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Abstract

We propose the use of hyperedge replacement graph grammars for factor graphs,
or factor graph grammars (FGGs) for short. FGGs generate sets of factor graphs
and can describe a more general class of models than plate notation, dynamic
graphical models, case–factor diagrams, and sum–product networks can. Moreover,
inference can be done on FGGs without enumerating all the generated factor graphs.
For finite variable domains (but possibly infinite sets of graphs), a generalization
of variable elimination to FGGs allows exact and tractable inference in many
situations. For finite sets of graphs (but possibly infinite variable domains), a
FGG can be converted to a single factor graph amenable to standard inference
techniques.

1 Introduction

Graphs have been used with great success as representations of probability models, both Bayesian and
Markov networks (Koller and Friedman, 2009) as well as latent-variable neural networks (Schulman
et al., 2015). But in many applications, especially in speech and language processing, a fixed graph is
not sufficient. The graph may have substructures that repeat a variable number of times: for example,
a hidden Markov model (HMM) depends on the number of words in the string. Or, part of the graph
may have several alternatives with different structures: for example, a probabilistic context-free
grammar (PCFG) contains many trees for a given string.

Several formalisms have been proposed to fill this need. Plate notation (Buntine, 1994), plated
factor graphs (Obermeyer et al., 2019), and dynamic graphical models (Bilmes, 2010) address
the repeated-substructure problem, but only for sequence models like HMMs. Case–factor dia-
grams (McAllester et al., 2008) and sum–product networks (Poon and Domingos, 2011) address the
alternative-substructure problem, so they can describe PCFGs, but only for fixed-length inputs.

More general formalisms like probabilistic relational models (Getoor et al., 2007) and probabilistic
programming languages (van de Meent et al., 2018) address both problems successfully, but because
of their generality, tractable exact inference in them is often not possible.

Here, we explore the use of hyperedge replacement graph grammars (HRGs), a formalism for defining
sets of graphs (Bauderon and Courcelle, 1987; Habel and Kreowski, 1987; Drewes et al., 1997). We
show that HRGs for factor graphs, or factor graph grammars (FGGs) for short, are expressive enough
to solve both the repeated-substructure and alternative-substructure problems, and constrained enough
allow exact and tractable inference in many situations. We make three main contributions:

• We define FGGs and show how they generalize the constrained formalisms mentioned above (§3).

• We define a conjunction operation that enables one to modularize a FGG into two parts, one
which defines the model and one which defines a query (§4).

• We show how to perform inference on FGGs without enumerating the (possibly infinite) set of
graphs they generate. For finite variable domains, we generalize variable elimination to FGGs
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(§5.1). For some FGGs, this is exact and tractable; for others, it gives a sequence of successive
approximations.

For infinite variable domains, we show that if a FGG generates a finite set, it can be converted
to a single factor graph, to which standard graphical model inference methods can be applied
(§5.2). But if a FGG generates an infinite set, inference is undecidable (§5.3).

2 Background

In this section, we provide some background definitions for hypergraphs (§2.1), factor graphs (§2.2),
and HRGs (§2.3). Our definitions are mostly standard, but not entirely; readers already familiar with
these concepts may skip these subsections and refer back to them as needed.

2.1 Hypergraphs

Assume throughout this paper the following “global” structures. Let LV be a finite set of node labels
and LE be a finite set of edge labels, and assume there is a function type : LE → (LV )∗, which says
for each edge label what the number and labels of the endpoint nodes must be.
Definition 1. A hypergraph (or simply a graph) is a tuple (V,E, att , labV , labE), where

• V is a finite set of nodes.

• E is a finite set of hyperedges (or simply edges).

• att : E → V ∗ maps each edge to zero or more endpoint nodes, not necessarily distinct.

• labV : V → LV assigns labels to nodes.

• labE : E → LE assigns labels to edges.

• For all e, |att(e)| = |type(labE(e))|, and if att(e) = v1 · · · vk and type(labE(e)) = `1 · · · `k,
then labV (vi) = `i for i = 1, . . . , k.

Although the elements of V and E can be anything, we assume in our examples that they are natural
numbers. If a node v has label `, we draw it as a circle with `v inside it. We draw a hyperedge
as a square with lines to its endpoints. In principle, we would need to indicate the ordering of the
endpoints somehow, but we omit this to reduce clutter.

