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Abstract

Optimal transport (OT) is a powerful geometric and probabilistic tool for finding
correspondences and measuring similarity between two distributions. Yet, its origi-
nal formulation relies on the existence of a cost function between the samples of the
two distributions, which makes it impractical when they are supported on different
spaces. To circumvent this limitation, we propose a novel OT problem, named
COOT for CO-Optimal Transport, that simultaneously optimizes two transport
maps between both samples and features, contrary to other approaches that either
discard the individual features by focusing on pairwise distances between samples
or need to model explicitly the relations between them. We provide a thorough the-
oretical analysis of our problem, establish its rich connections with other OT-based
distances and demonstrate its versatility with two machine learning applications
in heterogeneous domain adaptation and co-clustering/data summarization, where
COOT leads to performance improvements over the state-of-the-art methods.

1 Introduction

The problem of comparing two sets of samples arises in many fields in machine learning, such as
manifold alignment [1], image registration [2], unsupervised word and sentence translation [3] among
others. When correspondences between the sets are known a priori, one can align them with a global
transformation of the features, e.g, with the widely used Procrustes analysis [4, 5]. For unknown
correspondences, other popular alternatives to this method include correspondence free manifold
alignment procedure [6], soft assignment coupled with a Procrustes matching [7] or Iterative closest
point and its variants for 3D shapes [8, 9].

When one models the considered sets of samples as empirical probability distributions, Optimal
Transport (OT) framework provides a solution to find, without supervision, a soft-correspondence
map between them given by an optimal coupling. OT-based approaches have been used with success
in numerous applications such as embeddings’ alignments [10, 11] and Domain Adaptation (DA)
[12] to name a few. However, one important limit of using OT for such tasks is that the two sets are
assumed to lie in the same space so that the cost between samples across them can be computed.
This major drawback does not allow OT to handle correspondence estimation across heterogeneous
spaces, preventing its application in problems such as, for instance, heterogeneous DA (HDA). To
circumvent this restriction, one may rely on the Gromov-Wasserstein distance (GW) [13]: a non-
convex quadratic OT problem that finds the correspondences between two sets of samples based on
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their pairwise intra-domain similarity (or distance) matrices. Such an approach was successfully
applied to sets of samples that do not lie in the same Euclidean space, e.g for shapes [14], word
embeddings [15] and HDA [16] mentioned previously. One important limit of GW is that it finds the
samples’ correspondences but discards the relations between the features by considering pairwise
similarities only.

In this work, we propose a novel OT approach called CO-Optimal transport (COOT) that simulta-
neously infers the correspondences between the samples and the features of two arbitrary sets. Our
new formulation includes GW as a special case, and has an extra-advantage of working with raw
data directly without needing to compute, store and choose computationally demanding similarity
measures required for the latter. Moreover, COOT provides a meaningful mapping between both
instances and features across the two datasets thus having the virtue of being interpretable. We thor-
oughly analyze the proposed problem, derive an optimization procedure for it and highlight several
insightful links to other approaches. On the practical side, we provide evidence of its versatility in
machine learning by putting forward two applications in HDA and co-clustering where our approach
achieves state-of-the-art results.

The rest of this paper is organized as follows. We introduce the COOT problem in Section 2 and
give an optimization routine for solving it efficiently. In Section 3, we show how COOT is related to
other OT-based distances and recover efficient solvers for some of them in particular cases. Finally,
in Section 4, we present an experimental study providing highly competitive results in HDA and
co-clustering compared to several baselines.

2 CO-Optimal transport (COOT)

Notations. The simplex histogram with n bins is denoted by ∆n = {w ∈ (R+)n :
∑n
i=1 wi = 1}.

We further denote by ⊗ the tensor-matrix multiplication, i.e., for a tensor L = (Li,j,k,l), L⊗B is the
matrix (

∑
k,l Li,j,k,lBk,l)i,j . We use 〈·, ·〉 for the matrix scalar product associated with the Frobenius

norm ‖ · ‖F and ⊗K for the Kronecker product of matrices, i.e., A⊗K B gives a tensor L such that
Li,j,k,l = Ai,jBk,l. We note Sn the group of permutations of {1, · · · , n} = [[n]]. Finally, we write
1d ∈ Rd for a d-dimensional vector of ones and denote all matrices by upper-case bold letters (i.e.,
X) or lower-case Greek letters (i.e., π); all vectors are written in lower-case bold (i.e., x).

