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Abstract

Score-based generative models can produce high quality image samples comparable
to GANs, without requiring adversarial optimization. However, existing training
procedures are limited to images of low resolution (typically below 32 × 32),
and can be unstable under some settings. We provide a new theoretical analysis
of learning and sampling from score-based models in high dimensional spaces,
explaining existing failure modes and motivating new solutions that generalize
across datasets. To enhance stability, we also propose to maintain an exponential
moving average of model weights. With these improvements, we can scale score-
based generative models to various image datasets, with diverse resolutions ranging
from 64 × 64 to 256 × 256. Our score-based models can generate high-fidelity
samples that rival best-in-class GANs on various image datasets, including CelebA,
FFHQ, and several LSUN categories.

1 Introduction

Score-based generative models [1] represent probability distributions through score—a vector field
pointing in the direction where the likelihood of data increases most rapidly. Remarkably, these
score functions can be learned from data without requiring adversarial optimization, and can produce
realistic image samples that rival GANs on simple datasets such as CIFAR-10 [2].

Despite this success, existing score-based generative models only work on low resolution images
(32 × 32) due to several limiting factors. First, the score function is learned via denoising score
matching [3, 4, 5]. Intuitively, this means a neural network (named the score network) is trained
to denoise images blurred with Gaussian noise. A key insight from [1] is to perturb the data using
multiple noise scales so that the score network captures both coarse and fine-grained image features.
However, it is an open question how these noise scales should be chosen. The recommended settings
in [1] work well for 32× 32 images, but perform poorly when the resolution gets higher. Second,
samples are generated by running Langevin dynamics [6, 7]. This method starts from white noise
and progressively denoises it into an image using the score network. This procedure, however, might
fail or take an extremely long time to converge when used in high-dimensions and with a necessarily
imperfect (learned) score network.

We propose a set of techniques to scale score-based generative models to high resolution images.
Based on a new theoretical analysis on a simplified mixture model, we provide a method to analytically
compute an effective set of Gaussian noise scales from training data. Additionally, we propose an
efficient architecture to amortize the score estimation task across a large (possibly infinite) number
of noise scales with a single neural network. Based on a simplified analysis of the convergence
properties of the underlying Langevin dynamics sampling procedure, we also derive a technique to
approximately optimize its performance as a function of the noise scales. Combining these techniques
with an exponential moving average (EMA) of model parameters, we are able to significantly improve
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Figure 1: Generated samples on datasets of decreasing resolutions. From left to right: FFHQ
256 × 256, LSUN bedroom 128 × 128, LSUN tower 128 × 128, LSUN church_outdoor 96 × 96,
and CelebA 64× 64.

the sample quality, and successfully scale to images of resolutions ranging from 64×64 to 256×256,
which was previously impossible for score-based generative models. As illustrated in Fig. 1, the
samples are sharp and diverse.

2 Background

2.1 Langevin dynamics

For any continuously differentiable probability density p(x), we call ∇x log p(x) its score function.
In many situations the score function is easier to model and estimate than the original probability
density function [3, 8]. For example, for an unnormalized density it does not depend on the partition
function. Once the score function is known, we can employ Langevin dynamics to sample from the
corresponding distribution. Given a step size α > 0, a total number of iterations T , and an initial
sample x0 from any prior distribution π(x), Langevin dynamics iteratively evaluate the following

xt ← xt−1 + α ∇x log p(xt−1) +
√

2α zt, 1 ≤ t ≤ T (1)

where zt ∼ N (0, I). When α is sufficiently small and T is sufficiently large, the distribution
of xT will be close to p(x) under some regularity conditions [6, 7]. Suppose we have a neural
network sθ(x) (called the score network) parameterized by θ, and it has been trained such that
sθ(x) ≈ ∇x log p(x). We can approximately generate samples from p(x) using Langevin dynamics
by replacing ∇x log p(xt−1) with sθ(xt−1) in Eq. (1). Note that Eq. (1) can be interpreted as noisy
gradient ascent on the log-density log p(x).

