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Abstract

Data augmentation has become an important part of modern deep learning pipelines
and is typically needed to achieve state of the art performance for many learning
tasks. It utilizes invariant transformations of the data, such as rotation, scale, and
color shift, and the transformed images are added to the training set. However, these
transformations are often chosen heuristically and a clear theoretical framework
to explain the performance benefits of data augmentation is not available. In this
paper, we develop such a framework to explain data augmentation as averaging
over the orbits of the group that keeps the data distribution approximately invariant,
and show that it leads to variance reduction. We study finite-sample and asymptotic
empirical risk minimization and work out as examples the variance reduction in
certain two-layer neural networks. We further propose a strategy to exploit the
benefits of data augmentation for general learning tasks.

1 Introduction

Many deep learning models succeed by exploiting symmetry in data. Convolutional neural networks
(CNNs) use that image identity is roughly invariant to translations: a translated cat is still a cat.
Such invariances are present in many domains, including image and language data. Standard
architectures are invariant to some, but not all transforms. CNNs induce an approximate equivariance
to translations, but not to rotations. This is an inductive bias of CNNs, and the idea dates back at least
to the neocognitron [30].

To make models invariant to arbitrary transforms beyond the ones built into the architecture, data

augmentation (DA) is commonly used. The model is trained not just with the original data, but also
with transformed data. Data augmentation is a crucial component of modern deep learning pipelines,
and it has been used e.g., in AlexNet [44], and other pioneering works [17]. State-of-the-art results
often rely on data augmentation. See Figure 1(a) for a small experiment.

Rather than designing new architectures, data augmentation is a universally applicable, generative, and
algorithmic way to exploit invariances. However, a general theoretical framework for understanding
augmentation is missing. Such a framework would enable us to reason clearly about its benefits
and tradeoffs compared to invariant features. Further, we may discover the precise conditions under
which data augmentation would lead to such benefits, which may guide its use in general learning
tasks beyond domains in which it is standardly used.
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(a) Training ResNet18 on CIFAR-10 (b) Relative efficiency in the circular shift model

Figure 1: Benefits of data augmentation. Fig. (a) shows the test accuracy across training epochs
of ResNet18 on CIFAR10 (1) without data augmentation, (2) horizontally flipping the image with
0.5 probability, and (3) randomly cropping a 32⇥ 32 portion of the image + random horizontal flip
(See Appendix D for details). Fig. (b) shows the increase in relative efficiency achieved by data
augmentation in an under-parameterized two-layer net under circular shift invariance (See Section 4.1
for details). Since relative efficiency is a ratio of MSE, this plot shows that using data augmentation
improves MSE relative to not using augmentation, increasingly with higher input dimension.

In this paper, we propose such a general framework. We use group theory as a mathematical language,
and model invariances as “approximate equality” in distribution under a group action. We propose
that data augmentation can be viewed as invariant learning by averaging over the group action. We
then demonstrate that data augmentation leads to sample efficient learning.

1.1 Our Contributions

Novel theoretical framework and provable benefits. We propose a novel probabilistic framework
to model data augmentation with a group acting on the data so the distribution of the data does not
change too much under the action (approximate invariance). Under this framework, we demonstrate
that training with data augmentation is equivalent to learning with an orbit-averaged loss function,
thus enabling us to prove a "universal" benefit of data augmentation in empirical risk minimization
problems. To the best of our knowledge, there is essentially no prior work to show that data
augmentation leads to provable statistical gains in generalization error, and even less to quantify
precisely how much it benefits in a wide range of important settings.

Invariance-variance tradeoff . On a conceptual level, we characterize an intriguing relation between
the size of the augmentation group and the performance gain. In Theorem 3.4 and 3.5, we show
that the performance gain is governed by the superimposition of a variance reduction term and an
additional bias term. While a larger group generally leads to greater variance reduction, it may lead
to a larger bias. Thus, the best performance is achieved by delicately balancing the size of the group
and the invariance, a phenomenon we termed as invariance-variance tradeoff .

Precise formulas for variance reduction. When the data distribution is exactly invariant under
the group action, the additional bias term vanishes and we are able to obtain a precise formula for
variance reduction, which depends on the covariance of the gradient along the group orbit (Theorem
4.1). This formula allows us to reason about the interplay between the network architecture and the
choice of augmentation groups.