2.1 CO-Optimal transport optimization problem

We consider two datasets represented by matrices X = [x1, . . . ,xn]T ∈ Rn×d and X′ =

[x′1, . . . ,x
′
n′ ]T ∈ Rn′×d′ , where in general we assume that n 6= n′ and d 6= d′. In what follows,

the rows of the datasets are denoted as samples and its columns as features. We endow the samples
(xi)i∈[[n]] and (x′i)i∈[[n′]] with weights w = [w1, . . . , wn]> ∈ ∆n and w′ = [w′1, . . . , w

′
n′ ]> ∈ ∆n′

that both lie in the simplex so as to define empirical distributions supported on (xi)i∈[[n]] and
(x′i)i∈[[n′]]. In addition to these distributions, we similarly associate weights given by vectors v ∈ ∆d

and v′ ∈ ∆d′ with features. Note that when no additional information is available about the data, all
the weights’ vectors can be set as uniform.

We define the CO-Optimal Transport problem as follows:

min
πs ∈ Π(w,w′)
πv ∈ Π(v,v′)

∑
i,j,k,l

L(Xi,k, X
′
j,l)π

s
i,jπ

v
k,l = min

πs ∈ Π(w,w′)
πv ∈ Π(v,v′)

〈L(X,X′)⊗ πs,πv〉 (1)

where L : R × R → R+ is a divergence measure between 1D variables, L(X,X′) is the d ×
d′ × n × n′ tensor of all pairwise divergences between the elements of X and X′, and Π(·, ·)
is the set of linear transport constraints defined for w,w′) as Π(w,w′) = {π|π ≥ 0,π1n′ =
w,π>1n = w′} and similarly for v,v′. Note that problem (1) seeks for a simultaneous transport
πs between samples and a transport πv between features across distributions. In the following, we
write COOT(X,X′,w,w′,v,v′) (or COOT(X,X′) when it is clear from the context) to denote the
objective value of the optimization problem (1).

Equation (1) can be also extended to the entropic regularized case favoured in the OT community
for remedying the heavy computation burden of OT and reducing its sample complexity [17, 18, 19].
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Figure 1: Illustration of COOT between MNIST and USPS datasets. (left) samples from MNIST and
USPS data sets; (center left) Transport matrix πs between samples sorted by class; (center) USPS
image with pixels colored w.r.t. their 2D position; (center right) transported colors on MNIST image
using πv , black pixels correspond to non-informative MNIST pixels always at 0; (right) transported
colors on MNIST image using πv with entropic regularization.

This leads to the following problem:

min
πs∈Π(w,w′),πv∈Π(v,v′)

〈L(X,X′)⊗ πs,πv〉+ Ω(πs,πv) (2)

where for ε1, ε2 > 0, the regularization term writes as Ω(πs,πv) = ε1H(πs|ww′T ) +

ε2H(πv|vv′T ) with H(πs|ww′T ) =
∑
i,j log(

πs
i,j

wiw′
j
)πsi,j being the relative entropy. Note that

similarly to OT [17] and GW [20], adding the regularization term can lead to a more robust estimation
of the transport matrices but prevents them from being sparse.

Illustration of COOT In order to illustrate our proposed COOT method and to explain the intuition
behind it, we solve the optimization problem (1) using the algorithm described in section 2.2 between
two classical digit recognition datasets: MNIST and USPS. We choose these particular datasets
for our illustration as they contain images of different resolutions (USPS is 16×16 and MNIST is
28×28) that belong to the same classes (digits between 0 and 9). Additionally, the digits are also
slightly differently centered as illustrated on the examples in the left part of Figure 1. Altogether, this
means that without specific pre-processing, the images do not lie in the same topological space and
thus cannot be compared directly using conventional distances. We randomly select 300 images per
class in each dataset, normalize magnitudes of pixels to [0, 1] and consider digit images as samples
while each pixel acts as a feature leading to 256 and 784 features for USPS and MNIST respectively.
We use uniform weights for w,w′ and normalize average values of each pixel for v,v′ in order to
discard non-informative ones that are always equal to 0.

