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Abstract
The use of past experiences to accelerate temporal difference (TD) learning of value functions, or
experience replay, is a key component in deep reinforcement learning methods such as actor-critic.
In this work, we propose to reweight experiences based on their likelihood under the stationary
distribution of the current policy, and justify this with a contraction argument over the Bellman
evaluation operator. The resulting TD objective encourages small approximation errors on the value
function over frequently encountered states. To balance bias (from off-policy experiences) and
variance (from on-policy experiences), we use a likelihood-free density ratio estimator between on-
policy and off-policy experiences, and use the learned ratios as the prioritization weights. We apply
the proposed approach empirically on Soft Actor Critic (SAC), Double DQN and Data-regularized Q
(DrQ), over 12 Atari environments and 6 tasks from the DeepMind control suite. We achieve superior
sample complexity on 9 out of 12 Atari environments and 16 out of 24 method-task combinations
for DCS compared to the best baselines.
Keywords: Experience Replay, Reinforcement Learning, Learning for Control

1. Introduction

Deep reinforcement learning methods have achieved much success in a wide variety of domains (Mnih
et al., 2016; Lillicrap et al., 2015; Horgan et al., 2018). While on-policy methods (Schulman et al.,
2017) are effective, using off-policy data often yields better sample efficiency (Haarnoja et al., 2018;
Fujimoto et al., 2018), which is critical when querying the environment is expensive and experiences
are difficult to obtain. Experience replay (Lin, 1992) is a popular paradigm in off-policy reinforcement
learning. When applied to temporal difference (TD) learning of the Q-value function (Mnih et al.,
2015), the use of replay buffers avoids forgetting of previous experiences and improves learning.
Selecting experiences from the replay buffers using a prioritization scheme (instead of uniformly)
can lead to large improvements in terms of sample efficiency (Hessel et al., 2017).

Existing prioritization procedures rely on certain choices of importance sampling; for instance,
Prioritized Experience Replay (PER) selects experiences with high TD error more often, and then
down-weight the experiences that are frequently sampled in order to become closer to uniform
sampling over the experiences (Schaul et al., 2015). However, this might not work well in actor-
critic methods, where the goal is to learn the value function (or Q-value function) induced by the
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current policy, and following off-policy experiences might be harmful. In this case, it might be more
beneficial to perform importance sampling that reflects on-policy experiences instead.

Based on this, we investigate a new prioritization strategy based on the likelihood (i.e., the
frequency) of experiences under the stationary distribution of the current policy (Tsitsiklis et al.,
1997). In actor-critic methods (Konda and Tsitsiklis, 2000), we can estimate the value function of a
policy by minimizing the expected squared difference between the critic network and its target value
over a replay buffer; an appropriate replay buffer should properly reflect the discrepancy between
critic value functions. We treat a discrepancy as “proper” if it preserves the contraction properties of
the Bellman operator, and consider discrepancies measured by the expected squared distances under
some state-action distribution. In Theorem 2 we prove that the stationary distribution of the current
policy is the only distribution in which the Bellman operator is a contraction (i.e. being “proper”);
this motivates the use of the stationary distribution as the underlying distribution for the replay buffer.

To use replay buffers derived from the stationary distribution with existing deep reinforcement
learning methods, we need to be mindful of the following bias-variance trade-off. We have fewer
experiences from the current policy (using which results in high variance estimates), but more
experiences from other policies under the same environment (using which results in high bias
estimates). Inspired by recent advances in inverse reinforcement learning (Fu et al., 2017) and
off-policy policy evaluation (Grover et al., 2019), we use a likelihood-free method to obtain an
estimate of the density ratio from a classifier trained to distinguish different types of experiences. We
consider a smaller, “fast” replay buffer that contains near on-policy experiences, and a larger, “slow”
replay buffer that contains additional off-policy experiences, and estimate density ratios between
the two buffers. We then use these estimated density ratios as importance weights over the Q-value
function update objective. This encourages more updates over state-action pairs that are more likely
under the stationary policy distribution of the current policy, i.e., closer to the fast replay buffer.