2.2 Score-based generative modeling

We can estimate the score function from data and generate new samples with Langevin dynamics.
This idea was named score-based generative modeling by ref. [1]. Because the estimated score
function is inaccurate in regions without training data, Langevin dynamics may not converge correctly
when a sampling trajectory encounters those regions (see more detailed analysis in ref. [1]). As a
remedy, ref. [1] proposes to perturb the data with Gaussian noise of different intensities and jointly
estimate the score functions of all noise-perturbed data distributions. During inference, they combine
the information from all noise scales by sampling from each noise-perturbed distribution sequentially
with Langevin dynamics.

More specifically, suppose we have an underlying data distribution pdata(x) and consider a sequence
of noise scales {σi}Li=1 that satisfies σ1 > σ2 > · · · > σL. Let pσ(x̃ | x) = N (x̃ | x, σ2I), and
denote the corresponding perturbed data distribution as pσ(x̃) ,

∫
pσ(x̃ | x)pdata(x)dx. Ref. [1]
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proposes to estimate the score function of each pσi(x) by training a joint neural network sθ(x, σ)
(called the noise conditional score network) with the following loss:

1

2L

L∑
i=1

Epdata(x)Epσi (x̃|x)
[ ∥∥∥∥σisθ(x̃, σi) +

x̃− x

σi

∥∥∥∥2
2

]
, (2)

where all expectations can be efficiently estimated using empirical averages. When trained to
the optimum (denoted as sθ∗(x, σ)), the noise conditional score network (NCSN) satisfies ∀i :
sθ∗(x, σi) = ∇x log pσi(x) almost everywhere [1], assuming enough data and model capacity.

Algorithm 1 Annealed Langevin dynamics [1]

Require: {σi}Li=1, ε, T .
1: Initialize x0

2: for i← 1 to L do
3: αi ← ε · σ2

i /σ
2
L . αi is the step size.

4: for t← 1 to T do
5: Draw zt ∼ N (0, I)
6: xt ← xt−1 + αi sθ(xt−1, σi) +

√
2αi zt

7: x0 ← xT
8: if denoise xT then
9: return xT + σ2

T sθ(xT , σT )
10: else
11: return xT

After training an NCSN, ref. [1] generates
samples by annealed Langevin dynamics, a
method that combines information from all
noise scales. We provide its pseudo-code in Al-
gorithm 1. The approach amounts to sampling
from pσ1

(x), pσ2
(x), · · · , pσL(x) sequentially

with Langevin dynamics with a special step size
schedule αi = ε σ2

i /σ
2
L for the i-th noise scale.

Samples from each noise scale are used to ini-
tialize Langevin dynamics for the next noise
scale until reaching the smallest one, where it
provides final samples for the NCSN.

Following the first public release of this work,
ref. [9] noticed that adding an extra denoising
step after the original annealed Langevin dynam-
ics in [1], similar to [10, 11, 12], often significantly improves FID scores [13] without affecting
the visual appearance of samples. Instead of directly returning xT , this denoising step returns
xT + σ2

T sθ(xT , σT ) (see Algorithm 1), which essentially removes the unwanted noise N (0, σ2
T I)

from xT using Tweedie’s formula [14]. Therefore, we have updated results in the main paper by
incorporating this denoising trick, but kept some original results without this denoising step in the
appendix for reference.

There are many design choices that are critical to the successful training and inference of NCSNs,
including (i) the set of noise scales {σi}Li=1, (ii) the way that sθ(x, σ) incorporates information of σ,
(iii) the step size parameter ε and (iv) the number of sampling steps per noise scale T in Algorithm 1.
Below we provide theoretically motivated ways to configure them without manual tuning, which
significantly improve the performance of NCSNs on high resolution images.

3 Choosing noise scales

Noise scales are critical for the success of NCSNs. As shown in [1], score networks trained with a
single noise can never produce convincing samples for large images. Intuitively, high noise facilitates
the estimation of score functions, but also leads to corrupted samples; while lower noise gives clean
samples but makes score functions harder to estimate. One should therefore leverage different noise
scales together to get the best of both worlds.

When the range of pixel values is [0, 1], the original work on NCSN [1] recommends choosing
{σi}Li=1 as a geometric sequence where L = 10, σ1 = 1, and σL = 0.01. It is reasonable that
the smallest noise scale σL = 0.01 � 1, because we sample from perturbed distributions with
descending noise scales and we want to add low noise at the end. However, some important questions
remain unanswered, which turn out to be critical to the success of NCSNs on high resolution images:
(i) Is σ1 = 1 appropriate? If not, how should we adjust σ1 for different datasets? (ii) Is geometric
progression a good choice? (iii) Is L = 10 good across different datasets? If not, how many noise
scales are ideal?