The result of solving problem (1) is reported in Figure 1. In the center-left part, we provide the
coupling πs between the samples, i.e the different images, sorted by class and observe that 67% of
mappings occur between the samples from the same class as indicated by block diagonal structure
of the coupling matrix. The coupling πv, in its turn, describes the relations between the features,
i.e the pixels, in both domains. To visualize it, we color-code the pixels of the source USPS image
and use πv to transport the colors on a target MNIST image so that its pixels are defined as convex
combinations of colors from the former with coefficients given by πv. The corresponding results
are shown in the right part of Figure 1 for both the original COOT and its entropic regularized
counterpart. From these two images, we can observe that colored pixels appear only in the central
areas and exhibit a strong spatial coherency despite the fact that the geometric structure of the image
is totally unknown to the optimization problem, as each pixel is treated as an independent variable.
COOT has recovered a meaningful spatial transformation between the two datasets in a completely
unsupervised way, different from trivial rescaling of images that one may expect when aligning
USPS digits occupying the full image space and MNIST digits liying in the middle of it (for further
evidence, other visualizations are given in the supplementary material).

COOT as a billinear program COOT is an indefinite Bilinear Program (BP) problem [21]: a
special case of a Quadratic Program (QP) with linear constraints for which there exists an optimal
solution lying on extremal points of the polytopes Π(w,w′) and Π(v,v′) [22, 23]. When n =
n′, d = d′ and weights w = w′ = 1n

n ,v = v′ = 1d

d are uniform, Birkhoff’s theorem [24] states that
the set of extremal points of Π(1n

n ,
1n

n ) and Π(1d

d ,
1d

d ) are the set of permutation matrices so that
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Algorithm 1 BCD for COOT

1: πs(0) ← ww′T , πv(0) ← vv′T , k ← 0

2: while k < maxIt and err > 0 do
3: πv(k) ← OT (v,v′,L(X,X′)⊗ πs(k−1)) // OT problem on the samples
4: πs(k) ← OT (w,w′,L(X,X′)⊗ πv(k−1)) // OT problem on the features
5: err ← ||πv(k−1) − πv(k)||F
6: k ← k + 1

there exists an optimal solution (πs∗,π
v
∗) which transport maps are supported on two permutations

σs∗, σ
v
∗ ∈ Sn × Sd.

The BP problem is also related to the Bilinear Assignment Problem (BAP) where πs and πv are
searched in the set of permutation matrices. The latter was shown to be NP-hard if d = O( r

√
n) for

fixed r and solvable in polynomial time if d = O(
√

log(n)) [25]. In this case, we look for the best
permutations of the rows and columns of our datasets that lead to the smallest cost. COOT provides a
tight convex relaxation of the BAP by 1) relaxing the constraint set of permutations into the convex
set of doubly stochastic matrices and 2) ensuring that two problems are equivalent, i.e., one can
always find a pair of permutations that minimizes (1), as explained in the paragraph above.

2.2 Properties of COOT

Finding a meaningful similarity measure between datasets is useful in many machine learning tasks
as pointed out, e.g in [26]. To this end, COOT induces a distance between datasets X and X′ and it
vanishes iff they are the same up to a permutation of rows and columns as established below2.
Proposition 1 (COOT is a distance). Suppose L = | · |p, p ≥ 1, n = n′, d = d′ and that the
weights w,w′,v,v′ are uniform. Then COOT(X,X′) = 0 iff there exists a permutation of the
samples σ1 ∈ Sn and of the features σ2 ∈ Sd, s.t, ∀i, k Xi,k = X′σ1(i),σ2(k). Moreover, it is
symmetric and satisfies the triangular inequality as long as L satisfies the triangle inequality, i.e.,
COOT(X,X′′) ≤ COOT(X,X′) + COOT(X′,X′′).

Note that in the general case when n 6= n′, d 6= d′, positivity and triangle inequality still hold but
COOT(X,X′) > 0. Interestingly, our result generalizes the metric property proved in [27] for the
election isomophism problem with this latter result being valid only for the BAP case (for a discussion
on the connection between COOT and the work of [27], see supplementary material). Finally, we
note that this metric property means that COOT can be used as a divergence in a large number of
potential applications as, for instance, in generative learning [28].

2.3 Optimization algorithm and complexity

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
BCD iterations

0.12

0.14

0.16

0.18

0.20

0.22

MNIST/USPS. Optimization Value
No reg. (total time=61.02s)
Entropic reg. (total time=42.28s)

Figure 2: COOT loss during the
BCD for the MNIST/USPS task.

