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Abstract

Density-ratio estimation via classification is a cornerstone of unsupervised learning.
It has provided the foundation for state-of-the-art methods in representation learning
and generative modelling, with the number of use-cases continuing to proliferate.
However, it suffers from a critical limitation: it fails to accurately estimate ratios
p/q for which the two densities differ significantly. Empirically, we find this
occurs whenever the KL divergence between p and g exceeds tens of nats. To
resolve this limitation, we introduce a new framework, telescoping density-ratio
estimation (TRE), that enables the estimation of ratios between highly dissimilar
densities in high-dimensional spaces. Our experiments demonstrate that TRE
can yield substantial improvements over existing single-ratio methods for mutual
information estimation, representation learning and energy-based modelling.

1 Introduction

Unsupervised learning via density-ratio estimation is a powerful paradigm in machine learning [60]
that continues to be a source of major progress in the field. It consists of estimating the ratio p/q
from their samples without separately estimating the numerator and denominator. A common way
to achieve this is to train a neural network classifier to distinguish between the two sets of samples,
since for many loss functions the ratio p/q can be extracted from the optimal classifier [60} 211, 4T].
This discriminative approach has been leveraged in diverse areas such as covariate shift adaptation
[59!163]], energy-based modelling [22} 14} |53} 164,136} 19], generative adversarial networks [15} 47, |43,
bias correction for generative models [20, [18], likelihood-free inference [50, (62, I8}, [13]], mutual-
information estimation [2]], representation learning [29} 130,48 [25] [27], Bayesian experimental design
[33,134] and off-policy reward estimation in reinforcement learning [39]]. Across this diverse set of
applications, density-ratio based methods have consistently yielded state-of-the-art results.

Despite the successes of discriminative density-ratio estimation, many existing loss functions share
a severe limitation. Whenever the ‘gap’ between p and q is large, the classifier can obtain almost
perfect accuracy with a relatively poor estimate of the density ratio. We refer to this failure mode
as the density-chasm problem—see Figure [Ia] for an illustration. We observe empirically that the
density-chasm problem manifests whenever the KL-divergence D (p || ¢) exceeds ~ 20 natﬂ
This observation accords with recent findings in the mutual information literature regarding the
limitations of density-ratio based estimators of the KL [40, 52| |57]. In high dimensions, it can easily
occur that two densities p and ¢ will have a KL-divergence measuring in the hundreds of nats, and so
the ratio may be virtually intractable to estimate with existing techniques.

In this paper, we propose a new framework for estimating density-ratios that can overcome the
density-chasm problem. Our solution uses a ‘divide-and-conquer’ strategy composed of two steps.
The first step is to gradually transport samples from p to samples from ¢, creating a chain of
intermediate datasets. We then estimate the density-ratio between consecutive datasets along this

“nat’ being a unit of information measured using the natural logarithm (base €)
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(a) Density-ratio estimation between an extremely peaked Gaussian p (¢ = 107%) and a broad Gaussian ¢
(0 = 1) using a single-parameter quadratic classifier (as detailed in section[d.T). Left: A log-log scale plot of the
densities and their ratio. Note that p(x) is not visible, since the ratio overlaps it. Right: the solid blue line is the
finite-sample logistic loss (Eq. 2 for 10,000 samples. Despite the large sample size, the minimiser (dotted blue
line) is far from optimal (dotted black line). The dotted red line is the newly introduced TRE solution, which
almost perfectly overlaps with the dotted black line.
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(b) Telescoping density-ratio estimation applied to the problem in (a), using the same 10,000 samples from p and
g. Top row: a collection of ratios, where p1, p2 and p3 are constructed by deterministically interpolating between
samples from p and q. Bottom row: the logistic loss function for each ratio estimation problem. Observe that
the finite-sample minimisers of each objective (red dotted lines) are either close to or exactly overlapping their
optima (black dotted lines). After estimating each ratio, we then combine them by taking their product.

Figure 1: Illustration of standard density-ratio estimation vs. telescoping density-ratio estimation.

chain, as illustrated in the top row of Figure Unlike the original ratio p/q, these ‘chained ratios’
can be accurately estimated via classification (see bottom row). Finally, we combine the chained
ratios via a telescoping product to obtain an estimate of the original density-ratio p/q. Thus, we refer
to the method as Telescoping density-Ratio Estimation (TRE).

