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Abstract
In recent years, deep reinforcement learning have
made great breakthroughs on board games. Still,
most of the works require huge computational
resources for a large scale of environmental in-
teractions or self-play for the games. This paper
aims at building powerful models under a limited
amount of self-plays which can be utilized by a
human throughout the lifetime. We proposes a
learning algorithm built on AlphaZero, with its
path searching regularised by a path consistency
(PC) optimality, i.e., values on one optimal search
path should be identical. Thus, the algorithm is
shortly named PCZero. In implementation, histor-
ical trajectory and scouted search paths by MCTS
makes a good balance between exploration and
exploitation, which enhances the generalization
ability effectively. PCZero obtains 94.1% win-
ning rate against the champion of Hex Computer
Olympiad in 2015 on 13× 13 Hex, much higher
than 84.3% by AlphaZero. The models consume
only 900K self-play games, about the amount hu-
mans can study in a lifetime. The improvements
by PCZero have been also generalized to Oth-
ello and Gomoku. Experiments also demonstrate
the efficiency of PCZero under offline learning
setting.

1. Introduction
Combining heuristic search with the deep neural network
has been a key to success in Reinforcement Learning (RL)
(Silver et al., 2016; 2017; 2018). Many efforts have been
made to sequential decision-making problems following
such an idea. However, tree search is a slow reasoning
process and needs heuristic as a counselor to narrow the
search space (Anthony et al., 2017). In AlphaZero, the pol-
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icy network reduces the width of the search tree while the
value network bounds the depth, both of which are learned
through the iterative generation of higher quality games.
The network’s final performance highly depends on the
number of self-play games, thus requiring huge computa-
tional power for model training. For example, reproductions
of AlphaZero123 either employ thousands of GPUs or train
for years.

In AlphaZero, deep neural network is updated with the self-
play generated games, and each game can be regarded as a
playing path, which consists of the sequential game states
from the initial to the terminal. For one complete game or
path, the learning objective is predicting the policy and the
value of current state accurately, so as to guide the Monte-
Carlo Tree Search (MCTS) effectively. The above regular
training process can be improved by a path optimality con-
straint called path consistency (PC), i.e., “values on one
optimal path should be identical” (Xu et al., 1987), which is
suggested to regularize path searching for many sequential
decision-making problems simply by adding a weighted
penalty to the loss function (Xu, 2018) :

L(θ) = LRL(θ) + λLPC(θ), (1)

where LRL is the RL loss that results from the interaction
with the environment, LPC is the PC constraint, and θ de-
notes the network parameters.

The key problem is how the term LPC is formulated, which
is L1 or L2 deviation from an estimated value of optimal
path that could be simply a moving average within a window
of estimated optimal path (Xu, 2018). It needs further inves-
tigation to implement and test the potential of this direction,
as well as to explore various possible ways to estimated the
value of optimal path. This paper provides a solid evidence
to demonstrate the effectiveness of PC for the first time. Our
contribution is summarized from three aspects4:

• We propose a data-efficient learning algorithm for
games, called PCZero, which is built on AlphaZero

1https://github.com/pytorch/ELF
2https://github.com/Tencent/PhoenixGo
3https://github.com/leela-zero/leela-zero
4The source codes are available at https://github.com/

CMACH508/PCZero.
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by incorporating PC. Specifically, the training process
of AlphaZero is augmented by minimizing the viola-
tion of the PC condition. Taking the 13 × 13 Hex as
an example, PCZero is able to defeat AlphaZero, and
obtain 94.1% winning rate against MoHex 2.0 (the
champion of Hex Computer Olympiad in 2015), which
is significantly better than 84.3% by AlphaZero. It is
worth noting that PCZero consumes only 900K self-
play games during learning, which is a small-scale data
that humans can make in a lifetime. Similar results can
also be observed when generalizing PCZero to other
games, e.g., Othello and Gomoku.

• We propose an effective implementation of PCZero by
including the MCTS simulated paths into the computa-
tion for PC, in addition to the historical trajectory. The
heuristics drawn from the lookahead search of MCTS
is beneficial to the network learning in jumping out of
the local optimum.

• We extend PC from the consistency of state values to
the consistency of feature maps, which are taken from
the network layers before the state value’s final estima-
tion. Feature consistency provides a stricter constraint
on PC nature, and it works as a complement to the
value consistency.

