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Abstract
GPUs have become the dominant computing plat-
forms for many applications, while programming
GPUs with the widely-used CUDA parallel pro-
gramming model is difficult. As sequential C
code is relatively easy to obtain either from legacy
repositories or by manual implementation, au-
tomatically translating C to its parallel CUDA
counterpart is promising to relieve the burden
of GPU programming. However, because of
huge differences between the sequential C and
the parallel CUDA programming model, exist-
ing approaches fail to conduct the challenging
auto-parallelized program translation. In this pa-
per, we propose a learning-based framework, i.e.,
BabelTower, to address this problem. We first
create a large-scale dataset consisting of compute-
intensive function-level monolingual corpora. We
further propose using back-translation with a dis-
criminative reranker to cope with unpaired cor-
pora and parallel semantic conversion. Experi-
mental results show that BabelTower outperforms
state-of-the-art by 1.79, 6.09, and 9.39 in terms
of BLEU, CodeBLEU, and specifically designed
ParaBLEU, respectively. The CUDA code gen-
erated by BabelTower attains a speedup of up to
347× over the sequential C code, and the devel-
oper productivity is improved by at most 3.8×.

1. Introduction
Massively parallel architectures such as GPUs have become
the dominant computing platforms for a wide range of ap-
plications, such as graphical processing, high-performance
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Figure 1. Both syntax and semantics are inherently different be-
tween sequential C and parallel CUDA programming model.

computing (HPC), and machine learning. To exploit their
highly parallel computation ability, practitioners typically
leverage the CUDA parallel programming model (Sanders
& Kandrot, 2010). However, writing parallel CUDA code
is quite hard since the programmers should be aware of
complicated architectural characteristics of GPUs, e.g.,
thread/block data organization, on-chip shared memory, and
warp synchronization.

As sequential C code is relatively easy to obtain, it is very
promising to alleviate the burden of GPU programming
by automatically translating from C to CUDA. Concretely,
there already exist vast repositories of legacy C code, which
can be directly utilized or slightly modified for generating
their parallel CUDA counterpart. Even if appropriate C
code cannot be obtained from existing repositories, it is still
much easier to write the sequential C code than the parallel
CUDA code given the same functional specification.

However, such program translation is greatly challenging in
practice. The main reason is that the CUDA programming
model, which follows the SIMT (Single Instruction, Multi-
ple Threads) model to partition the data into different parts
with the same code, is quite different from conventional C
programming in syntax and particularly semantics. Figure 1
shows an example of the key differences between the C and
CUDA programming model, where the vector addition with
sequential loops of C is parallelized using multiple indexed
threads with religious SIMT rules of CUDA. Apparently,
automating such process requires not only syntax-level trans-
lation (e.g., generating the CUDA-specific keywords such
as threadIdx.x), but also loop detection, parallel semantic
analysis, and sequential-to-parallel conversion. Essentially,
this problem can be modeled as auto-parallelized program
translation, which is harder than either traditional automatic
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parallelization or program translation tasks.

The difficulty of this problem makes existing approaches in-
cluding auto-parallelization approaches (Verdoolaege et al.,
2013; Nugteren & Corporaal, 2014; Mendonça et al., 2017)
and statistical program translation approaches (Nguyen
et al., 2015; Chen et al., 2018; Roziere et al., 2020;
2021a) unsurprisingly ineffective. The state-of-the-art auto-
parallelization approaches employ code templates or poly-
hedral models for program transformation. However, these
approaches either require considerable manual efforts for
code annotation or confront scalability and generality prob-
lems. The statistical program translation approaches train
either probabilistic models or neural networks, which are
inspired by recent advances on statistical/neural machine
translation, for end-to-end automatic code translation with
large-scale datasets. However, such approaches fail to ad-
dress our problem because of not addressing two challenges:
1) scarcity of effective dataset. There lacks a large-scale
dataset due to huge efforts on data collection, cleaning, and
labeling. Moreover, the amount of CUDA code is much less
that that of C code, e.g., around four orders of magnitude
in open-source repositories such as GitHub, and thus it is
intractable to build a large number of well-paired corpora
for training. 2) lack of parallel semantics. Existing sta-
tistical models fall short of taking the parallel semantics
into consideration, which are decisive to detect loops from
the sequential C code and then convert them to the parallel
CUDA code, since it is awkward to add semantic features
into such generative models (Shen et al., 2004).

