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Abstract

We build a theoretical framework for designing and understanding practical meta-
learning methods that integrates sophisticated formalizations of task-similarity with
the extensive literature on online convex optimization and sequential prediction
algorithms. Our approach enables the task-similarity to be learned adaptively,
provides sharper transfer-risk bounds in the setting of statistical learning-to-learn,
and leads to straightforward derivations of average-case regret bounds for efficient
algorithms in settings where the task-environment changes dynamically or the
tasks share a certain geometric structure. We use our theory to modify several
popular meta-learning algorithms and improve their meta-test-time performance
on standard problems in few-shot learning and federated learning.

1 Introduction

Meta-learning, or learning-to-learn (LTL) [52], has recently re-emerged as an important direction
for developing algorithms for multi-task learning, dynamic environments, and federated settings.
By using the data of numerous training tasks, meta-learning methods seek to perform well on new,
potentially related test tasks without using many samples. Successful modern approaches have
also focused on exploiting the capabilities of deep neural networks, whether by learning multi-task
embeddings passed to simple classifiers [51] or by neural control of optimization algorithms [46].

Because of its simplicity and flexibility, a common approach is parameter-transfer, where all tasks
use the same class of Θ-parameterized functions fθ : X 7→ Y; often a shared model φ ∈ Θ is
learned that is used to train within-task models. In gradient-based meta-learning (GBML) [23],
φ is a meta-initialization for a gradient descent method over samples from a new task. GBML is
used in a variety of LTL domains such as vision [38, 44, 35], federated learning [16], and robotics
[20, 1]. Its simplicity also raises many practical and theoretical questions about the task-relations
it can exploit and the settings in which it can succeed. Addressing these issues has naturally led
several authors to online convex optimization (OCO) [55], either directly [24, 34] or from online-to-
batch conversion [34, 19]. These efforts study how to find a meta-initialization, either by proving
algorithmic learnability [24] or giving meta-test-time performance guarantees [34, 19].

However, this recent line of work has so far considered a very restricted, if natural, notion of task-
similarity – closeness to a single fixed point in the parameter space. We introduce a new theoretical
framework, Average Regret-Upper-Bound Analysis (ARUBA), that enables the derivation of meta-
learning algorithms that can provably take advantage of much more sophisticated structure. ARUBA
treats meta-learning as the online learning of a sequence of losses that each upper bounds the regret
on a single task. These bounds often have convenient functional forms that are (a) sufficiently nice, so
that we can draw upon the existing OCO literature, and (b) strongly dependent on both the task-data
and the meta-initialization, thus encoding task-similarity in a mathematically accessible way. Using
ARUBA we introduce or dramatically improve upon GBML results in the following settings:
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• Adapting to the Task-Similarity: A major drawback of previous work is a reliance on knowing
the task-similarity beforehand to set the learning rate [24] or regularization [19], or the use of
a sub-optimal guess-and-tune approach using the doubling trick [34]. ARUBA yields a simple
gradient-based algorithm that eliminates the need to guess the similarity by learning it on-the-fly.

• Adapting to Dynamic Environments: While previous theoretical work has largely considered
a fixed initialization [24, 34], in many practical applications of GBML the optimal initialization
varies over time due to a changing environment [1]. We show how ARUBA reduces the problem
of meta-learning in dynamic environments to a dynamic regret-minimization problem, for which
there exists a vast array of online algorithms with provable guarantees that can be directly applied.

• Adapting to the Inter-Task Geometry: A recurring notion in LTL is that certain model weights,
such as feature extractors, are shared, whereas others, such as classification layers, vary between
tasks. By only learning a fixed initialization we must re-learn this structure on every task. Using
ARUBA we provide a method that adapts to this structure and determines which directions in Θ
need to be updated by learning a Mahalanobis-norm regularizer for online mirror descent (OMD).
We show how a variant of this can be used to meta-learn a per-coordinate learning-rate for certain
GBML methods, such as MAML [23] and Reptile [44], as well as for FedAvg, a popular federated
learning algorithm [41]. This leads to improved meta-test-time performance on few-shot learning
and a simple, tuning-free approach to effectively add user-personalization to FedAvg.

• Statistical Learning-to-Learn: ARUBA allows us to leverage powerful results in online-to-batch
conversion [54, 33] to derive new bounds on the transfer risk when using GBML for statistical
LTL [8], including fast rates in the number of tasks when the task-similarity is known and high-
probability guarantees for a class of losses that includes linear regression. This improves upon the
guarantees of Khodak et al. [34] and Denevi et al. [19] for similar or identical GBML methods.

1.1 Related Work

Theoretical LTL: The statistical analysis of LTL was formalized by Baxter [8]. Several works have
built upon this theory for modern LTL, such as via a PAC-Bayesian perspective [3] or by learning the
kernel for the ridge regression [18]. However, much effort has also been devoted to the online setting,
often through the framework of lifelong learning [45, 5, 2]. Alquier et al. [2] consider a many-task
notion of regret similar to the one we study in order to learn a shared data representation, although
our algorithms are much more practical. Recently, Bullins et al. [11] developed an efficient online
approach to learning a linear data embedding, but such a setting is distinct from GBML and more
closely related to popular shared-representation methods such as ProtoNets [51]. Nevertheless, our
approach does strongly rely on online learning through the study of data-dependent regret-upper-
bounds, which has a long history of use in deriving adaptive single-task methods [40, 21]; however,
in meta-learning there is typically not enough data to adapt to without considering multi-task data.
Analyzing regret-upper-bounds was done implicitly by Khodak et al. [34], but their approach is
largely restricted to using Follow-the-Leader (FTL) as the meta-algorithm. Similarly, Finn et al. [24]
use FTL to show learnability of the MAML meta-initialization. In contrast, the ARUBA framework
can handle general classes of meta-algorithms, which leads not only to new and improved results in
static, dynamic, and statistical settings but also to significantly more practical LTL methods.