Below we provide answers to the above questions, motivated by theoretical analyses on simple
mathematical models. Our insights are effective for configuring score-based generative modeling in
practice, as corroborated by experimental results in Section 6.
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3.1 Initial noise scale

The algorithm of annealed Langevin dynamics (Algorithm 1) is an iterative refining procedure that
starts from generating coarse samples with rich variation under large noise, before converging to fine
samples with less variation under small noise. The initial noise scale σ1 largely controls the diversity
of the final samples. In order to promote sample diversity, we might want to choose σ1 to be as
large as possible. However, an excessively large σ1 will require more noise scales (to be discussed in
Section 3.2) and make annealed Langevin dynamics more expensive. Below we present an analysis
to guide the choice of σ1 and provide a technique to strike the right balance.

Real-world data distributions are complex and hard to analyze, so we approximate them with empirical
distributions. Suppose we have a dataset {x(1),x(2), · · · ,x(N)} which is i.i.d. sampled from pdata(x).
Assuming N is sufficiently large, we have pdata(x) ≈ p̂data(x) , 1

N

∑N
i=1 δ(x = x(i)), where δ(·)

denotes a point mass distribution. When perturbed withN (0, σ2
1I), the empirical distribution becomes

p̂σ1
(x) , 1

N

∑N
i=1 p

(i)(x), where p(i)(x) , N (x | x(i), σ2
1I). For generating diverse samples

regardless of initialization, we naturally expect that Langevin dynamics can explore any component
p(i)(x) when initialized from any other component p(j)(x), where i 6= j. The performance of
Langevin dynamics is governed by the score function∇x log p̂σ1

(x) (see Eq. (1)).

Proposition 1. Let p̂σ1(x) , 1
N

∑N
i=1 p

(i)(x), where p(i)(x) , N (x | x(i), σ2
1I). With r(i)(x) ,

p(i)(x)∑N
k=1 p

(k)(x)
, the score function is∇x log p̂σ1

(x) =
∑N
i=1 r

(i)(x)∇x log p(i)(x). Moreover,

Ep(i)(x)[r(j)(x)] ≤ 1

2
exp

(
−
∥∥x(i) − x(j)

∥∥2
2

8σ2
1

)
. (3)

In order for Langevin dynamics to transition from p(i)(x) to p(j)(x) easily for i 6= j, Ep(i)(x)[r(j)(x)]

has to be relatively large, because otherwise∇x log p̂σ1
(x) =

∑N
k=1 r

(k)(x)∇x log p(k)(x) will ig-
nore the component p(j)(x) (on average) when initialized with x ∼ p(i)(x) and in such case Langevin
dynamics will act as if p(j)(x) did not exist. The bound of Eq. (3) indicates that Ep(i)(x)[r(j)(x)] can
decay exponentially fast if σ1 is small compared to

∥∥x(i) − x(j)
∥∥
2
. As a result, it is necessary for σ1

to be numerically comparable to the maximum pairwise distances of data to facilitate transitioning of
Langevin dynamics and hence improving sample diversity. In particular, we suggest:

Technique 1 (Initial noise scale). Choose σ1 to be as large as the maximum Euclidean distance
between all pairs of training data points.

(a) Data (b) σ1 = 1 (c) σ1 = 50

Figure 2: Running annealed Langevin dynamics
to sample from a mixture of Gaussian centered at
images in the CIFAR-10 test set.

Taking CIFAR-10 as an example, the median
pairwise distance between all training images
is around 18, so σ1 = 1 as in [1] implies
E[r(x)] < 10−17 and is unlikely to produce
diverse samples as per our analysis. To test
whether choosing σ1 according to Technique 1
(i.e., σ1 = 50) gives significantly more diverse
samples than using σ1 = 1, we run annealed
Langevin dynamics to sample from a mixture of
Gaussian with 10000 components, where each
component is centered at one CIFAR-10 test
image. All initial samples are drawn from a uni-
form distribution over [0, 1]32×32×3. This setting allows us to avoid confounders introduced by
NCSN training because we use ground truth score functions. As shown in Fig. 2, samples in Fig. 2c
(using Technique 1) exhibit comparable diversity to ground-truth images (Fig. 2a), and have better
variety than Fig. 2b (σ1 = 1). Quantitatively, the average pairwise distance of samples in Fig. 2c is
18.65, comparable to data (17.78) but much higher than that of Fig. 2b (10.12).