Applications to deep learning and beyond. We also work out examples of our theory for various
learning tasks. We study the reduction in generalization error for over-parameterized two-layer nets
(Theorem 3.6) using recent progress on Neural Tangent Kernels [38]. Moreover, we characterize the
precise asymptotic gain in the circular shift model, an idealized two-layer net under circular shift
invariance (Theorem 4.2). More examples, including exponential families, linear models, and certain
non-linear parametric models, are deferred to Appendix B and C.

Technical contributions. Our general theory relies on a novel combination of optimal transport
theory with tools in statistical learning theory, which may be of independent interest. Moreover, our
results on the circular shift model are based on discrete Fourier analysis, which leads to an elegant
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and perhaps surprising formula for the efficiency gain in terms of tensor and Hadamard products of
the DFT matrix. For brevity, all proofs are deferred to Appendix A.

1.2 Prior Work

Data augmentation methodology. There is a lot of work in developing efficient methods for data
augmentation. Related ideas date back at least to [6] (see also [59]). Today, state-of-the-art algorithms
can automatically learn appropriate transformations for data augmentation with generative models
[54, 32, 4, 62], with reinforcement learning [57, 23], with Bayesian methods [65], or with some
carefully designed search schemes [24].

Invariant architectures and representations. Starting from [30, 45, 61, 14], a line of research
focuses on designing (or learning) neural net architectures that are invariant to certain symmetries
[31, 27, 70, 20, 22, 19], equivariant to SO(3) group [21, 28, 29], and others [58, 42, 69, 41]. Later, [12]
gives a unified probabilistic treatment on designing invariant neural network. A related line of work
focuses on representation learning and demonstrates the benefits of invariant feature representations
[3, 50, 13, 1, 67, 53, 10, 2]. We remark that our goal is different compared on these two lines of work
— while they focus on representation learning, we are concerned with the theoretical explanation of
the benefits of data augmentation observed in practice.

Prior theories on data augmentation. To the best of our knowledge, prior theories on data augmen-
tation are largely qualitative. For example, a line of work proposes to add random or adversarial noise
when training [11, 51, 26, 74, 8, 49, 73, 37] and argue that this can lead to a form of regularization
[63, 34, 35, 18, 71]. Other works have demonstrated connections between data augmentation and
kernel classifiers [25], marginalized corrupted features [52], network architecture [9], margins [56],
certain complexity measures [39], optimization landscape [48], and biological plausibility [36].
However, we have not found other works which explicitly prove a link between the data augmentation
process and performance gain in the learning task.

2 Preliminaries and General Framework

We start in the setting of empirical risk minimization (ERM). Consider observations X1, . . . , Xn 2 X

(e.g., in supervised learning Xi = (Zi, Yi) has both the features Zi and the label Yi, such as images
and classes) sampled i.i.d. from a probability distribution P on the sample space X . Consider a group
G of transforms (e.g, the set of all rotations of images), which acts on the sample space: there is a
function � : G⇥ X ! X , (g, x) 7! �(g, x), such that �(e, x) = x for the identify element e 2 G,
and �(gh, x) =d �(g,�(h, x)) for g, h 2 G. For notational simplicity, we write �(g, x) ⌘ gx when
there is no ambiguity. To model invariance, we assume that for any g 2 G, there is an “approximate
equality” in distribution, made precise in Section 3:

X ⇡d gX, X ⇠ P. (1)

In supervised learning, (Z, Y ) ⇡d (gZ, Y ) implies that given any class Y = y, e.g. a bird, the
probability of observing an image Z = z is close to that of observing the transformed image gz.

For a loss function L(✓, X), its empirical risk is defined as Rn(✓) := n�1
Pn

i=1 L(✓, Xi). We
minimize Rn(✓) iteratively over time t = 1, 2, . . . using stochastic gradient descent (SGD) or
variants. At each step t, a minibatch of Xis (say with indices St) is chosen. In data augmentation, a
random transform gi,t 2 G is sampled and applied to each data point in the minibatch. Then, the
parameter is updated via augmented SGD as

✓t+1 = ✓t �
⌘t
|St|

X

i2St

rL(✓t, gi,tXi). (2)

We need a probability distribution Q on the group G, from which gi,t is sampled. For a finite G, one
usually takes Q to be the uniform distribution. However, care must be taken if G is infinite. We assume
G is a compact topological group, and we take Q to be the Haar probability measure

1. Hence, for
any g 2 G and measurable S ✓ G, translation invariance holds: Q(gS) = Q(S),Q(Sg) = Q(S).

1Haar measures are used for convenience. Most of our results hold for more general measures with slightly
more lengthier proofs.