GBML: GBML stems from the Model-Agnostic Meta-Learning (MAML) algorithm [23] and has
been widely used in practice [1, 44, 31]. An expressivity result was shown for MAML by Finn and
Levine [22], proving that the meta-learner can approximate any permutation-invariant learner given
enough data and a specific neural architecture. Under strong-convexity and smoothness assumptions
and using a fixed learning rate, Finn et al. [24] show that the MAML meta-initialization is learnable,
albeit via an impractical FTL method. In contrast to these efforts, Khodak et al. [34] and Denevi et al.
[19] focus on providing finite-sample meta-test-time performance guarantees in the convex setting,
the former for the SGD-based Reptile algorithm of Nichol et al. [44] and the latter for a regularized
variant. Our work improves upon these analyses by considering the case when the learning rate, a
proxy for the task-similarity, is not known beforehand as in Finn et al. [24] and Denevi et al. [19]
but must be learned online; Khodak et al. [34] do consider an unknown task-similarity but use a
doubling-trick-based approach that considers the absolute deviation of the task-parameters from
the meta-initialization and is thus average-case suboptimal and sensitive to outliers. Furthermore,
ARUBA can handle more sophisticated and dynamic notions of task-similarity and in certain settings
can provide better statistical guarantees than those of Khodak et al. [34] and Denevi et al. [19].
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2 Average Regret-Upper-Bound Analysis
Our main contribution is ARUBA, a framework for analyzing the learning of X -parameterized
learning algorithms via reduction to the online learning of a sequence of functions Ut : X 7→ R
upper-bounding their regret on task t. We consider a meta-learner facing a sequence of online learning
tasks t = 1, . . . , T , each with mt loss functions `t,i : Θ 7→ R over action-space Θ ⊂ Rd. The learner
has access to a set of learning algorithms parameterized by x ∈ X that can be used to determine the
action θt,i ∈ Θ on each round i ∈ [mt] of task t. Thus on each task t the meta-learner chooses xt ∈ X ,
runs the corresponding algorithm, and suffers regret Rt(xt) =

∑mt

i=1 `t,i(θt,i)−minθ
∑mt

i=1 `t,i(θ).
We propose to analyze the meta-learner’s performance by studying the online learning of a sequence of
regret-upper-bounds Ut(xt) ≥ Rt(xt), specifically by bounding the average regret-upper-bound
ŪT = 1

T

∑T
t=1 Ut(xt). The following two observations highlight why we care about this quantity:

1. Generality: Many algorithms of interest in meta-learning have regret guarantees Ut(x) with nice,
e.g. smooth and convex, functional forms that depend strongly on both their parameterizations
x ∈ X and the task-data. This data-dependence lets us adaptively set the parameterization xt ∈ X .

2. Consequences: By definition of Ut we have that ŪT bounds the task-averaged regret (TAR)
R̄T = 1

T

∑T
t=1 Rt(xt) [34]. Thus if the average regret-upper-bound is small then the meta-

learner will perform well on-average across tasks. In Section 5 we further show that a low average
regret-upper-bound will also lead to strong statistical guarantees in the batch setting.

ARUBA’s applicability depends only on finding a low-regret algorithm over the functions Ut; then
by observation 2 we get a task-averaged regret bound where the first term vanishes as T →∞ while
by observation 1 the second term can be made small due to the data-dependent task-similarity:

R̄T ≤ ŪT ≤ oT (1) + min
x

1

T

T∑
t=1

Ut(x)

The Case of Online Gradient Descent: Suppose the meta-learner uses online gradient descent
(OGD) as the within-task learning algorithm, as is done by Reptile [44]. OGD can be parameterized
by an initialization φ ∈ Θ and a learning rate η > 0, so that X = {(φ, η) : φ ∈ Θ, η > 0}.
Using the notation va:b =

∑b
i=a vi and ∇t,j = ∇`t,j(θt,j), at each round i of task t OGD plays

θt,i = arg minθ∈Θ
1
2‖θ − φ‖

2
2 + η〈∇t,1:i−1, θ〉. The regret of this procedure when run on m convex

G-Lipschitz losses has a well-known upper-bound [48, Theorem 2.11]

Ut(x) = Ut(φ, η) =
1

2η
‖θ∗t − φ‖22 + ηG2m ≥

m∑
i=1

`t,i(θt)− `t,i(θ∗t ) = Rt(x) (1)

which is convex in the learning rate η and the initialization φ. Note the strong data dependence via
θ∗t ∈ arg minθ

∑mt

i=1 `t,i(θ), the optimal action in hindsight. To apply ARUBA, first note that if
θ̄∗ = 1

T θ
∗
1:T is the mean of the optimal actions θ∗t on each task and V 2 = 1

T

∑T
t=1 ‖θ∗t − θ̄∗‖22 is their

empirical variance, then minφ,η
1
T

∑T
t=1 Ut(φ, η) = O(GV

√
m). Thus by running a low-regret

algorithm on the regret-upper-bounds Ut the meta-learner will suffer task-averaged regret at most
oT (1) +O(GV

√
m), which can be much better than the single-task regret O(GD

√
m), where D is

the `2-radius of Θ, if V � D, i.e. if the optimal actions θ∗t are close together. See Theorem 3.2 for
the result yielded by ARUBA in this simple setting.