Our approach can be readily combined with existing approaches that learn value functions
from replay buffers. We consider our approach over three competitive actor-critic methods, Soft
Actor-Critic (SAC, Haarnoja et al. (2018)), Double DQN Van Hasselt et al. (2016), and Data-
regularized Q (DrQ, Kostrikov et al. (2020)). We demonstrate the effectiveness of our approach over
on 12 environments from the Atari Arcade Learning Environment (Bellemare et al., 2013) and 6
environments from DeepMind Control Suite (Tassa et al., 2018), where both low-dimensional state
space and high-dimensional image space are considered; this results in 36 method-task combinations
in total. Notably, our approach outperforms the respective baselines in 25 out of the 36 cases, while
being competitive in the remaining 11 cases. This demonstrates that our method can be applied as a
simple plug-and-play approach to improve existing actor-critic methods.

2. Preliminaries

The reinforcement learning problem can be described as finding a policy for a Markov decision
process (MDP) defined as the following tuple (S,A, P, r, γ, p0), where S is the state space, A is the
action space, P : S × A → P(S) is the transition kernel, r : S × A → R is the reward function,
γ ∈ [0, 1) is the discount factor and p0 ∈ P(S) is the initial state distribution. The goal is to learn a
stationary policy π : S → P(A) that selects actions in A for each state s ∈ S, such that the policy
maximizes the expected sum of rewards: J(π) := Eπ

[∑∞
t=0 γ

tr(st, at)
]
, where the expectation is

over trajectories sampled from s0 ∼ p0, at ∼ π(·|st), and st+1 ∼ P (·|st, at) for t ≥ 0.
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For a fixed policy, the MDP becomes a Markov chain, so we define the state-action distribution at
timestep t: dπt (s, a), and the the corresponding (unnormalized) stationary distribution over states and
actions dπ(s, a) =

∑∞
t=0 γ

tdπt (s, a) (we assume this always exists for the policies we consider). We
can then write J(π) = Edπ [r(s, a)]. For any stationary policy π, we define its corresponding state-
action value function as Qπ(s, a) := Eπ[

∑∞
t=0 γ

tr(st, at)|s0 = s, a0 = a], its corresponding value
function as V π(s) := Ea∼π(·|s)[Qπ(s, a)] and the advantage function Aπ(s, a) = Qπ(s, a)− V π(s).

A large variety of actor-critic methods (Konda and Tsitsiklis, 2000) have been developed in the
context of deep reinforcement learning (Silver et al., 2014; Mnih et al., 2016; Lillicrap et al., 2015;
Haarnoja et al., 2018; Fujimoto et al., 2018), where learning good approximations to the Q-function
is critical to the success of any deep reinforcement learning method based on actor-critic paradigms.

The Q-function can be learned via temporal difference (TD) learning (Sutton, 1988) based on
the Bellman equation Qπ(s, a) = BπQπ(s, a); where Bπ denotes the Bellman evaluation operator

BπQ(s, a) := r(s, a) + γEs′,a′ [Q(s′, a′)], (1)

where in the expectation we sample the next step, s′ ∼ P (·|s, a) and a′ ∼ π(·|s).
Given some experience replay buffer D (collected by navigating the same environment, but with

unknown and potentially different policies), one could optimize the following loss for a Q-network:

LQ(θ;D) = E(s,a)∼D

[
(Qθ(s, a)− B̂πQθ(s, a))2

]
(2)

which fits Qθ(s, a) to an estimate of the target value B̂π[Qθ](s, a)1. In practice, the target values can
be estimated either via on-policy experiences (Sutton et al., 1999) or via off-policy experiences (Pre-
cup, 2000). Ideally, we can learn Qπ by optimizing the LQ(θ;D) to zero with over-parametrized
neural networks. However, instead of minimizing the loss LQ(θ;D) directly, prioritization over the
sampled replay buffer D could lead to stronger performance. For example, prioritized experience
replay (PER, (Schaul et al., 2015)) is a heuristic that assigns higher weights to transitions with higher
TD errors, and is applied successfully in deep Q-learning (Hessel et al., 2017).