3



A key observation is that the augmented SGD update rule corresponds to SGD on an augmented

empirical risk, where we take an average over all augmentations according to the measure Q:

min
✓

R̄n(✓) :=
1

n

nX

i=1

Z

G
L(✓, gXi)dQ(g) =

1

n

nX

i=1

L̄(✓, Xi). (3)

To be precise, rL(✓, gi,tXi) is an unbiased stochastic gradient for the augmented, or orbit-averaged

loss function L̄(✓, X), and so we can view the resulting estimator as an empirical risk minimizer of
R̄n. Hence, reasoning about the benefit of data augmentation is related to reasoning about the benefit
of learning with the new loss function L̄.

3 Data Augmentation Under Approximate Invariance

To deal with approximate invariance, we will leverage optimal transport, which provides a powerful
framework to quantify closeness in distribution. Recall the notion of distance between probability
distributions based on optimal transport (see, e.g., [68] for background and definitions needed):
Definition 3.1 (Wasserstein metric). Let X be a Polish space. Let d be a lower semi-

continuous metric on X . For two probability distributions µ, ⌫ on X , we define Wd(µ, ⌫) =
inf⇡2⇧(µ,⌫)

R
X⇥X d(x, y)d⇡(x, y), where ⇧(µ, ⌫) are all couplings whose marginals agree with µ

and ⌫. When X is a Euclidean space and d is the Euclidean distance, we denote W`2 ⌘ W1 and

refer to it as the Wasserstein-1 distance.

3.1 General Estimators and A Prototypical Invariance-Variance Tradeoff

Recall our goal is to characterize the performance of the empirical risk minimizer of the orbit-averaged
loss L̄. To lay the ground for this, we start by studying the effect of orbit-averaging for a generic
measurable function f of the data. Let f̄(x) = Eg⇠Qf(gx) be the orbit-averaged version of f . On
the one hand, we expect some variance reduction by averaging a function over the orbit, and on the
other hand, we expect a certain level of bias because the expectations of f and f̄ do not fully agree
with each other. Specifically, we see a bias-variance tradeoff, made clear in the following lemma.
Generally the subscripts to the operators E,Cov, such as g,G,X , denote the sources of randomness
over which the expectations are evaluated.
Lemma 3.2 (Approximate invariance lemma). Let f be s.t. each coordinate of the map (X, g) 7!
f(gX) 2 Rq

is in L2(P⇥Q). Let f̄(x) := Eg⇠Qf(gx) be the “orbit average” of f . Let kfk1 =
supx kf(x)k2 (which can be 1). Then:

1. The expectations satisfy kEX f̄(X)� EXf(X)k2  EgW1(f(gX), f(X));
2. The covariances satisfy CovX f̄(X) = Cov(X,g)f(gX)� EXCovgf(gX), and according to the

Loewner order, we have
2

CovX f̄(X)� CovXf(X) 2 [�EXCovGf(gX)± 4kfk1 · EgW1(f(gX), f(X)) · Iq],

where Iq is the identity matrix;

3. Let ' be any real-valued convex function, and let ' � f(x) = Eg' � f(gx). Then

EX'(f̄(X))� EX'(f(X)) 2 [(EX'(f̄(X))� EX' � f(X))± k'kLip · EgW1(f(gX), f(X))],

where k'kLip is the (possibly infinite) Lipschitz constant of '.

If we think of f as an estimator of some functional of the data distribution, then f̄ can be regarded
as a data-augmented estimator, extending data augmentation beyond the ERM setup. In practice,
f̄ can be apporximated by Monte Carlo: sample g1, . . . , gk ⇠ Q, apply them to the data X , and
then take the empirical average of f(g1X), . . . , f(gkX). The following proposition characterizes
the performance of this augmented estimator in terms of its mean-squared error (MSE):
Proposition 3.3 (Benefits of data augmentation for general estimators). Under the setup of Lemma

3.2, consider an estimator ✓̂(X) of some true population parameter ✓0, and its augmented version

✓̂G(X) = Eg⇠Q✓̂(gX). Then we have

MSE(✓̂G)� MSE(✓̂) 2 [�EX tr(Covg ✓̂(gX))±�], (4)
2For symmetric matrices A,B,C, we will use the notation A 2 [B,C] to mean that B � A � C in the

Loewner order.
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where � = EgW1(✓̂(gX), ✓̂(X)) · [EgW1(✓̂(gX), ✓̂(X)) + 2kBias(✓̂(X))k2 + 4k✓̂k1].