3 Adapting to Similar Tasks and Dynamic Environments
We now demonstrate the effectiveness of ARUBA for analyzing GBML by using it to prove a general
bound for a class of algorithms that can adapt to both task-similarity, i.e. when the optimal actions
θ∗t for each task are close to some good initialization, and to changing environments, i.e. when this
initialization changes over time. The task-similarity will be measured using the Bregman divergence
BR(θ||φ) = R(θ) − R(φ) − 〈∇R(φ), θ − φ〉 of a 1-strongly-convex function R : Θ 7→ R [10], a
generalized notion of distance. Note that for R(·) = 1

2‖ · ‖
2
2 we have BR(θ||φ) = 1

2‖θ − φ‖
2
2. A

changing environment will be studied by analyzing dynamic regret, which for a sequence of actions
{φt}t ⊂ Θ taken by some online algorithm over a sequence of loss functions {ft : Θ 7→ R}t is
defined w.r.t. a reference sequence Ψ = {ψt}t ⊂ Θ as RT (Ψ) =

∑T
t=1 ft(φt)− ft(ψt). Dynamic

regret measures the performance of an online algorithm taking actions φt relative to a potentially time-
varying comparator taking actions ψt. Note that when we fix ψt = ψ∗ ∈ arg minψ∈Θ

∑T
t=1 ft(ψ)

we recover the standard static regret, in which the comparator always uses the same action.
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Algorithm 1: Generic online algorithm for gradient-based parameter-transfer meta-learning. To
run OGD within-task set R(·) = 1

2‖ · ‖
2
2. To run FTRL within-task substitute `t,j(θ) for 〈∇t,j , θ〉.

Set meta-initialization φ1 ∈ Θ and learning rate η1 > 0.
for task t ∈ [T ] do

for round i ∈ [mt] do
θt,i ← arg minθ∈Θ BR(θ||φt) + ηt〈∇t,1:i−1, θ〉 // online mirror descent step
Suffer loss `t,i(θt,i)

Update φt+1, ηt+1 // meta-update of OMD initialization and learning rate

Putting these together, we seek to define variants of Algorithm 1 for which as T →∞ the average
regret scales with VΨ, where V 2

Ψ = 1
T

∑T
t=1 BR(θ∗t ||ψt), without knowing this quantity in advance.

Note for fixed ψt = θ̄∗ = 1
T θ
∗
1:T this measures the empirical standard deviation of the optimal task-

actions θ∗t . Thus achieving our goal implies that average performance improves with task-similarity.

On each task t Algorithm 1 runs online mirror descent with regularizer 1
ηt
BR(·||φt) for initialization

φt ∈ Θ and learning rate ηt > 0. It is well-known that OMD and the related Follow-the-Regularized-
Leader (FTRL), for which our results also hold, generalize many important online methods, e.g. OGD
and multiplicative weights [26]. For mt convex losses with mean squared Lipschitz constant G2

t they
also share a convenient, data-dependent regret-upper-bound for any θ∗t ∈ Θ [48, Theorem 2.15]:

Rt ≤ Ut(φt, ηt) =
1

ηt
BR(θ∗t ||φt) + ηtG

2
tmt (2)

All that remains is to come up with update rules for the meta-initialization φt ∈ Θ and the learning rate
ηt > 0 in Algorithm 1 so that the average over T of these upper-bounds Ut(φt, ηt) is small. While this
can be viewed as a single online learning problem to determine actions xt = (φt, ηt) ∈ Θ× (0,∞),
it is easier to decouple φ and η by first defining two function sequences {f init

t }t and {f sim
t }t:

f init
t (φ) = BR(θ∗t ||φ)Gt

√
mt f sim

t (v) =

(
BR(θ∗t ||φt)

v
+ v

)
Gt
√
mt (3)

We show in Theorem 3.1 that to get an adaptive algorithm it suffices to specify two OCO algorithms,
INIT and SIM, such that the actions φt = INIT(t) achieve good (dynamic) regret over f init

t and the
actions vt = SIM(t) achieve low (static) regret over f sim

t ; these actions then determine the update
rules of φt and ηt = vt/(Gt

√
mt). We will specialize Theorem 3.1 to derive algorithms that provably

adapt to task similarity (Theorem 3.2) and to dynamic environments (Theorem 3.3).