We empirically demonstrate that TRE can accurately estimate density-ratios using deep neural
networks on high-dimensional problems, significantly outperforming existing single-ratio methods.
We show this for two important applications: representation learning via mutual information (MI)
estimation and the learning of energy-based models (EBMs).

In the context of mutual information estimation, we show that TRE can accurately estimate large
MI values of 30+ nats, which is recognised to be an outstanding problem in the literature [52].
However, obtaining accurate MI estimates is often not our sole objective; we also care about
learning representations from e.g. audio or image data that are useful for downstream tasks such as
classification or clustering. To this end, our experimental results for representation learning confirm
that TRE offers substantial gains over a range of existing single-ratio baselines.

In the context of energy-based modelling, we show that TRE can be viewed as an extension of noise-
contrastive estimation [22] that more efficiently scales to high-dimensional data. Whilst energy-based
modelling has been a topic of interest in the machine learning community for some time [56], there
has been a recent surge of interest, with a wave of new methods for learning deep EBMs in high
dimensions [10} 16, 158l 38}, [17,168]]. These methods have shown promising results for image and 3D
shape synthesis [[66], hybrid modelling [[16], and modelling of exchangeable data [67].



However, many of these methods result in expensive/challenging optimisation problems, since they
rely on approximate Markov chain Monte Carlo (MCMC) sampling during learning [10, 16} 68], or
on adversarial optimisation [6,[17,168]. In contrast, TRE requires no MCMC during learning and uses
a well-defined, non-adversarial, objective function. Moreover, as we show in our mutual information
experiments, TRE is applicable to discrete data, whereas all other recent EBM methods only work
for continuous random variables. Applicability to discrete data makes TRE especially promising for
domains such as natural language processing, where noise-contrastive estimation has been widely
used [42, 35} [1]].

2 Discriminative ratio estimation and the density-chasm problem

Suppose p and ¢ are two densities for which we have samples, and that ¢(x) > 0 whenever
p(x) > 0. We can estimate the density-ratio 7(x) = p(x)/q(x) by training a classifier to distinguish
samples from p and ¢ [23} 160, 22]. There are many choices for the loss function of the classifier
[60} 511 21} 411 |52]], but in this paper we concentrate on the widely used logistic loss
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where 7(x; 6) is a non-negative ratio estimating model. To enforce non-negativity, r is typically
expressed as the exponential of an unconstrained function such as a neural network. For a correctly
specified model, the minimiser of this loss, 8%, satisfies 7(x; ™) = p(x)/q(x), without needing any
normalisation constraints [22]]. Other classification losses do not always have this self-normalising
property, but only yield an estimate proportional to the true ratio—see e.g. [52].

The density-chasm problem

We experimentally find that density-ratio estimation via classification
typically works well when p and q are ‘close’ e.g. the KL divergence
between them is less than ~ 20 nats. However, for sufficiently large —
gaps, which we refer to as density-chasms, the ratio estimator is ﬂf’
*
=

single ratio
— TRE

often severely inaccurate. This raises the obvious question: what is
the cause of such inaccuracy?

There are many possible sources of error: the use of misspecified \x
0

models, imperfect optimisation algorithms, and inaccuracy stem- T
ming from Monte Carlo approximations of the expectations in (T)). sample size (log scale)
We argue that this mundane final point—Monte Carlo error due to
finite sample size—is actually sufficient for inducing the density-
chasm problem. Figure |la| depicts a toy problem for which the
model is well-specified, and because it is 1-dimensional (w.r.t. 0),
optimisation is straightforward using grid-search. And yet, if we use
a sample size of n = 10, 000 and minimise the finite-sample loss

nigy _ - _ r(ai;6) . 1 i i

we obtain an estimate 6 that is far from the asymptotic minimiser 8* = arg min £(6). Repeating
this same experiment for different sample sizes, we can empirically measure the method’s sample
efficiency, which is plotted as the blue curve in Figure 2] For the regime plotted, we see that an
exponential increase in sample size only yields a linear decrease in estimation error. This empirical
result is concordant with theoretical findings that density-ratio based lower bounds on KL divergences
are only tight for sample sizes exponential in the the number of nats [40].