The change in MSE (4) is the sum of two terms. From claim 2 of Lemma 3.2, �EX tr (Covg ✓̂(gX)) is
the variance reduction Var(✓̂G)� Var(✓̂) due to augmentation under exact invariance. The additional
“bias” term � has three components: (1) the Wasserstein-1 distance EgW1(✓̂(gX), ✓̂(X)) (which
is small if the invariance is close to being exact), (2) the bias Bias(✓̂(X)) of the original estimator
(which is small if the original estimator has small bias), and (3) the sup-norm k✓̂k1 (which is small
for bounded estimators). If the variance reduction is large, and the bias is small, then augmentation
improves performance. This is a specific form of bias-variance tradeoff, which we refer to as the
invariance-variance tradeoff .

The performance gain characterized by Proposition 3.3 is "universally applicable" to any estimator
with finite variance. At this level of generality, we do not expect the bound (4) to be tight. In
Appendix B, we present a tight analysis of ✓̂G in linear models and show that sometimes this simple
augmented estimator can achieve the same performance as the estimator obtained by constrained
optimization over the "invariant parameter subspace". In general, there is reason to believe that
constrained estimators can be more accurate but possibly harder to compute, and so it is remarkable
that augmentation is equally accurate here.

We are now ready to present our results on augmented ERM. Let the population and empirical
minimizers for the original risk and the augmented risk be

✓0 2 argmin
✓

EL(✓, X), ✓̂n 2 argmin
✓

Rn(✓), ✓G 2 argmin
✓

EL̄(✓, X), ✓̂nG 2 argmin
✓

R̄n(✓),

where ✓ 2 ⇥ is in the parameter space. To systematically investigate the effect of learning with L̄,
we consider two evaluation criteria, namely the generalization error EL(✓̂, X)� EL(✓0, X), and the
parameter estimation error k✓̂ � ✓0k2.

In the rest of this section, we show that the augmented estimator ✓̂nG can outperform ✓̂n based on
both criteria, but because of two fundamentally different reasons. We will see in Section 3.2 that
the reduction in generalization error can be quantified by averaging the loss function over the orbit,
and in Section 3.3 that the reduction in parameter estimation error can be quantified by averaging

the gradient. In both cases, we will see an invariance-variance tradeoff similar to that observed in
Proposition 3.3.

3.2 Effect of Loss-Averaging

Classical theories on uniform concentration and Rademchaer complexity (see, e.g., [7, 60]) tell us that
the generalization error of ✓̂n can be quantified by how fast the empirical risk Rn concentrates around
its expectation, which can be further quantified by the Rademacher complexity of the loss class
Rn(L � ⇥) := E sup✓ |n

�1
Pn

i=1 "iL(✓, Xi)| where "i’s are i.i.d. Rademacher random variables
independent of Xi’s, and the expectation is taken over both {"i}n1 and {Xi}

n
1 .

Following this intuition, we would expect that the generalization error of ✓̂nG can also be quantified by
how fast the concentration of the augmented risk R̄n(✓) happens. For one thing, because R̄n(✓) has
additional averaging over G, we expect its concentration to happen at a faster rate than that of Rn(✓).
But for another, the invariance-variance tradeoff kicks in because R̄n concentrates around the wrong
target EL̄(✓, X) 6= EL(✓, X) because of the non-exact invariance. This tradeoff is characterized by
the following theorem:
Theorem 3.4 (Effect of loss-averaging). Let L(✓, ·) be Lipschitz uniformly over ✓, with a (potentially

infinite) Lipschitz constant kLkLip. Assume L(·, ·) 2 [0, 1]. Then with probability at least 1� � over

the draw of X1, . . . , Xn, we have

EL(✓̂n,G, X)� EL(✓0, X)  2Rn(L̄ �⇥) +

r
2 log(2/�)

n
+ 2kLkLip · Eg⇠QW1(X, gX). (5)

Moreover, the Rademacher complexity of the augmented loss class can further be bounded as