To understand the formulation of f init
t and f sim

t , first note that f sim
t (v) = Ut(φt, v/(Gt

√
mt)), so the

online algorithm SIM over f sim
t corresponds to an online algorithm over the regret-upper-bounds

Ut when the sequence of initializations φt is chosen adversarially. Once we have shown that SIM
is low-regret we can compare its losses f sim

t (vt) to those of an arbitrary fixed v > 0; this is the first
line in the proof of Theorem 3.1 (below). For fixed v, each f init

t (φt) is an affine transformation of
f sim
t (v), so the algorithm INIT with low dynamic regret over f init

t corresponds to an algorithm with
low dynamic regret over the regret-upper-bounds Ut when ηt = v/(Gt

√
mt) ∀ t. Thus once we

have shown a dynamic regret guarantee for INIT we can compare its losses f init
t (φt) to those of an

arbitrary comparator sequence {ψt}t ⊂ Θ; this is the second line in the proof of Theorem 3.1.
Theorem 3.1. Assume Θ ⊂ Rd is convex, each task t ∈ [T ] is a sequence of mt convex losses
`t,i : Θ 7→ R with mean squared Lipschitz constant G2

t , and R : Θ 7→ R is 1-strongly-convex.
• Let INIT be an algorithm whose dynamic regret over functions {f init

t }t w.r.t. any reference
sequence Ψ = {ψt}Tt=1 ⊂ Θ is upper-bounded by Uinit

T (Ψ).
• Let SIM be an algorithm whose static regret over functions {f sim

t }t w.r.t. any v > 0 is upper-
bounded by a non-increasing function Usim

T (v) of v.

If Algorithm 1 sets φt = INIT(t) and ηt = SIM(t)
Gt
√
mt

then for V 2
Ψ =

∑T
t=1 BR(θ∗t ||ψt)Gt

√
mt∑T

t=1 Gt
√
mt

it will
achieve average regret

R̄T ≤ ŪT ≤
Usim
T (VΨ)

T
+

1

T
min

Uinit
T (Ψ)

VΨ
, 2

√√√√Uinit
T (Ψ)

T∑
t=1

Gt
√
mt

+
2VΨ

T

T∑
t=1

Gt
√
mt
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Proof. For σt = Gt
√
mt we have by the regret bound on OMD/FTRL (2) that

ŪT T =

T∑
t=1

(
BR(θ∗t ||φt)

vt
+ vt

)
σt ≤ min

v>0
Usim
T (v) +

T∑
t=1

(
BR(θ∗t ||φt)

v
+ v

)
σt

≤ min
v>0

Usim
T (v) +

Uinit
T (Ψ)

v
+

T∑
t=1

(
BR(θ∗t ||ψt)

v
+ v

)
σt

≤ Usim
T (VΨ) + min

{
Uinit
T (Ψ)

VΨ
, 2

√√
Uinit
T (Ψ)σ1:T

}
+ 2VΨσ1:T

where the last line follows by substituting v = max

{
VΨ,

√
Uinit
T (Ψ)/σ1:T

}
.

Similar Tasks in Static Environments: By Theorem 3.1, if we can specify algorithms INIT and
SIM with sublinear regret over f init

t and f sim
t (3), respectively, then the average regret will converge

toO(VΨ
√
m) as desired. We first show an approach in the case when the optimal actions θ∗t are close

to a fixed point in Θ, i.e. for fixed ψt = θ̄∗ = 1
T θ
∗
1:T . Henceforth we assume the Lipschitz constant

G and number of rounds m are the same across tasks; detailed statements are in the supplement.

Note that if R(·) = 1
2‖ · ‖

2
2 then {f init

t }t are quadratic functions, so playing φt+1 = 1
t θ
∗
1:t has

logarithmic regret [48, Corollary 2.2]. We use a novel strongly convex coupling argument to show
that this holds for any such sequence of Bregman divergences, even for nonconvex BR(θ∗t ||·). The
second sequence {f sim

t }t is harder because it is not smooth near 0 and not strongly convex if θ∗t = φt.
We study a regularized sequence f̃ sim

t (v) = f sim
t (v) + ε2/v for ε ≥ 0. Assuming a bound of D2 on

the Bregman divergence and setting ε = 1/ 4
√
T , we achieve Õ(

√
T ) regret on the original sequence

by running exponentially-weighted online-optimization (EWOO) [28] on the regularized sequence:

vt =

∫√D2+ε2

0
v exp(−γ

∑
s<t f̃

sim
s (v))dv∫√D2+ε2

0
exp(−γ

∑
s<t f̃

sim
s (v))dv

for γ =
2

DG
√
m

min

{
ε2

D2
, 1

}
(4)

Note that while EWOO is inefficient in high dimensions, we require only single-dimensional integrals.
In the supplement we also show that simply setting v2

t+1 = ε2t +
∑
s≤t BR(θ∗s ||φt) has only a

slightly worse regret of Õ(T 3/5). These guarantees suffice to show the following:
Theorem 3.2. Under the assumptions of Theorem 3.1 and boundedness of BR over Θ, if INIT plays
φt+1 = 1

t θ
∗
1:t and SIM uses ε-EWOO (4) with ε = 1/ 4

√
T then Algorithm 1 achieves average regret

R̄T ≤ ŪT = Õ
(

min

{
1 + 1

V√
T

,
1

4
√
T

}
+ V

)√
m for V 2 = min

φ∈Θ

1

T

T∑
t=1

BR(θ∗t ||φ)

Observe that if V , the average deviation of θ∗t , is ΩT (1) then the bound becomes O(V
√
m) at rate

Õ(1/
√
T ), while if V = oT (1) the bound tends to zero. Theorem 3.1 can be compared to the main

result of Khodak et al. [34], who set the learning rate via a doubling trick. We improve upon their
result in two aspects. First, their asymptotic regret isO(D∗

√
m), where D∗ is the maximum distance

between any two optimal actions. Note that V is always at most D∗, and indeed may be much smaller
in the presence of outliers. Second, our result is more general, as we do not need convex BR(θ∗t ||·).
Remark 3.1. We assume an oracle giving a unique θ∗ ∈ arg minθ∈Θ

∑
`∈S `(θ) for any finite loss

sequence S , which may be inefficient or undesirable. One can instead use the last or average iterate of
within-task OMD/FTRL for the meta-update; in the supplement we show that this incurs an additional
o(
√
m) regret term under a quadratic growth assumption that holds in many practical settings [34].