In this paper, we discuss actor-critic methods, whose target is fundamentally different from that
of Q-learning (which aims to learn the “optimal” Q-function):

B⋆ = r(s, a) + γmax
a′∈A

[Q(s′, a′)]. (3)

where B⋆ denotes the Bellman optimality operator. As we will show in the experiments, prioritization
strategies developed specifically for Q-learning are not well suited for policy gradient / actor-critic
methods we consider here.

3. Experience Replay based on Stationary Distributions

Assume that d, the distribution the replay buffer D is sampled from, is supported on the entire space
S ×A, and that we have infinite samples from π (so the Bellman target is unbiased). Let us define
the TD-learning objective for Q with prioritization weights w : S ×A → R+, under the sampling
distribution d ∈ P(S ×A):

LQ(θ; d,w) = Ed
[
w(s, a)(Qθ(s, a)− BπQθ(s, a))2

]
(4)

1. We also do not take the gradient over the target, which is the more conventional approach.
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In practice, the expectation in LQ(θ; d,w) can be estimated with Monte-Carlo methods, such
as importance sampling, rejection sampling, or combinations of multiple methods (such as in
PER (Schaul et al., 2015)). Without loss of generality, we can treat the problem as optimizing the
mean squared TD error under some priority distribution dw ∝ d · w, so one could treat prioritized
experience replay for TD learning as selecting a favorable priority distribution dw (under which the
LQ loss is computed) in order to improve some notion of performance.

In this paper, we propose to use as priority distribution dw = dπ, where dπ is the stationary
distribution of state-action pairs under the current policy π. This reflects the intuition that TD-
errors in high-frequency state-action pairs are more problematic than in low-frequency ones, as
they will negatively impact policy updates more severely. In the following subsection, we argue the
importance of choosing dπ from the perspective of maintaining desirable contraction properties of
the Bellman operators under more general norms. If we consider Euclidean norms weighted under
some distribution dw ∈ P(S ×A), the usual γ-contraction argument for Bellman operators holds
only for dw = dπ, and not for other distributions.

Policy-dependent Norms for Bellman Backup The convergence of Bellman updates relies on
the fact that the Bellman evaluation operator Bπ is a γ-contraction with respect to the ℓ∞ norm, i.e.
∀Q,Q′ ∈ Q, where Q = {Q : (S ×A) → R} is the set of all possible Q functions:

∥BπQ− BπQ′∥∞ ≤ γ∥Q−Q′∥∞ (5)

While it is sufficient to show convergence results, the ℓ∞ norm reflects a distance over two Q
functions under the worst possible state-action pair, and is independent of the current policy. If two
Q functions are equal everywhere except for a large difference on a single state-action pair (s̃, ã)
that is unlikely under dπ, the ℓ∞ distance between the two Q functions is large. In practice, however,
this will have little effect over policy updates as it is unlikely for the current policy to sample (s̃, ã).

Since our goal with the TD updates is to learn Qπ, a distance metric that is related to π is a
more suitable one for comparing different Q functions, reflecting the intuition that errors in frequent
state-action pairs are more costly than on infrequent ones. Let us consider the following weighted ℓ2
distance between Q functions,

∥Q−Q′∥2d := E(s,a)∼d[(Q(s, a)−Q′(s, a))2] (6)

where d ∈ P(S ×A) is a distribution over state-action pairs. This can be treated as the ℓ2 norm but
measured over stationary distribution d as opposed to the Lebesgue measure. This is closely tied
to the LQ objective since LQ(θ; d) = ∥Qθ(s, a)− BπQθ(s, a)∥2d. In the following statements, we
show that Bπ is only a contraction operator when under the ∥·∥dπ norm; this supports the use of dπ

instead of other distributions for the LQ objective, as it reflects a more reasonable measurement of
distance between Q-functions for policy π.