3.2 Other noise scales

After setting σL and σ1, we need to choose the number of noise scales L and specify the other
elements of {σi}Li=1. As analyzed in [1], it is crucial for the success of score-based generative models
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to ensure that pσi(x) generates a sufficient number of training data in high density regions of pσi−1(x)
for all 1 < i ≤ L. The intuition is we need reliable gradient signals for pσi(x) when initializing
Langevin dynamics with samples from pσi−1(x).

However, an extensive grid search on {σi}Li=1 can be very expensive. To give some theoretical
guidance on finding good noise scales, we consider a simple case where the dataset contains only one
data point, or equivalently, ∀1 ≤ i ≤ L : pσi(x) = N (x | 0, σ2

i I). Our first step is to understand
the distributions of pσi(x) better, especially when x has high dimensionality. We can decompose
pσi(x) in hyperspherical coordinates to p(φ)pσi(r), where r and φ denote the radial and angular
coordinates of x respectively. Because pσi(x) is an isotropic Gaussian, the angular component p(φ)
is uniform and shared across all noise scales. As for pσi(r), we have the following
Proposition 2. Let x ∈ RD ∼ N (0, σ2I), and r = ‖x‖2. We have

p(r) =
1

2D/2−1Γ(D/2)

rD−1

σD
exp

(
− r2

2σ2

)
and r −

√
Dσ

d→ N (0, σ2/2) when D →∞.

In practice, dimensions of image data can range from several thousand to millions, and are typically
large enough to warrant p(r) ≈ N (r|

√
Dσ, σ2/2) with negligible error. We therefore take pσi(r) =

N (r|mi, s
2
i ) to simplify our analysis, where mi ,

√
Dσ, and s2i , σ2/2.

Recall that our goal is to make sure samples from pσi(x) will cover high density regions of pσi−1(x).
Because p(φ) is shared across all noise scales, pσi(x) already covers the angular component of
pσi−1

(x). Therefore, we need the radial components of pσi(x) and pσi−1
(x) to have large overlap.

Since pσi−1
(r) has high density in Ii−1 , [mi−1 − 3si−1,mi−1 + 3si−1] (employing the “three-

sigma rule of thumb” [15]), a natural choice is to fix pσi(r ∈ Ii−1) = Φ(
√

2D(γi − 1) + 3γi) −
Φ(
√

2D(γi − 1)− 3γi) = C with some moderately large constant C > 0 for all 1 < i ≤ L, where
γi , σi−1/σi and Φ(·) is the CDF of standard Gaussian. This choice immediately implies that
γ2 = γ3 = · · · γL and thus {σi}Li=1 is a geometric progression.

Ideally, we should choose as many noise scales as possible to make C ≈ 1. However, having too
many noise scales will make sampling very costly, as we need to run Langevin dynamics for each
noise scale in sequence. On the other hand, L = 10 (for 32× 32 images) as in the original setting
of [1] is arguably too small, for which C = 0 up to numerical precision. To strike a balance, we
recommend C ≈ 0.5 which performs well in our experiments. In summary,
Technique 2 (Other noise scales). Choose {σi}Li=1 as a geometric progression with common ratio γ,
such that Φ(

√
2D(γ − 1) + 3γ)− Φ(

√
2D(γ − 1)− 3γ) ≈ 0.5.

3.3 Incorporating the noise information

Figure 3: Training loss curves of
two noise conditioning methods.

For high resolution images, we need a large σ1 and a huge
number of noise scales as per Technique 1 and 2. Recall that
the NCSN is a single amortized network that takes a noise
scale and gives the corresponding score. In [1], authors use a
separate set of scale and bias parameters in normalization layers
to incorporate the information from each noise scale. However,
its memory consumption grows linearly w.r.t. L, and it is not
applicable when the NCSN has no normalization layers.

