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Abstract

Prioritized Experience Replay (PER) is a deep reinforcement learning technique in
which agents learn from transitions sampled with non-uniform probability propor-
tionate to their temporal-difference error. We show that any loss function evaluated
with non-uniformly sampled data can be transformed into another uniformly sam-
pled loss function with the same expected gradient. Surprisingly, we find in some
environments PER can be replaced entirely by this new loss function without
impact to empirical performance. Furthermore, this relationship suggests a new
branch of improvements to PER by correcting its uniformly sampled loss function
equivalent. We demonstrate the effectiveness of our proposed modifications to PER
and the equivalent loss function in several MuJoCo and Atari environments.

1 Introduction

The use of non-uniform sampling in deep reinforcement learning originates from a technique known
as prioritized experience replay (PER) [1], in which high error transitions are sampled with increased
probability, enabling faster propagation of rewards and accelerating learning by focusing on the
most critical data. An ablation study over the many improvements to deep Q-learning [2] found
PER to be the most critical extension for overall performance. However, while the motivation for
PER is intuitive, this commonly used technique lacks a critical theoretical foundation. In this paper,
we develop analysis enabling us to understand the benefits of non-uniform sampling and suggest
modifications to PER that both simplify and improve the empirical performance of the algorithm.

In deep reinforcement learning, value functions are approximated with deep neural networks, trained
with a loss over the temporal-difference error of previously seen transitions. The expectation of
this loss, over the sampling distribution of transitions, determines the effective gradient which is
used to find minima in the network. By biasing the sampling distribution, PER effectively changes
the expected gradient. Our main theoretical contribution shows the expected gradient of a loss
function minimized on data sampled with non-uniform probability, is equal to the expected gradient
of another, distinct, loss function minimized on data sampled uniformly. This relationship can be
used to transform any loss function into a prioritized sampling scheme with a new loss function or
vice-versa. We can use this transformation to develop a concrete understanding about the benefits
of non-uniform sampling methods such as PER, as well as facilitate the design of novel prioritized
methods. Our discoveries can be summarized as follows:

Loss function and prioritization should be tied. The key implication of this result is that the design
of prioritized sampling methods should not be considered in isolation from the loss function. We
can use this connection to analyze the correctness of methods which use non-uniform sampling by
transforming the loss into the uniform-sampling equivalent and considering whether the new loss
is in line with the target objective. In particular, we find the PER objective can be unbiased, even
without importance sampling, if the loss function is chosen correctly.
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Variance reduction. This relationship in expected gradients brings us to a deeper understanding of
the benefits of prioritization. We show that the variance of the sampled gradient can be reduced by
transforming a uniformly sampled loss function into a carefully chosen prioritization scheme and
corresponding loss function. This means that non-uniform sampling is almost always favorable to
uniform sampling, at the cost of additional algorithmic and computational complexity.

Empirically unnecessary. While non-uniform sampling is theoretically favorable, in many cases
the variance reducing properties will be minimal. Perhaps most unexpectedly, we find in a standard
benchmark problem, prioritized sampling can be replaced with uniform sampling and a modified
loss function, without affecting performance. This result suggests some of the benefit of prioritized
experience replay comes from the change in expected gradient, rather than the prioritization itself.

We introduce Loss-Adjusted Prioritized (LAP) experience replay and its uniformly sampled loss
equivalent, Prioritized Approximation Loss (PAL). LAP simplifies PER by removing unnecessary
importance sampling ratios and setting the minimum priority to be 1, which reduces bias and the
likelihood of dead transitions with near-zero sampling probability in a principled manner. On the
other hand, our loss function PAL, which resembles a weighted variant of the Huber loss, computes
the same expected gradient as LAP, and can be added to any deep reinforcement learning algorithm
in only a few lines of code. We evaluate both LAP and PAL on the suite of MuJoCo environments [3]
and a set of Atari games [4]. Across both domains, we find both of our methods outperform the vanilla
algorithms they modify. In the MuJoCo domain, we find significant gains over the state-of-the-art in
the hardest task, Humanoid. All code is open-sourced (https://github.com/sfujim/LAP-PAL).

