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Abstract 

A model of bottom-up overt attention is proposed based on the principle 
of maximizing information sampled from a scene. The proposed opera­
tion is based on Shannon's self-information measure and is achieved in 
a neural circuit, which is demonstrated as having close ties with the cir­
cuitry existent in the primate visual cortex. It is further shown that the 
proposed saliency measure may be extended to address issues that cur­
rently elude explanation in the domain of saliency based models. Results 
on natural images are compared with experimental eye tracking data re­
vealing the efficacy of the model in predicting the deployment of overt 
attention as compared with existing efforts. 

1 Introduction 

There has long been interest in the nature of eye movements and fixation behavior fol­
lowing early studies by Buswell [I] and Yarbus [2]. However, a complete description of 
the mechanisms underlying these peculiar fixation patterns remains elusive. This is further 
complicated by the fact that task demands and contextual knowledge factor heavily in how 
sampling of visual content proceeds. 

Current bottom-up models of attention posit that saliency is the impetus for selection of 
fixation points. Each model differs in its definition of saliency. In perhaps the most popular 
model of bottom-up attention, saliency is based on centre-surround contrast of units mod­
eled on known properties of primary visual cortical cells [3]. In other efforts, saliency is 
defined by more ad hoc quantities having less connection to biology [4] . In this paper, we 
explore the notion that information is the driving force behind attentive sampling. 

The application of information theory in this context is not in itself novel. There exist 
several previous efforts that define saliency based on Shannon entropy of image content 
defined on a local neighborhood [5, 6, 7, 8]. The model presented in this work is based on 
the closely related quantity of self-information [9]. In section 2.2 we discuss differences 
between entropy and self-information in this context, including why self-information may 
present a more appropriate metric than entropy in this domain. That said, contributions of 
this paper are as follows: 

1. A bottom-up model of overt attention with selection based on the self-information 
of local image content. 

2. A qualitative and quantitative comparison of predictions of the model with human 



eye tracking data, contrasted against the model ofItti and Koch [3] . 

3. Demonstration that the model is neurally plausible via implementation based on a 
neural circuit resembling circuitry involved in early visual processing in primates. 

4. Discussion of how the proposal generalizes to address issues that deny explanation 
by existing saliency based attention models. 

2 The Proposed Saliency Measure 

There exists much evidence indicating that the primate visual system is built on the prin­
ciple of establishing a sparse representation of image statistics. In the most prominent of 
such studies, it was demonstrated that learning a sparse code for natural image statistics 
results in the emergence of simple-cell receptive fields similar to those appearing in the 
primary visual cortex of primates [10, 11]. The apparent benefit of such a representation 
comes from the fact that a sparse representation allows certain independence assumptions 
with regard to neural firing. This issue becomes important in evaluating the likelihood of a 
set of local image statistics and is elaborated on later in this section. 

In this paper, saliency is determined by quantifying the self-information of each local im­
age patch. Even for a very small image patch, the probability distribution resides in a very 
high dimensional space. There is insufficient data in a single image to produce a reason­
able estimate of the probability distribution. For this reason, a representation based on 
independent components is employed for the independence assumption it affords. leA is 
performed on a large sample of 7x7 RGB patches drawn from natural images to determine 
a suitable basis. For a given image, an estimate of the distribution of each basis coefficient 
is learned across the entire image through non-parametric density estimation. The proba­
bility of observing the RGB values corresponding to a patch centred at any image location 
may then be evaluated by independently considering the likelihood of each corresponding 
basis coefficient. The product of such likelihoods yields the joint likelihood of the entire 
set of basis coefficients. Given the basis determined by ICA, the preceding computation 
may be realized entirely in the context of a biologically plausible neural circuit. The over­
all architecture is depicted in figure 1. Details of each of the aforesaid model components 
including the details of the neural circuit are as follows: 