Related Tasks in Changing Environments: In many settings we have a changing environment
and so it is natural to study dynamic regret. This has been widely analyzed by the online learning
community [15, 30], often by showing a dynamic regret bound consisting of a sublinear term plus a
bound on the variation in the action or function space. Using Theorem 3.1 we can show dynamic
guarantees for GBML via reduction to such bounds. We provide an example in the Euclidean
geometry using the popular path-length-bound PΨ =

∑T
t=2 ‖ψt − ψt−1‖2 for reference actions

Ψ = {ψt}Tt=1 [55]. We use a result showing that OGD with learning rate η ≤ 1/β over α-strongly-
convex, β-strongly-smooth, and L-Lipschitz functions has a bound of O(L(1 + PΨ)) on its dynamic
regret [42, Corollary 1]. Observe that in the case of R(·) = 1

2‖ · ‖
2
2 the sequence f init

t in Theorem 3.1
consists of DG

√
m-Lipschitz quadratic functions. Thus using Theorem 3.1 we achieve the following:
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Figure 1: Left - Theorem 3.2 improves upon [34,
Theorem 2.1] via its dependence on the average
deviation V rather than the maximal deviation
D∗ of the optimal task-parameters θ∗t (light blue).
Right - a case where Theorem 3.3 yields a strong
task-similarity-based guarantee via a dynamic
comparator Ψ despite the deviation V being large.

Figure 2: Learning rate variation across layers
of a convolutional net trained on Mini-ImageNet
using Algorithm 2. Following intuition outlined
in Section 6, shared feature extractors are not
updated much if at all compared to higher layers.

Theorem 3.3. Under Theorem 3.1 assumptions, bounded Θ, and R(·) = 1
2‖ · ‖

2
2, if INIT is OGD

with learning rate 1
G
√
m

and SIM uses ε-EWOO (4) with ε = 1/ 4
√
T then by using OGD within-task

Algorithm 1 will achieve for any fixed comparator sequence Ψ = {ψt}t∈[T ] ⊂ Θ the average regret

R̄T ≤ ŪT = Õ

(
min

{
1 + 1

VΨ√
T

,
1

4
√
T

}
+ min

{
1 + PΨ

VΨT
,

√
1 + PΨ

T

}
+ VΨ

)
√
m

for V 2
Ψ = 1

2T

∑T
t=1 ‖θ∗t − ψt‖22 and PΨ =

∑T
t=2 ‖ψt − ψt−1‖2.

This bound controls the average regret across tasks using the deviation VΦ of the optimal task
parameters θ∗t from some reference sequence Φ, which is assumed to vary slowly or sparsely
so that the path length PΦ is small. Figure 1 illustrates when such a guarantee improves over
Theorem 3.2. Note also that Theorem 3.3 specifies OGD as the meta-update algorithm INIT, so
under the approximation that each task t’s last iterate is close to θ∗t this suggests that simple GBML
methods such as Reptile [44] or FedAvg [41] are adaptive. The generality of ARUBA also allows for
the incorporation of other dynamic regret bounds [25, 53] and other non-static notions of regret [27].

4 Adapting to the Inter-Task Geometry
Previously we gave improved guarantees for learning OMD under a simple notion of task-similarity:
closeness of the optimal actions θ∗t . We now turn to new algorithms that can adapt to a more sophisti-
cated task-similarity structure. Specifically, we study a class of learning algorithms parameterized by
an initialization φ ∈ Θ and a symmetric positive-definite matrix H ∈M ⊂ Rd×d which plays

θt,i = arg min
θ∈Θ

1

2
‖θ − φ‖2H−1 + 〈∇t,1:i−1, θ〉 (5)

This corresponds θt,i+1 = θt,i−H∇t,i, so if the optimal actions θ∗t vary strongly in certain directions,
a matrix emphasizing those directions improves within-task performance. By strong-convexity of
1
2‖θ−φ‖

2
H−1 w.r.t. ‖·‖H−1 , the regret-upper-bound is Ut(φ,H) = 1

2‖θ
∗
t −φ‖2H−1 +

∑m
i=1 ‖∇t,i‖2H

[48, Theorem 2.15]. We first study the diagonal case, i.e. learning a per-coordinate learning rate
η ∈ Rd to get iteration θt,i+1 = θt,i − ηt �∇t,i. We propose to set ηt at each task t as follows:

ηt =

√√∑
s<t ε

2
s + 1

2(θ
∗
s − φs)2∑

s<t ζ
2
s +

∑ms

i=1∇2
s,i

for ε2
t =

ε2

(t+ 1)p
, ζ2

t =
ζ2

(t+ 1)p
∀ t ≥ 0, where ε, ζ, p > 0 (6)