Regarding the above challenges, in this paper, we propose
a novel learning-based framework, i.e., BabelTower, for
auto-parallelized program translation specifically designed
to translate from sequential C to parallel CUDA. As the
basis of training, we create a large-scale dataset consisting
of 501, 732 C functions, 129, 497 CUDA functions, as well
as C-CUDA function pairs for validation and test, all of
which are compute-intensive to evaluate the effectiveness
of parallel semantic conversion, mined from open-source
repositories. To cope with unpaired corpora and parallel
semantic conversion, we propose using back-translation
with a discriminative reranker. Concretely, we first leverage
the widely used data augmentation technique, i.e., back-
translation, to enable unsupervised translation from C to
CUDA based on large-scale unpaired monolingual corpora.
Then, the parallel semantics are embedded into a discrim-
inative model for selecting the best hypothesis within the
n-best beam search candidates. Experimental results show
that BabelTower outperforms state-of-the-art by 1.79, 6.09,
and 9.39 in terms of BLEU (Papineni et al., 2002), Code-
BLEU (Ren et al., 2020), and specifically designed Para-
BLEU, respectively, and thus 92.8% generated CUDA code
can be correctly compiled. We also demonstrate that the
generated CUDA code of BabelTower attains a speedup

of up to 347× over the original sequential C code. Fur-
thermore, BabelTower improves developer productivity of
real-life CUDA programs by at most 3.8× in our empirical
study.

Our contributions are:

• We are the first to provide a publicly-available large-scale
C-CUDA dataset, enabling advanced research on the im-
portant domain of auto-parallelized program translation.

• We are the first to introduce a learning method for translat-
ing from C to CUDA, which addresses the key challenges
of unpaired corpora and parallel semantic conversion.

• We conduct thorough evaluation in terms of accuracy,
functionality, performance, and productivity, which well
demonstrates the benefits and potential of BabelTower.

2. Problem Statement
We consider the problem of translating the serial program
(specifically, in the C language) into a parallel one (in the
CUDA C++ language) given only monolingual corpora.
One approach is to model the problem as a machine trans-
lation problem between programming languages, and thus
existing unsupervised methods can be applied. However,
the inherent differences between the serial and the parallel
programming languages require the translating method to
capture the parallel semantics, i.e., to auto-parallelize the
semantics behind the serial program, rather than only per-
forming translation between syntaxes. Thus, we model the
problem as Auto-Parallelized Program Translation instead.

Definition 2.1 (Auto-Parallelized Program Translation).
There is a serial programming language LS and a paral-
lel programming language LP, each is an infinite set of valid
program strings. There exists a binary relation ⇋ over LS
and LP that relates the semantically-equivalent serial and
parallel program pairs. Given two monolingual datasets
LS ⊂ LS and LP ⊂ LP, the problem is to learn a translator
F such that ∀x ∈ LS, (∃u ∈ LP, x ⇋ u) → (x ⇋ F (x)).

The main challenge of the problem is that the alignment
between dataset LS and LP is lacking, thus the model
must be trained under an unsupervised approach. The
knowledge about the semantic alignment have to be firstly
induced a priori because of the absence of an aligned
dataset, and to be then learned a posteriori because that
the auto-parallelization task itself is non-trivial. According
to Rice’s Theorem of computability theory (Rice, 1953),
there is no set of rules that can accurately model the relation
⇋, because it is undecidable whether two programs are
semantically-equivalent.
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Table 1. Statistics of the built dataset. The Monolingual Corpora
serve as the training dataset for unsupervised training, while the
Paired Corpora is for validation and test. We show the total sizes,
the number of functions, and detailed statistics of tokens.