Projection into independent component space provides, for each local neighborhood of the 
image, a vector W consisting of N variables Wi with values Vi. Each W i specifies the con­
tribution of a particular basis function to the representation of the local neighborhood. As 
mentioned, these basis functions, learned from statistical regularities observed in a large set 
of natural images show remarkable similarity to V 1 cells [10, 11]. The ICA projection then 
allows a representation w, in which the components W i are as independent as possible. For 
further details on the ICA projection of local image statistics see [12]. In this paper, we pro­
pose that salience may be defined based on a strategy for maximum information sampling. 
In particular, Shannon's self-information measure [9], -log(p(x )), applied to the joint like­
lihood of statistics in a local neighborhood decribed by w, provides an appropriate trans­
formation between probability and the degree of infom1ation inherent in the local statistics. 
It is in computing the observation likelihood that a sparse representation is instrumental: 
Consider the probability density function p( W l = Vl, Wz = Vz, ... , Wn = vn ) which quanti­
fies the likelihood of observing the local statistics with values Vl, ... , Vn within a particular 
context. An appropriate context may include a larger area encompassing the local neigbour­
hood described by w, or the entire scene in question. The presumed independence of the 
ICA decomposition means that P(WI = VI, Wz = V2, ... , Wn = V n ) = rr~= l P(Wi = Vi) . 

Thus, a sparse representation allows the estimation of the n-dimensional space described 
by W to be derived from n one dimensional probability density functions. Evaluating 
p( Wl = VI, W2 = V2, ... , Wn = v n ) requires considering the distribution of values taken on 
by each W i in a more global context. In practice, this might be derived on the basis of a 



nonparametric or histogram density estimate. In the section that follows, we demonstrate 
that an operation equivalent to a non-parametric density estimate may be achieved using a 
suitable neural circuit. 

2.1 Likelihood Estimation in A Neural Circuit 

In the following formulation, we assume an estimate of the likelihood of the components 
of W based on a Gaussian kernel density estimate. Any other choice of kernel may be 
substituted, with a Gaussian window chosen only for its common use in density estimation 
and without loss of generality. 

Let Wi ,j ,k denote the set of independent coefficients based on the neighborhood centered at 
j , k. An estimate of p( Wi,j,k = Vi,j,k) based on a Gaussian window is given by: 

(1) 

with L s ,t w(s, t) = 1 where \f! is the context on which the probability estimate of the coef­
ficients of w is based. w (s, t) describes the degree to which the coefficient w at coordinates 
s, t contributes to the probability estimate. On the basis of the form given in equation I it is 
evident that this operation may equivalently be implemented by the neural circuit depicted 
in figure 2. Figure 2 demonstrates only coefficients derived from a horizontal cross-section. 
The two dimensional case is analogous with parameters varying in i, j, and k dimensions. 
K consists of the Kernel function employed for density estimation. In our case this is a 
Gaussian of the form 0"~e-x2 /20- 2. w(s, t) is encoded based on the weight of connec­

tions to K. As x = Vi ,j,k - Vi,s,t the output of this operation encodes the impact of the 
Kernel function with mean Vi,s,t on the value of p( Wi,j,k = Vi,j,k). Coefficients at the input 
layer correspond to coefficients of v. The logarithmic operator at the final stage might also 
be placed before the product on each incoming connection, with the product then becom­
ing a summation. It is interesting to note that the structure of this circuit at the level of 
within feature spatial competition is remarkably similar to the standard feedforward model 
of lateral inhibition, a ubiquitous operation along the visual pathways thought to playa 
chief role in attentional processing [14]. The similarity between independent components 
and VI cells, in conjunction with the aforementioned consideration lends credibility to the 
proposal that information may contribute to driving overt attentional selection. 

One aspect lacking from the preceding description is that the saliency map fails to take into 
account the dropoff in visual acuity moving peripherally from the fovea. In some instances 
the maximum information accommodating for visual acuity may correspond to the center 
of a cluster of salient items, rather than centered on one such item. For this reason, the 
resulting saliency map is convolved with a Gaussian with parameters chosen to correspond 
approximately to the drop off in visual acuity observed in the human visual system. 

2.2 Self-Information versus Entropy 

It is important to distinguish between self-information and entropy since these terms are 
often confused. The difference is subtle but important on two fronts. The first consideration 
lies in the expected behavior in popout paradigms and the second in the neural circuitry 
involved. 