2. Related work
Hex is a PSPACE-complete problem (Even & Tarjan, 1976)
and widely studied for decades. While playing the game,
players place a stone of their color on an empty cell al-
ternatively, and who joins their two sides first is the win-
ner. Early Hex computer players, like Hexy (Anshelevich,
2002), Wolve (Arneson et al., 2008) and MoHex (Arneson
et al., 2010), usually utilized game’s mathematical proper-
ties to assist search algorithms. Learning prior knowledge
of the search process by pattern regression, MoHex 2.0
(Huang et al., 2013) has won the champion of Hex Com-
puter Olympiad in 2015. MoHex-CNN (Gao et al., 2017)
and EZO-CNN (Takada et al., 2017) further adopt convo-
lutional networks to extract prior information. NeuralHex
(Young et al., 2016) applied Q-Learning and EXIT (Anthony
et al., 2017) independently designed an Alpha Go-like algo-
rithm to train programs playing Hex. MoHex-3HNN (Gao
et al., 2018) built a three-head network to assist MCTS
and DeepEZO (Takada et al., 2019) introduced self-play to
collect game experience.

Othello is another PSPACE-complete game (Iwata & Kasai,
1994) and computer players are usually built based on tree
search assisted by a state value function, some of which
have achieved superhuman game capability, like Edax5. In
recent studies, neural networks (Liskowski et al., 2018)

5https://github.com/abulmo/edax-reversi

are adopted to predict expert movements and Q-learning
(Lucas & Runarsson, 2006; Krol & Brandenburg, 2020)
is used to learn playing policy directly. Gomoku is also
PSPACE-complete (Reisch, 1980) and some previous work
attempts to build strong computer programs using deep
learning methods (Schaul & Schmidhuber, 2008; Zhao et al.,
2012; Shao et al., 2016) and MCTS (Tang et al., 2016).

In the context of sequential games with perfect informa-
tion, all possible game states can be included in a game
tree starting at the initial state and containing all possible
moves. The task of search algorithms is finding an optimal
path, which can arrive the preferred terminal state n from
initial state s0, guided by a evaluation function f(s). One
classical example is A∗ search algorithm (Hart et al., 1968),
in which f(s) is computed as the summation of g(s), ac-
cumulated cost/reward from s0 to current state s, and h(s),
the future cost/reward from s to the preferred termination n.
The path optimality tells that f(s) = f(n) for every node
s on an optimal path and f(s) > f(n) for every node s
not on an optimal path. CNneim-A (Xu et al., 1987) relies
on this optimality to use A∗ to make a lookahead scout-
ing to estimate a segment on the optimal path and use the
average of f -values from the root to n (i.e., the historical
trajectory) and also one on this segment to guide A∗ search.
The current paper proceeds along this directions with three
new developments. First, f(n) is estimated by deep neural
networks. Second, a lookahead scouting is made by MCTS
instead of A∗. Third, a moving average within a window of
estimated optimal path (Xu, 2018) is considered in place of
the entire of historical trajectory plus lookahead scouting.

The concept of consistency is also widely employed in rein-
forcement learning. For example, Q-learning (Mnih et al.,
2015) has applied the well-known hard-max Bellman tem-
poral consistency between two adjacent state values. PCL
(Nachum et al., 2017a;b) further developed the above one-
step consistency to path-wise consistency between the opti-
mal policy and optimal values by assuming the policy is in
Boltzmann distribution.

In reinforcement learning, the latest learned policy interacts
with the environment to collect experience for policy im-
provement iteratively (Sutton et al., 1998). Such an online
learning paradigm is one of the biggest obstacles to their
widespread adoption when the interaction is expensive, or in-
feasible. And the utilization of collected data is insufficient,
requiring a huge amount of experience to train a working
model (Yu, 2018). Correspondingly, offline reinforcement
learning applied the supervised learning method, which is
more sample efficient, on the RL objectives, which utilizes
only previously collected offline data without interactions
(Fu et al., 2020). However, an important challenge with
offline RL is answering counterfactual queries, generalizing
the model to unexperienced situations (Levine et al., 2020).

https://github.com/abulmo/edax-reversi
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In this paper, we will show that PC can not only improve
learning efficiency for online RL but also enhance general-
ization capacity on value estimation in offline situations.