2.2 Factor graphs

Definition 2. A factor graph (Kschischang et al., 2001) is a hypergraph (V,E, att , labV , labE)
together with mappings Ω and F , where

• Ω maps node labels to sets of possible values. For brevity, we write Ω(v) for Ω(labV (v)).

• F maps edge labels to functions. For brevity, we write F (e) for F (labE(e)). For every edge e
with att(e) = v1 · · · vk, F (e) is of type Ω(v1)× · · · × Ω(vk)→ R≥0.

A node v together with its domain Ω(v) is called a variable. An edge e together with its function
F (e) is called a factor.

We draw a factor e as a small square, but instead of writing its label, we write F (e) next to it, as an
expression in terms of its endpoints. As shorthand, we often write Boolean expressions, which are
implicitly converted to real numbers (true = 1 and false = 0).
Example 3. Although HMMs are defined for sentences of arbitrary length, factor graphs force us to
choose a fixed length; below is a HMM for sentences of length 3. (Here, T and W are node labels,
Ω(T) is the set of possible tags, and Ω(W) is the set of possible words.)

T0 T1 T3 T5 T7

T0 = BOS p(T1 | T0) p(T3 | T1) p(T5 | T3) p(T7 | T5) T7 = EOS

W2 W4 W6

p(W2 | T1) p(W4 | T3) p(W6 | T5)
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Definition 4. If H is a factor graph, define an assignment ξ of H to be a mapping from nodes to
values: ξ(v) ∈ Ω(v). We write ΞH for the set of all assignments of H . The weight of an assignment
ξ is given by

wH(ξ) =
∏

edges e
with att(e) = v1 · · · vk

F (e)(ξ(v1), . . . , ξ(vk)).

In a factor graph with no factors, every assignment has weight 1. A factor graph with no variables has
exactly one assignment.

Factor graphs are general enough to represent Bayesian networks and Markov networks. They can
also represent stochastic computation graphs (SCGs), introduced by Schulman et al. (2015) for
latent-variable neural networks.

2.3 Hyperedge Replacement Graph Grammars

Hyperedge replacement graph grammars (HRGs) were introduced by Bauderon and Courcelle (1987)
and Habel and Kreowski (1987), and surveyed by Drewes et al. (1997). They generate graphs by
using a context-free rewriting mechanism that replaces nonterminal-labeled edges with graphs. In
this section, we provide a brief definition of HRGs, with a minor extension for node labels.
Definition 5. A hypergraph fragment is a tuple (V,E, att , labV , labE , ext), where

• (V,E, att , labV , labE) is a hypergraph,

• ext ∈ V ∗ is a sequence of zero or more external nodes.

In our figures, we draw external nodes as black nodes. In principle, we would need to indicate their
ordering somehow, but we omit this to reduce clutter.
Definition 6. A hyperedge replacement graph grammar (HRG) is a tuple (N,T, P, S), where

• N ⊆ LE is a finite set of nonterminal symbols.

• T ⊆ LE is a finite set of terminal symbols, such that N ∩ T = ∅.
• P is a finite set of rules of the form (X → R), where

• X ∈ N .

• R is a hypergraph fragment with edge labels in N ∪ T .

• If R has external nodes x1 · · ·xk, then type(X) = labV (x1) · · · labV (xk).

• S ∈ N is a distinguished start nonterminal symbol with type(S) = ε.

Although a left-hand side X is formally just a nonterminal symbol, we draw it as a hyperedge
labeled X inside, with replicas of the external nodes as its endpoints. On right-hand sides, we draw
an edge e with nonterminal label X as a square with Xe inside. If R is the empty graph, we write ∅.
Intuitively, a HRG generates graphs by starting with a hyperedge labeled S and repeatedly selecting
an edge e labeled X and a rule X → R and replacing e with R. (See Figure 1a for an example, where
H = R.) Replacement stops when there are no more nonterminal-labeled edges.