Rn(L̄ �⇥)�Rn(L �⇥)  �+ kLkLip · Eg⇠QW1(X, gX),

where � = E sup✓ |n
�1

Pn
i=1 "iEgL(✓, gXi)| � EEg sup✓2⇥ |n�1"iL(✓, gXi)|  0 is the “vari-

ance reduction” term.
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In contrast to (5), the classical Rademacher bound reads: EL(✓̂n, X)�EL(✓0, X)  2Rn(L �⇥) +p
[2 log(2/�)]/n. Hence, the performance gain of ✓̂nG is again governed by a variance reduction

term �, and an additional bias term 2kLkLip ·EgWd(X, gX), which vanishes under exact invariance.
We remark that the inequality �  0 is based on an simple application of Jensen’s inequality and can
be loose. In practice, this term can be much smaller, so augmentation has a strong effect. A tight
bound on it requires a case-by-case analysis, which we leave for future work.

3.3 Effect of Gradient-Averaging

In this subsection, we assume the sample space X ✓ Rd and the parameter space ⇥ ✓ Rp. Classical
theory on asymptotic statistics (see, e.g, [66]) tells that if both d and p are fixed and n ! 1, ✓̂n ad-
mits the following Bahadur representation:

p
n(✓̂n � ✓0) = n�1/2V �1

✓0

Pn
i=1 rL(✓0, Xi) + op(1),

where V✓0 is the hessian of L at ✓0. This is a first-order expansion of the estimator around the truth,
implying convergence at the rate n�1/2 and a central limit theorem. The validity of the Bahadur
representation requires some standard assumptions, which we state below for completeness:
Assumption A (Regularity of the population risk minimizer). The minimizer ✓0 of the population

risk is well separated: for any " > 0, we have sup✓:k✓�✓0k�" EL(✓, X) > EL(✓0, X).

Assumption B (Regularity of the loss function). For the loss function L(✓, x), we assume that

1. uniform weak law of large number holds: sup✓ |
1
n

Pn
i=1 L(✓, Xi)� EL(✓, X)|

p
! 0;

2. for each ✓, the map x 7! L(✓, x) is measurable;

3. the map ✓ 7! L(✓, x) is differentiable at ✓0 for almost every x;

4. there exists a L2(P) function L̇ s.t. for almost every x and for every ✓1, ✓2 in a neighborhood

of ✓0, we have |L(✓1, x)� L(✓2, x)|  L̇(x)k✓1 � ✓2k;
5. the map ✓ 7! EL(✓, X) admits a second-order Taylor expansion at ✓0 with non-singular

second derivative matrix V✓0 .

It follows that ✓̂n is asymptotically normal with covariance given by the inverse Fisher information,
which gives an asymptotic characterization of the estimation error k✓̂n � ✓0k. Intuitively, we would
expect ✓̂nG also admits a Bahadur representation, with the gradient replaced by its orbit-averaged
version. This is indeed correct under exact invariance (see Theorem 4.1), but care must be taken
under approximate invariance.
Theorem 3.5 (Effect of gradient-averaging). Assume ⇥ is open and Assumptions A and B hold

for both (✓0, L) and (✓G, L̄). In addition, for each ✓, assume the map (X, g) 7! L(✓, gX) is in

L1(P ⇥ Q). Let V0, VG be the Hessian of ✓ 7! EL(✓, X) and ✓ 7! EL̄(✓, X) evaluated at ✓0 and

✓G, respectively. Let M0(X) = rL(✓0, X)rL(✓0, X)> and MG(X) = rL(✓G, X)rL(✓G, X)>.

Then we have

n(MSE(✓̂n,G)� MSE(✓̂n)) ! nk✓G � ✓0k
2
2 � hEXCovg(rL(✓G, gX)), V �2

G i

+ Eg,XhMG(gX)�MG(X), V �2
G i+ EXhMG(X)�M0(X), V �2

G i

+ hCovXrL(✓0, X), V �2
G � V �2

0 i (6)

The MSE (6) again decreases due to a variance reduction term hEXCovg(rL(✓G, gX)), V �2
G i

(which is non-negative since it is the inner product of two positive semi-definite matrices), but
increases due to four additional bias terms. The first one, nk✓G � ✓0k2, comes from the fact that
✓̂nG tends to ✓G (but not ✓0) in the limit. The other three terms come from the fact that the empirical
gradient and Hessian of the augmented loss function concentrate around the wrong target under
approximate invariance, and thus can be regarded as the "first-order" and "second-order" bias induced
by approximate invariance. Again, all of these additional bias terms vanish under exact invariance,
illustrating the presence of the invariance-variance tradeoff .