Even though solving COOT exactly may be NP-hard, in practice
computing a solution can be done rather efficiently. To this end,
we propose to use Block Coordinate Descent (BCD) that consists
in iteratively solving the problem for πs or πv with the other
kept fixed. Interestingly, this boils down to solving at each step a
classical OT problem that requires O(n3 log(n)) operations with
a network simplex algorithm. The pseudo-code of the proposed
algorithm, known as the “mountain climbing procedure” [29],
is given in Algorithm 1 and is guaranteed to decrease the loss
after each update and so to converge within a finite number of
iterations [23]. We also note that at each iteration one needs
to compute the equivalent cost matrix L(X,X′) ⊗ π(·) which
has a complexity of O(ndn′d′). However, one can reduce it
using Proposition 1 from [20] for the case when L is the squared
Euclidean distance | · |2 or the Kullback-Leibler divergence. In this case, the overall computational
complexity becomes O(min{(n + n′)dd′ + n′2n; (d + d′)nn′ + d′2d}). In practice, we observed

2All proofs and theoretical results of this paper are detailed in the supplementary material.
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in the numerical experiments that the BCD converges in few iterations (see e.g. Figure 2). We
refer the interested reader to the supplementary material for further details. Finally, we can use
the same BCD procedure for the entropic regularized version of COOT (2) where each iteration
an entropic regularized OT problem can be solved efficiently using Sinkhorn’s algorithm [17] with
several possible improvements [18, 30, 31]. Note that this procedure can be easily adapted in the
same way to include unbalanced OT problems [32] as well.

3 Relation with other OT distances

Gromov-Wasserstein The COOT problem is defined for arbitrary matrices X ∈ Rn×d,X′ ∈
Rn′×d′ and so can be readily used to compare pairwise similarity matrices between the samples
C = (c(xi,xj)i,j) ∈ Rn×n,C′ = (c′(x′k,x

′
l))k,l ∈ Rn′×n′

for some c, c′. To avoid redundancy,
we use the term “similarity” for both similarity and distance functions in what follows. This
situation arises in applications dealing with relational data, e.g, in a graph context [33] or deep
metric alignement [34]. These problems have been successfully tackled recently using the Gromov-
Wasserstein (GW) distance [13] which, given C ∈ Rn×n and C′ ∈ Rn′×n′

, aims at solving:

GW (C,C′,w,w′) = min
πs∈Π(w,w′)

〈L(C,C′)⊗ πs,πs〉. (3)

Below, we explicit the link between GW and COOT using a reduction of a concave QP to an
associated BP problem established in [35] and show that they are equivalent when working with
squared Euclidean distance matrices C ∈ Rn×n,C′ ∈ Rn′×n′

.

Proposition 2. Let L = | · |2 and suppose that C ∈ Rn×n,C′ ∈ Rn′×n′
are squared Euclidean

distance matrices such that C = x1Tn + 1nx
T − 2XXT ,C′ = x′1Tn′ + 1n′x′T − 2X′X′T with

x = diag(XXT ),x′ = diag(X′X′T ). Then, the GW problem can be written as a concave quadratic
program (QP) which Hessian reads Q = −4 ∗XXT ⊗K X′X′T .

When working with arbitrary similarity matrices, COOT provides a lower-bound for GW and using
Proposition 2 we can prove that both problems become equivalent in the Euclidean setting.

Proposition 3. Let C ∈ Rn×n,C′ ∈ Rn′×n′
be any symmetric matrices, then:

COOT(C,C′,w,w′,w,w′) ≤ GW (C,C′,w,w′).

The converse is also true under the hypothesis of Proposition 2. In this case, if (πs∗,π
v
∗) is an optimal

solution of (1), then both πs∗,π
v
∗ are solutions of (3). Conversely, if πs∗ is an optimal solution of (3),

then (πs∗,π
s
∗) is an optimal solution for (1) .
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Figure 3: GW samples’
coupling for MNIST-USPS
task

Under the hypothesis of Proposition 2 we know that there exists an opti-
mal solution for the COOT problem of the form (π∗,π∗), where π∗ is an
optimal solution of the GW problem. This gives a conceptually very sim-
ple fixed-point procedure to compute an optimal solution of GW where
one optimises over one coupling only and sets πs(k) = πv(k) at each iter-
ation of Algorithm 1. Interestingly enough, in the concave setting, these
iterations are exactly equivalent to the Frank Wolfe algorithm described
in [33] for solving GW. It also corresponds to a Difference of Convex
Algorithm (DCA) [37, 38] where the concave function is approximated
at each iteration by its linear majorization. When used for entropic regu-
larized COOT, the resulting algorithm also recovers exactly the projected
gradients iterations proposed in [20] for solving the entropic regularized
version of GW. We refer the reader to the supplementary material for
more details.