3. Method
PC is investigated under the scenario of board games in
this paper, which are typical delayed reward applications.
Immediate reward r(s, a) is always zero and g(s) = 0
holds until arriving the termination state. Thus, f(s) is
equal to h(s), which is equivalent to the state value v(s) in
RL conceptually. Therefore, the identical of f(s) is turned
into the consistency of v(s). What’s more, if the optimal
playing policy and state transition function are deterministic,
which is π∗(s) = argmaxa∈A r(s, a) + v(s′) and s′ =
T (s, a) (T is the state transition function), consistency of
state values can be derived from the hard-max Bellman
temporal consistency by setting γ = 1.0:

v∗(s) = r (s, π∗(s)) + γv∗(s′) = v∗(s′). (2)

Any two neighboring nodes have identical state values in
Equation 2 is an equivalent expression of PC constraint.
Therefore, path consistency is also a condition that optimal
state value v∗ should satisfy in RL. Adding PC constraint
into the objective function is reasonable to help learn the op-
timal policy from the perspective of solving the constrained
optimization problem. Although PC for RL and AlphaGo
type search was schematically proposed four years ago(Xu,
2018), not only it is yet unknown whether it works well
but also there are potentials of further developments on
estimating the value of optimal path.

3.1. PC computation with historical and heuristic paths

In AlphaZero, v(s) is computed by a deep neural network
that takes the state configuration s as input. PCZero will be
trained by further restricting that the estimated v(s) should
deviate as less as possible along the optimal path. In practice,
there are many possible ways to realize the PC constraint.
One way is to compute the variance of the values within a
sliding window Ws containing state s, i.e.

LPC(s) = (v − v̄)2, (3)

where v̄ is the average state value in Ws. As illustrated in
Figure 1, for a terminated game sequence, v̄ is averaged
over the l upstream nodes and k downstream nodes. The
computation procedure is summarized in Algorithm 1.

If playing sequence is collected through expert competi-
tions or self-play of near-optimal policy, v̄ obtained after
the termination of games is more reliable for the training
of PCZero. However, at the initial stage of the training pro-
cess, the quality of generated game experience is poor and
the network’s estimation of state value is not accurate. PC

Figure 1. v̄ calculation with historical path in a terminated game.

Algorithm 1 v̄ estimation for a terminated sequence
Input: game sequence S and value network f .
Initialize V = {f(si)|∀si ∈ S}.
for i = 1 to |S| do
v̄(si) = mean{Vmax{1,i−l}:min{i+k,|S|}}

end for

constraint computed by Algorithm 1 will lead the model to
converge to a local optimum quickly. To tackle this problem,
PCZero is extended to calculate v̄ using not only histori-
cal trajectory but also scouted heuristic path provided by
MCTS while doing self-play. As displayed in Figure 2,
the upstream path of the segment window consists of the
already obtained historical nodes before state s, while the
downstream path is determined by the best first search ac-
cording to the visiting times in the search tree, which is
constructed by MCTS with state s as the root node. Among
the obtained downstream nodes, the ones far from the root
may not be consistent with the historical ones and may
not be necessary to be selected into the final optimal se-
quence. This uncertainty increases the variance of the value
predictions within the window. Such variation, which will
be captured by PCZero, is exactly the strength to rescue
the network from a local optimum. The relative length of
the heuristic path to the history path controls the balance
between the satisfaction of optimal PC nature, which can
accelerate convergence, and randomness injection, avoiding
local optimum, which is similar to the trade-off between
exploration and exploitation in RL. The computational pro-
cedure for PCZero using MCTS self-play (MCTS-PCZero)
is provided in Algorithm 2.

Figure 2. v̄ calculation with both historical and heuristic path.
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Figure 3. Detailed information about the architecture of policy-value network.