MONOLINGUAL
CORPORA

PAIRED
CORPORA

C CUDA C-CUDA

SIZES 977 MB 165 MB 305 KB

FUNCTIONS 501, 732 129, 497 364

TOKENS 134, 961, 512 30, 818, 416 80, 788
- AVG 268 237 111
- MAX 1, 000 1, 000 470
- MIN 9 9 27

3. Dataset
In this section, we first present the design requirements and
then show details of the constructed dataset.

3.1. Requirements of the Dataset

There are three key requirements in the dataset design for
studying the C-to-CUDA translation.

• Large-scale. The learned model is expected to generalize
well to a wide variety of workloads, and thus the dataset
should contain abundant workloads from various fields
such as graphical processing, HPC, and machine learning.

• Function-level. As the glue-code specified by CUDA
programming model (e.g., kernel launch function) is rel-
atively easy to generate, the dataset focuses on the chal-
lenging fine-grained translation within each function.

• Compute-intensive. The key challenge of the C-to-
CUDA translation is to convert sequential C loops to par-
allel CUDA code, and thus most functions in the dataset
should be compute-intensive with multiple nested loops.

3.2. Dataset Construction

Data collection. It is non-trivial to collect large-scale
monolingual corpora, especially for the scarce CUDA
code. Existing program translation approaches such as
TransCoder (Roziere et al., 2020) usually collect the source
code with a simple SQL query from the GitHub Public
Dataset on Google Big Query1, which contains only a lim-
ited number of CUDA files (i.e., 97, 330 files). Instead,
we crawl all the CUDA codes available on GitHub (i.e.,
617, 048 files) by using GitHub Search API and collect the
C codes in the same directory or repositories as well, so as
to mine potential correlation between them.

Data cleaning. After collecting the source code files, we
perform data cleaning as follows. First, we extract all func-

1https://cloud.google.com/bigquery

tions from the C and CUDA files. Then, we tokenize the
functions and remove all the comments by using regular
expression. Finally and most importantly, we filter out un-
qualified C and CUDA code based on their distinct charac-
teristics. Regarding the C code, the key principle is to filter
out a great amount of functional codes (e.g., control and
communication, system calls, front-end codes), and retain
compute-intensive kernels for graphical processing, HPC,
and machine learning. Therefore, we detect the nested loops
by leveraging the tree-sitter syntax parser2 and inspect the
loop to check whether it contains intensive computation on
vector or matrix data structures, which are suitable for par-
allelization. Regarding the CUDA code, the key principle is
to filter out duplicated codes, as most of the CUDA kernels
are frequently reused because of cumbersome programming
burden. Thus, we filter out 95.53% of the original CUDA
code by performing a text similarity check.

Data labeling. For validation and test, we label the paired
corpora3 of C-CUDA by carefully inspecting the C and
CUDA code in the same file. We also conduct an extra
compilation check to further improve the data quality.

3.3. Dataset Statistics

Table 1 summarizes statistics of the built dataset, which con-
tains large-scale monolingual corpora for unsupervised train-
ing and light-weighted paired corpora for validation and test.
By following aforementioned data cleaning principles, in
the monolingual corpora, we retain 25.08% (i.e., 501, 732)
of the total C functions, and 4.47% (i.e., 129, 497) of the to-
tal CUDA functions. Also, we can group the functions into
different fields based on their GitHub topics, including Deep
Learning, Machine Learning, Physics Simulation, HPC, Im-
age Processing, Graph Processing, etc. To demonstrate that
the functions are compute-intensive, we further show the
distribution of loops nesting depth in Figure 6. In short, the
built dataset well satisfies the stated design requirements,
that is, large-scale, function-level, and compute-intensive.

4. Learning Model
In this section, we introduce the learning framework of
BabelTower and then detail the process of pretraining, back-
translation, and an unsupervised training of discriminative
ranking model.