We propose an efficient alternative that is easier to implement
and more widely applicable. For pσ(x) = N (x | 0, σ2I)
analyzed in Section 3.2, we observe that E[‖∇x log pσ(x)‖2] ≈√
D/σ. Moreover, as empirically noted in [1], ‖sθ(x, σ)‖2 ∝ 1/σ for a trained NCSN on real data.

Because the norm of score functions scales inverse proportionally to σ, we can incorporate the
noise information by rescaling the output of an unconditional score network sθ(x) with 1/σ. This
motivates our following recommendation
Technique 3 (Noise conditioning). Parameterize the NCSN with sθ(x, σ) = sθ(x)/σ, where sθ(x)
is an unconditional score network.

It is typically hard for deep networks to automatically learn this rescaling, because σ1 and σL can
differ by several orders of magnitude. This simple choice is easier to implement, and can easily
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handle a large number of noise scales (even continuous ones). As shown in Fig. 3 (detailed settings in
Appendix B), it achieves similar training losses compared to the original noise conditioning approach
in [1], and generate samples of better quality (see Appendix C.4).

4 Configuring annealed Langevin dynamics

In order to sample from an NCSN with annealed Langevin dynamics, we need to specify the number
of sampling steps per noise scale T and the step size parameter ε in Algorithm 1. Authors of [1]
recommends ε = 2 × 10−5 and T = 100. It remains unclear how we should change ε and T for
different sets of noise scales.

To gain some theoretical insight, we revisit the setting in Section 3.2 where the dataset has one point
(i.e., pσi(x) = N (x | 0, σ2

i I)). Annealed Langevin dynamics connect two adjacent noise scales
σi−1 > σi by initializing the Langevin dynamics for pσi(x) with samples obtained from pσi−1(x).
When applying Langevin dynamics to pσi(x), we have xt+1 ← xt + α∇x log pσi(xt) +

√
2αzt,

where x0 ∼ pσi−1
(x) and zt ∼ N (0, I). The distribution of xT can be computed in closed form:

Proposition 3. Let γ = σi−1

σi
. For α = ε · σ

2
i

σ2
L

(as in Algorithm 1), we have xT ∼ N (0, s2T I), where

s2T
σ2
i

=

(
1− ε

σ2
L

)2T
(
γ2 − 2ε

σ2
L − σ2

L

(
1− ε

σ2
L

)2
)

+
2ε

σ2
L − σ2

L

(
1− ε

σ2
L

)2 . (4)

When {σi}Li=1 is a geometric progression as advocated by Technique 2, we immediately see that
s2T/σ2

i is identical across all 1 < i ≤ T because of the shared γ. Furthermore, the value of s2T/σ2
i has

no explicit dependency on the dimensionality D.

For better mixing of annealed Langevin dynamics, we hope s2T/σ2
i approaches 1 across all noise

scales, which can be achieved by finding ε and T that minimize the difference between Eq. (4) and
1. Unfortunately, this often results in an unnecessarily large T that makes sampling very expensive
for large L. As an alternative, we propose to first choose T based on a reasonable computing budget
(typically T × L is several thousand), and subsequently find ε by making Eq. (4) as close to 1 as
possible. In summary:
Technique 4 (selecting T and ε). Choose T as large as allowed by a computing budget and then
select an ε that makes Eq. (4) maximally close to 1.

We follow this guidance to generate all samples in this paper, except for those from the original
NCSN where we adopt the same settings as in [1]. When finding ε with Technique 4 and Eq. (4), we
recommend performing grid search over ε, rather than using gradient-based optimization methods.

5 Improving stability with moving average

Unlike GANs, score-based generative models have one unified objective (Eq. (2)) and require no
adversarial training. However, even though the loss function of NCSNs typically decreases steadily
over the course of training, we observe that the generated image samples sometimes exhibit unstable
visual quality, especially for images of larger resolutions. We empirically demonstrate this fact
by training NCSNs on CIFAR-10 32 × 32 and CelebA [16] 64 × 64 following the settings of [1],
which exemplifies typical behavior on other image datasets. We report FID scores [13] computed
on 1000 samples every 5000 iterations. Results in Fig. 4 are computed with the denoising step, but
results without the denoising step are similar (see Fig. 8 in Appendix C.1). As shown in Figs. 4
and 8, the FID scores for the vanilla NCSN often fluctuate significantly during training. Additionally,
samples from the vanilla NCSN sometimes exhibit characteristic artifacts: image samples from the
same checkpoint have strong tendency to have a common color shift. Moreover, samples are shifted
towards different colors throughout training. We provide more samples in Appendix C.3 to manifest
this artifact.