Lemma 1 For all γ ∈ (0, 1), the Bellman operator Bπ is a γ-contraction with respect to the ∥·∥d
norm if d = dπ holds almost everywhere, i.e., ∀Q,Q′ ∈ Q

d = dπ a.e. =⇒ ∥BπQ− BπQ′∥d ≤ γ∥Q−Q′∥d

Proof In Appendix A. On a high-level, we apply Jensen’s inequality to f(x) = x2.
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Theorem 2 For all γ ∈ (0, 1), the Bellman operator Bπ is a γ-contraction with respect to the ∥·∥d
norm if and only if d = dπ holds almost everywhere, i.e., ∀Q,Q′ ∈ Q

d = dπ, a.e. ⇐⇒ ∥BπQ− BπQ′∥d ≤ γ∥Q−Q′∥d

Proof In Appendix A. On a high-level, whenever d = dπ does not hold over some non-empty open
set, we can perturb a constant Q-value function over this set to contradict γ-contraction.

Theorem 2 highlights the importance of using dπ in the ∥·∥d norm specifically for measuring the
distance between Q-functions: if we use any distribution other than dπ, the Bellman operator is not
guaranteed to be a γ-contraction under that distance, which leads to worse convergence rates.

4. Likelihood-free Importance Weighting over Replay Buffers

In practice, however, there are two challenges with regards to using LQ(θ; dπ) as the objective. On
the one hand, an accurate estimate of dπ requires many on-policy samples from dπ and interactions
with the environment, which could increase the practical sample complexity; on the other hand, if
we instead use off-policy experiences from the replay buffer, it would be difficult to estimate the
importance ratio w(s, a) := dπ(s, a)/dD(s, a) when the replay buffer D is a mixture of trajectories
from different policies.

An appropriate choice of importance weights should us to balance bias (which comes from
replay experiences of other policies) and variance (which comes from a small number of on-policy
experiences). Thus, we consider likelihood-free density ratio estimation methods that rely only on
samples (e.g. from the replay buffer), which are well-suited for estimating the objective function
LQ(θ; d

π) with a good bias-variance trade-off.

4.1. Likelihood-free importance weights

For any convex, lower-semicontinuous function f : [0,∞) → R satisfying f(1) = 0, the f -
divergence between two probabilistic measures P,Q ∈ P(X ) (where we assume P ≪ Q, i.e. P is
absolutely continuous w.r.t. Q) is defined as: Df (P∥Q) =

∫
X f (dP (x)/ dQ(x)) dQ(x). A general

variational method can be used to estimate f -divergences given only samples from P and Q.

Lemma 3 (Nguyen et al. (2008)) Assume that f has first order derivatives f ′ at [0,+∞). ∀P,Q ∈
P(X ) such that P ≪ Q and w : X → R+, Df (P∥Q) ≥ EP [f ′(w(x))]−EQ[f∗(f ′(w(x)))], where
f∗ denotes the convex conjugate and the equality is achieved when w = dP/ dQ.

The above lemma suggests that we can estimate importance weights from samples by optimizing a
lower bound to f -divergence. This has been applied to off-policy policy evaluation (Grover et al.,
2019), but not directly to actor-critic methods.

4.2. Importance weights for actor-critic methods

We can apply this approach to estimating the likelihood ratio w(s, a) := dπ(s, a)/dD(s, a) with
samples from the replay buffer, for both continuous and discrete spaces. These ratios are then
multiplied to the Q-function updates to perform importance weighting.