Algorithm 2 MCTS-PCZero self-play
Input: value network f and policy p.
Initialize historical sequence S = ∅
Choose a random move as the beginning of the game
s = Initial state
while s is not termination state do

if |S| > l then
Pop the earliest state

end if
S = S ∪ {s}
H, a = HeuristicPath(s, f, p)
v̄(s) =

∑
s′∈S∪H f(s′)

|S|+|H|
s = s plays action a

end while

Algorithm 3 Heuristic Path
Input: state s, value function f and policy p.
Initialize heuristic sequence H = ∅
Perform MCTS with Nk simulation times
Sample action a according to N(s, a)
while s is not leaf node and |H| ≤ k do

action= argmaxa′∈A N(s, a′)
s = s plays action
H = H ∪ {s}

end while

3.2. Feature consistency

We further extend path consistency to the feature maps of the
value network. In the AlphaZero framework, the policy and
the value network share a common residual tower to extract
information from the board state. The value head performs
convolution operation with one filter, yielding a feature map
fv before the final output layer. Specifically, the output v
is the linear combination of the entries of fv followed by a
activation function σ, i.e., v(s) = σ(Tr(wT fv)), where w
is the weight matrix of the same size as the feature map fv
and Tr denotes the trace operator of a matrix. In addition to
maintaining the consistency on a one-dimensional value v,

PC constraint is proposed to impose on the high-dimensional
feature map fv:

Lf
PC = ∥fv − f̄v∥2, (4)

where f̄v is the element-wise average of all the feature maps
over the nodes within the window. It can be noted that the
feature consistency is a sufficient but not necessary condi-
tion for value consistency. And it contains more information
about the game situation. Thus Lf

PC is a tighter constraint
and can be used as a supplement of LPC in Equation 3.

3.3. Loss functions

Based on Equation 1, following learning loss is adopted to
training the PCZero,

L1 = −yT log p+(z− v)2+λLPC +βLf
PC + c∥θ∥2, (5)

where p and v is the policy and value which are predicted
by the neural network, y is the one-hot action vector which
labels the move from the data, z ∈ {−1,+1} denotes the
final result of the game, either lose or win, and λ and β are
the non-negative coefficients to adjust the influence of PC
in Equation 3 & 4 respectively. ||θ||2 is L2 regularization
term on parameters.

While self-play is activated, MCTS is implemented to scout
different paths from the existing state. Then, a policy π
is computed according to the number of visiting times of
each child of the root node, which represents the current
state. The next playing move is selected according to the
policy π. The loss function in Equation 5 can be improved
by replacing y with π, i.e.,

L2 = −πT log p+(z− v)2+λLPC +βLf
PC + c∥θ∥2, (6)

because the effects of some moves are equivalent due to
game’s symmetry property or from a long-term perspective,
and deterministic action selection by the one-hot vector
might be harmful for exploration. And loss function with
λ = β = 0 will be used to train the AlphaZero model.
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The policy-value (PV) network is built as follows. A convo-
lutional head extracts input information, following n resid-
ual blocks with ReLU activation and batch normalization.
n is set as 3 in this paper. Then the extracted information is
passed to a policy head and a value head respectively, giving
final estimations. Input data consists of five binary planes,
representing the state of the game board. The first three
channels indicate the position of the pieces on the board, i.e.
black stones, white stones, and empty points. The remaining
two channels are used to indicate the current game player,
i.e., one is for whether black plays while the other is for
whether white plays. For the Hex game, each board’s side
is padded as MoHex-3HNN (Gao et al., 2018). Detailed
network information is displayed in Figure 3.

While playing games with search player, actions are chosen
by Policy Value MCTS (PV-MCTS). PUCT criterion in
Equation 7 is adopted to select the leaf node by setting
cpuct = 1.5 and the search procedure is the same with
AlphaZero (Silver et al., 2018).

a = argmax
a

{
Q(s, a) + cpuctp(s, a)

√
N(s)

1 +N(s, a)

}
,

(7)
While doing self-play, Dirichlet noise is injected into nodes’
prior probability as a source of randomness. The first Nr

moves are selected proportionally to [N(s, a)/N(s)]
1/τ ,

where Nr is sampled from an exponential distribution with a
mean of 0.04×h2, and h denotes the board size. Action with
maximum N(s, a) is chosen after t steps until reaching the
termination. And those random operations will be removed
in test tournaments.

3.4. PC in stochastic games

In stochastic games, where the state transition is probabilis-
tic, i.e., s′ ∼ p(s′|s, a), Equation 2 does not hold and PC
will not be strictly established. State value v(s) is calculated
over all possible following states, whereas the PC nature is
only related with a specific path. As illustrated in Figure 4,
neither v(sw) nor v(sl) is equal to v(s).

Figure 4. Example of PC nature in stochastic games.