Observe the similarity between this update AdaGrad [21], which is also inversely related to the sum
of the element-wise squares of all gradients seen so far. Our method adds multi-task information by
setting the numerator to depend on the sum of squared distances between the initializations φt set by
the algorithm and that task’s optimal action θ∗t . This algorithm has the following guarantee:
Theorem 4.1. Let Θ be a bounded convex subset of Rd, let D ⊂ Rd×d be the set of positive definite
diagonal matrices, and let each task t ∈ [T ] consist of a sequence ofm convex Lipschitz loss functions
`t,i : Θ 7→ R. Suppose for each task t we run the iteration in Equation 5 setting φ = 1

t−1θ
∗
1:t−1 and

setting H = Diag(ηt) via Equation 6 for ε = 1, ζ =
√
m, and p = 2

5 . Then we achieve

R̄T ≤ ŪT = min
φ∈Θ
H∈D

Õ

 d∑
j=1

min

{
1
Hjj

+Hjj

T
2
5

,
1

5
√
T

} √√
m+

1

T

T∑
t=1

‖θ∗t − φ‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H
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As T → ∞ the average regret converges to the minimum over φ,H of the last two terms, which
corresponds to running OMD with the optimal initialization and per-coordinate learning rate on
every task. The rate of convergence of T−2/5 is slightly slower than the usual 1/

√
T achieved

in the previous section; this is due to the algorithm’s adaptivity to within-task gradients, whereas
previously we simply assumed a known Lipschitz bound Gt when setting ηt. This adaptivity makes
the algorithm much more practical, leading to a method for adaptively learning a within-task learning
rate using multi-task information; this is outlined in Algorithm 2 and shown to significantly improve
GBML performance in Section 6. Note also the per-coordinate separation of the left term, which
shows that the algorithm converges more quickly on non-degenerate coordinates. The per-coordinate
specification of ηt (6) can be further generalized to learning a full-matrix adaptive regularizer, for
which we show guarantees in Theorem 4.2. However, the rate is much slower, and without further
assumptions such methods will have Ω(d2) computation and memory requirements.

Theorem 4.2. Let Θ be a bounded convex subset of Rd and let each task t ∈ [T ] consist of a sequence
of m convex Lipschitz loss functions `t,i : Θ 7→ R. Suppose for each task t we run the iteration in
Equation 5 with φ = 1

t−1θ
∗
1:t−1 and H the unique positive definite solution of B2

t = HG2
tH for

B2
t = tε2Id +

1

2

∑
s<t

(θ∗s − φs)(θ∗s − φs)T and G2
t = tζ2Id +

∑
s<t

m∑
i=1

∇s,i∇Ts,i

for ε = 1/ 8
√
T and ζ =

√
m/ 8
√
T . Then for λj corresponding to the jth largest eigenvalue we have

R̄T ≤ ŪT = Õ
(

1
8
√
T

)√
m+ min

φ∈Θ
H�0

2λ2
1(H)

λd(H)

1 + log T

T
+

T∑
t=1

‖θ∗t − φ∗‖2H−1

2
+

m∑
i=1

‖∇t,i‖2H

5 Fast Rates and High Probability Bounds for Statistical Learning-to-Learn
Batch-setting transfer risk bounds have been an important motivation for studying LTL via online
learning [2, 34, 19]. If the regret-upper-bounds are convex, which is true for most practical variants
of OMD/FTRL, ARUBA yields several new results in the classical distribution over task-distributions
setup of Baxter [8]. In Theorem 5.1 we present bounds on the risk `P(θ̄) of the parameter θ̄ obtained
by running OMD/FTRL on i.i.d. samples from a new task distribution P and averaging the iterates.
Theorem 5.1. Assume Θ,X are convex Euclidean subsets. Let convex losses `t,i : Θ 7→ [0, 1] be
drawn i.i.d. Pt ∼ Q, {`t,i}i ∼ Pmt for distribution Q over tasks. Suppose they are passed to an
algorithm with average regret upper-bound ŪT that at each t picks xt ∈ X to initialize a within-task
method with convex regret upper-bound Ut : X 7→ [0, B

√
m], forB ≥ 0. If the within-task algorithm

is initialized by x̄ = 1
T x1:T and it takes actions θ1, . . . , θm on m i.i.d. losses from new task P ∼ Q

then θ̄ = 1
mθ1:m satisfies the following transfer risk bounds for any θ∗ ∈ Θ (all w.p. 1− δ):

1. general case: EP∼Q EPm `P(θ̄) ≤ EP∼Q `P(θ∗) + LT for LT = Ū
m +B

√
8
mT log 1

δ .

2. ρ-self-bounded losses `: if ∃ ρ > 0 s.t. ρE`∼P ∆`(θ) ≥ E`∼P(∆`(θ) − E`∼P ∆`(θ))2 for
all distributions P ∼ Q, where ∆`(θ) = `(θ)− `(θ∗) for any θ∗ ∈ arg minθ∈Θ `P(θ), then for

LT as above we have EP∼Q `P(θ̄) ≤ EP∼Q `P(θ∗) + LT +
√

2ρLT

m log 2
δ + 3ρ+2

m log 2
δ .