As with a CFG, we can abstract away from the ordering of replacement steps using a derivation tree,
in which the nodes are labeled with HRG rules, and an edge from parent π1 to child π2 has a label
indicating which edge in the right-hand side of π1 is replaced with the right-hand side of π2.
Definition 7. Let G be a HRG. For all nonterminals X , define the set D(G,X) of X-type derivation
trees (or simply X-type derivations) of G to be the smallest set containing all finite, unordered,
edge-labeled trees of the form shown in Figure 1b, where π = (X → R) is a rule in G, R has
nonterminal-labeled edges e1, . . . , ek with labels X1, . . . , Xk, and for i = 1, . . . , k, Di is an Xi-type
derivation. We simply write derivation for S-type derivation, and we let D(G) = D(G,S).

The derived graph of a derivation D is the graph formed as follows. If D is as shown in Figure 1b,
then for i = 1, . . . k, let Hi be the derived graph of Di. In (a copy of) R, replace ei with Hi, making
the jth endpoint of ei and the jth external node of Hi into the same node (for j = 1, . . . , |att(ei)|).
The resulting node is external iff the jth endpoint was. All other nodes are kept distinct. (Again, see
Figure 1a for an example with X = Xi and H = Hi.)

3



X H
replace
===⇒ H

π

· · ·

e1 ek

D1 Dk

(a) (b)

Figure 1: (a) Example of replacing a hyperedge labeled X with a hypergraph fragment H . Here
|type(X)| = 3, but in general, there could be any number of endpoint/external nodes, including zero.
(b) A derivation tree.

S
π1−→ T1

T1 = BOS
X2

T1 X
π2−→ T1 T2

W3

p(T2 | T1)

X4

p(W3 | T2)

T1 X
π3−→ T1 T2

p(T2 | T1) T2 = EOS

π1

π2

X2

π2

X4

π2

X4

π3

X4

(a) (b)

Figure 2: (a) A FGG generating the infinite set of unrollings of a HMM, one for each sequence
length. Each rule is labeled πi for use in the derivation tree. (b) Derivation tree of the factor graph
of Example 3. An edge from parent π with label X to child π′ means that the right-hand side of π′
replaces the edge labeled X in the right-hand side of π.

From now on, when we mention a derivation D in a context where a graph would be expected, the
derived graph of D is to be understood.

3 Factor Graph Grammars

Definition 8. A HRG for factor graphs, or a factor graph grammar (FGG) for short, is a HRG
together with mappings Ω and F , as in the definition of factor graphs (Definition 2), except that F is
defined on terminal edge labels only.

Example 9. Figure 2 shows a FGG which is equivalent to a HMM. It generates an infinite number of
graphs, one for each string length. Also shown is the derivation tree of the factor graph of Example 3.

Example 19 in Appendix A shows how to simulate a PCFG in Chomsky normal form as a FGG.

The graphs generated by a FGG can be viewed, together with Ω and F , as factor graphs, each of which
defines a (not necessarily normalized) distribution over assignments. Moreover, the whole language
of the FGG defines a (not necessarily normalized) distribution over derivations and assignments to
the variables in them. If D ∈ D(G), then

wG(D, ξ) = wD(ξ).

FGGs can simulate several other formalisms for dynamically-structured models. As mentioned above
(§1), they can solve two problems that previous formalisms have addressed separately.

FGGs can generate repeated substructures like plate notation (Buntine, 1994; Obermeyer et al., 2019)
and dynamic graphical models (Bilmes, 2010) can. There are some structures that plate notation
can describe that a FGG cannot – like the set of all restricted Boltzmann machines, which have two
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G Gw G uGw

S −→ T1

T1 = BOS
X2 S −→ T1 (0)2 S,S −→ T1

T1 = BOS
X, (0)2

T1 X −→ T1 T2

W3

p(T2 | T1)

X4

p(W3 | T2)

T1 (i− 1) −→ T1 T2

W3

W3 = wi

(i)4 T1 X, (i− 1) −→ T1 T2

W3

W3 = wi

p(T2 | T1)

X, (i)4

p(W3 | T2)

T1 X −→ T1 T2

p(T2 | T1) T2 = EOS
T1 (n) −→ T1 T2 T1 X, (n) −→ T1 T2

p(T2 | T1) T2 = EOS

Figure 3: Illustration of the conjunction operation (Example 12). In rules with i in their nonterminals,
i ranges from 1 to n where n = |w|.

fully-connected layers of nodes. But these are the same structures that Obermeyer et al. (2019) try to
avoid, because inference on them is (believed) intractable. FGG rules these structures out naturally.