2 Related Work

The use of prioritization in reinforcement learning originates from prioritized sweeping for value
iteration [5, 6, 7] to increase learning speed, but has also found use in modern applications for
importance sampling over trajectories [8] and learning from demonstrations [9, 10]. Prioritized
experience replay [1] is one of several popular improvements to the DQN algorithm [11, 12, 13,
14] and has been included in many algorithms combining multiple improvements [15, 2, 16, 17].
Variations of PER have been proposed for considering sequences of transitions [18, 19, 20, 21], or
optimizing the prioritization function [22]. Alternate replay buffers have been proposed to favor
recent transitions without explicit prioritization [23, 24]. The composition and size of the replay
buffer has been studied [25, 26, 27, 28], as well as prioritization in simple environments [29].

Non-uniform sampling has been used in the context of training deep networks faster by favoring
informative samples [30], or by distributed and non-uniform sampling where data points are re-
weighted by importance sampling ratios [31, 32]. There also exists other importance sampling
approaches [33, 34] which re-weight updates to reduce variance. In contrast, our method avoids the
use of importance sampling by considering changes to the loss function itself and focuses on the
context of deep reinforcement learning.

3 Preliminaries

We consider a standard reinforcement learning problem setup, framed by a Markov decision process
(MDP), a 5-tuple (S,A,R, p, γ), with state space S, action space A, reward functionR, dynamics
model p, and discount factor γ. The behavior of a reinforcement learning agent is defined by its
policy π : S → A. The performance of a policy π can be defined by the value function Qπ, the
expected sum of discounted rewards when following π after performing the action a in the state s:
Qπ(s, a) = Eπ[

∑∞
t=0 γ

trt+1|s0 = s, a0 = a]. The value function can be determined from the
Bellman equation [35]: Qπ(s, a) = Er,s′∼p;a′∼π [r + γQπ(s′, a′)].

In deep reinforcement learning algorithms, such as the Deep Q-Network algorithm (DQN) [36, 11],
the value function is approximated by a neural network Qθ with parameters θ. Given transitions
i = (s, a, r, s′), DQN is trained by minimizing a loss L(δ(i)) on the temporal-difference (TD) error
δ(i) [37], the difference between the network output Q(i) = Qθ(i) and learning target y(i):

δ(i) = Q(i)− y(i), y(i) = r + γQθ′(s
′, a′). (1)

Transitions i ∈ B are sampled from an experience replay bufferB [38], a data set containing previously
experienced transitions. The target y(i) uses a separate target network Qθ′ with parameters θ′, which
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are frozen to maintain a fixed target over multiple updates, and then updated to copy the parameters θ
after a set number of learning steps. This loss is averaged over a mini-batch of sizeM : 1

M

∑
i L(δ(i)).

For analysis, the size of M is unimportant as it does not affect the expected loss or gradient.

Our analysis revolves around the gradient∇Q of different loss functions with respect to the output
of the value network Qθ, noting δ(i) is a function of Q(i). In this work, we focus on three loss
functions, which we define over the TD error δ(i) of a transition i: the L1 loss LL1(δ(i)) = |δ(i)|
with a gradient∇QLL1(δ(i)) = sign(δ(i)), mean squared error (MSE) LMSE(δ(i)) = 0.5δ(i)2 with
a gradient∇QLMSE(δ(i)) = δ(i), and the Huber loss [39]:

LHuber(δ(i)) =

{
0.5δ(i)2 if |δ(i)| ≤ κ,
κ(|δ(i)| − 0.5κ) otherwise,

(2)

where generally κ = 1, giving an equivalent gradient to MSE or L1 loss, depending on |δ(i)|.
Prioritized Experience Replay. Prioritized experience replay (PER) [1] is a non-uniform sampling
scheme for replay buffers where transitions are sampled in proportion to their temporal-difference
(TD) error. The intuitive argument behind PER is that training on the highest error samples will result
in the largest performance gain.