Suppose Ks game experiences containing state s are col-
lected. For kth sequence,

Hk : {s0k, a0k, r1k, s1k, · · · , rNk , sNk }, (8)

the difference of f value between s and s′k is

∆k
s = f(s)− f(s′k) = v(s)− (rk + v(s′k)) , (9)

following the definition that f(snk ) = g(snk ) + h(snk ) =∑n
i=1 r

i
k + v(snk ). Applying Cauchy-Schwarz inequality on

the deviation between s and s′k for all Ks sequences, we
have

1

Ks

Ks∑
k=1

(∆k
s)

2 =
1

K2
s

Ks∑
k=1

(∆k
s)

2
Ks∑
k=1

12 ≥ 1

K2
s

[
Ks∑
k=1

∆k
s

]2

=

[
v(s)− 1

Ks

Ks∑
k=1

(rk + v(s′k))

]
= {v(s)− Ea,s′ [r(s, a) + v(s′)]}2. (10)

The squared value deviation becomes the upper bound of the
satisfaction of Bellman equation for the state-value function,
which is v(s) = Ea∼π,s′∼p[r(s, a) + γv(s′)], when setting
γ = 1.0. Therefore, optimizing the PC constraint still has
positive effect on maintaining Bellman temporal consistency
in stochastic games.

4. Experiment
Taking Hex, Othello, and Gomoku as examples, the ad-
vantage of PCZero will be investigated in both offline and
online learning. Three board sizes of Hex are considered,
including 8×8, 9×9 and 13×13, while the sizes of Othello
and Gomoku are 8× 8 and 15× 15 respectively.

4.1. Effectiveness of PC on online learning

To illustrate the learning improvement brought by PC, we
first compare models for online learning trained with the
same self-play games. Firstly, an AlphaZero model (Silver
et al., 2018) is trained for 13 × 13 Hex. During the self-
play, MCTS runs 400 simulations to select moves and 1000
games are played in each iteration. For the first 200 epochs,
the learning rate r is 0.01 and temperature parameter τ is
0.8. In the following 200 epochs, r = 0.001 and τ =
0.6. For the rest 500 epochs, r = 0.0001 and τ = 0.2.
900K games are generated to train the AlphaZero model
in total, which will also be used to update our PCZero
model with the same learning hyperparameter setting except
λ = 3.0 and l = k = 5. Typically, it takes humans 0.5
hours to finish a 13 × 13 Hex game. Assuming a person
studies 12 hours a day, 900K is roughly the amount a human
can study in eight decades. The collected games is then
used to update network parameters, taking Equation 6 as
loss function by setting λ = β = 0 and c = 10−5 for
AlphaZero model. We use 8 GeForce RTX 2080Ti GPU
and Intel(R) Xeon(R) Gold 6130 CPU with 125G RAM
to do self-play. A single GTX 1050Ti GPU and Intel i7
8750H CPU with 16 GB RAM are used to test. MoHex
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2.0, MoHex-CNN and MoHex-3HNN are the champion of
Hex Computer Olympiad in 2015 (Hayward et al., 2015),
2017 (Hayward & Weninger, 2017) and 2018 (Gao et al.,
2019) respectively and their game abilities exceed most
human players. Tournaments are conducted to evaluate the
performance of models, in which MoHex 2.06 is used as
the baseline and players have 10s to select the position to
place their stone. 338 games are played for each model
competition. It is worth noting that simulation times of our
programs are only 2% ∼ 5% of MoHex programs, due to
the difference in the implementation language.
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Figure 5. Test PC loss on expert dataset for online learning.

Results in Table 1 shows that our PCZero model outper-
forms not only state-of-the-art Hex players, but also the
AlphaZero model greatly. What’s more, PCZero trained
after 600K games has defeated the final AlphaZero model
trained after 900K games with a 175 : 163 score, indicating
the efficiency brought by PC constraint. The expert dataset
in Section 4.3 is used to gather test information of the model
trained with self-play games. As shown in Figure 5, test PC
loss of AlphaZero also decreases, but is higher than PCZero.
It suggests that path consistency is a nature required for
strong value predictors and the term of PC loss guides the
learning process towards it proactively providing efficiency.
The same experiment is also conducted on Othello. Using 3-
ply Edax as the baseline model, winning rate of our PCZero
(λ = 2.0) is 74.8% exceeding AlphaZero’s 69.5%, while
playing with MCTS player.