Figure 2: Sample efficiency
curves for the experiment in
Figure[I] Single ratio estima-
tion can be extremely sample-
inefficient.

Whilst we focus on the logistic loss, we believe the density chasm problem is a broader phenomenon.
As shown in the appendix, the issues identified in Figure 1 and the sample inefficiency seen in Figure
2 also occur for other commonly used discriminative loss functions.

Thus, when faced with the density-chasm problem, simply increasing the sample size is a highly
inefficient solution and not always possible in practice. This begs the question: is there a more
intelligent way of using a fixed set of samples from p and ¢ to estimate the ratio?



3 Telescoping density-ratio estimation

We introduce a new framework for estimating density-ratios p/q that can overcome the density-
chasm problem in a sample-efficient manner. Intuitively, the density-chasm problem arises whenever
classifying between p and q is ‘too easy’. This suggests that it may be fruitful to decompose the task
into a collection of harder sub-tasks.

For convenience, we make the notational switch p = py, ¢ = p,, (which we will keep going
forward), and expand the ratio via a telescoping product

Po(x) _ po(X)pr(%)  Pm—2(X) pm-1(x)

pm(x)  p1(x) p2(x) Pm—1(X) Pm(X)
where, ideally, each py is chosen such that a classifier cannot easily distinguish it from its two
neighbouring densities. Instead of attempting to build one large ‘bridge’ (i.e. density-ratio) across the

density-chasm, we propose to build many small bridges between intermediate ‘waymark’ distributions.
The two key components of the method are therefore:

; 3)

1. Waymark creation. We require a method for gradually transporting samples {x}, ..., x5}
from py to samples {x! ..., x™ } from p,,. At each step in the transportation, we obtain a
new dataset {x},...,x7} where k € {0,...m}. Each intermediate dataset can be thought
of as samples from an implicit distribution pg, which we refer to as a waymark distribution.

2. Bridge-building: A method for learning a set of parametrised density-ratios between
consecutive pairs of waymarks r(x; 0y) = pi(x)/pr+1(x) for k =0,...,m — 1, where
each bridge 7 is a non-negative function. We refer to these ratio estimating models as
bridges. Note that the parameters of the bridges, { Ok}z;_()l, can be totally independent or
they can be partially shared.

An estimate of the original ratio is then given by the product of the bridges

m—1 m—1

0y — TT ri(x:0,) ~ Pe(x) _ po(x)
T(X70) - kl;[o k( 70k) P pk+1(x) pm(x)’ (4)

where 0 is the concatenation of all 6}, vectors. Because of the telescoping product in @), we refer to
the method as Telescoping density-Ratio Estimation (TRE).

TRE has conceptual ties with a range of methods in optimisation, statistical physics and machine
learning that leverage sequences of intermediate distributions, typically between a complex density p
and a simple tractable density g. Of particular note are the methods of Simulated Annealing [32],
Bridge Sampling & Path Sampling [14] and Annealed Importance Sampling (AILS) [45]. Whilst
none of these methods estimate density ratios, and thus serve fundamentally different purposes, they
leverage similar ideas. In particular, AIS also computes a chain of density-ratios between artificially
constructed intermediate distributions. It typically does this by first defining explicit expressions for
the intermediate densities, and then trying to obtain samples via MCMC. In contrast, TRE implicitly
defines the intermediate distributions via samples and then tries to learn the ratios. Additionally, in
TRE we would like to evaluate the learned ratios in (4)) at the same input x while AIS should only
evaluate a ratio ry at ‘local’ samples from e.g. pi.

3.1 Waymark creation

In this paper, we consider two simple, deterministic waymark creation mechanisms: linear com-
binations and dimension-wise mixing. We find these mechanisms yield good performance and are
computationally cheap. However, we note that other mechanisms are possible, and are a promising
topic for future work.