PER makes two changes to the traditional uniformly sampled replay buffer. Firstly, the probability
of sampling a transition i is proportionate to the absolute TD error |δ(i)|, set to the power of a
hyper-parameter α to smooth out extremes:

p(i) =
|δ(i)|α + ε∑
j (|δ(j)|α + ε)

, (3)

where a small constant ε is added to ensure each transition is sampled with non-zero probability. This
ε is necessary as often the current TD error is approximated by the TD error when i was last sampled.
For our theoretical analysis we will treat δ(i) as the current TD error and assume ε = 0.

Secondly, given PER favors transitions with high error, in a stochastic setting it will shift the
distribution of s′ in the expectation Es′ [Q(s′, a′)]. This is corrected by weighted importance sampling
ratios w(i), which reduce the influence of high priority transitions using a ratio between Equation (3)
and the uniform probability 1

N , where N is the total number of elements contained in the buffer:

LPER(δ(i)) = w(i)L(δ(i)), w(i) =
ŵ(i)

maxj ŵ(j)
, ŵ(i) =

(
1

N
· 1

p(i)

)β
. (4)

The hyper-parameter β is used to smooth out high variance importance sampling weights. The value
of β is annealed from an initial value β0 to 1, to eliminate any bias from distributional shift.

4 The Connection between Sampling and Loss Functions

In this section, we present our general results which show the expected gradient of a loss function
with non-uniform sampling is equivalent to the expected gradient of another loss function with
uniform sampling. This relationship provides an approach to analyze methods which use non-uniform
sampling, by considering whether the uniformly sampled loss with equivalent expected gradient is
reasonable, with regards to the learning objective. All proofs are in the supplementary material.

To build intuition, consider that the expected gradient of a generic loss L1 on the TD error δ(i) of
transitions i sampled by a distribution D1, can be determined from another distribution D2 by using
the importance sampling ratio pD1

(i)

pD2
(i) :

Ei∼D1 [∇QL1(δ(i))]︸ ︷︷ ︸
expected gradient of L1 underD1

= Ei∼D2

[
pD1(i)

pD2(i)
∇QL1(δ(i))

]
. (5)

Suppose we introduce a second loss L2, where the gradient of L2 is the inner expression of the RHS
of Equation (5): ∇QL2(δ(i)) =

pD1
(i)

pD2
(i)∇QL1(δ(i)). Then the expected gradient of L1 under D1

and L2 under D2 would be equal ED1
[∇QL1(δ(i))] = ED2

[∇QL2(δ(i))]. It may first seem unlikely
that this relationship would exist in practice. However, defining D1 to be the uniform distribution U
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over a finite data set B, and D2 to be a prioritized sampling scheme p(i) = |δ(i)|∑
j∈B |δ(j)|

, we have the
following relationship between MSE and L1:

EU [∇QLMSE(δ(i))]︸ ︷︷ ︸
expected gradient of MSE under U

= ED2

[∑
j δ(j)

N |δ(i)|
δ(i)

]
︸ ︷︷ ︸

by Equation (5)

∝ ED2
[sign(δ(i))]︸ ︷︷ ︸
∇QLL1(δ(i))

= ED2
[∇QLL1(δ(i))]︸ ︷︷ ︸

expected gradient of L1 underD2

(6)
This means the L1 loss, sampled non-uniformly, has the same expected gradient direction as MSE,
sampled uniformly. We emphasize that the distributionD is very similar to the priority scheme in PER.
In the following sections we will generalize this relationship, discuss the benefits to prioritization,
and derive a uniformly sampled loss function with the same expected gradient as PER.