To implement this idea in practice, we consider sampling from two types of replay buffers. One
is the regular (slow) replay buffer, which contains a mixture of trajectories from different policies;
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the other is a smaller (fast) replay buffer, which contains only a small set of trajectories from very
recent policies. After each episode of environment interaction, we update both replay buffers with the
new experiences; the distribution of the slow replay buffer changes more slowly due to the larger size.
The slow replay buffer contains off-policy samples from dD whereas the fast replay buffer contains
(approximately) on-policy samples from dπ (assuming the buffer size is small enough). Therefore,
the slow replay buffer has better coverage of transition dynamics of the environment while being
less on-policy. Denoting the fast and slow replay buffers as Df and Ds respectively, we estimate the
ratio dπ/dD via minimizing the following objective over the network wψ(x) parametrized by ψ (the
outputs wψ(s, a) are forced to be non-negative via activation functions):

Lw(ψ) := EDs [f
∗(f ′(wψ(s, a)))]− EDf

[f ′(wψ(s, a))] (7)

From Lemma 3, we can recover an estimate of the density ratio from the optimal wψ by minimizing
the Lw(ψ) objective. To address the finite sample size issue, we apply self-normalization (Cochran,
2007) to the importance weights over the slow replay buffer Ds with a hyperparameter T :

w̃ψ(s, a) := wψ(s, a)
1/T /EDs [wψ(s, a)

1/T ] (8)

We note that this density ratio is not unbounded, as the slow replay buffer contains all the examples
from the fast replay buffer. The final objective for learning Q is then

LQ(θ; d
π) ≈ LQ(θ;Ds, w̃ψ) := E(s,a)∼Ds

[w̃ψ(x)(Qθ(s, a)− B̂πQθ(s, a))2]

where the target B̂πQθ is estimated from past experiences. We keep the remainder of the algorithm,
such as policy gradient and value network update (if available) unchanged, so this method can be
adapted for different off-policy actor-critic algorithms, utilizing their respective advantages. We
describe a general procedure of our approach in Algorithm ??, where one can modify from some
“base” actor-critic algorithm to implement our approach. These algorithm cover both stochastic and
deterministic policies, as our method does not require likelihood estimates from the policy. We
consider our divergences to be Jensen-Shannon, so wψ can be treated as a probabilistic classifier.

5. Related Work

Experience replay (Lin, 1992) is a crucial component in deep reinforcement learning (Hessel et al.,
2017; Andrychowicz et al., 2017; Schaul et al., 2015), where off-policy experiences are utilized
to improve sample efficiency. These experiences can be utilized on policy updates (such as in
actor-critic methods (Konda and Tsitsiklis, 2000; Wang et al., 2016)), on value updates (such as in
deep Q-learning (Schaul et al., 2015)) or on evaluating TD update targets (Precup, 2000; Precup et al.,
2001). For value updates, there are two sources of randomness that could benefit from importance
weights (prioritization). The first source is the evaluation of the TD learning target for longer
traces such as TD(λ); importance weights can be used to debias targets computed from off-policy
trajectories (Precup, 2000; Munos et al., 2016; Espeholt et al., 2018; Schmitt et al., 2019), similar to
its role in policy learning. The second source is the sampling of state-action pairs where the values
are updated (Schaul et al., 2015), which is addressed in this paper.

Numerous techniques have achieved superior sample complexity through prioritization of replay
buffers. In model-based planning, Prioritized Sweeping (Moore and Atkeson, 1993; Andre et al.,
1998; van Seijen and Sutton, 2013) selects the next state updates according to changes in value.
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Table 1: Results of SAC and TD3 trained from states on the DeepMind Control environments
with and without LFIW after 100k and 250k environment steps. The results show significant
improvements when the agents is trained with LFIW. Results are reported over 5 random seeds.
The maximum possible score for any environment is 1,000.