This issue can be easily fixed by exponential moving average (EMA). Specifically, let θi denote
the parameters of an NCSN after the i-th training iteration, and θ′ be an independent copy of the
parameters. We update θ′ with θ′ ← mθ′ + (1−m)θi after each optimization step, where m is the
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Figure 4: FIDs and color artifacts over the course of training (best viewed in color). The FIDs of
NCSN have much higher volatility compared to NCSN with EMA. Samples from the vanilla NCSN
often have obvious color shifts. All FIDs are computed with the denoising step.

(a) CIFAR-10 FIDs (b) CelebA FIDs

Figure 5: FIDs for different groups of techniques.
Subscripts of “NCSN” are IDs of techniques in effect.
“NCSNv2” uses all techniques. Results are computed
with the denoising step.

Table 1: Inception and FID scores.
Model Inception ↑ FID ↓
CIFAR-10 Unconditional
PixelCNN [17] 4.60 65.93
IGEBM [18] 6.02 40.58
WGAN-GP [19] 7.86± .07 36.4
SNGAN [20] 8.22± .05 21.7

NCSN [1] 8.87± .12 25.32
NCSN (w/ denoising) 7.32± .12 29.8
NCSNv2 (w/o denoising) 8.73± .13 31.75
NCSNv2 (w/ denoising) 8.40± .07 10.87

CelebA 64× 64

NCSN (w/o denoising) - 26.89
NCSN (w/ denoising) - 25.30
NCSNv2 (w/o denoising) - 28.86
NCSNv2 (w/ denoising) - 10.23

momentum parameter and typically m = 0.999. When producing samples, we use sθ′(x, σ) instead
of sθi(x, σ). As shown in Fig. 4, EMA can effectively stabilize FIDs, remove artifacts (more samples
in Appendix C.3) and give better FID scores in most cases. Empirically, we observe the effectiveness
of EMA is universal across a large number of different image datasets. As a result, we recommend
the following rule of thumb:

Technique 5 (EMA). Apply exponential moving average to parameters when sampling.

6 Combining all techniques together

Employing Technique 1–5, we build NCSNs that can readily work across a large number of different
datasets, including high resolution images that were previously out of reach with score-based genera-
tive modeling. Our modified model is named NCSNv2. For a complete description on experimental
details and more results, please refer to Appendix B and C.

Quantitative results: We consider CIFAR-10 32×32 and CelebA 64×64 where NCSN and NCSNv2
both produce reasonable samples. We report FIDs (lower is better) every 5000 iterations of training
on 1000 samples and give results in Fig. 5 (with denoising) and Fig. 9 (without denoising, deferred
to Appendix C.1). As shown in Figs. 5 and 9, we observe that the FID scores of NCSNv2 (with all
techniques applied) are on average better than those of NCSN, and have much smaller variance over
the course of training. Following [1], we select checkpoints with the smallest FIDs (on 1000 samples)
encountered during training, and compute full FID and Inception scores on more samples from them.
As shown by results in Table 1, NCSNv2 (w/ denoising) is able to significantly improve the FID
scores of NCSN on both CIFAR-10 and CelebA, while bearing a slight loss of Inception scores on
CIFAR-10. However, we note that Inception and FID scores have known issues [21, 22] and they
should be interpreted with caution as they may not correlate with visual quality in the expected way.
In particular, they can be sensitive to slight noise perturbations [23], as shown by the difference of
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Figure 6: From top to bottom: FFHQ 2562, LSUN bedroom 1282, LSUN tower 1282, and LSUN
church_outdoor 962. Within each group of images: the first row shows uncurated samples from
NCSNv2, and the second shows the interpolation results between the leftmost and rightmost samples
with NCSNv2. You may zoom in to view more details.