To conclude, we would like to stress out that COOT is much more than a generalization of GW and
that is for multiple reasons. First, it can be used on raw data without requiring to choose or compute
the similarity matrices, that can be prohibitively costly, for instance, when dealing with shortest path
distances in graphs, and to store them (O(n2 + n′2) overhead). Second, it can take into account
additional information given by feature weights v,v′ and provides an interpretable mapping between
them across two heterogeneous datasets. Finally, contrary to GW, COOT is not invariant neither to
feature rotations nor to the change of signs leading to a more informative samples’ coupling when
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Domains No-adaptation baseline CCA KCCA EGW SGW COOT

C→W 69.12±4.82 11.47±3.78 66.76±4.40 11.35±1.93 78.88±3.90 83.47±2.60
W→C 83.00±3.95 19.59±7.71 76.76±4.70 11.00±1.05 92.41±2.18 93.65±1.80
W→W 82.18±3.63 14.76±3.15 78.94±3.94 10.18±1.64 93.12±3.14 93.94±1.84
W→A 84.29±3.35 17.00±12.41 78.94±6.13 7.24±2.78 93.41±2.18 94.71±1.49
A→C 83.71±1.82 15.29±3.88 76.35±4.07 9.82±1.37 80.53±6.80 89.53±2.34
A→W 81.88±3.69 12.59±2.92 81.41±3.93 12.65±1.21 87.18±5.23 92.06±1.73
A→A 84.18±3.45 13.88±2.88 80.65±3.03 14.29±4.23 82.76±6.63 92.12±1.79
C→C 67.47±3.72 13.59±4.33 60.76±4.38 11.71±1.91 77.59±4.90 83.35±2.31
C→A 66.18±4.47 13.71±6.15 63.35±4.32 11.82±2.58 75.94±5.58 82.41±2.79

Mean 78.00±7.43 14.65±2.29 73.77±7.47 11.12±1.86 84.65±6.62 89.47±4.74
p-value <.001 <.001 <.001 <.001 <.001 -

Table 1: Semi-supervised HDA for nt = 3 from Decaf to GoogleNet task.

compared to GW in some applications. One such example is given in the previous MNIST-USPS
transfer task (Figure 1) for which the coupling matrix obtained via GW (given in Figure 3) exhibits
important flaws in respecting class memberships when aligning samples.

Invariant OT and Hierarchical OT In [10], the authors proposed InvOT algorithm that aligns
samples and learns a transformation between the features of two data matrices given by a linear
map with a bounded Schatten p-norm. The authors further showed in [10, Lemma 4.3] that, under
some mild assumptions, InvOT and GW lead to the same samples’ couplings when cosine similarity
matrices are used. It can be proved that, in this case, COOT is also equivalent to them both (see
supplementary). However, note that InvOT is applicable under the strong assumption that d = d′

and provides only linear relations between the features, whereas COOT works when d 6= d′ and its
feature mappings is sparse and more interpretable. InvOT was further used as a building block for
aligning clustered datasets in [39] where the authors applied it as a divergence measure between the
clusters, thus leading to an approach different from ours. Finally, in [40] the authors proposed a
hierarchical OT distance as an OT problem with costs defined based on precomputed Wasserstein
distances but with no global features’ mapping, contrary to COOT that optimises two couplings of
the features and the samples simultaneously.

4 Numerical experiments

In this section, we highlight two possible applications of COOT in a machine learning context:
HDA and co-clustering. We consider these two particular tasks because 1) OT-based methods are
considered as a strong baseline in DA; 2) COOT is a natural match for co-clustering as it allows for
soft assignments of data samples and features to co-clusters.

4.1 Heterogeneous domain adaptation

In classification, domain adaptation problem arises when a model learned using a (source) domain
Xs = {xsi}

Ns
i=1 with associated labels Ys = {ysi }

Ns
i=1 is to be deployed on a related target domain

Xt = {xti}
Nt
i=1 where no or only few labelled data are available. Here, we are interested in the

heterogeneous setting where the source and target data belong to different metric spaces. The most
prominent works in HDA are based on Canonical Correlation Analysis [41] and its kernelized version
and a more recent approach based on the Gromov-Wasserstein distance [16]. We investigate here the
use of COOT for both semi-supervised HDA, where one has access to a small number nt of labelled
samples per class in the target domain and unsupervised HDA with nt = 0.