Let X = [Xl, X2, ... , xnl denote a vector of RGB values corresponding to image patch X, 
and D a probability density function describing the distribution of some feature set over 
X. For example, D might correspond to a histogram estimate of intensity values within 
X or the relative contribution of different orientations within a local neighborhood situ­
ated on the boundary of an object silhouette [6]. Assuming an estimate of D based on N 
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Figure I : The framework that achieves the desired information measure. Shown is the com­
putation corresponding to three horizontally adjacent neighbourhoods with flow through 
the network indicated by the orange, purple, and cyan windows and connections. The 
connections shown facilitate computation of the information measure corresponding to the 
pixel centered in the purple window. The network architecture produces this measure on 
the basis of evaluating the probability of these coefficients with consideration to the values 
of such coefficients in neighbouring regions. 

bins, the entropy of D is given by: - L~l Di1og(Di). In this example, entropy character­
izes the extent to which the feature(s) characterized by D are uniformly distributed on X . 
Self-information in the proposed saliency measure is given by -log(p(X)). That is, Self­
infolTIlation characterizes the raw likelihood of the specific n-dimensional vector of ROB 
values given by X . p(X) in this case is based on observing a number of n-dimensional 
feature vectors based on patches drawn from the area surrounding X . Thus, p( X) charac­
terizes the raw likelihood of observing X based on its surround and -log(p(X)) becomes 
closer to a measure of local contrast whereas entropy as defined in the usual manner is 
closer to a measure of local activity. The importance of this di stinction is evident in con­
sidering figure 3. Figure 3 depicts a variety of candles of varying orientation, and color. 
There is a tendency to fixate the empty region on the left, which is the location of lowest 
entropy in the image. In contrast, this region receives the highest confidence from the al­
gorithm proposed in this paper as it is highly informative in the context of this image. In 
classic popout experiments, a vertical line among horizontal lines presents a highly salient 
target. The same vertical line among many lines of random orientations is not, although the 
entropy associated with the second scenario is much greater. 

With regard to the neural circuitry involved, we have demonstrated that self-information 
may be computed using a neural circuit in the absence of a representation of the entire 
probability distribution. Whether an equivalent operation may be achieved in a biologically 
plausible manner for the computation of entropy remains to be established. 
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Figure 2: AID depiction of the neural architecture that computes the self-information of a 
set of local statistics. The operation is equivalent to a Kernel density estimate. Coefficients 
correspond to subscripts of Vi,j,k. The small black circles indicate an inhibitory relationship 
and the small white circles an excitatory relationship 

Figure 3: An image that highlights the difference between entropy and self-information. 
Fixation invariably falls on the empty patch, the locus of minimum entropy in orientation 
and color but maximum in self-information when the surrounding context is considered. 

3 Experimental Validation 

The following section evaluates the output of the proposed algorithm as compared with the 
bottom-up model of Itti and Koch [3]. The model of Itti and Koch is perhaps the most 
popular model of saliency based attention and currently appears to be the yardstick against 
which other models are measured. 

3.1 Experimental eye tracking data 

The data that forms the basis for performance evaluation is derived from eye tracking ex­
periments performed while subjects observed 120 different color images. Images were 
presented in random order for 4 seconds each with a mask between each pair of images. 
Subjects were positioned 0.75m from a 21 inch CRT monitor and given no particular in­
structions except to observe the images. Images consist of a variety of indoor and outdoor 
scenes, some with very salient items, others with no particular regions of interest. The eye 
tracking apparatus consisted of a standard non head-mounted device. The parameters of the 
setup are intended to quantify salience in a general sense based on stimuli that one might 
expect to encounter in a typical urban environment. Data was collected from 20 different 
subjects for the full set of 120 images. 

The issue of comparing between the output of a particular algorithm, and the eye track­
ing data is non-trivial. Previous efforts have selected a number of fixation points based 
on the saliency map, and compared these with the experimental fixation points derived 



from a small number of subjects and images (7 subjects and 15 images in a recent effort 
[4]). There are a variety of methodological issues associated with such a representation. 
The most important such consideration is that the representation of perceptual importance 
is typically based on a saliency map. Observing the output of an algorithm that selects 
fixation points based on the underlying saliency map obscures observation of the degree 
to which the saliency maps predict important and unimportant content and in particular, 
ignores confidence away from highly salient regions. Secondly, it is not clear how many 
fixation points should be selected. Choosing this value based on the experimental data will 
bias output based on information pertaining to the content of the image and may produce 
artificially good results. 

