless DQN obtained a better

individual epoch than any of those reported by DRUQN.

7.2 Observations

7.2.1 Generality

A driving force motivating the development of DQN is the search for increasingly

general algorithms. Using the same architecture DQN learned to play various games

with distinct themes and goals. An important aspect of the algorithms introduced in this

dissertation is that they extend further the domain of application. They can be applied

to single-agent as well as multi-agent environments. For DRUQL, a modification in

the effective learning rate is what grants it the capacity to deal with non-stationary

environments regardless of their source. In the case of DLCQN, the independence

degree decides probabilistically whether to act in concert with the information coming

from another agent or individually. Although unlike DRUQL, DLCQN incorporates

observations from another agent for decision making. There is by no means a require-

ment that another agent must exist in the same environment. Thus, in single agent

environments the independence degree will remain at ξ = 1. It is only when another

agent is detected, that information sharing may occur. Then the agent decides whether or

not is convenient to use that information for decision making. Only then, the necessary

adjustment to its independence degree is made.
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7.2.2 Non-Stationarity

Comparisons to DQN, favored DRUQN in the second and third task and DLCQN in

the third. These tasks involved two agents learning concurrently. They were conceived

with the intention of testing the algorithms in their ability to deal with a changing

environment due to the presence of other actors. Nonetheless the results against DQN

are far from overwhelming. There are possible reasons that may explain these findings.

Divergence and instability was commonly observed in early use of function approx-

imation with reinforcement learning (Geramifard, 2013; Tsitsiklis and B. V. Roy, 1997).

Consequently, much emphasis and attention has been invested in the creation of stable

architectures that can integrate reinforcement learning techniques (Hausknecht et al.,

2014; Koutnik et al., 2013; Riedmiller, 2005). DQN for instance, incorporated frame

skipping, reward clipping, replay memory and the option to update the target weights

only after a given number of iterations. In particular, replay memory and freezing the

target weights help to break correlations between data because they force to update the

estimations with respect to non-sequential observations. Replay memory for instance

involves selecting from samples that occurred when past policies could have been more

efficient but that no longer apply. This is in principle something that DRUQN tries

to address by modifying the update rule. Therefore although in DQN the update rule

remains the same, the architecture itself has mechanisms to counteract to an extent

policy oscillations and data distribution biases.

A second factor, albeit one that only affects DRUQN, is the choice of the optimizer.

In DRUQL (or RUQL) for every update, an effective learning rate is computed with

respect to the selected action and the current policy. For lookup tables or stochastic

gradient descent this is trivially implemented because only one update is done at a time.

If using standard batch or minibatch gradient descent, a global learning rate determines

the magnitude of the update. In order to implement it using modern libraries this requires

setting the global learning rate to 1 and instead taking each gradient individually and

rescale it according to its custom effective learning rate. More problematic is the use

of gradient descent optimizers that determine adaptive learning rates based on moving

averages such as Adam, Adadelta, Adagrad or RMSProp. As described in the methods

section, Adam was used for all experiments because it provides state of the art gradient

based learning (Kingma and Ba, 2014). Due to the computationally and time intensive

nature of our experimental tasks, it was decided to use optimized libraries that could

provide such methods. This also meant that granular access was not easily available.
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This was a limitation that was overcome by developing a practical implementation that

could provide an individual approximation of each gradients before they were passed

to the optimizer (Appendix B). Nonetheless, these approximations could have lead to

suboptimal performance by our DRUQL implementation.

Another issue, this one observed with DLCQN was the large difference in per-

formance it had between the cooperative task and the competitive ones. It could be

speculated that since in cooperative mode, rewards are shared between the agents,

they are forced to revise its degree of independence regardless of whether or not they

complied with their part of the task. This could have provoked that the agents attempt

to cooperate by actively being in each other field of vision which might not be neces-

sarily beneficial for a game such as Pong due to the trajectories the ball takes. Let us

remember that we consider that an agent is observed by another when at least part of

the paddle is horizontally in parallel with the other. This criteria was defined by taking

inspiration on the original LCQL algorithm where a robot navigation task was solved.

However whereas in navigation tasks it could be more intuitive to define when an agent

is observed, in other tasks such as Pong, it may not be as unambiguous. Especially when

considering that in the competitive tasks this same criteria did not affect its performance

against the other algorithms.