100k environment steps

SAC based SAC DisCor +PER +PER+LFIW +LFIW

Finger, Spin 482 ± 34 389 ± 29 486 ± 18 503 ± 27 523 ± 16
Cartpole, Swing 700 ± 51 681 ± 35 689 ± 39 726 ± 14 789 ± 27
Reacher, Easy 750 ± 68 833 ± 17 704 ± 89 806 ± 55 861 ± 29
Cheetah, Run 498 ± 108 518 ± 90 367 ± 123 502 ± 109 541 ± 89
Walker, Walk 187 ± 89 156 ± 57 234 ± 31 321 ± 29 333 ± 12
Ball in Cup, Catch 888 ± 13 876 ± 11 834 ± 23 892 ± 8 890 ± 6

250k environment steps

SAC based SAC DisCor +PER +PER+LFIW +LFIW

Finger, Spin 806 ± 47 800 ± 23 814 ± 45 860 ± 23 901 ± 14
Cartpole, Swing 825 ± 8 834 ± 21 811 ± 15 823 ± 31 873 ± 23
Reacher, Easy 945 ± 32 940 ± 18 931 ± 11 944 ± 6 941 ± 21
Cheetah, Run 638 ± 32 618 ± 41 675 ± 34 631 ± 56 709 ± 11
Walker, Walk 895 ± 47 881 ± 23 901 ± 10 917 ± 20 911 ± 12
Ball in Cup, Catch 974 ± 13 976 ± 7 978 ± 7 970 ± 7 981 ± 19

Table 2: Results for DrQ (Kostrikov et al., 2020) on the image-based RL on the DeepMind Control
Suite. LFIW is applied to a state-of-the-art image-based RL algorithm in DrQ, and we are able to see
consistent improvement over the DM Control Suite Benchmark.

100k steps DrQ DrQ+LFIW 500k steps DrQ DrQ+LFIW

Finger, Spin 838± 58 909 ± 28 Finger, Spin 918 ± 49 922 ± 28
Cartpole, Swing 748± 50 801 ± 22 Cartpole, Swing 875± 6 893 ± 8
Reacher, Easy 573± 67 743 ± 89 Reacher, Easy 945 ± 25 939 ± 12
Cheetah, Run 387± 45 444 ± 38 Cheetah, Run 574 ± 104 581 ± 112
Walker, Walk 639± 99 718 ± 86 Walker, Walk 901 ± 35 909 ± 38
Ball in Cup, Catch 901 ± 17 901 ± 25 Ball in Cup, Catch 970 ± 4 968 ± 8

Prioritized Experience Replay (PER, (Schaul et al., 2015)) emphasizes experiences with larger
TD errors and is critical to the success of sample efficient deep Q-learning (Hessel et al., 2017).
Remember and Forget Experience Replay (ReF-ER, (Novati and Koumoutsakos, 2018)) removes the
experiences if it differs much from choices of the current policy; this encourages sampling on-policy
behavior which is similar to what we propose. Differing from ReF-ER, we do not require knowledge
of the policy distribution. Distribution Correction (DisCor, Kumar et al. (2020)) suggests against
using on-policy experiences, which seems to be in contrast to what we have promoted. However,
their analysis is based on the Bellman optimality operator, which aims to find the optimal Q-value
function, while ours is based on the Bellman evaluation operator, which aims to find the Q-value
function under the current policy; this could partially explain why DisCor did not achieve superior
performance than the baseline approach on OpenAI gym tasks.
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Likelihood-free density ratio estimation have been adopted in imitation learning Ho and Ermon
(2016), inverse reinforcement learning (Fu et al., 2017), meta learning Fakoor et al. (2019) and
model-based off-policy policy evaluation (Grover et al., 2019). Different from these cases, we do
not use the weights to estimate the advantage function or to reduce bias in reward estimation; our
goal is to improve performance of TD learning with function approximation. Dual representations
of f -divergences are also leveraged in reinforcement learning (Nachum et al., 2019; Nachum and
Dai, 2020), but it is used over a regularizer that encourages exploration to be closer to off-policy
experiences; the importance weights are added to the reward function when computing the Q-value
function but do not affect the replay experiences otherwise.