4.1. Learning Framework

BabelTower is a translation model T coupled with a dis-
criminative ranking model D. The translation model
T is a Transformer architecture (Vaswani et al., 2017),

2https://tree-sitter.github.io
3We use paired corpora rather than parallel corpora to distin-

guish it from the parallel semantics.

https://cloud.google.com/bigquery
https://tree-sitter.github.io
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Figure 2. Overview of BabelTower learning framework. We train the discriminative ranking model in the back-translation step, i.e.,
CUDA-C-CUDA, to synthesize paired data. Further, we specially designed the metrics ParaBLEU for CUDA, and learn to predict the
ParaBLEU score by minimizing the KL-divergence between the output distribution of the model and target distribution.

where the encoder e and the decoder d are shared for
both C and CUDA. After training with back-translation,
T = d (e (·; θe,S) ; θd,P) is able to generate CUDA code
hypotheses from C input by beam searches, and T−1 =
d (e (·; θe,P) ; θd,S) can generate C code hypotheses from
CUDA input. The discriminative ranking model D is for se-
lecting the best hypothesis within. D is also a Transformer
architecture, given both the original C code x and the trans-
lated hypothesis ui as the input sequence, output a score
oi = D(ui|x) to judge the quality of the translation. The
best hypothesis is chosen as the one with the highest output
score, thus the framework can be described as:

F (x) = arg max
ui∈T (x;θT )

D(ui|x; θD) (1)

4.2. Pretraining and Back-Translation

First, we train BabelTower with pretrained XLM model and
back-translation following (Roziere et al., 2020). The trans-
lation model T is initialized by a pretrained XLM model fol-
lowing (CONNEAU & Lample, 2019), which is pretrained
on the monolingual corpora with the Masked Language
Modeling (MLM) task (Kenton & Toutanova, 2019).

After pretraining, the translation model is trained with
the Denoising Auto-Encoding (DAE) task (Vincent et al.,
2008) and the Back-Translation (BT) task alternatively. The
source-to-target model T and the target-to-source model
T−1 is trained in parallel until convergence on the monolin-
gual corpora. Specifically, in BT iterations we minimize the
loss function:

LDAE(θT ) =Ex∼LS∆(x, d (e (C(x); θe,S) ; θd,S))
+Ex∼LP∆(x, d (e (C(x); θe,P) ; θd,P))

(2)

LBT(θT ) =Ex∼LS∆(x, T−1 (Tt−1 (x) ; θT ))

+Ex∼LP∆(x, T
(
T−1
t−1 (x) ; θT

)
)

(3)

where ∆ denotes the sum of token-level cross-entropy
losses, and C(·) denotes the stochastic corruption applied
on the code; where Tt−1 denotes the translation model from
the previous training iteration.

The training methods described above is on par with
(Roziere et al., 2020). Therefore the model is expected
to generate high-quality translations between similar pro-
gramming languages (such as between C++, Python, and
Java). However, for language pairs such as C and CUDA,
which is inherently different in programming models (se-
quential model versus Single Instruction, Multiple Threads,
SIMT), the generated translations tend to be low in quality.
This is because that the model is never trained to convert
between sequential loop structure and parallel semantics,
i.e., to learn the loop expansion on parallel threads.

4.3. Discriminative ranking

To address the issue stated, we adopt a discriminative rank-
ing model following (Lee et al., 2021) to enable the model to
capture the parallel semantics. However, (Lee et al., 2021)
is not directly applicable on BabelTower. The reason is two-
fold: 1) traditional metrics such as BLEU and CodeBLEU
cannot measure the similarity of parallel semantics, and
2) (Lee et al., 2021) requires aligned dataset to be trained
in a supervised manner. We discuss the solutions in this
subsection.