FGGs can generate alternative substructures like case–factor diagrams (McAllester et al., 2008) and
valid sum–product networks (Poon and Domingos, 2011) can; in particular, they can simulate PCFGs
in such a way that inference is equivalent to the cubic-time inside and Viterbi algorithms.
Theorem 10. All of the following can be converted into an equivalent FGG:

1. Plated factor graphs for which the sum–product algorithm of Obermeyer et al. (2019) succeeds.

2. Dynamic graphical models.

3. Case–factor diagrams.

4. Valid sum–product networks.

Proof. See Appendix B.

4 Conjunction

The preceding examples show how to use FGGs to model the probability of all tagged strings or all
trees generated by a grammar. But it’s common for queries to constrain some variables to fixed values,
sum over some variables, and get the distribution of the remaining variables. How do such queries
generalize to FGGs? For example, in a HMM, how do we compute the probability of all taggings of a
given string? Or, how do we compute the marginal distribution of the second-to-last tag?

To answer such questions, we need to be able to specify a set of nodes across the graphs of a graph
language, like the second-to-last tag. Our only means of doing this is to specify a particular node in a
particular right-hand side, which could correspond to zero, one, or many nodes in the derived graphs.
And we can modify a FGG so that a particular node in a particular right-hand side is always (say)
the second-to-last tag. But we propose to factor such modifications into a separate FGG, keeping the
FGG describing the model unchanged. Then the modifications can be applied using a conjunction
operation, which we describe in this section.

Conjunction is closely related to synchronous HRGs (Jones et al., 2012), and, because HRG deriva-
tion trees are generated by regular tree grammars, to intersection/composition of finite tree au-
tomata/transducers (Comon et al., 2007). It is also similar to the PRODUCT operation on weighted
logic programs (Cohen et al., 2011).
Definition 11. Two FGG rules are conjoinable if they can be written in the form

X1 → R1 R1 = (V,EN ∪ E1, attN ∪ att1, lab
V , labE1 , ext)

X2 → R2 R2 = (V,EN ∪ E2, attN ∪ att2, lab
V , labE2 , ext),
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where

• EN contains only nonterminal edges, and attN is defined on EN .

• E1, E2 contain only terminal edges, and att1, att2 are defined on E1, E2, respectively.

• type(X1) = type(X2), and for e ∈ EN , type(labE1 (e)) = type(labE2 (e)).

Then their conjunction is

〈X1, X2〉 → R R = (V,EN ∪ E1 ] E2, att , lab
V , labE , ext)

where ] means that all edges in E1 and E2 are kept distinct while taking their union, and

labE(e) =


〈labE1 (e), labE2 (e)〉 if e ∈ EN
labE1 (e) if e ∈ E1

labE2 (e) if e ∈ E2

att(e) =


attN (e) if e ∈ EN
att1(e) if e ∈ E1

att2(e) if e ∈ E2.

The conjunction of two FGGs G1 and G2, written as G1 uG2, is the FGG containing the conjunction
of all conjoinable pairs of rules from G1 and G2.

Example 12. Our FGG for HMMs (Example 9) is repeated in Figure 3 as G. We can constrain the
W variables to an observed string w using another FGG, Gw, which has the same variables as G
but different factors; its nonterminal edges are the same as G but with different labels. This FGG
generates just one graph, whose W nodes spell out the string w. The conjunction of these two FGGs
is shown in the last column (G uGw). It combines the factors and nonterminal labels of G and Gw
and generates just one graph, the HMM for string w.

Example 13. To compute the distribution of the second-to-last tag, we need a way of identifying the
variable for the second-to-last tag across all graphs. We can do this by conjoining with the FGG:

S
π1−→ T1 X2 T1 X

π2−→ T1 T2 X4

W3

T1 X
π3−→ T1 T2 Y4

W3

T1 Y
π4−→ T1 T2

Then the second-to-last tag is always node T1 in the right-hand side of rule π3. The methods of the
following section can then be used to compute the distribution of this node.