We describe our main result in Theorem 1 which formally describes the relationship between a loss
L1 on uniformly sampled data, and a loss L2 on data sampled according to some priority scheme pr,
such that p(i) = pr(i)∑

j pr(j)
. As suggested above, this relationship draws a similarity to importance

sampling, where the ratio between distributions is absorbed into the loss function.

Theorem 1 Given a data set B of N items, loss functions L1 and L2, and priority scheme pr, the
expected gradient of L1(δ(i)), where i ∈ B is sampled uniformly, is equal to the expected gradient
of L2(δ(i)), where i is sampled with priority pr, if ∇QL1(δ(i)) = 1

λpr(i)∇QL2(δ(i)) for all i,

where λ =
∑
j pr(j)

N .

Theorem 1 describes the conditions for a uniformly sampled loss and non-uniformly sampled loss to
have the same expected gradient. This additionally provides a recipe for transforming a given loss
function L2 with non-uniform sampling into an equivalent loss function L1 with uniform sampling.

Corollary 1 Theorem 1 is satisfied by any two loss functions L1, where i ∈ B is sampled uniformly,
and L2, where i is sampled with respect to priority pr, if L1(δ(i)) =

1
λ |pr(i)|×L2(δ(i)) for all i,

where λ =
∑
j pr(j)

N and | · |× is the stop-gradient operation.

As noted by our example in the beginning of the section, often the loss function equivalent of a
prioritization method is surprisingly simple. The converse relationship can also be determined. By
carefully choosing how the data is sampled, a loss function L1 can be transformed into (almost) any
other loss function L2 in expectation.

Corollary 2 Theorem 1 is satisfied by any two loss functions L1, where i ∈ B is sampled uniformly,
and λL2, where i is sampled with respect to priority pr and λ =

∑
j pr(j)

N , if sign(∇QL1(δ(i))) =

sign(∇QL2(δ(i))) and pr(i) = ∇QL1(δ(i))
∇QL2(δ(i))

for all i.

Note that sign(∇QL1(δ(i))) = sign(∇QL2(δ(i))) is only required as pr(i) must be non-negative,
and is trivially satisfied by all loss functions which aim to minimize the distance between the outputQ
and a given target. In this instance, the non-uniform sampling acts similarly to an importance sampling
ratio, re-weighting the gradient ofL2 to match the gradient ofL1 in expectation. Corollary 2 is perhaps
most interesting when L2 is the L1 loss as∇QLL1(δ(i)) = ±1, setting pr(i) = |∇QL1(δ(i))| allows
us to transform the loss L1 into a prioritization scheme. It turns out that transforming a given loss
function into its prioritized variant with a L1 loss can be used to reduce the variance of the gradient.

Observation 1 Given a data set B of N items and loss function L1, the gradient of the loss function
λLL1(δ(i)), where i ∈ B is sampled with priority pr(i) = |∇QL1(δ(i))| and λ =

∑
j pr(j)

N , will
have lower (or equal) variance than the gradient of L1(δ(i)), where i is sampled uniformly.

In fact, we can generalize this observation one step further, and show that the L1 loss, and corre-
sponding priority scheme, produce the lowest variance of all possible loss functions with the same
expected gradient.

Theorem 2 Given a data set B ofN items and loss function L1, consider the loss function λL2(δ(i)),

where i ∈ B is sampled with priority pr and λ =
∑
j pr(j)

N , such that Theorem 1 is satisfied. The
variance of∇QλL2(δ(i)) is minimized when L2 = LL1 and pr(i) = |∇QL1(δ(i))|.
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Intuitively, Theorem 2 applies by taking equally-sized gradient steps, rather than intermixing small
and large steps. These results suggest a simple recipe for reducing the variance of any loss function
while keeping the expected gradient unchanged, by using the L1 loss and corresponding prioritization.

5 Corrections to Prioritized Experience Replay

We now consider prioritized experience replay (PER) [1] and by following Theorem 1 from the
previous section, derive its uniformly sampled equivalent loss function. This relationship allows us to
consider corrections and possible simplifications. All proofs are in the supplementary material.