3.4 A Case Study on Over-Parameterized Two-Layer Nets

In this subsection, we apply our general theory developed above to over-parameterized two-layer
nets. Consider a binary classification problem, where the data points {Xi, Yi}

n
1 ✓ Sn�1

⇥ {±1} are
sampled i.i.d. from some data distribution. For technical convenience, we assume |G| < 1, and
gX 2 Sd�1 for all g 2 G and almost every X from the feature distribution. Consider a two-layer net
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f(x;W,a) = m�1/2a>�(Wx), where W 2 Rm⇥d, a 2 Rm are the weights and �(x) = max(x, 0)
is the ReLU activation. We initialize the weights by Wij ⇠ N (0, 1), as ⇠ unif({±1}). Such a setup
is common in recent literature on Neural Tangent Kernels (see, e.g., [38, 5, 40, 16]).

In the training process, we fix a and only train W . We use the logistic loss `(z) = log(1 + e�z).
In our previous notation, we have L(✓, X, Y ) = `(Y f(X;W,a)). The weight is then trained by
gradient descent: Wt+1 = Wt � ⌘trR̄n(Wt), where R̄n is the augmented empirical risk (3). To
facilitate the analysis, we impose a margin condition below, similar to that in [40], which essentially
says that there is a classifier that can distinguish the (augmented) data with positive margin.
Assumption C (Margin condition). Let H be the space of functions v : Rd

! Rd
s.t.R

kv(z)k22dµ(z) < 1, where µ is the d-dimensional standard Gaussian probability measure. Assume

there exists v̄ 2 H and � > 0, s.t. the Euclidean norm satisfies kv̄(z)k2  1 for any z 2 Rd
, and

that Y
R
hv̄(z), gXi1{hz, gXi > 0}dµ(z) � � for all g 2 G and amost all (X,Y ) from the data

distribution.

We need a few notations. For ⇢ > 0, we define W⇢ := {W 2 Rm⇥d : kws � ws,0k2 

⇢ for any s 2 [m]}, where ws, ws,0 is the s-th row of W,W0, respectively. We let Rn :=
E supW2W⇢

|n�1"i[�`0(yif(Xi;W,a))]| be the Rademacher complexity of the non-augmented
gradient, where the expectation is taken over both {"i}n1 and {Xi, Yi}

n
1 . Similarly, writing

fi,g(W ) = f(gXi;W,a), we define R̄n := E supW2W⇢
|n�1"iEg[�`0(Yifi,g(W ))]| to be the

Rademacher complexity of the augmented gradient. The following theorem characterizes the perfor-
mance gain by data augmentation in this example:
Theorem 3.6 (Benefits of data augmentation for overparameterized two-layer nets). Under Assump-

tion C, take any " 2 (0, 1) and � 2 (0, 1/5). Let

� =

p
2 log(4n|G|/�) + log(4/")

�/4
, M =

4096�2

�6
, ⇢ = 4�/(�

p
m).

Let k be the best iteration (with the lowest empirical risk) in the first d2�2/n"e steps. Let ↵ =
16[

p
2 log(4n|G|/�) + log(4/")]/�2 +

p
md +

p
2 log(1/�). For any m � M and any constant

step size ⌘  1, with probability at least 1� 5� over the random initialization and i.i.d. draws of the

data points, we have

P(Y f(X;Wk, a)  0)  2"+ [

r
2 log(2/�)

n
+ 4R̄n] +

1

2
EY EgW1(X|Y, gX|Y ) · ↵. (7)

The three terms bound the optimization error, generalization error, and the bias due to approximate
invariance. Moreover, with probability at least 1� � over the random initialization, we have

R̄n �Rn  �+
1

4
EY EgW1(X|Y, gX|Y ) · ↵, (8)

where � = E supW2W⇢
|n�1"iEg[�`0(yifi,g(W ))]|�EEg supW2W⇢

|n�1"i[�`0(yifi,g(W ))]|  0
is the “variance reduction” term.

The above theorem resembles Theorem 2.2 in [40] — we use a corollary of their Theorem 2.2 to show
the optimization error can be made arbitrarily small. However, the treatment of generalization error is
non-trivial and is based on our technical tools developed in the previous subsections. Specifically, we
need to decompose the generalization error into two terms: one of them is dealt with using uniform
concentration and Rademacher complexity (but with McDiarmid’s inequality replaced by Talagrand’s
concentration inequality), and the other one is handled by exploiting the distributional closeness
between (gX, Y ) and (X,Y ) with tools from optimal transport theory, similar to the strategy used in
the proof of Theorem 3.4 and 3.5. Again, we see an invariance-variance tradeoff in this example due
to approximate invariance.