Linear combinations. Given a random pair x¢ ~ po and X,;, ~ P, define the k™ waymark via
p 0 ~ Po p y

X =1/1— a2 X0 + axXpm, E=0,....,m 5)

where the o, form an increasing sequence from 0 to 1, which control the distance of xj, from x(. For
all of our experiments (except, for illustration purposes, those depicted in Figure[T), each dimension of



po and p,,, has the same Varianceﬂ and the coefficients in (3 are chosen to preserve this variance, with
the goal being to match basic properties of the waymarks and thereby make consecutive classification
problems harder.

Dimension-wise mixing. An alternative way to ‘mix’ two vectors is to concatenate different subsets
of their dimensions. Given a d-length vector x, we can partition it into m sub-vectors of length d/m,
assuming d is divisible by m. We denote this as x = (x[1],...,x[m]), where each x[i] has length
d/m. Using this notation, define the k™ waymark via

Xk = (xm[1], - .-, xm[k], o[k +1], ..., x0[m]) k=0,....,m 6)
where, again, xg ~ pg and x,,, ~ p,, are randomly paired.

Number and spacing. Given these two waymark generation mechanisms, we still need to decide the
number of waymarks, m, and, in the case of linear combinations, how the «, are spaced in the unit
interval. We treat these quantities as hyperparameters, and demonstrate in the experiments (Section
M) that tuning them is feasible with a limited search budget.

3.2 Bridge-building

Each bridge r(x; 0}) in (@) can be learned via binary classification using a logistic loss function as
described in Section[2] Solving this collection of classification tasks is therefore a multi-task learning
(MTL) problem—see [535] for a review. Two key questions in MTL are how to share parameters and
how to define a joint objective function.

Parameter sharing. We break the construction of the bridges 74 (x; 6}) into two stages: a (mostly)
shared body computing hidden vectors fk(x)ﬂ followed by bridge-specific heads. The body f5 is a
deep neural network with shared parameters and pre-activation per-hidden-unit scales and biases for
each bridge (see appendix for details). Similar parameter sharing schemes have been successfully
used in the multi-task learning literature [7, [11]]. The heads map the hidden vectors fj(x) to the
scalar log 1 (x; 0y ). We use either linear or quadratic mappings depending on the application; the
precise parameterisation is stated in each experiment section.

TRE loss function. The TRE loss function is given by the average of the m logistic losses

m—1

1
Lone(0) = — > Li(05), (7)
k=0

L4(64) = By, log ( e (Xk; Ok) )) By sy opss log (;) (8)

1+ 7 (xx; O 1+ rip(Xp+1; 0k)

This simple unweighted average works well empirically. More sophisticated multi-task weighting
schemes exist [5]], but preliminary experiments suggested they were not worth the extra complexity.

An important aspect of this loss function is that each ratio estimator r, sees different samples during
training. In particular, ry sees samples close to the real data i.e. from py and p;, while the final
ratio r,,—1 sees data from p,,,_; and p,,. This creates a potential mismatch between training and
deployment, since after learning, we would like to evaluate all ratios at the same input x. In our
experiments, we do not find this mismatch to be a problem, suggesting that each ratio, despite
seeing different inputs during training, is able to generalise to new test points. We speculate that this
generalisation is encouraged by parameter sharing, which allows each ratio-estimator to be indirectly
influenced by samples from all waymark distributions. Nevertheless, we think a deeper analysis of
this issue of generalisation deserves further work.

3.3 TRE applied to mutual information estimation
The mutual information (MI) between two random variables u and v can be written as

p(u,v)

P(Wp(v) ©)

I(w,v) = Eyuw [log r(u, v)}7 r(u,v) =

2For MI estimation this always holds, for energy-based modelling this is enforceable via the choice of p,.
3For simplicity, we suppress the parameters of fx, and will do the same for r, in the experiments section.



Given samples from the joint density p(u, v), one obtains samples from the product-of-marginals
p(u)p(v) by shuffling the v vectors across the dataset. This then enables standard density-ratio
estimation to be performed.

For TRE, we require waymark samples. To generate these, we take a sample from the joint, xy =
(u,vp), and a sample from the product-of-marginals, x,, = (u,v,,), where u is held fixed and
only v is altered. We then apply a waymark construction mechanism from Section [3.1]to generate
xk = (u,vg), fork=0,...,m.