If the PC in terms of feature consistency is activated by set-
ting β > 0, the winning rate against MoHex 2.0 is further
improved to 94.1% in 13× 13 Hex. What’s more, trained
after 900K games, PCZero (β = 0) beats AlphaZero with
a 58.3% winning rate and PCZero considering only feature
consistency (λ = 0) obtains a 56.8% winning rate. If both
consistencies are activated, winning rate against AlphaZero

6https://github.com/cgao3/
benzene-vanilla-cmake

Table 1. Winning rate of models against MoHex 2.0 (10s) in 13×
13 Hex, trained with 0.9M selfplay games.

MODEL AS BLACK AS WHITE OVERALL

MOHEX-CNN 78.6% 61.2% 69.9%
MOHEX-3HNN / / 82.4%
ALPHAZERO 89.3% 79.3% 84.3%
PCZERO (β = 0) 96.4% 90.5% 93.5%
PCZERO 94.7% 93.5% 94.1%

achieves 63.3%. Feature consistency is a positive supple-
ment for value path consistency.
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Figure 6. Elo ratings for 8× 8 Hex without data sharing.

Besides, experiments without sharing the generated data
are conducted on 8 × 8 Hex. All models are trained with
the self-play games generated by themselves. The ability
improvement during training is evaluated by the Elo rating
system7, in which models with higher rating scores have the
stronger game capability. Models have been sampled every
10 training epoch and tournaments for each opening are
played twice between MCTS players of the current sampled
model and the previous sampled model. Game results will
be collected for scoring. As shown in Figure 6, the learning
curve of PCZero grows faster and maintains at a higher
ratings score than AlphaZero. For the final model, PCZero
outperforms AlphaZero with a 78 : 50 tournament score.
These results indicate that PC constraint brings not only
learning efficiency but also improvements on players’ final
performance for online reinforcement learning.

4.2. Investigation of heuristic path

MCTS-PCZero in Algorithm 2 is implemented on 8×8 Hex.
Programs are trained individually without data sharing. Dur-
ing self-play, MCTS runs 200 simulations and 500 games
are generated for each iteration. r = 0.01, 0.001, 0.0001

7https://www.remi-coulom.fr/Bayesian-Elo/

https://github.com/cgao3/benzene-vanilla-cmake
https://github.com/cgao3/benzene-vanilla-cmake
https://www.remi-coulom.fr/Bayesian-Elo/
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Table 2. Tournament results among MCTS-PCZero with different
window length for 8× 8 Hex (row player against column player).

l = 5, k = 0 l = 0, k = 5 l = 5, k = 5

l = 0, k = 5 53.1% / /
l = 5, k = 5 57.0% 60.9% /
l = 5, k = ∞ 57.8% 56.8% 50.8%

and τ = 0.8, 0.6, 0.2 for the first 200 epochs, middle 200
epochs and last 200 epochs separately. Each model is trained
with 300K self-play games in total. The learning process
is reported in Figure 7 by Elo rating system. Compared
with regular PCZero, MCTS-PCZero converges faster to a
better solution, obtaining higher Elo rating scores. What’s
more, MCTS-PCZero learning after 500 epochs has already
played against the final PCZero with 50.0% winning rate.
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Figure 7. Elo ratings of MCTS-PCZero for 8× 8 Hex.

The influence of historical path and heuristic path is investi-
gated by setting l = 5, k = 0 and l = 0, k = 5 respectively.
Tournament results is listed in Table 2. Programs may ben-
efit more from the heuristic path than the historical path
because the model trained with the former wins more games.
And the performance is the best when both are included in
the selected window. The importance of randomness during
learning has been demonstrated in AlphaZero reproduction
programs (Wu, 2019). Therefore, if the heuristic path is
considered more by setting k = ∞, which means scouting
until the leaf node without explicit length limit, model’s
performance has been further improved, beating AlphaZero
model and MCTS-PCZero (l = k = 5) with 55.5% and
50.8% winning rate respectively. Poor window selection
provides a negative impact by giving a v̄ deviating from
the optimal path greatly. The heuristic path is the source
of deviation and the historical path aims to maintain Ws in
the optimal path. The relative length of the heuristic path
and the historical path is similar to the classical exploration

and exploitation trade-off. Both parts are beneficial but
the heuristic path is more important. Larger k brings more
efficiency, cooperating with appropriate l.