(a) NCSN (b) NCSNv2 (c) NCSN (d) NCSNv2

Figure 7: NCSN vs. NCSNv2 samples on LSUN church_outdoor (a)(b) and LSUN bedroom (c)(d).

scores with and without denoising in Table 1. To verify that NCSNv2 indeed generates better images
than NCSN, we provide additional uncurated samples in Appendix C.4 for visual comparison.

Ablation studies: We conduct ablation studies to isolate the contributions of different techniques. We
partition all techniques into three groups: (i) Technique 5, (ii) Technique 1,2,4, and (iii) Technique 3,
where different groups can be applied simultaneously. Technique 1,2 and 4 are grouped together
because Technique 1 and 2 collectively determine the set of noise scales, and to sample from NCSNs
trained with these noise scales we need Technique 4 to configure annealed Langevin dynamics
properly. We test the performance of successively removing groups (iii), (ii), (i) from NCSNv2, and
report results in Fig. 5 for sampling with denoising and in Fig. 9 (Appendix C.1) for sampling without
denoising. All groups of techniques improve over the vanilla NCSN. Although the FID scores are
not strictly increasing when removing (iii), (ii), and (i) progressively, we note that FIDs may not
always correlate with sample quality well. In fact, we do observe decreasing sample quality by visual
inspection (see Appendix C.4), and combining all techniques gives the best samples.

Towards higher resolution: The original NCSN only succeeds at generating images of low resolu-
tion. In fact, [1] only tested it on MNIST 28× 28 and CelebA/CIFAR-10 32× 32. For slightly larger
images such as CelebA 64× 64, NCSN can generate images of consistent global structure, yet with
strong color artifacts that are easily noticeable (see Fig. 4 and compare Fig. 10a with Fig. 10b). For
images with resolutions beyond 96× 96, NCSN will completely fail to produce samples with correct
structure or color (see Fig. 7). All samples shown here are generated without the denoising step, but
since σL is very small, they are visually indistinguishable from ones with the denoising step.

By combining Technique 1–5, NCSNv2 can work on images of much higher resolution. Note that
we directly calculated the noise scales for training NCSNs, and computed the step size for annealed
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Langevin dynamics sampling without manual hyper-parameter tuning. The network architectures are
the same across datasets, except that for ones with higher resolution we use more layers and more
filters to ensure the receptive field and model capacity are large enough (see details in Appendix B.1).
In Fig. 6 and 1, we show NCSNv2 is capable of generating high-fidelity image samples with
resolutions ranging from 96× 96 to 256× 256. To show that this high sample quality is not a result
of dataset memorization, we provide the loss curves for training/test, as well as nearest neighbors
for samples in Appendix C.5. In addition, NCSNv2 can produce smooth interpolations between two
given samples as in Fig. 6 (details in Appendix B.2), indicating the ability to learn generalizable
image representations.

7 Conclusion

Motivated by both theoretical analyses and empirical observations, we propose a set of techniques
to improve score-based generative models. Our techniques significantly improve the training and
sampling processes, lead to better sample quality, and enable high-fidelity image generation at
high resolutions. Although our techniques work well without manual tuning, we believe that the
performance can be improved even more by fine-tuning various hyper-parameters. Future directions
include theoretical understandings on the sample quality of score-based generative models, as well as
alternative noise distributions to Gaussian perturbations.

Broader Impact

Our work represents another step towards more powerful generative models. While we focused
on images, it is quite likely that similar techniques could be applicable to other data modalities
such as speech or behavioral data (in the context of imitation learning). Like other generative
models that have been previously proposed, such as GANs and WaveNets, score models have a
multitude of applications. Among many other applications, they could be used to synthesize new
data automatically, detect anomalies and adversarial examples, and also improve results in key tasks
such as semi-supervised learning and reinforcement learning. In turn, these techniques can have both
positive and negative impacts on society, depending on the application. In particular, the models we
trained on image datasets can be used to synthesize new images that are hard to distinguish from
real ones by humans. Synthetic images from generative models have already been used to deceive
humans in malicious ways. There are also positive uses of these technologies, for example in the arts
and as a tool to aid design in engineering. We also note that our models have been trained on datasets
that have biases (e.g., CelebA is not gender-balanced), and the learned distribution is likely to have
inherited them, in addition to others that are caused by the so-called inductive bias of models.
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