3.4 TRE applied to energy-based modelling

An energy-based model (EBM) is a flexible parametric family {¢(x; 0)} of non-negative functions,
where each function is proportional to a probability-density. Given samples from a data distribution
with density p(x), the goal of energy-based modelling is to find a parameter 6™ such that ¢(x; 0™) is
‘close’ to ¢p(x), for some positive constant c.

In this paper, we consider EBMs of the form ¢(x; 0) = r(x; 0)q(x), where ¢ is a known density (e.g.
a Gaussian or normalising flow) that we can sample from, and r is an unconstrained positive function.
Given this parameterisation, the optimal r simply equals the density-ratio p(x)/q(x), and hence the
problem of learning an EBM becomes the problem of estimating a density-ratio, which can be solved
via TRE. We note that, since TRE actually estimates a product of ratios as stated in Equation[d] the
final EBM will be a product-of-experts model [26] of the form ¢(x;0) = HZ’;Ol ri(X; 01)q(x).
The estimation of EBMs via density-ratio estimation has been studied in multiple prior works,
including noise-contrastive estimation (NCE) [22]], which has many appealing theoretical properties
[22, 154, 165]]. Following NCE, we will refer to the known density ¢ as the ‘noise distribution’.

4 Experiments

We include two toy examples illustrating both the correctness of TRE and the fact that it can solve
problems which verge on the intractable for standard density ratio estimation. We then demonstrate the
utility of TRE on two high-dimensional complex tasks, providing clear evidence that it substantially
improves on standard single-ratio baselines.

For experiments with continuous random variables, we use the linear combination waymark mech-
anisms in @; otherwise, for discrete variables, we use dimension-wise mixing @ For the linear
combination mechanism, we collapse the oy, into a single spacing hyperparameter, and grid-search
over this value, along with the number of waymarks. Details are in the appendix.

4.1 1d peaked ratio

The basic setup is stated in Figure [Ta] For TRE, we use quadratic bridges of the form
logry(x) = wgw?® + by, where by is set to its ground truth value (as derived in ap-
pendix), and wy is reparametrised as exp(fy) to avoid unnecessary log-scales in Figure
The single ratio-estimation results use the same parameterisation (dropping the subscript k).
Figure 2] shows the full results. These sample ef-
ficiency curves clearly demonstrate that, across all
sample sizes, TRE is significantly more accurate than
single ratio estimation. In fact, TRE obtains a better
solution with 100 samples than single-ratio estima-
tion does with 100,000 samples: a three orders of
magnitude improvement.
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4.2 High-dimensional ratio with large MI
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This toy problem has been widely used in the mutual 5o 100 15 200 250 300
information literature [2,[52]]. Let x € R2? be a Gaus- number of dimensions

sian random variable, with block-diagonal covariance Figure 3: High-dimensional Gaussian results,
matrix, where each block is 2 x 2 with 1 on the diago- showing estimated MI as a function of the
nal and 0.8 on the off-diagonal. We then estimate the ~dimensionality. Errors bars were computed
ratio between this Gaussian and a standard normal over 5 random seeds, but are too small to see.
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Figure 4: Left: mutual information results. TRE accurately estimates the ground-truth MI even for
large values of ~ 35 nats. Right: representation learning results. All single density-ratio baselines
(this includes CPC & WPC) degrade significantly in performance as we increase the number of
characters from 4 to 9, dropping by 20-60% in accuracy. In contrast, TRE drops by only ~ 3%.

distribution. This problem can be viewed as an MI estimation task or an energy-based modelling
task—see the appendix for full details.

We apply TRE using quadratic bridges of the form: log 74 (x) = x7 Wyx + by. The results in Figure
[3]show that single ratio estimation becomes severely inaccurate for MI values greater than 20 nats. In
contrast, TRE can accurately estimate MI values as large as 80 nats for 320 dimensional variables. To
our knowledge, TRE is the first discriminative MI estimation method that can scale this gracefully.