4 Data Augmentation Under Exact Invariance

When the invariance is exact, so X =d gX for almost all g 2 G and X ⇠ P, all bias terms in the
previous results vanish, and we are left with a variance reduction term. In this section, we present a
formula for this term which is asymptotically exact and leads to additional insights.
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Theorem 4.1 (Asymptotic formula for variance reduction). Assume ⇥ is open and let the pair (✓0, L)
satisfy Assumptions A and B. In addition, for each ✓, assume the map (X, g) 7! L(✓, gX) is in

L1(P⇥Q). Then under exact invariance, we have

p
n(✓̂n � ✓0) ) N (0,⌃0),

p
n(✓̂nG � ✓0) ) N (0,⌃G), (9)

where the classical and augmented covariances are

⌃0 = V �1
0 EX [rL(✓0, X)rL(✓0, X)>]V �1

0 , ⌃G = ⌃0 � V �1
0 EX [CovgrL(✓0, gX)]V �1

0 , (10)
and we recall that V0 is the Hessian of ✓ 7! EXL(✓, X) evaluated at ✓0. As a consequence the ✓̂nG
gains efficiency compared to ✓̂n, and has a relative efficiency of RE = tr(⌃0)/ tr(⌃G) � 1.

Note that different from Theorem 3.5, we only impose assumptions on the pair (✓0, L). This makes
the proof non-trivial and we need a careful limiting argument to justify the asymptotic normality of
✓̂nG.

This result rigorously shows that data augmentation helps if trV �1
✓0

EX [CovgrL(✓0, gX)]V �1
✓0

> 0.
It gives a precise formula for the asymptotic variance reduction. The term EXCovgrL(✓0, gX) is the
average covariance of the gradient rL along the orbits Gx, which is large if the gradient varies a lot
along the orbits. This is consistent with the intuition that one should choose G to encode symmetries
not captured by the network architecture. Indeed, if the neural network is already invariant to actions
by G, the covariance along the orbit is zero, meaning no performance gain by data augmentation.

4.1 The Circular Shift Model

In this subsection, we apply Theorem 4.1 to give an even more explicit formula for the variance
reduction term in the circular shift model, which is essentially an under-parameterized two-layer
neural network under circular shift invariance.

Consider a regression problem, where we observe an i.i.d. random sample {(Xi, Yi)}n1 ✓ Rd
⇥ R

distributed as the a random vector (X,Y ). We assume the data is generated from the following
two-layer neural network model Y = a>�(WX) + ", " ?? X,E" = 0, where X is a d-dimensional
input, W 2 Rm⇥d, a 2 Rm are the weights, and � is the activation function. In this subsection, for
simplicity, we assume a = 1m is the all-one vector, and �(x) = x2.

We have a group G acting on Rd
⇥ R only through X: g(X,Y ) = (gX, Y ). The invariance

is characterized by (gX, Y ) =d (X,Y ). Here we focus on a natural example of circular shift

invariance, where G = {g0, g1, . . . , gm�1}, and gi acts by shifting a vector circularly by i units:
(gix)j+i mod m = xj .

We will use the square loss: L(✓, X, Y ) = (Y �f(✓, X))2. We assume the optimization is successful,
so that Ŵn and ŴnG are indeed global minimizers of the non-augmented and augmented empirical
risks, respectively. The following theorem characterizes the efficiency gain of data augmentation for
fixed m, d and n ! 1. It uses some notions from discrete Fourier analysis, specifically the discrete
Fourier transform (DFT) matrix F , the d ⇥ d matrix defined by Fj,k = d�1/2!jk, where ! is the
n-th root of unity.
Theorem 4.2 (Variance reduction formula in the circular shift model). Consider the circular shift

model. Assume the conditions in Theorem 4.1 hold, and the population risk EL(·, X, Y ) is twice

differentiable. Let E"2 = �2
. Define Cv to be the circulant matrix associated with the vector v,

whose (i, j)-th entry is vi�j+1. Then

p
n(Ŵn �W ) ) N (0, �2I�1

W ),
p
n(Ŵn,G �W ) ) N (0, �2IW Ī�1

W IW ), (11)
where

IW = (W ⌦W ) · E[XX>
⌦XX>], ĪW = (W ⌦W ) · d�2E[CXC>

X ⌦ CXC>
X ]. (12)