5.1 An Equivalent Loss Function to Prioritized Experience Replay

We begin by deriving the uniformly sampled equivalent loss function to PER. Our general finding is
that when mean squared error (MSE) is used, including a subset of cases in the Huber loss [39], PER
optimizes a loss function on the TD error to a power higher than two. This means PER may favor
outliers in its estimate of the expectation in the temporal difference target, rather than learn the mean.
Furthermore, we find that the importance sampling ratios used by PER can be absorbed into the loss
function themselves, which gives an opportunity to simplify the algorithm.

Firstly, from Theorem 1, we can derive a general result on a loss function 1
τ |δ(i)|

τ when used in
conjunction with PER.

Theorem 3 The expected gradient of a loss 1
τ |δ(i)|

τ , where τ > 0, when used with PER is equal to
the expected gradient of the following loss when using a uniformly sampled replay buffer:

LτPER(δ(i)) =
ηN

τ + α− αβ
|δ(i)|τ+α−αβ , η =

minj |δ(j)|αβ∑
j |δ(j)|α

. (7)

Noting that DQN [11] traditionally uses the Huber loss, we can now show the form of the uniformly
sampled loss function with the same expected gradient as PER, when used with DQN.

Corollary 3 The expected gradient of the Huber loss when used with PER is equal to the expected
gradient of the following loss when using a uniformly sampled replay buffer:

LHuber
PER (δ(i)) =

ηN

τ + α− αβ
|δ(i)|τ+α−αβ , τ =

{
2 if |δ(i)| ≤ 1,

1 otherwise,
η =

minj |δ(j)|αβ∑
j |δ(j)|α

.

(8)

To understand the significance of Corollary 3 and what it says about the objective in PER, first
consider the following two observations on MSE and L1:

Observation 2 (MSE) Let B(s, a) ⊂ B be the subset of transitions containing (s, a) and δ(i) =
Q(i)− y(i). If ∇QEi∼B(s,a)[0.5δ(i)2] = 0 then Q(s, a) = meani∈B(s,a)y(i).

Observation 3 (L1 Loss) Let B(s, a) ⊂ B be the subset of transitions containing (s, a) and δ(i) =
Q(i)− y(i). If ∇QEi∼B[|δ(i)|] = 0 then Q(s, a) = mediani∈B(s,a)y(i).

From Corollary 3 and the aforementioned observations, we can make several statements:

The PER objective is biased if τ + α − αβ 6= 2. The implication of Observation 2 is that
minimizing MSE gives us an estimate of the target of interest, the expected temporal-difference
target y(i) = r + γEs′,a′ [Q(s′, a′)]. It follows that optimizing a loss |δ(i)|τ with PER, such that
τ+α−αβ 6= 2, produces a biased estimate of the target. On the other hand, we argue that not all bias
is equal. From Observation 3 we see that minimizing a L1 loss gives the median target, rather than
the expectation. Given the effects of function approximation and bootstrapping in deep reinforcement
learning, one could argue the median is a reasonable loss function, due to its robustness properties. A
likely possibility is that an in-between of MSE and L1 would provide a balance of robustness and
“correctness”. Looking at Equation (7), it turns out this is what PER does when combined with an L1
loss, as the loss will be to a power of 1 + α − αβ ∈ [1, 2] for α ∈ (0, 1] and β ∈ [0, 1]. However,
when combined with MSE, if β < 1, then 2 + α− αβ > 2 for α ∈ (0, 1]. This means while MSE is
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normally minimized by the mean, when combined with PER, the loss will be minimized by some
expression which may favor outliers. This bias explains the poor performance of PER with standard
algorithms in continuous control which rely on MSE [23, 22, 40, 24].