Besides 8 × 8 Hex, the experiment is also conducted on
the more complicated 13× 13 Hex. An intermediate model
updated after 750K self-play games during the training of
AlphaZero is adopted as the initial model to continue to be
trained as AlphaZero, MCTS-PCZero (l = k = 5), and
MCTS-PCZero (l = 5, k = ∞) separately. After training
with 150K self-play data generated independently without
sharing, MCTS-PCZero (l = 5, k = ∞) outperforms Al-
phaZero and MCTS-PCZero (l = k = 5) with 51.8% and
53.0% winning rates. For a well-trained intermediate model,
MCTS-PCZero obtains a better performance because the
exploratory brought by the heuristic path helps to escape
local optimum.

4.3. Effectiveness of PC on offline learning

Besides online reinforcement learning, we will show that
PC also benefits the offline learning process. There are
three residual blocks in the network, of which parameters
are updated by Equation 5. And the window length is set
to be l = k = 5. For Hex, expert dataset is collected by
the self-play of MoHex 2.0 (Gao et al., 2018), containing
50K, 101K and 18K games for 8× 8, 9× 9 and 13× 13
Hex respectively. WThor8 and RenjuNet9 are adopted as the
expert dataset for Othello and Gomoku, containing 126K
and 70K games respectively. Those datasets are divided into
training set and test set randomly and the proportion of test
set is 20%. While conducting test tournaments, the offline
AlphaZero model (λ = β = 0) is used as baseline. For
Hex game with h× h boardsize, there are h2 opening cells
and one game is played for the first and second players for
each opening. A total of 2h2 games are played. For Othello,
100 openings are randomly generated according (Runarsson
& Lucas, 2014) and 200 openings with 8 placed stones
are sampled for Gomoku. While playing test tournaments
with MCTS player, simulation times are 1600 for Hex, 800
for Othello and Gomoku. For greedy player, actions with
maximum policy probability will be chosen.

Winning rate of our offline PCZero against offline Alp-
haZero is listed in Table 3, in which λs are all set as 2.0. For
tournaments between greedy players, offline PCZero can
beat offline AlphaZero with a winning rate slightly exceed-
ing 50.0% for all games. Because policy head and value
head share the same residual tower extracting information,
policy learning can also benefit from the constraint on es-
timated values. For tournaments between MCTS players,
the advantage of our offline PCZero over offline AlphaZero

8https://www.ffothello.org/informatique/
la-base-wthor/

9http://www.renju.net/downloads/games.php

https://www.ffothello.org/informatique/la-base-wthor/
https://www.ffothello.org/informatique/la-base-wthor/
http://www.renju.net/downloads/games.php
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Table 3. Winning rate of offline PCZero against offline AlphaZero
at λ = 2.0, β = 0.0.

GAME GREEDY PLAYER MCTS PLAYER

HEX (8× 8) 51.6% 58.6%
HEX (9× 9) 53.1% 59.9%
HEX (13× 13) 52.1% 61.5%
OTHELLO 50.5% 80.5%
GOMOKU 56.8% 64.0%

is more significant. In Equation 7, Q(s, a) is the mean ac-
tion value, controlling exploitation during the search. If
the value network gives inaccurate estimations about v(s),
MCTS will be misled and poor moves will be selected. As
displayed in Figure 8 & 9, value loss of offline PCZero
is greater than offline AlphaZero during training, but less
than offline AlphaZero while testing. The reason is that
the PCZero slightly sacrifices the prediction accuracy on
values to meet the constraint of path consistency during
training. And the satisfaction of the latter captures more
valuable information, improving the model’s generalization
ability. Therefore, backup values provided by PCZero is
more reasonable, enhancing the search quality of MCTS
player greatly.
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Figure 8. Training value loss on 13× 13 Hex for different λ.

The expression of value loss (z − v)2 is similar with LPC,
both of which are related with value estimation. Take γ as
the weight of value loss and above models are trained by
keeping γ = 1.0 in Equation 5. Experiments are conducted
about the influence of γ by keeping λ = β = 0 and offline
AlphaZero with γ = 1.0 is used as the baseline model. Re-
sults in Table 4 show that increasing the weight of value loss
can not achieve the same effect as adding the PC constraint.
Especially, the winning rates of offline PCZero in the tour-
naments among MCTS players are much higher than the
winning rates among greedy players in Table 3. However,
the winning rates of MCTS player with larger γ are even
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Figure 9. Test value loss on 13× 13 Hex for different λ.