In order to solve the HDA problem, we compute COOT(Xs,Xt) between the two domains and use
the πs matrix providing a transport/correspondence between samples (as illustrated in Figure 1) to
estimate the labels in the target domain via label propagation [42]. Assuming uniform sample weights
and one-hot encoded labels, a class prediction Ŷt in the target domain samples can be obtained
by computing Ŷt = πsYs. When labelled target samples are available, we further prevent source
samples to be mapped to target samples from a different class by adding a high cost in the cost matrix
for every such source sample as suggested in [Sec. 4.2][12].
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Competing methods and experimental settings We evaluate COOT on Amazon (A), Caltech-256
(C) and Webcam (W) domains from Caltech-Office dataset [43] with 10 overlapping classes between
the domains and two different deep feature representations obtained for images from each domain
using the Decaf [44] and GoogleNet [45] neural network architectures. In both cases, we extract
the image representations as the activations of the last fully-connected layer, yielding respectively
sparse 4096 and 1024 dimensional vectors. The heterogeneity comes from these two very different
representations. We consider 4 baselines: CCA, its kernalized version KCCA [41] with a Gaussian
kernel which width parameter is set to the inverse of the dimension of the input vector, EGW
representing the entropic version of GW and SGW [16] that incorporates labelled target data into two
regularization terms. For EGW and SGW, the entropic regularization term was set to 0.1, and the
two other regularization hyperparameters for the semi-supervised case to λ = 10−5 and γ = 10−2 as
done in [16? ]. We use COOT with entropic regularization on the feature mapping, with parameter
ε2 = 1 in all experiments. For all OT methods, we use label propagation to obtain target labels as the
maximum entry of Ŷt in each row. For all non-OT methods, classification was conducted with a k-nn
classifier with k = 3. We run the experiment in a semi-supervised setting with nt = 3, i.e., 3 samples
per class were labelled in the target domain. The baseline score is the result of classification by
only considering labelled samples in the target domain as the training set. For each pair of domains,
we selected 20 samples per class to form the learning sets. We run this random selection process
10 times and consider the mean accuracy of the different runs as a performance measure. In the
presented results, we perform adaptation from Decaf to GoogleNet features, and report the results for
nt ∈ {0, 1, 3, 5} in the opposite direction in the supplementary material.

Results We first provide in Table 1 the results for the semi-supervised case. From it, we see that
COOT surpasses all the other state-of-the-art methods in terms of mean accuracy. This result is
confirmed by a p-value lower than 0.001 on a pairwise method comparison with COOT in a Wilcoxon
signed rank test. SGW provides the second best result, while CCA and EGW have a less than average
performance. Finally, KCCA performs better than the two latter methods, but still fails most of
the time to surpass the no-adaptation baseline score given by a classifier learned on the available
labelled target data. Results for the unsupervised case can be found in Table 2. This setting is rarely
considered in the literature as unsupervised HDA is regarded as a very difficult problem. In this
table, we do not provide scores for the no-adaptation baseline and SGW, as they require labelled data.

Domains CCA KCCA EGW COOT

C→W 14.20±8.60 21.30±15.64 10.55±1.97 25.50±11.76
W→C 13.35±3.70 18.60±9.44 10.60±0.94 35.40±14.61
W→W 10.95±2.36 13.25±6.34 10.25±2.26 37.10±14.57
W→A 14.25±8.14 23.00±22.95 9.50±2.47 34.25±13.03
A→C 11.40±3.23 11.50±9.23 11.35±1.38 17.40±8.86
A→W 19.65±17.85 28.35±26.13 11.60±1.30 30.95±18.19
A→A 11.75±1.82 14.20±4.78 13.10±2.35 42.85±17.65
C→C 12.00±4.69 14.95±6.79 12.90±1.46 42.85±18.44
C→A 15.35±6.30 23.35±17.61 12.95±2.63 33.25±15.93

Mean 13.66±2.55 18.72±5.33 11.42±1.24 33.28±7.61
p-value <.001 <.001 <.001 -

Table 2: Unsupervised HDA for nt = 0 from
Decaf to GoogleNet task.