6. Experiments

We combine the proposed prioritization approach over three popular actor-critic algorithms, namely
Soft-Actor Critic (SAC, Haarnoja et al. (2018)), and Data-regularized Q (DrQ, Kostrikov et al.
(2020)); we also applied our method to Double DQN Heess et al. (2015). We compare our method
with alternative approaches to prioritization; these include uniform sampling over the replay buffer
and prioritization experience replay based on TD-error (Schaul et al., 2015). We choose 12 environ-
ments from the Arcade Learning Environment (Atari, (Bellemare et al., 2013)) and 6 tasks from the
DeepMind Control suite (DCS, Tassa et al. (2018)). We consider state representations in all tasks
and pixel representations from DCS.

Our method introduces some additional hyperparameters compared to the vanilla approaches,
namely the temperature T , the size of the fast replay buffer |Df | and the architecture for the density
estimator wψ. To ensure fair comparisons against the baselines, we use the same hyperparameters
as the original algorithms when it is available. For all environments we use the following default
hyperparameters for likelihood-free importance weighting: T = 5, |Df | = 104, |Ds| = 106. We use
f from the Jensen Shannon divergence for better numerical stability. We include more experimental
details in Appendix C.

6.1. Evaluation

Table 3: Results on OpenAI Gym when trained with 500k steps. ERE is only designed for SAC, so
its results on TD3 are not available.

SAC based SAC +DisCor +PER +ERE +LFIW

Ant-v2 3193± 404 3211 ± 271 2764 ± 287 3331 ± 298 3579 ± 260
HalfCheetah-v2 8325± 408 8147 ± 322 8111 ± 341 8631 ± 189 9045 ± 222
Hopper-v2 2645± 310 2790 ± 273 2871 ± 214 2512 ± 301 3109 ± 244
Humanoid-v2 2033± 199 2569 ± 206 1459 ± 208 2466 ± 147 3189 ± 231
Walker2d-v2 2914± 189 2764 ± 166 3071 ± 109 2990 ± 217 3221 ± 149

TD3 based TD3 +DisCor +PER +ERE +LFIW

Ant-v2 2663± 372

N/A

2610 ± 128

N/A

2990 ± 178
HalfCheetah-v2 7527± 438 7310 ± 339 8567 ± 491
Hopper-v2 1801± 206 2019 ± 109 1937 ± 250
Walker2d-v2 1306± 257 1241 ± 122 2113 ± 310
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Figure 1: Hyperparameter sensitivity analyses on Walker2d-v2 (a, b, c) and Humanoid-v2 (d) using a
base SAC agent and LFIW.

We use (+LFIW) to denote our likelihood-free importance weighting method, (+PER) to denote
prioritization with TD error (Schaul et al., 2015)2 and (+ERE) to denote Emphasizing Recent
Experience (ERE, Wang and Ross (2019)) for SAC only. Table 3 shows the results on OpenAI gym
(500k steps), whereas Tables 1 and 2 shows the results on DMCS with state (100k and 250k steps)
and image representations (100k and 500k steps) respectively. These steps are chosen to demonstrate
both initial training progress and approximate performance at convergence.

Table 4: Normalized scores on 12 Atari environments. The baseline numbers are taken directly from
Prioritized Experience Replay (Schaul et al., 2015).

Double DQN

Environment + PER (Rank-based) + PER (Proportional) + LFIW

Assault 1276% 1381% 1641% 1889%
Beam Rider 117% 210% 176% 217%
Breakout 1397% 1298% 1407% 1578%
Enduro 158% 233% 239% 220%
Gopher 728% 1679% 2792% 2561%
Ice Hockey 71% 93% 85% 97%
Phoenix 202% 284% 474% 513%
Pong 111% 110% 110% 106%
Q Bert 91% 82% 93% 103%
Robotank 872% 828% 815% 961%
Video Pinball 7221% 5721% 7367% 8115%
Wizard of Wor 144% 131% 177% 202%