4.3 MI estimation & representation learning on SpatialMultiOmniglot

We applied TRE to the SpatialMultiOmniglot problem taken from [49ﬂ where characters from
Omniglot are spatially stacked in an n X n grid, where each grid position contains characters from
a fixed alphabet. Following [49], the individual pixel values of the characters are not considered
random variables; rather, we treat the grid as a collection of n2 categorical random variables whose
realisations are the characters from the respective alphabet. Pairs of grids, (u, v), are then formed
such that corresponding grid-positions contain alphabetically consecutive characters. Given this
setup, the ground truth MI can be calculated (see appendix).

Each bridge in TRE uses a separable architecture [52] given by logr(u,v) = g(u)T Wy, fi(v),
where g and f, are 14-layer convolutional ResNets [24] and fj, uses the parameter-sharing scheme
described in Section[3.2] We note that separable architectures are standard in the MI-based represen-
tation learning literature [52]]. We construct waymarks using the dimension-wise mixing mechanism
(@) with m = n? (i.e. one dimension is mixed at a time).

After learning, we adopt a standard linear evaluation protocol (see e.g. [48]]), where we train supervised
linear classifiers on top of the output layer g(u) to predict the alphabetic position of each character in
u. We compare our results to those reported in [49]. Specifically, we report their baseline method—
contrastive predictive coding (CPC) [48], a state-of-the-art representation learning method based on
single density-ratio estimation—along with their variant, Wasserstein predictive coding (WPC).

Figure ] shows the results. The left plot shows that only TRE can accurately estimate high MI values
of ~ 35 natsﬂ The representation learning results (right) show that all single density-ratio baselines
degrade significantly in performance as we increase the number of characters in a grid (and hence
increase the MI). In contrast, TRE always obtains greater than 97% accuracy.

4.4 Energy-based modelling on MNIST

As explained in Section TRE can be used estimate an energy-based model of the form ¢(x; 0) =
HZ:()l ri(x; 01 )q(x), where ¢ is a pre-specified ‘noise’ distribution from which we can sample, and
the product of ratios is given by TRE. In this section, we demonstrate that such an approach can

“We mirror their experimental setup as accurately as possible, however we were unable to obtain their code.
>[49] do not provide MI estimates for CPC & WPC, but [[52] shows that they are bounded by log batch-size.



Table 1: Average negative log-likelihood in bits per dimension (bpd, smaller is better). Exact
computation is intractable for EBMs, but we provide 3 estimates: Direct/RAISE/AIS. The ‘Direct’
estimate uses the NCE/TRE approximate normalising constant.

Noise distribution Noise  Single ratio (NCE) TRE

Direct RAISE AIS Direct RAISE AIS
Gaussian 201 196 199 201 1.39 135 1.35
Gaussian Copula 140 133 148 145 1.24 123 122
RQ-NSF .12 1.09 1.10 1.10 1.09 1.09 1.09

Noise distribution

Gaussian

Copula

RQ-NSF

Figure 5: MNIST samples. Each row pertains to a particular noise distribution. The first block shows
exact samples from that distribution. The second & third blocks show MCMC samples from an EBM
learned with NCE & TRE, respectively.

scale to high-dimensional data, by learning energy-based models of the MNIST handwritten digit
dataset [37]. We consider three choices of the noise distribution: a multivariate Gaussian, a Gaussian
copula and a rational-quadratic neural spline flow (RQ-NSF) [12] with coupling layers 9} 31]. Each
distribution is first fitted to the data via maximum likelihood estimation—see appendix for details.

Each of these noise distributions can be expressed as an invertible transformation of a standard
normal distribution. That is, each random variable has the form F'(z), where z ~ N(0,1). Since F
already encodes useful information about the data distribution, it makes sense to leverage this when
constructing the waymarks in TRE. Specifically, we can generate linear combination waymarks via
() in z-space, and then map them back to x-space, giving

xp = F(1/1—a? F ' (x0) + apF 7 (x)). (10)

For a Gaussian, F' is linear, and hence (I0) is identical to the original waymark mechanism in (3).