Example 20 in Appendix A shows how to use conjunction to constrain a PCFG to a single input
string.

5 Inference

Given a FGG G, we want to be able to efficiently compute its sum–product,

ZG =
∑

D∈D(G)

∑
ξ∈ΞD

wG(D, ξ).

We can answer a wide variety of queries by using the conjunction operation to constrain variables
based on observations, and then computing the sum–product in various semirings: ordinary addition
and multiplication would sum over assignments to the remaining variables, and the expectation
semiring (Eisner, 2002) would compute expectations with respect to them. The Viterbi (max–product)
semiring would find the highest-weight derivation and assignment, not necessarily the highest-weight
graph and assignment, which is NP-hard (Lyngsø and Pedersen, 2002).

We consider three cases below: finite variable domains, but possibly infinite graph languages (§5.1);
finite graph languages, but possibly infinite variable domains (§5.2); and infinite variable domains
and graph languages (§5.3). To help characterize these cases and their subcases, we introduce the
following definitions.

Definition 14. A FGG is recursive if it has an X-type derivation that contains an X-type derivation
as a proper subtree; otherwise, it is nonrecursive. A nonrecursive FGG generates a finite set of graphs;
this is a common case, because the conjunction of any FGG with a nonrecursive FGG (e.g., one
describing a finite-sized observation) is nonrecursive.
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A recursive FGG is nonlinearly recursive if it has an X-type derivation that contains two disjoint
X-type derivations as proper subtrees; otherwise, it is linearly recursive.

A FGG is nonreentrant if no derivation contains two different X-type derivations as subtrees.
Every nonreentrant FGG is nonrecursive, and any nonrecursive FGG can be made nonreentrant by
duplicating rules and renaming nonterminals (though this may cause an exponential blowup in the
size of the grammar).

5.1 Finite variable domains

When a HRG generates a graph, the derivation tree is isomorphic to a tree decomposition of the graph:
each derivation tree node π = (X → R) corresponds to a bag of the tree decomposition containing
the nodes in R. It follows that a HRG whose right-hand sides have at most (k + 1) nodes generates
graphs with treewidth at most k (Bodlaender, 1998, Theorem 37). So if a FGG G generates a graph
H , computing the sum–product of H by variable elimination (VE) takes time linear in the size of H
and exponential in k.

In this section, we generalize VE to compute the sum-product of all graphs generated by G without
enumerating them. If G is nonrecursive, this is (like VE) linear in the size of G and exponential in
k; in the envisioned typical use-case, we have a fixed FGG G representing the model and different
FGGs G′ representing different observations; since conjunction cannot increase k, we may regard k
as fixed, so computing the sum–product of G uG′ takes time linear in the size of G uG′.
Theorem 15. Let G = (N,T, P, S) be a FGG such that for all v in G, |Ω(v)| ≤ m. Let |G| be the
number of rules in G, and let k be such that every right-hand side in G has at most (k + 1) nodes.
Then ZG is the least solution of a monotone system of polynomial equations, and in particular:

1. If G is nonrecursive, ZG can be computed in O(|G|mk+1) time.

2. If G is linearly recursive, ZG can be computed in O(|G|3m3(k+1)) time in the worst case.

Proof. The computation of the sum–product is closely analogous to the sum–product of a PCFG
(Stolcke, 1995; Nederhof and Satta, 2008). We introduce some shorthand for assignments. If ξ is an
assignment and v1 · · · vl is a sequence of nodes, we write ξ(v1 · · · vl) for ξ(v1) · · · ξ(vl). If X is a
nonterminal and type(X) = `1 . . . `k, we define ΞX = Ω(`1)× · · · × Ω(`k), the set of assignments
to the endpoints of an edge labeled X .

Next, we define a system of equations whose solution gives the desired sum–product. The unknowns
are ψX(ξ) for all X ∈ N and ξ ∈ ΞX , and τR(ξ) for all rules (X → R) and ξ ∈ ΞX . For all X ∈ N ,
let PX be the rules in P with left-hand side X . For each ξ ∈ ΞX , add the equation

ψX(ξ) =
∑

(X→R)∈PX
τR(ξ).