Importance sampling can be avoided. PER uses importance sampling (IS) to re-weight the loss
function as an approach to reduce the bias introduced by prioritization. We note that PER with MSE
is unbiased if the IS hyper-parameter β = 1. However, our theoretical results show the prioritization
is absorbed into the expected gradient. Consequently, PER can be “unbiased” even without using IS
(β = 0) if the expected gradient is still meaningful. As discussed above, this simply means selecting
α and τ such that τ + α ≤ 2. Furthermore, this allows us to avoid any bias from weighted IS.

5.2 Loss-Adjusted Prioritized Experience Replay

We now utilize some of the understanding developed in the previous section for the design of a new
prioritized experience replay scheme. We call our variant Loss-Adjusted Prioritized (LAP) experience
replay, as our theoretical results argue that the choice of loss function should be closely tied to
the choice of prioritization. Mirroring LAP, we also introduce a uniformly sampled loss function,
Prioritized Approximation Loss (PAL) with the same expected gradient as LAP. When the variance
reduction from prioritization is minimal, PAL can be used as a simple and computationally efficient
replacement for LAP, requiring only an adjustment to the loss function used to train the Q-network.

With these ideas in mind, we can now introduce our corrections to the traditional prioritized experience
replay, which we combine into a simple prioritization scheme which we call the Loss-Adjusted
Prioritized (LAP) experience replay. The simplest variant of LAP would use the L1 loss, as suggested
by Theorem 2, and sample values with priority pr(i) = |δ(i)|α. Following Theorem 1, we can see
the expected gradient of this approach is proportional to |δ(i)|1+α, when sampled uniformly.

However, in practice, L1 loss may not be preferable as each update takes a constant-sized step,
possibly overstepping the target if the learning rate is too large. Instead, we apply the commonly
used Huber loss, with κ = 1, which swaps from L1 to MSE when the error falls below a threshold of
1, scaling the appropriately gradient as δ(i) approaches 0. When |δ(i)| < 1 and MSE is applied, if
we want to avoid the bias introduced from using MSE and prioritization, samples with error below 1
should be sampled uniformly. This can be achieved with a priority scheme pr(i) = max(|δ(i)|α, 1),
where samples with otherwise low priority are clipped to be at least 1. We denote this algorithm LAP
and it can be described by non-uniform sampling and the Huber loss:

p(i) =
max(|δ(i)|α, 1)∑
j max(|δ(j)|α, 1)

, LHuber(δ(i)) =

{
0.5δ(i)2 if |δ(i)| ≤ 1,

|δ(i)| otherwise.
(9)

On top of correcting the outlier bias, this clipping reduces the likelihood of dead transitions that occur
when p(i) ≈ 0, eliminating the need for a ε hyper-parameter, which is added to the priority of each
transition in PER. LAP maintains the variance reduction properties defined by our theoretical analysis
as it uses the L1 loss on all samples with large errors. Following our ideas from the previous section,
we can transform LAP into its mirrored loss function with an equivalent expected gradient, which we
denote Prioritized Approximation Loss (PAL). PAL can be derived following Corollary 1:

LPAL(δ(i)) =
1

λ

{
0.5δ(i)2 if |δ(i)| ≤ 1,
|δ(i)|1+α

1+α otherwise,
λ =

∑
j max(|δ(j)|α, 1)

N
. (10)

Observation 4 LAP and PAL have the same expected gradient.

As PAL and LAP share the same expected gradient, we have a mechanism for analysing both methods.
Importantly, we note that loss defined by PAL is never to a power greater than two, meaning the
outlier bias from PER has been eliminated. In some cases, we will find PAL is useful as a loss
function on its own, and in domains where the variance reducing property from prioritization is
unimportant, we should expect their performance to be similar.

6 Experiments

We evaluate the benefits of LAP and PAL on the standard suite of MuJoCo [3] continuous control
tasks as well as a subset of Atari games, both interfaced through OpenAI gym [41]. For continuous
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Figure 1: Learning curves for the suite of OpenAI gym continuous control tasks in MuJoCo. Curves are averaged
over 10 trials, where the shaded area represents a 95% confidence interval over the trials.