The preceding discussion is intended to motivate the fact that selecting discrete fixation co­
ordinates based on the saliency map for comparison may not present the most appropriate 
representation to use for performance evaluation. In this effort, we consider two different 
measures of performance. Qualitative comparison is based on the representation proposed 
in [16]. In this representation, a fixation density map is produced for each image based on 
all fixation points, and subjects. Given a fixation point, one might consider how the image 
under consideration is sampled by the human visual system as photoreceptor density drops 
steeply moving peripherally from the centre of the fovea. This dropoff may be modeled 
based on a 2D Gaussian distribution with appropriately chosen parameters, and centred on 
the measured fixation point. A continuous fixation density map may be derived for a par­
ticular image based on the sum of all 2D Gaussians corresponding to each fixation point, 
from each subject. The density map then comprises a measure of the extent to which each 
pixel of the image is sampled on average by a human observer based on observed fixations. 
This affords a representation for which similarity to a saliency map may be considered at 
a glance. Quantitative performance evaluation is achieved based on the measure proposed 
in [15]. The saliency maps produced by each algorithm are treated as binary classifiers for 
fixation versus non-fixation points. The choice of several different thresholds and assess­
ment of performance in predicting fixated versus not fixated pixel locations allows an ROC 
curve to be produced for each algorithm. 

3.2 Experimental Results 

Figure 4 affords a qualitative comparison of the output of the proposed model with the 
experimental eye tracking data for a variety of images. Also depicted is the output of the 
Itti and Koch algorithm for comparison. 

In the implementation results shown, the ICA basis set was learned from a set of 360,000 
7x7x3 image patches from 3600 natural images using the Lee et al. extended infomax 
algorithm [17]. Processed images are 340 by 255 pixels. W consists of the entire extent 
of the image and w(s, t) = ~ 'V s, t with p the number of pixels in the image. One might 
make a variety of selections for these variables based on arguments related to the human 
visual system, or based on performance. In our case, the values have been chosen on the 
basis of simplicity and do not appear to dramatically affect the predictive capacity of the 
model in the simulation results. In particular, we wished to avoid tuning these parameters 
to the available data set. Future work may include a closer look at some of the parameters 
involved in order to determine the most appropriate choices. The ROC curves appearing in 
figure 5 give some sense of the efficacy of the model in predicting which regions of a scene 
human observers tend to fixate. As may be observed, the predictive capacity of the model is 
on par with the approach of lui and Koch. Encouraging is the fact that similar perfonnance 
is achieved using a method derived from first principles, and with no parameter tuning or 
ad hoc design choices. 



Figure 4: Results for qualitative comparison. Within each boxed region defined by solid 
lines: (Top Left) Original Image (Top Right) Saliency map produced by Itti + Koch algo­
rithm. (Bottom Left) Saliency map based on information maximization. (Bottom Right) 
Fixation density map based on experimental human eye tracking data. 

4 On Biological Plausibility 

Although the proposed approach, along with the model of lui and Koch describe saliency 
on the basis of a single topographical saliency map, there is mounting evidence that saliency 
in the primate brain is represented at several levels based on a hierarchical representation 
[18] of visual content. The proposed approach may accommodate such a configuration 
with the single necessary condition being a sparse representation at each layer. 

As we have described in section 2, there is evidence that suggests the possibility that the 
primate visual system may consist of a multi-layer sparse coding architecture [10, 11]. The 
proposed algorithm quantifies information on the basis of a neural circuit, on units with 
response properties corresponding to neurons appearing in the primary visual cortex. How­
ever, given an analogous representation corresponding to higher visual areas that encode 
form, depth, convexity etc. the proposed method may be employed without any modifica­
tion. Since the popout of features can occur on the basis of more complex properties such 
as a convex surface among concave surfaces [19], this is perhaps the next stage in a system 
that encodes saliency in the same manner as primates. Given a multi-layer architecture, the 
mechanism for selecting the locus of attention becomes less clear. In the model of Itti and 
Koch, a multi-layer winner-take-all network acts directly on the saliency map and there 
is no hierarchical representation of image content. There are however attention models 
that subscribe to a distributed representation of saliency (e.g. [20]), that may implement 
attentional selection with the proposed neural circuit encoding saliency at each layer. 
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Figure 5: ROC curves for Self-information (blue) and Itti and Koch (red) saliency maps. 
Area under curves is 0.7288 and 0.7277 respectively. 

5 Conclusion 

We have described a strategy that predicts human attentional deployment on the principle of 
maximizing information sampled from a scene. Although no computational machinery is 
included strictly on the basis of biological plausibility, nevertheless the formulation results 
in an implementation based on a neurally plausible circuit acting on units that resemble 
those that facilitate early visual processing in primates. Comparison with an existing atten­
tion model reveals the efficacy of the proposed model in predicting salient image content. 
Finally, we demonstrate that the proposal might be generalized to facilitate selection based 
on high-level features provided an appropriate sparse representation is available. 
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