Last, Pong was one of the games where DQN routinely found successful policies

and attained full scores in Mnih et al. (2013, 2015). Thus, perhaps the tasks were just

not complex enough. Adding another network controlled agent did not seem to affect

its performance greatly. As it has been explained above this could be due to the stability

mechanisms built into the architecture. Therefore future evaluations and comparisons

in multi-agent reinforcement learning should consider more complex environments and

tasks.

7.2.3 DRUQN or DLCQN

Between the two algorithms presented in this dissertation, there are advantages and

disadvantages that can be distinguished. DRUQN for example, handles non-stationarity

via effective learning rates. Therefore there is no need to define specific hand-crafted

independence criteria that could affect the performance depending of the modality of the

task. As it was observed in the experiments, DRUQN performed well for the three set of

tasks. On the other hand for DLCQN, the criteria used to adjust the independence degree

is different from task to task. DLCQN also introduces other parameters such as λ and
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the time steps required to update ψ , which implies additional fine tuning. Furthermore,

the original algorithm, LCQL, makes strong assumptions on the ability to list the states.

Which in practice is only feasible for small state spaces. For DLCQN we have limited

this reliance on state listing by defining a single independence degree ξ , ψ and ε for

all states. However a better approach could have been to use an additional function

approximator to obtain the independence degree instead of relying on intermediate

variables ψ , ε and maxtemp. DLCQN is more computationally and time intensive than

both DQN and DRUQN as it requires n+ 1 neural networks where n is the number

of agents. The extra network corresponds to the channel that approximates the global

Q-function when incoming information from other agents is available. Another potential

issue is that the joint state grows as the number of agents increases. This translates into

an additional challenge of designing more compact state representations.

As we have noted previously, DRUQN relies on computing individual effective

learning rates which might not be easily implemented with adaptive optimizers. Another

disadvantage of DRUQN is that it tries to address a problem in the way Q-Learning

estimates action values. However this may not necessarily extend to other reinforcement

learning algorithms. Meanwhile, the main idea behind DLCQN is to learn where

to coordinate. This approach can be easily adapted to other reinforcement learning

algorithms.

7.3 Future Work

Many improvements to DQN have been proposed since its introduction (Section 2.3.1.2).

None of these extensions were incorporated into the project as we wanted to keep

the scope narrowed to the analysis of the algorithms in multi-agent non-stationary

environments. Extensions such prioritized experience replay (Schaul et al., 2015) or

dueling architecture (Wang et al., 2015) are equally applicable to DRUQN or DLCQN.

Future work could consider increasing the performance of the algorithms with those

modifications.

In the third task, it was observed that the Q-values estimated by DLCQN and DQN

fluctuated. In comparison, DRUQN was more stable against both. Future work could

combine both approaches and integrate DLCQN with DRUQN’s update rule, providing

an additional layer of stability. Alternatively DLCQN could also use any of the other

suggested modifications to the Q-Learning estimator such as bias corrected Q-learning

(Lee and Powell, 2012) or Double Q-Learning (van Hasselt, 2010).
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We have discussed that the choice in the criteria for adjusting the independence

degree in DLCQN will impact its performance. Thus its design should be subject of

careful consideration for future research. In addition, the current form of DLCQN

only adjusts the independence degree when a conflict or a negative reward is received.

Coordinated behavior, however could also benefit from analyzing when a positive reward

is also received and ponder whether or not this could be a consequence of cooperating

adequately. Future work could follow in this direction. One of the challenges of

extending LCQL to large state spaces was its extreme reliance on state enumeration.

For each state of every agent there is an independence degree. In DLCQN this was

reduced to a single independence degree per agent. This independence degree is then

used and adjusted for all states. However a much better solution would have been to

determine the independence degree through a function approximator providing a much

better generalization.

Finally, it was suggested that if the tasks and the environment in which the algorithms

were tested had been more complex it could have lead to more significant results.

Potentially more conclusive analyses could come from studying the algorithms in

games providing a much richer range of interactions and situations such Warlords,

Combat or Armor Ambush.
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Appendix A

DRUQN Update Rule

In order to obtain Equation 4.1 from,

Qt+1(s,a) = [1−α]
1

π(s,a) Q(s,a)+ [1− (1−α)
1

π(s,a) ][r+ γ max
a

Q(s′,a′)] (A.1)

Substitute zπ(s,a) = 1− (1−α)
1

π(s,a) ,

Qt+1(s,a) = [1−α]
1

π(s,a) Q(s,a)+ zπ(s,a)[r+ γ max
a

Q(s′,a′)] (A.2)