4.3.1. CAPTURING THE PARALLEL SEMANTICS

To capture the similarity of parallel semantics, we specially
designed the metrics ParaBLEU for CUDA. By introduc-
ing a prior rules the semantically-equivalent CUDA code
pairs tend to have high scores. Concretely, we introduce
ParaBLEU with three factors to evaluate the CUDA codes,
i.e., CUDA keywords match, loop nested similarity, and par-
allel semantics similarity. The CUDA keywords similarity
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simply distinct CUDA code from C code in syntax-level.
The loop nested similarity and parallel semantics similarity
measure the loop structures and conversion from sequential
C loops to parallel threads, respectively. Note that we con-
sider leveraging similarity distance rather than using match
score to evaluate the loop nested structure and parallel se-
mantics, in case the duplicated parallel threads which gains
a high match score but leads to a false parallelization. The
ParaBLEU is formulated in Equation 4.

We introduce ParaBLEU with three factors to evaluate the
CUDA codes, i.e., CUDA keywords match, loop nested
similarity, and parallel semantics similarity. The CUDA
keywords similarity simply distinct CUDA code from C
code in syntax-level. The loop nested similarity and parallel
semantics similarity measure the loop structures and conver-
sion from sequential C loops to parallel threads, respectively.
Note that we consider leveraging similarity distance (Lev-
enshtein, 1966) rather than using match score to evaluate
the loop nested structure and parallel semantics, in case
the duplicated parallel threads which gains a high match
score but leads to a false parallelization. The ParaBLEU is
formulated as follows:.

ParaBLEU =α · BLEU+ β · BLEUweight

+(γ ·Matchast + δ ·Matchdf)

×SIMCUDAkeywords × SIMloops × SIMparallel

(4)
where we borrow the majority definitions of CodeBLEU and
apply the parallel semantics penalty to the program-level
parts.

__global__ void gemm(
int **A,  int **B,  int **C){  

int i = blockIdx.x * blockDim.x
+ threadIdx.x;  

int j = blockIdx.y * blockDim.y
+ threadIdx.y;  

if(i < M && j < N){    
C[i][j] = 0;    
for(int k = 0; k < K; k++){      

C[i][j] += A[i][k] * B[k][j]; }}}

__global__ void gemm(
int **A,  int **B,  int **C){  

for(int i = 0; i < M; i++){    
for(int j = 0; j < N; j++){      

C[i][j] = 0;      
for(int k = 0; k < K; k++) {       

C[i][j] += A[i][k] * B[k][j];      
}    

}  
}}}

Hypothesis Reference

Figure 3. Comparisons of different evaluation metrics. BLEU:
48.22, CodeBLEU: 61.40, ParaBLEU: 26.34. The proposed Para-
BLEU takes into accounts the correctness of the parallel semantics
conversion, and gives a more fair evaluation for this task.

Figure 3 illustrates an example of the difference between
ParaBLEU and other metrics. This function performs a sim-
ple two-dimensional matrix multiplication with three loop
axes: i, j, and k. The hypothesis and reference almost share
the same translation result, yields inflated text-level BLEU
(48.22), syntax- and data-flow semantics-level CodeBLEU
(61.40), and they all pass the CUDA compilation. However,
the hypothesis fails to detect the potential paralilization on

the outer loops and maintain the sequential loop structure,
which makes an incorrect translation on the parallel seman-
tics, resulting a low score for ParaBLEU (26.34). Overall,
the ParaBLEU is a more fair evaluation metric for this task.

4.3.2. UNSUPERVISED TRAINING

Figure 2 shows the training process of the discriminative
ranking model. After the previous training steps described
in Section 4.2, the translation model in BabelTower is able
to generate translations between C and CUDA but in low
quality. To address the lack of aligned corpora, we train the
discriminative ranking model in the back-translation setting
CUDA-C-CUDA:

w1, w2, . . . , wN = T (u; θT ) = T
(
T−1 (x; θT ) ; θT

)
(5)

In the CUDA to C step, given the input CUDA code x, the 1-
beam intermediate C code u is generated by beam search. In
the C to CUDA step, we performs beam search to generate
N -beam hypotheses wi, i ∈ [1, N ] (N ≃ 50).