As one can expect, most of the methods fail
in obtaining good classification accuracies in
this setting, despite having access to discrimi-
nant feature representations. Yet, COOT suc-
ceeds in providing a meaningful mapping in
some cases. The overall superior performance
of COOT highlights its strengths and underlines
the limits of other HDA methods. First, COOT
does not depend on approximating empirical
quantities from the data, contrary to CCA and
KCCA that rely on the estimation of the cross-
covariance matrix that is known to be flawed for
high-dimensional data with few samples [46]. Second, COOT takes into account the features of the
raw data that are more informative than the pairwise distances used in EGW. Finally, COOT avoids
the sign invariance issue discussed previously that hinders GW’s capability to recover classes without
supervision as illustrated for the MNIST-USPS problem before.

4.2 Co-clustering and data summarization

While traditional clustering methods present an important discovery tool for data analysis, they
discard the relationships that may exist between the features that describe the data samples. This
idea is the cornerstone of co-clustering [47] where given a data matrix X ∈ Rn×d and the number of
samples (rows) and features (columns) clusters denoted by g ≤ n and m ≤ d, respectively, we seek
to find Xc ∈ Rg×m that summarizes X in the best way possible.

COOT-clustering We look for Xc which is as close as possible to the original X w.r.t COOT by
solving minXc

COOT(X,Xc) = minπs,πv,Xc
〈L(X,Xc) ⊗ πs,πv〉 with entropic regularization.

More precisely, we set w,w′,v,v′ as uniform, initialize Xc with random values and apply the BCD
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Figure 4: Co-clustering with COOT on the Olivetti faces dataset. (left) Example images from the
dataset, (center) centroids estimated by COOT (right) clustering of the pixels estimated by COOT
where each color represents a cluster.

Data set Algorithms
K-means NMF DKM Tri-NMF GLBM ITCC RBC CCOT CCOT-GW COOT

D1 .018± .003 .042± .037 .025± .048 .082± .063 .021± .011 .021± .001 .017± .045 .018± .013 .004± .002 0
D2 .072± .044 .083± .063 .038± .000 .052± .065 .032± .041 .047± .042 .039± .052 .023± .036 .011± .056 .009± 0.04
D3 – – .310± .000 – .262± .022 .241± .031 – .031± .027 .008± .001 .04± .05
D4 .126± .038 – .145± .082 – .115± .047 .121± .075 .102± .071 .093± .032 .079± .031 0.068± 0.04

Table 3: Mean (± standard-deviation) of the co-clustering error (CCE) obtained for all configurations.
“-” indicates that the algorithm cannot find a partition with the requested number of co-clusters. All
the baselines results (first 9 columns) are from [48].

algorithm over (πs,πv,Xc) by alternating between the following steps: 1) obtain πs and πv by
solving COOT(X,Xc); 2) set Xc to gmπs>Xπv . This second step of the procedure is a least-square
estimation when L = | · |2 and corresponds to minimizing the COOT objective w.r.t. Xc. In practice,
we observed that few iterations of this procedure are enough to ensure the convergence. Once solved,
we use the soft assignments provided by coupling matrices πs ∈ Rn×g,πv ∈ Rd×m to partition data
points and features to clusters by taking the index of the maximum element in each row of πs and
πv , respectively.

Simulated data We follow [48] where four scenarios with different number of co-clusters, degrees
of separation and sizes were considered (for details, see the supplementary materials). We choose
to evaluate COOT on simulated data as it provides us with the ground-truth for feature clusters
that are often unavailable for real-world data sets. As in [48], we use the same co-clustering
baselines including ITCC [49], Double K-Means (DKM) [50], Orthogonal Nonnegative Matrix
Tri-Factorizations (ONTMF) [51], the Gaussian Latent Block Models (GLBM) [52] and Residual
Bayesian Co-Clustering (RBC) [53] as well as the K-means and NMF run on both modes of the data
matrix, as clustering baseline. The performance of all methods is measured using the co-clustering
error (CCE) [54]. For all configurations, we generate 100 data sets and present the mean and standard
deviation of the CCE over all sets for all baselines in Table 3. Based on these results, we see that
our algorithm outperforms all the other baselines on D1, D2 and D4 data sets, while being behind
CCOT-GW proposed by [48] on D3. This result is rather strong as our method relies on the original
data matrix, while CCOT-GW relies on its kernel representation and thus benefits from the non-linear
information captured by it. Finally, we note that while both competing methods rely on OT, they
remain very different as CCOT-GW approach is based on detecting the positions and the number of
jumps in the scaling vectors of GW entropic regularized solution, while our method relies on coupling
matrices to obtain the partitions.