Table 1 and 2 shows the results with SAC on state representations and DrQ on pixel repre-
sentations. Again, we observe improvements over the baselines in most cases, and comparable
performance in others. Notably, we achieve much higher performance with LFIW at 100k training
steps, which demonstrates that biasing the replay buffer towards on-policy experiences is able to
achieve good policy performance more quickly. Table 4 shows the results on Atari, where the base
algorithm is Double DQN which was trained for 200M time steps using the same hyperparameters as
Schaul et al. (2015). Again, we observe that our LFIW-based method outperforms both types of PER
on most environments, as well as the base Double DQN agent.

2. We use α = 0.6, β = 0.4 in PER.
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6.2. Additional analyses

Accuracy of wψ We use wψ to discriminate two types of experiences; experiences sampled from
the policy trained with SAC for 5M steps are labeled positive, and the mixture of experiences sampled
from policies trained for 1M to 4M steps are labeled negative. With the wψ predictions, we obtain a
precision of 87.3% and an accuracy of 73.1%. This suggests that the importance weights tends to be
higher for on-policy data as desired, thereby making the replay buffer to be closer to on-policy data.

Quality of Q-estimates We compare the quality of the Q-estimates between SAC and SAC+LFIW,
where we sample 20 trajectories from each policy, and obtain the “ground truth” via Monte Carlo
estimates of the true Q-value. We then evaluate the learned Q-function estimates and compare their
correlations with the ground truth values. For the SAC case, the Pearson and Spearman correlations
are 0.41 and 0.11 respectively, whereas for SAC+LFIW method they are 0.74 and 0.42 (higher is
better). This shows how our Q-function estimates are much more reflective of the “true” values,
which explains the improvements in sample complexity and the performance of the learned policy.

6.3. Ablation studies

To study the stability of LFIW across hyperparameters, we conduct further analyses by varying:
temperature T in Eq. 8, size of the fast replay buffer |Df |, and the number of hidden units in wψ. We
run SAC+LFIW on Walker-v2 using default hyperparameters, unless stated otherwise.

Temperature T : The temperature T affects the variances of the weights assigned. Since we are
using finite replay buffers, using a larger temperature reduces the chances of negatively impacting
performance due to wψ overfitting the data. We consider T = 1, 2.5, 5, 7.5, 10 in Figure 1(c); all
cases have similar sample efficiencies except for T = 1. Similarly, we also perform a similar analysis
on Humanoid-v2 with SAC in Figure 1(d). We observe a similar dependency on T as in Walker
where the sample efficiency with T = 1 is significantly worse that for the other hyperparameters
considered, which shows that overfitting the data can easily be avoided by using a higher temperature
value even in higher-dimensional state-action distributions.

Replay buffer sizes |Df |: The replay buffer sizes |Df | affects the amount of experiences we
treat as “on-policy”. Larger |Df | reduces the risk of overfitting while increasing the chances of
including more off-policy data. We consider |Df | = 1000, 10000, 50000, 100000, corresponding to
1 to 100 episodes. We note that |Ds| = 106, so even for the largest Df , Ds is significantly larger. The
performance are relatively stable despite a small drop for |Df | = 100000.

Hidden units of wψ: The number of hidden units affects the expressiveness of the neural network
as networks with more hidden units are more likely to overfit to the replay buffers. We consider
hidden layers with 128, 256 and 512 neurons respectively. While the smaller network with 128 units
is able to achieve superior performance initially, while others catch up at around 1000 episodes.

7. Conclusion

In this paper, we propose a principled approach to prioritized experience replay for actor-critic
methods. To achieve a good bias-variance trade-off, we assign weights to the replay buffer based on
their estimated density ratios against the stationary distribution. These density ratios are estimated
via samples from fast and slow replay buffers, which reflect on-policy and off-policy experiences
respectively. Our methods can be readily applied to deep reinforcement learning methods based on
actor-critic approaches, such as SAC and DrQ.
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