3. α-strongly-convex, G-Lipschitz regret-upper-bounds Ut: in parts 1 and 2 above we can

substitute LT = Ū + minx EP∼QU(x)
m + 4G

T

√
Ū
αm log 8 log T

δ + max{16G2,6αB
√
m}

αmT log 8 log T
δ .

In the general case, Theorem 5.1 provides bounds on the excess transfer risk decreasing with Ū /m

and 1/
√
mT . Thus if Ū improves with task-similarity so will the transfer risk as T →∞. Note that

the second term is 1/
√
mT rather than 1/

√
T as in most-analyses [34, 19]; this is because regret

is m-bounded but the OMD regret-upper-bound is O(
√
m)-bounded. The results also demonstrate

ARUBA’s ability to utilize specialized results from the online-to-batch conversion literature. This is
witnessed by the guarantee for self-bounded losses, a class which Zhang [54] shows includes linear
regression; we use a result by the same author to obtain high-probability bounds, whereas previous
GBML bounds are in-expectation [34, 19]. We also apply a result due to Kakade and Tewari [33] for
the case of strongly-convex regret-upper-bounds, enabling fast rates in the number of tasks T . The
strongly-convex case is especially relevant for GBML since it holds for OGD with fixed learning rate.
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Algorithm 2: ARUBA: an approach for modifying a
generic batch GBML method to learn a per-coordinate
learning rate. Two specialized variants provided below.
Input: T tasks, update method for meta-initialization,

within-task descent method, settings ε, ζ, p > 0
Initialize b1 ← ε21d, g1 ← ζ21d
for task t = 1, 2, . . . , T do

Set φt according to update method, ηt ←
√
bt/gt

Run descent method from φt with learning rate ηt:
observe gradients∇t,1, . . . ,∇t,mt

obtain within-task parameter θ̂t
bt+1 ← bt + ε21d

(t+1)p + 1
2 (φt − θ̂t)2

gt+1 ← gt + ζ21d

(t+1)p +
∑mt

i=1∇2
t,i

Result: initialization φT , learning rate ηT =
√
bT /gT

ARUBA++: starting with ηT,1 = ηT and gT,1 = gT , adap-
tively reset the learning rate by setting ĝT,i+1 ← ĝT,i+c∇2

i

for some c > 0 and then updating ηT,i+1 ←
√
bT /gT,i+1.

Isotropic: bt and gt are scalars tracking the sum of squared
distances and sum of squared gradient norms, respectively.

Figure 3: Next-character prediction
performance for recurrent networks
trained on the Shakespeare dataset [12]
using FedAvg [41] and its modifica-
tions by Algorithm 2. Note that the
two ARUBA methods require no learn-
ing rate tuning when personalizing the
model (refine), unlike both FedAvg
methods; this is a critical improve-
ment in federated settings. Furthermore,
isotropic ARUBA has negligible over-
head by only communicating scalars.

We present two consequences of these results for the algorithms from Section 3 when run on i.i.d.
data. To measure task-similarity we use the variance V 2

Q = minφ∈Θ EP∼Q EPm ‖θ∗ − φ‖22 of
the empirical risk minimizer θ∗ of an m-sample task drawn from Q. If VQ is known we can use
strong-convexity of the regret-upper-bounds to obtain a fast rate for learning the initialization, as
shown in the first part of Corollary 5.1. The result can be loosely compared to Denevi et al. [19], who
provide a similar asymptotic improvement but with a slower rate of O(1/

√
T ) in the second term.

However, their task-similarity measures the deviation of the true, not empirical, risk-minimizers, so
the results are not directly comparable. Corollary 5.1 also gives a guarantee for when we do not
know VQ and must learn the learning rate η in addition to the initialization; here we match the rate of
Denevi et al. [19], who do not learn η, up to some additional fast o(1/

√
m) terms.

Corollary 5.1. In the setting of Theorems 3.2 & 5.1, if δ ≤ 1/e and Algorithm 1 uses within-task

OGD with initialization φt+1 = 1
t θ
∗
1:t and step-size ηt = VQ+1/

√
T

G
√
m

for VQ as above, then w.p. 1− δ

E
P∼Q

E
Pm

`P(θ̄) ≤ E
P∼Q

`P(θ∗) + Õ
(
VQ√
m

+

(
1√
mT

+
1

T

)
log

1

δ

)
If ηt is set adaptively using ε-EWOO as in Theorem 3.2 for ε = 1/ 4

√
mT + 1/

√
m then w.p. 1− δ

E
P∼Q

E
Pm

`P(θ̄) ≤ E
P∼Q

`P(θ∗) + Õ

(
VQ√
m

+ min

{
1√
m

+ 1√
T

VQm
,

1
4
√
m3T

+
1

m

}
+

√
1

T
log

1

δ

)