Table 1: Average performance over the last 10 evaluations and 10 trials. ± captures a 95% confidence interval.
Scores are bold if the confidence interval intersects with the confidence interval of the highest performance,
except for Hopper and Walker2d where all scores satisfy this condition.

TD3 SAC TD3 + PER TD3 + LAP TD3 + PAL

HalfCheetah 13570.9 ± 794.2 15511.6 ± 305.2 13927.8 ± 683.9 14836.5 ± 532.2 15012.2 ± 885.4
Hopper 3393.2 ± 381.9 2851.6 ± 417.4 3275.5 ± 451.8 3246.9 ± 463.4 3129.1 ± 473.5
Walker2d 4692.4 ± 423.6 5234.4 ± 346.1 4719.1 ± 492.0 5230.5 ± 368.2 5218.7 ± 422.6
Ant 6469.9 ± 200.3 4923.6 ± 882.3 6278.7 ± 311.3 6912.6 ± 234.4 6476.2 ± 640.2
Humanoid 6437.5 ± 349.3 6580.9 ± 296.6 5629.3 ± 174.4 7855.6 ± 705.9 8265.9 ± 519.0

control, we combine our methods with a state-of-the-art algorithm TD3 [42], which we benchmark
against, as well as SAC [43], which have both been shown to outperform other standard algorithms
on the MuJoCo benchmark. For Atari, we apply LAP and PAL to Double DQN (DDQN) [12],
and benchmark the performance against PER + DDQN. A complete list of hyper-parameters and
experimental details are provided in the supplementary material. MuJoCo results are presented in
Figure 1 and Table 1 and Atari results are presented in Figure 2 and Table 2.

We find that the addition of either LAP or PAL matches or outperforms the vanilla version of TD3 in
all tasks. In the challenging Humanoid task, we find that both LAP and PAL offer a large improvement
over the previous state-of-the-art. Interestingly enough, we find no meaningful difference in the
performance of LAP and PAL across all tasks. This means that prioritization has little benefit and
the improvement comes from the change in expected gradient from using our methods over MSE.
Consequently, for MuJoCo environments, non-uniform sampling can be replaced by adjusting the
loss function instead. Additionally, we confirm previous results which found PER provides no benefit
when added to TD3 [40]. Given prioritization appears to have little impact in this domain, this result
is consistent with our theoretical analysis which shows using that MSE with PER introduces bias.

In the Atari domain, we find LAP improves over PER in 9 out of 10 environments, with a mean
performance gain of 53%. On the other hand, while PAL offers non-trivial gains over vanilla DDQN,
it under-performs PER on 6 of the 10 environments tested. This suggests that prioritization plays a
more significant role in the Atari domain, but some of the improvement can still be attributed to the
change in expected gradient. As the Atari domain includes games which require longer horizons or
sparse rewards, the benefit of prioritization is not surprising.

When α = 0, PAL equals a Huber loss with a scaling factor 1
λ . We perform an ablation study to

disentangle the importance of the components to PAL. We compare the performance of PAL and the
Huber loss with and without 1

λ . The results are presented in the supplementary material. We find the
complete loss of PAL achieves the highest performance, and the change in expected gradient from
using α 6= 0 to be the largest contributing factor.

7 Discussion

Performance. The performance of PAL is of particular interest due to the simplicity of the method,
requiring only a small change to the loss function. In the MuJoCo domain, TD3 + PAL matches the
performance of our prioritization scheme while outperforming vanilla TD3 and SAC. Our ablation
study shows the performance gain largely comes from the change in expected gradient. We believe
the benefit of PAL over MSE is the additional robustness, and the benefit over the Huber loss is a
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Figure 2: We display the percentage improvement of
final scores achieved by DDQN + PAL and DDQN +
LAP when compared to DDQN + PER (left) and DDQN
(right). Some extreme values are visually clipped.