For each right-hand side R = (V,EN ∪ET , att, labV , labE , ext), where EN contains only nonter-
minal edges and ET contains only terminal edges, and for each ξ ∈ ΞX , add the equation

τR(ξ) =
∑
ξ′∈ΞR

ξ′(ext)=ξ

∏
e∈ET

F (e)(ξ′(att(e)))
∏
e∈EN

ψlabE(e)(ξ
′(att(e))).

Then
∑
ξ∈ΞX

ψX(ξ) represents the sum–product of all X-type derivations. In particular, the sum–
product of the FGG is ψS().

To solve these equations, construct a directed graph over nonterminals with an edge from X to Y iff
there is a rule X → R where R contains an edge labeled Y . For each connected component C of this
graph in reverse topological order:

1. If C = {X}, compute ψX and substitute it into the other equations.

2. Else if the equations for ψX and τR where X ∈ C and (X → R) ∈ P are linear, solve them
and substitute into the other equations (Stolcke, 1995; Goodman, 1999).

3. Else, the equations can be approximated iteratively (Goodman, 1999; Nederhof and Satta, 2008).
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If G is nonrecursive, the graph of nonterminals is acyclic, so case (1) always applies. The total
running time is O(|G|mk+1).

If G is linearly recursive, then case (2) may also apply. In the worst case, the nonterminal graph is
one connected component, corresponding to O(|G|mk+1) unknowns. Solving the equations could
involve inverting a matrix of this size, which takes O(|G|3m3(k+1)) time.

If G is nonlinearly recursive, any of the three cases may apply. For case (3), each iteration takes
O(|G|mk+1) time (fixed-point iteration method) or O(|G|3m3(k+1)) time (Newton’s method), but
the number of iterations depends on G.

Finally, we note that we can reduce the sizes of the right-hand sides of a FGG by a process analogous
to binarization of CFGs (Gildea, 2011; Chiang et al., 2013):
Proposition 16. For any hypergraph fragment R, let R̄ be the hypergraph formed by adding a
hyperedge connecting R’s external nodes. Let G be a HRG, nG be the total number of nodes in its
right-hand sides, and k be such that for every right-hand side R, the treewidth of R̄ is at most k. Then
there is an equivalent HRG with at most nG rules whose right-hand sides have at most (k+ 1) nodes.

Proof. See Appendix C.

5.2 Finite graph languages

Next, we show that a nonrecursive FGG can also be converted into an equivalent factor graph, such
that the sum–product of the factor graph is equal to the sum–product of the FGG. This makes it
possible to use standard graphical model inference techniques for reasoning about the FGG, even
with infinite variable domains. However, the conversion increases treewidth in general, so when the
method of Section 5.1 is applicable, it should be preferred.

The construction is similar to constructions by Smith and Eisner (2008) and Pynadath and Wellman
(1998) for dependency parsers and PCFGs, respectively. Their constructions and ours encode a set of
possible derivations as a graphical model, using hard constraints to ensure that every assignment to
the variables corresponds to a valid derivation.
Theorem 17. Let G = (N,T, P, S) be a nonreentrant FGG. Let nG and mG be the total number
of nodes and edges in the right-hand sides of G respectively. Then G can be converted into a factor
graph with O(nG) variables and O(nG +mG) factors which gives the same sum–product.

Proof. We construct a factor graph that encodes all derivations of G. (Example 31 in Appendix D
shows an example of this construction for a toy FGG.) First, we add binary variables (with label B
where Ω(B) = {true, false}) that switch on or off parts of the factor graph (somewhat like the gates
of Minka and Winn (2008)). For each nonterminal X ∈ N , we add BX , indicating whether X is
used in the derivation, and for each rule π ∈ P , we add Bπ , indicating whether π is used.

Next, we create factors that constrain the B variables so that only one derivation is active at a time.
We write PX for the set of rules with left-hand side X , and P→X for the set of rules which have a
right-hand side edge labeled X . Define the following function:

CondOnel(B,B1, . . . ,Bl) =

{
∃! i ∈ {1, . . . , l} .Bi if B = true
¬(B1 ∨ · · · ∨Bl) if B = false

Then we add these factors, which ensure that if one of the rules in P→X is used (or X = S), then
exactly one rule in PX is used; if no rule in P→X is used (and X 6= S), then no rule in PX is used.