Then from zπ(s,a) let ω = (1−α)
1

π(s,a) . Therefore zπ(s,a) = 1−ω , substituting in

Equation A.2,

Qt+1(s,a) = ωQ(s,a)+ [(1−ω)(r+ γ max
a

Q(s′,a′))] (A.3)

Since ω = 1− zπ(s,a) then,

Qt+1(s,a) = (1− zπ(s,a))Q(s,a)+ [(1− (1− zπ(s,a)))(r+ γ max
a

Q(s′,a′))] (A.4)

Simplifying further,

Qt+1(s,a) = Q(s,a)− zπ(s,a)Q(s,a)+ zπ(s,a)[r+ γ max
a

Q(s′,a′)] (A.5)

Finally, rearrange as,

Qt+1(s,a) = Q(s,a)+ zπ(s,a)[r+ γ max
a

Q(s′,a′)−Q(s,a)] (A.6)
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DRUQN Approximation with ADAM

Gradient descent considers a parameter update rule of the form,

θi+1← θi +α∇θiL(θi) (B.1)

For Adam (Kingma and Ba, 2014) the update rule is given by,

θt+1← θt +
α√

v̂t + ε
m̂t (B.2)

Where,

m̂t =
mt

1−β t
1

(B.3)

v̂t =
vt

1−β t
2

(B.4)

Are biased corrected estimates of the first and second moment, β1,β2 are exponen-

tially decaying rates and,

mt = β1mt−1 +(1−β1)gt (B.5)

vt = β2vt−1 +(1−β2)g2
t (B.6)

Represent first and second moment that stores exponentially decaying averages of

past gradients gt . For DRUQN these averages are obtained by,

mt = β1mt−1 +(1−β1)∇θiLi(θi) (B.7)

vt = β2vt−1 +(1−β2)∇
2
θi

Li(θi) (B.8)
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Where ∇θiLi(θi) is the gradient of the loss function,

∇θiLi(θi) = E(s,a,r,s′)∼U(D)[(yi−Q(s,a;θi))∇θiQ(s,a;θi)] (B.9)

For DRUQN instead of a global α rescaling all gradients, for each gradient l there

is an effective learning rate z(l)
π(s,a). An issue then is faced if using an optimized tensor

library accepting only a single α . In standard gradient descent this can be overcome by

setting α = 1 and multiplying the effective learning rate with the elements of ∇θiLi(θi),

αz(l)
π(s,a)∇θ

(l)
i

Li(θ
(l)
i )=E(s,a,r,s′,zπ(s,a))∼U(D)[(z

(l)
π(s,a)yi−z(l)

π(s,a)Q(s,a;θ
(l)
i ))∇

θ
(l)
i

Q(s,a;θ
(l)
i )]

(B.10)

In the case of Adam, the existence of other parameters does not permit this possibility.

Modifying the library to accept an array of α(l) is left as a future extension. However,

an approximation was obtained by setting the effective learning rate to η
(l)
π(s,a) =

z(l)
π(s,a)
α

.

From Equation B.5 and B.6 this modification leads to,

m(l)
t = β

(l)
1 mt−1 +(1−β1)η

(l)
π(s,a)gt (B.11)

v(l)t = β
(l)
2 vt−1 +(1−β2)η

(l)
π(s,a)g

2
t (B.12)

Substituting in B.2,

θ
(l)
t+1← θ

(l)
t +

α
m(l)

t

1−β t
1√

β
(l)
2 vt−1 +(1−β2)η

(l)
π(s,a)g

2
t + ε

(B.13)

θ
(l)
t+1← θ

(l)
t +

αβ
(l)
1 mt−1 + z(l)

π(s,a)(1−β1)gt

1−β t
1√

β
(l)
2 vt−1 +(1−β2)η

(l)
π(s,a)g

2
t + ε

(B.14)

Which is then applied to update the network parameters.



Appendix C

Full List of Network Parameters

Minibatch size 200

Replay memory size D 500,000

Frames given as input 4

Target network update frequency 2

Discount factor γ 0.99

Frame skipping k 4

Learning rate α 0.000001

Adam β1 0.9

Adam β2 0.999

Adam ε 1×10−8

Initial exploration ε 1

Final exploration ε 0.05

Exploration frames 500,000

Replay start size 50,000

Initial independence degree ξ 1

Initial coordinated learning ψ 0

Initial coordinated learning ε 0

Coordinated learning decay rate λ 0.8

Independence degree update frequency 250
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