Olivetti Face dataset As a first application of COOT for the co-clustering problem on real data,
we propose to run the algorithm on the well known Olivetti faces dataset [55].

We take 400 images normalized between 0 and 1 and run our algorithm with g = 9 image clusters
and m = 40 feature (pixel) clusters. As before, we consider the empirical distributions supported on
images and features, respectively. The resulting reconstructed image’s clusters are given in Figure 4
and the pixel clusters are illustrated in its rightmost part. We can see that despite the high variability
in the data set, we still manage to recover detailed centroids, whereas L2-based clustering such as
standard NMF or k-means based on `2 norm cost function are known to provide blurry estimates in
this case. Finally, as in the MNIST-USPS example, COOT recovers spatially localized pixel clusters
with no prior information about the pixel relations.
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M1 M20
Shawshank Redemption (1994) Police Story 4: Project S (Chao ji ji hua) (1993)

Schindler’s List (1993) Eye of Vichy, The (Oeil de Vichy, L’) (1993)
Casablanca (1942) Promise, The (Versprechen, Das) (1994)

Rear Window (1954) To Cross the Rubicon (1991)
Usual Suspects, The (1995) Daens (1992)

Table 4: Top 5 of movies in clusters M1 and M20. Average rating of the top 5 rated movies in M1 is
4.42, while for the M20 it is 1.

MovieLens We now evaluate our approach on the benchmark MOVIELENS-100K3 data set that
provides 100,000 user-movie ratings, on a scale of one to five, collected from 943 users on 1682
movies. The main goal of our algorithm here is to summarize the initial data matrix so that Xc reveals
the blocks (co-clusters) of movies and users that share similar tastes. We set the number of user and
film clusters to g = 10 and m = 20, respectively as in [56].

The obtained results provide the first movie cluster consisting of films with high ratings (3.92 on
average), while the last movie cluster includes movies with very low ratings (1.92 on average).
Among those, we show the 5 best/worst rated movies in those two clusters in Table 4. Overall,
our algorithm manages to find a coherent co-clustering structure in MOVIELENS-100K and obtains
results similar to those provided in [48, 56].

5 Discussion and conclusion

In this paper, we presented a novel optimal transport problem which aims at comparing distributions
supported on samples belonging to different spaces. To this end, two optimal transport maps, one
acting on the sample space, and the other on the feature space, are optimized to connect the two
heterogeneous distributions. We provide several algorithms allowing to solve it in general and special
cases and show its connections to other OT-based problems. We further demonstrate its usefulness
and versatility on two difficult machine learning problems: heterogeneous domain adaptation and
co-clustering/data summarization, where promising results were obtained. Numerous follow-ups of
this work are expected. Beyond the potential applications of the method in various contexts, such as
e.g. statistical matching, data analysis or even losses in deep learning settings, one immediate and
intriguing question lies into the generalization of this framework in the continuous setting, and the
potential connections to duality theory. This might lead to stochastic optimization schemes enabling
large scale solvers for this problem.
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Broader impact

Despite its evident usefulness the problem of finding the correspondences between two datasets is
rather general and may arise in many fields in machine learning. Consequently it is quite difficult to
exhaustively state all the potential negative ethical impacts that may occur when using our method.
As described in the paper, it could be used to solve the so-called election isomorphism problem [27]
where one wants to find how similar are two elections based on the knowledge of votes and candidates.
Although having these type of datasets seems unrealistic in modern democracies, using our approach

3https://grouplens.org/datasets/movielens/100k/
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on this problem runs the risk of breaking some privacy standards by revealing precisely how the
votes have been moved from one election to the other. Generally speaking, and when given access to
two datasets with sensitive data, our method is able to infer correspondences between instances and
features which could possibly lead to privacy issues for a malicious user. From a different perspective,
the Optimal Transport framework is known to be quite computationally expensive and even recent
improvements turns out to be super-linear in terms of the computational complexity. It is not an
energy-free tool and in a time when carbon footprints must be drastically reduced, one should have in
mind the potential negative impact that computationally demanding algorithms might have on the
planet.
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complexity of sinkhorn divergences. In ICML, pages 1574–1583, 2019.
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