If the features are normally distributed X ⇠ N (0, Id), then

IW = (W ⌦W ) · S, ĪW = (W ⌦W ) · F ⇤
2 · (F 2

2 �M) · F ⇤
2 , (13)

where S is the d⇥ d⇥ d⇥ d tensor whose (i, j, i0, j0)-th entry is 3 if i = j = j0 = j0, is 1 if there

are two distinct indices among (i, j, i0, j0), and is zero otherwise, F2 = F ⌦ F , F ⇤
2 is its complex

conjugate, and M is the d⇥ d⇥ d⇥ d tensor whose (i, j, i0, j0)-th entry is F>
i Fj ·F>

i0 Fj0 +F>
i Fj0 ·

F>
i0 Fj + F>

i Fi0 · F>
i Fj0 .
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In (13), we discover elegant and perhaps surprising formula for the augmented Fisher information
ĪW in terms of tensor (⌦) and Hadamard (�) products of the DFT matrix.

To get a sense of these formulas, we study how much “smaller" ĪW is compared to IW by calculating
the average MSEs, i.e., the averages of their traces. First, we have E tr IW = EkWXX>

k
2
F . If

X ⇠ N (0, Id), then this quantity is equal to p trS2 = p tr(XX>)2. Similarly, one can calculate
that E tr ĪW = p tr(CXC>

X)2/d2. In Figure 1(b), we show the results of an experiment where we
randomly generate the input as X ⇠ N (0, Id). We compute the values of E tr IW = p tr(XX>)2

and E tr ĪW = p tr(CXC>
X)2/d2, and record their ratio. We repeat the experiment nMC = 100

times. We then show the relative efficiency as a function of the input dimension d. We find that the
relative efficiency scales as RE(d) ⇠ d/2. Thus, the efficiency gain increases as a function of the
input dimension. However, the efficiency gain does not depend on the output dimension m. This
makes sense, as circular invariance reduces only the input dimension.

5 Discussion

To summarize, we propose a novel probabilistic framework for data augmentation, under which
training with augmented data is equivalent to learning with an orbit-averaged loss. Based on this
observation, we rigorously prove data augmentation reduces the generalization error as well as the
estimation error in ERM problems. Section 3 introduces a general framework to model the data
augmentation process, showing the existence of an invariance-variance tradeoff when G keeps the
data distribution only approximately invariant. Section 4 considers exact invariance to further explore
the variance reduction term, and show there are more gains when the gradient of the loss varies a lot
along the orbits. In both sections, we provide concrete examples (and more in the Appendix) of using
our framework to derive more explicit formulas for variance reduction specific to a given setup.

The current paper only deals with the vanilla "label-preserving" data augmentation with a uniform
sampling scheme (i.e., the measure we put on G is Haar). Note that all of our current results would
hold if G is only a semi-group, provided we can endow it with a uniform probability measure.
We would encourage further work to extend our results to other types of augmentations such as
the mixup [73] and to more general sampling schemes. We would also encourage future work to
investigate the invariance-variance tradeoff in more general setups, as this tradeoff is essential in
choosing the augmentation groups in practice. Furthermore, we believe these results have potential
for suggesting ways to judge the quality of an augmentation without actual training, but this is not
explicitly explored in this paper. We believe this topic deserves its own treatment in future work, and
encourage exploration in this direction.

Broader Impact

Our probabilistic framework is to our knowledge the first of its kind to rigorously prove and quantify
how data augmentation helps the learning task. Further, the invariance-variance tradeoff may
provide new insight for how we think about choosing and composing transformations used in data
augmentation. Since data augmentation is routinely used in modern deep learning pipelines and
it is emerging in other applications, like self-supervised learning (see, e.g., [15]), our theoretical
framework developed in this paper could potentially be used to provide guidance on the choice of the
augmentation groups in these application domains.

However, care must be taken when using our theories to develop new augmentation strategies. We’ve
demonstrated that the benefits of data augmentation crucially depends on the invariance structures
present in the data distribution — if one chooses an augmentation group which does not correctly
capture the invariance structures, or if the data at hand simply has no such structures, then blindly
using data augmentation can potentially harm the model performance. In this sense, domain expertise
is required to fully harness the power of our theories.
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