6 Empirical Results: Adaptive Methods for Few-Shot & Federated Learning
A generic GBML method does the following at iteration t: (1) initialize a descent method at φt; (2)
take gradient steps with learning rate η to get task-parameter θ̂t; (3) update meta-initialization to φt+1.
Motivated by Section 4, in Algorithm 2 we outline a generic way of replacing η by a per-coordinate
rate learned on-the-fly. This entails keeping track of two quantities: (1) bt ∈ Rd, a per-coordinate sum
over s < t of the squared distances from the initialization φs to within-task parameter θ̂s; (2) gt ∈ Rd,
a per-coordinate sum of the squared gradients seen so far. At task t we set η to be the element-wise
square root of bt/gt, allowing multi-task information to inform the trajectory. For example, if along
coordinate j the θ̂t,j is usually not far from initialization then bj will be small and thus so will ηj ;
then if on a new task we get a high noisy gradient along coordinate j the performance will be less
adversely affected because it will be down-weighted by the learning rate. Single-task algorithms such
as AdaGrad [21] and Adam [36] also work by reducing the learning rate along frequent directions.
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20-way Omniglot 5-way Mini-ImageNet
1-shot 5-shot 1-shot 5-shot

1st-Order MAML [23] 89.4± 0.5 97.9± 0.1 48.07± 1.75 63.15± 0.91
1st Reptile [44] w. Adam [36] 89.43± 0.14 97.12± 0.32 49.97± 0.32 65.99± 0.58

Order Reptile w. ARUBA 86.67± 0.17 96.61± 0.13 50.73± 0.32 65.69± 0.61
Reptile w. ARUBA++ 89.66± 0.3 97.49± 0.28 50.35± 0.74 65.89± 0.34

2nd 2nd-Order MAML 95.8± 0.3 98.9± 0.2 48.7± 1.84 63.11± 0.92
Order Meta-SGD [38] 95.93± 0.38 98.97± 0.19 50.47± 1.87 64.03± 0.94

Table 1: Meta-test-time performance of GBML algorithms on few-shot classification benchmarks.
1st-order and 2nd-order results obtained from Nichol et al. [44] and Li et al. [38], respectively.

However, in meta-learning some coordinates may be frequently updated during meta-training because
good task-weights vary strongly from the best initialization along them, and thus their gradients should
not be downweighted; ARUBA encodes this intuition in the numerator using the distance-traveled
per-task along each direction, which increases the learning rate along high-variance directions. We
show in Figure 2 that this is realized in practice, as ARUBA assigns a faster rate to deeper layers than
to lower-level feature extractors, following standard intuition in parameter-transfer meta-learning. As
described in Algorithm 2, we also consider two variants: ARUBA++, which updates the meta-learned
learning-rate at meta-test-time in a manner similar to AdaGrad, and Isotropic ARUBA, which only
tracks scalar quantities and is thus useful for communication-constrained settings.
Few-Shot Classification: We first examine if Algorithm 2 can improve performance on Omniglot
[37] and Mini-ImageNet [46], two standard few-shot learning benchmarks, when used to modify
Reptile, a simple meta-learning method [44]. In its serial form Reptile is roughly the algorithm we
study in Section 3 when OGD is used within-task and η is fixed. Thus we can set Reptile+ARUBA
to be Algorithm 2 with θ̂t the last iterate of OGD and the meta-update a weighted sum of θ̂t and φt.
In practice, however, Reptile uses Adam [36] to exploit multi-task gradient information. As shown
in Table 1, ARUBA matches or exceeds this baseline on Mini-ImageNet, although on Omniglot it
requires the additional within-task updating of ARUBA++ to show improvement.
It is less clear how ARUBA can be applied to MAML [23], as by only taking one step the distance
traveled will be proportional to the gradient, so η will stay fixed. We also do not find that ARUBA
improves multi-step MAML – perhaps not surprising as it is further removed from our theory due to
its use of held-out data. In Table 1 we compare to Meta-SGD [38], which does learn a per-coordinate
learning rate for MAML by automatic differentiation. This requires more computation but does
lead to consistent improvement. As with the original Reptile, our modification performs better on
Mini-ImageNet but worse on Omniglot compared to MAML and its modification Meta-SGD.
Federated Learning: A main goal in this setting is to use data on heterogeneous nodes to learn
a global model without much communication; leveraging this to get a personalized model is an
auxiliary goal [50], with a common application being next-character prediction on mobile devices.
A popular method is FedAvg [41], where at each communication round r the server sends a global
model φr to a batch of nodes, which then run local OGD; the server then sets φr+1 to the average
of the returned models. This can be seen as a GBML method with each node a task, making it easy
to apply ARUBA: each node simply sends its accumulated squared gradients to the server together
with its model. The server can use this information and the squared difference between φr and φr+1

to compute a learning rate ηr+1 via Algorithm 2 and send it to each node in the next round. We
use FedAvg with ARUBA to train a character LSTM [29] on the Shakespeare dataset, a standard
benchmark of a thousand users with varying amounts of non-i.i.d. data [41, 12]. Figure 3 shows that
ARUBA significantly improves over non-tuned FedAvg and matches the performance of FedAvg with
a tuned learning rate schedule. Unlike both baselines we also do not require step-size tuning when
refining the global model for personalization. This reduced need for hyperparameter optimization is
crucial in federated settings, where the number of user-data accesses are extremely limited.

7 Conclusion
In this paper we introduced ARUBA, a framework for analyzing GBML that is both flexible and
consequential, yielding new guarantees for adaptive, dynamic, and statistical LTL via online learning.
As a result we devised a novel per-coordinate learning rate applicable to generic GBML procedures,
improving their training and meta-test-time performance on few-shot and federated learning. We see
great potential for applying ARUBA to derive many other new LTL methods in a similar manner.
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