Figure 10. Distribution of AlphaZero’s estimated values for 13×13
Hex at each game step (z = 1).

worse than the greedy player, for which the model is too
concerned about the accuracy of the prediction, weakening
the generalization ability and giving wrong value estimation
feedback for MCTS. What’s more, PC loss (v− v̄)2 is trying
to reduce the prediction variance along the path, while value
loss (v − z)2 is more concerned with reducing prediction
bias. Taking 13× 13 Hex as an example, PCZero’s standard
deviation of the estimated values along the path is 0.259, av-
eraged on all test samples with z = +1, much smaller than
AlphaZero’s 0.550, as shown in Figure 10 & 11. Therefore,
larger γ cannot improve the performance of the final MCTS
player and it is worthwhile to introduce LPC into the loss
function to incorporate with value loss.

Feature consistency in offline case is also investigated. Us-
ing offline AlphaZero as baseline model, results for 13× 13
Hex in Table 5 show that the winning rate is improved from
61.5% to 70.7% for MCTS player with 1600 simulations
by switching on feature consistency at β = 1.0. If only con-
sidering feature consistency at λ = 0, the winning rate is
50.3%, which is consistent with the results in online learning
case in Section 4.1. The same experiment is also conducted



Efficient Learning for AlphaZero via Path Consistency

Figure 11. Distribution of PCZero’s estimated values for 13× 13
Hex at each game step (z = 1).

Table 4. Winning rate of offline AlphaZero with different γ against
offline AlphaZero with γ = 1.0.

GAME γ GREEDY PLAYER MCTS PLAYER

HEX (13× 13) 2.0 48.8% 45.9%
HEX (13× 13) 3.0 55.9% 55.0%
OTHELLO 2.0 49.2% 34.8%
OTHELLO 3.0 42.8% 42.8%

for Othello and Gomoku. Trained with the expert dataset,
the winning rate of offline PCZero against offline AlphaZero
is improved to 83.0% for Othello by setting β = 0.5, and
69.0% for Gomoku by setting β = 1.0 for the competition
between MCTS players. Therefore, value path consistency
takes the main role in performance improvement, while
feature consistency is a positive supplement.

5. Conclusion
In this paper, we have proposed PCZero, a data-efficient
learning algorithm, based on the PC optimality condition.
PCZero is more efficient in learning than AlphaZero in
board games like Hex, Othello, Gomoku. In particular,
PCZero can defeat AlphaZero, and significantly improve
the winning rate against the Hex Champion from 84.3% to
94.1%, in comparisons with AlphaZero, by training on a
small amount of self-play data that is human-achievable in
a lifetime. This is realized by an effective implementation
of PC that includes both historical searching trajectories
and MCTS’s lookahead simulated paths, striking a good bal-
ance between exploitation and exploration. Ablation studies
examine the effectiveness of the proposed components in
PCZero. Experiments further demonstrate that the offline
version of PCZero is also effective in performance improve-
ment when learning from a fixed dataset. PC is helpful
in consuming fewer computational resources but obtaining
strong artificial intelligence programs.

Table 5. Winning rate of different offline PCZero against offline
AlphaZero for 13× 13 Hex.

λ β GREEDY PLAYER MCTS PLAYER

2.0 0.0 52.1% 61.5%
0.0 1.0 50.6% 50.3%
2.0 1.0 53.3% 70.7%

In the future, we plan to study the PCZero framework on
the real applications in combinatorial nature. Moreover,
CNneim-A (Xu et al., 1987) utilized path consistency to
assist the search process firstly, guaranteeing to find the op-
timal solution with O(N logN) complexity. Therefore, PC
is not an ad hoc heuristic, and there is room for theoretical
studies in the future. In this paper, A∗ search is replaced by
MCTS to make the lookahead scouting. A comparison of
these two methods will be finished in future work. What’s
more, the calculation of v̄ relies on the selection of the win-
dow, which has fixed length in this paper. As illustrated in
CNneim-A (Xu et al., 1987), the length of historical path
should increase with the depth of current state to control v̄’s
estimation bias. Therefore, window selection will be further
studied in our following work.
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