Table 2: Mean and median percentage improvement
of final scores achieved over DDQN and DDQN +
PER across 10 Atari games.

Mean % Gain Median % Gain

vs. DDQN + PER

DDQN -8.06% -13.00%
DDQN + LAP +53.38% +24.98%
DDQN + PAL +4.50% -8.96%

vs. DDQN

DDQN + PER +37.65% +15.24%
DDQN + LAP +148.16% +24.35%
DDQN + PAL +20.46% +6.79%

better approximation of the mean. There is also a small gain in performance due to the re-scaling
used to match the exact expected gradient of LAP. When examining PAL in isolation, it is somewhat
unclear why this re-scaling should improve performance. One hypothesis is that as 1

λ decreases the
average error increases, this can be thought of an approach to balance out large gradient steps. On the
other hand, the performance gain from LAP is more intuitive to understand, as we correct underlying
issues with PER by understanding its relationship with the loss function.

Alternate Priority schemes. Our theoretical results define a relationship between the expected
gradient of a non-uniformly sampled loss function and a uniformly sampled loss function. This
allows us define the optimal variance-reducing prioritization scheme and corresponding loss function.
However, there is still more research to do in non-uniform sampling, as often the a uniform sample of
the replay buffer is not representative of the data of interest [44], and alternate weightings may be
preferred such as the stationary distribution [45, 46, 47] or importance sampling ratios [8]. We hope
our results provide a valuable tool for analyzing and understanding alternate prioritization schemes.

Reproducibility and algorithmic credit assignment. Our work emphasizes the susceptible nature
of deep reinforcement learning algorithms to small changes [48] and the reproducibility crisis [49], as
we are able to show significant improvements to the performance of a well-known algorithm with only
minor changes to the loss function. This suggests that papers which use intensive hyper-parameter
optimization or introduce algorithmic changes without ablation studies may be improving over the
original algorithm due to unintended consequences, rather than the proposed method.

8 Conclusion

In this paper, we aim to build the theoretical foundations for a commonly used deep reinforcement
learning technique known as prioritized experience replay (PER) [1]. To do so, we first show an
interesting connection between non-uniform sampling and loss functions. Namely, any loss function
can be approximated, in the sense of having the same expected gradient, by a new loss function
with some non-uniform sampling scheme, and vice-versa. We use this relationship to show that
the prioritized, non-uniformly sampled variant of the loss function has lower variance than the
uniformly sampled equivalent. This result suggests that by carefully considering the loss function,
using prioritization should outperform the standard setup of uniform sampling.

However, without considering the loss function, prioritization changes the expected gradient. This
allows us to develop a concrete understanding of why PER has been shown to perform poorly when
combined with continuous control methods in the past [40, 24], due to a bias towards outliers when
used with MSE. We introduce a corrected version of PER which considers the loss function, known as
Loss-Adjusted Prioritized (LAP) experience replay and its mirrored uniformly sampled loss function
equivalent, Prioritized Approximation Loss (PAL). We test both LAP and PAL on standard deep
reinforcement learning benchmarks in MuJoCo and Atari, and show their addition improves upon the
vanilla algorithm across both domains.

8



Broader Impact

Our research focuses on developing the theoretical foundations for a commonly used technique in
deep reinforcement learning, prioritized experience replay. Our insights could be used to improve
reinforcement learning systems over a wide range of applications such as clinical trial design [50],
educational games [51] and recommender systems [52, 53]. Non-uniform sampling may also have
benefits for scaling offline reinforcement learning, in particular, when learning from large data
sets where sampling only relevant or important data is critical. We expect our impact to be more
significant for the reinforcement learning community itself. In the supplementary material we
demonstrate our publicly released implementation of PER runs significantly faster (5-17×) than
previous implementations published by corporate research groups [54, 55]. This improves the
accessibility of non-uniform sampling strategy and state-of-the-art deep reinforcement learning
research for groups with resource limitations.
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