• For the start symbol S, add a factor e with att(e) = BS and F (e)(BS) = (BS = true).

• For X ∈ N \ {S}, let P→X = {π1, . . . , πl} and add a factor e with att(e) = BX Bπ1
· · ·Bπl

and F (e) = CondOnel.

• For X ∈ N , let PX = {π1, . . . , πl} and add a factor e with att(e) = BX Bπ1
· · ·Bπl and

F (e) = CondOnel.

Next, define the function:

Cond(B, x) =

{
x if B = true
1 otherwise.
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For each rule π ∈ P , where π = (X → R) and R = (V,EN ∪ET , att , labV , labE), we construct a
“cluster” Cπ of variables and factors:

• For each v ∈ V , add a variable v′ with the same label to Cπ. Also, add a factor with endpoints
Bπ and v′ and function CondNormalizev′(Bπ, v

′), defined to equal Cond(¬Bπ, p(v
′)), where

p is any probability distribution over Ω(v′). This ensures that if π is not used, then v′ will sum
out of the sum–product neatly.

• For each e ∈ ET where att(e) = v1 · · · vk, add a new edge e′ with att(e′) = Bπ v
′
1 · · · v′k and

function CondFactore′(Bπ, v
′
1, . . . , v

′
k), defined to equal Cond(Bπ, F (e)(v′1, . . . , v

′
k)).

Next, for each X ∈ N , let l = |type(X)|. We create a cluster CX containing variables vX,i for
i = 1, . . . , l, which represent the endpoints of X , such that labV (vX,i) = type(X)i. We give each
an accompanying factor with endpoints Bπ and vX,i and function CondNormalizevX,i .

These clusters are used by the factors below, which ensure that if two variables are identified during
rewriting, they have the same value. Define CondEquals(B, v, v′) = Cond(B, v = v′).

• For each π ∈ P→X , let v1, . . . , vl be the endpoints of the edge in π labeled X . (By non-
reentrancy, there can be only one such edge.) For i = 1, . . . , l, create a factor e where att(e) =
Bπ vX,i vi and F (e) = CondEquals.

• For each π ∈ PX , let ext be the external nodes of π. For i = 1, . . . , l, create a factor e where
att(e) = Bπ vX,i ext i and F (e) = CondEquals.

The resulting graph has |N | + |P | binary variables, nG variables in the clusters Cπ, and∑
X∈N |type(X)| ≤ nG variables in the clusters CX , so the total number of variables is in O(nG).

It has mG CondFactore factors, nG +
∑
X∈N |type(X)| ≤ 2nG CondNormalizev factors, 2|N |

CondOnel factors, and 2
∑

(X→R)∈P |extR| ≤ 2nG CondEquals factors, so the total number of
factors is in O(nG +mG).

Appendix D contains more information on this construction, including an example, a detailed proof
that the sum–product is preserved, and a discussion of inference on the resulting graph.

5.3 Infinite variable domains, infinite graph languages

Finally, if we allow both (countably) infinite domains and infinite graph languages, then computing
the sum–product is undecidable. This has already been observed even for single factor graphs with
infinite variable domains (Dreyer and Eisner, 2009), but we show further that this can be done using
a minimal inventory of factors.

Theorem 18. Let G be a FGG whose variable domains are N and whose factors only use the
successor relation and equality with zero. It is undecidable whether the sum–product of G is zero.

Proof. By reduction from the halting problem for Turing machines. See Appendix E.

6 Conclusion

Factor graph grammars are a powerful way of defining probabilistic models that permits practical
inference. We plan to implement the algorithms described in this paper as differentiable operations
and release them as open-source software. We will also explore techniques for optimizing inference
in FGGs, for example, by automatically modifying rules to reduce their treewidth (Bilmes, 2010) or
reducing the cost of matrix inversions in Theorem 15 (Nederhof and Satta, 2008). Another important
direction for future work is the development of approximate inference algorithms for FGGs.

Broader Impact

This research is of potential benefit to anyone working with structured probability models, including
latent-variable neural networks. As this research is purely theoretical, we are not aware of any direct
negative impacts.
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