We use the parameter sharing scheme from Section [3.2] together with quadratic heads. This gives
log 74 (x) = — fx(X) T W fu(x) — fx(x)T by, — i, where we set fj, to be an 18-layer convolutional
Resnet and constrain W, to be positive definite. This constraint enforces an upper limit on the
log-density of the EBM, which has been useful in other work [44} 46|, and improves results here.
We evaluate the learned EBMs quantitatively via estimated log-likelihood in Table [T]and qualitatively
via random samples from the model in Figure[5] For both of these evaluations, we employ NUTS
[28] to perform annealed MCMC sampling as explained in the appendix. This annealing procedure
provides two estimators of the log-likelihood: the Annealed Importance Sampling (AIS) estimator
[45]] and the more conservative Reverse Annealed Importance Sampling Estimator (RAISE) [3].

The results in Table [I] and Figure [5] show that single ratio estimation performs poorly in high-
dimensions for simple choices of the noise distribution, and only works well if we use a complex
neural density-estimator (RQ-NSF). This illustrates the density-chasm problem explained in Section
In contrast, TRE yields improvements for all choices of the noise, as measured by the approximate
log-likelihood and the visual fidelity of the samples. TRE’s improvement over the Gaussian noise
distribution is particularly large: the bits per dimension (bpd) is around 0.66 lower, corresponding to
an improvement of roughly 360 nats. Moreover, the samples are significantly more coherent, and
appear to be of higher fidelity than the RQ-NSF samplesﬂ despite the fact that TRE (with Gaussian
noise) has a worse log-likelihood. This final point is not contradictory since log-likelihood and
sample quality are known to be only loosely connected [61]].

SWe emphasise here that the quality of the RQ-NSF model depends on the exact architecture. A larger model
may yield better samples. Thus, we do not claim that TRE generally yields superior results in any sense.



Finally, we analysed the sensitivity of our results to the construction of the waymarks and include the
results in the appendix. Using TRE with a copula noise distribution as an illustrative case, we found
that varying the number of waymarks between 5-30 caused only minor changes in the approximate
log-likelihoods, no greater than 0.03 bpd. We also found that if we omit the z-space waymark
mechanism in (T0), and work in x-space, then TRE’s negative log-likelihood increases to 1.33 bpd,
as measured by RAISE. This is still significantly better than single-ratio estimation, but does show
that the quality of the results depends on the exact waymark mechanism.

5 Conclusion

We introduced a new framework—Telescoping density-Ratio Estimation (TRE)—for learning density-
ratios that, unlike existing discriminative methods, can accurately estimate ratios between extremely
different densities in high-dimensions.

TRE admits many exciting directions for future work. Firstly, we would like a deeper theoretical
understanding of why it is so much more sample-efficient than standard density-ratio estimation. The
relationship between TRE and standard methods is structurally similar to the relationship between
annealed importance sampling and standard importance sampling. Thus, exploring this connection
further may be fruitful. Relatedly, we believe that TRE would benefit from further research on
waymark mechanisms. We presented simple mechanisms that have clear utility for both discrete and
continuous-valued data. However, we suspect more sophisticated choices may yield improvements,
especially if one can leverage domain or task-specific assumptions to intelligently decompose the
density-ratio problem. Lastly, whilst this paper has focused on the logistic loss, it would be interesting
to more deeply investigate TRE with other discriminative loss functions.

Broader Impact

As outlined in the introduction, density-ratio estimation is a foundational tool in machine learning
with diverse applications. Our work, which improves density-ratio estimation, may therefore increase
the scope and power of a wide spectrum of techniques used both in research and real-world settings.
The broad utility of our contribution makes it challenging to concretely assess the societal impact of
the work. However, we do discuss here two applications of density-ratio estimation with obvious
potential for positive & negative impacts on society.

Generative Adversarial Networks [15] are a popular class of models which are often trained via
density-ratio estimation and are able to generate photo-realistic image/video content. To the extent
that TRE can enhance GAN training (a topic we do not treat in this paper), our work could conceivably
lead to enhanced ‘deepfakes’, which can be maliciously used in fake-news or identity fraud.

More positively, density-ratio estimation is being used to correct for dataset bias, including the
presence of skewed demographic factors like race and gender [18]]. While we are excited about such
applications, we emphasise that density-ratio based methods are not a panacea; it is entirely possible
for the technique to introduce new biases when correcting for existing ones. Future work should
continue to be mindful of such a possibility, and look for ways to address the issue if it arises.
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