The discriminative ranking model D is then applied to the
N hypotheses individually, each time takes the intermediate
C code u as the original input. D learns to predict the
ParaBLEU score of each hypothesis wi, where the original
CUDA code x is taken as the reference. We minimize
the KL-divergence between the output distribution of the
discriminative ranking model pD and the target distribution
p, both normalized to [0, 1], the formulation is detailed in
Equation 6.

5. Performance Evaluation
In this section, we first present the experimental methodol-
ogy and results. Then, we conduct case studies to show that
BabelTower can improve the performance and developer
productivity of CUDA programs.

5.1. Experimental Methodology

Evaluation metrics. We use four key metrics to evalu-
ate BabelTower. The first metric is BLEU (Papineni et al.,
2002), which is widely used in both natural language trans-
lation and programming language translation. We further
adopt a metric designed for programming languages, i.e.,
CodeBLEU (Ren et al., 2020), which not only considers
the text-level similarity of weighed n-gram BLEU but also
injects code syntax of abstract syntax trees and code seman-
tics of data-flow graph. However, the above metrics lack
careful consideration of parallel semantics, which is key to
C-to-CUDA translation. Thus, we introduce a new metric,
dubbed ParaBLEU, which fully takes parallel semantics into
consideration. In addition, to evaluate the functionality of
translated CUDA code, we also measure the compilation
accuracy, which is the ratio of correctly compiled programs.
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Table 2. Experimental results on the C-to-CUDA dataset. We evaluate the results of auto-parallelization approaches (i.e., Bones and
PPCG) and statistical program translation (i.e., Transcoder, BabelTower) and in different metrics: BLEU, CodeBLEU, ParaBLEU, and
compilation accuracy. We perform beam decoding with beam size 50 for Statistical program translation approaches.

BLEU CodeBLEU ParaBLEU compilation
accuracy (%)

valid test valid test valid test valid test

Auto
parallelization

Bones - - - - - - - -

PPCG 0 0 6.33 6.44 5.31 5.39 41.3 37.8

Statistical
program

translation

Transcoder 75.61 72.21 72.58 71.03 45.94 44.63 90.2 83.8

BabelTower 76.85 74.00 78.92 77.12 55.85 54.02 93.3 92.8

Upper Bound 80.51 74.94 79.20 77.19 57.24 56.07 96.2 98.3

Benchmarks. The benchmarks we used come from the
paired corpora of the built C-to-CUDA dataset, where half
of them are for validation and the other half are for test, with
364 C-CUDA function pairs in total.

Comparison baselines. The comparison baselines we
used include the auto-parallelization approaches, i.e.,
Bones (Nugteren & Corporaal, 2014) and PPCG (Ver-
doolaege et al., 2013), and the statistical program translation
approach, i.e., TransCoder (Roziere et al., 2020). Specifi-
cally, Bones is a template-based source-to-source compiler,
which takes the C code with intricate annotations as the
input and generates the CUDA code with built-in skeletons.
PPCG is the state-of-the-art auto-parallelization approach
that uses polyhedral models to exploit the parallel semantic
in C code and convert it to CUDA code. TransCoder is the
state-of-the-art statistical program translation approach that
translates between similar programming models such as C
and Python without considering auto-parallelization. Here,
we extend it to support the translation from C to CUDA.

Training parameters. We build all models based on the
Transformer architecture with 6 layers, 8 attention heads,
and 1024 embedding size. For the pretrain model and back-
translation model, we follow the same setting as TransCoder.
For the discriminative reranking model, we use a separate
classifier decoder of two MLP layers with tanh activation
function, and training the model by minimizing the KL-
divergence between the model distribution and target distri-
bution with the ParaBLEU metric. We optimize BabelTower
with Adam optimizer with learning rate 0.0001, and apply
a learning rate decay schedule with 10, 000 warm up steps
and 0.01 decay factor. We use 32 V100 GPUs for training
the pretrain model and back-translation model and a RTX
8000 for training the discriminative reranking model.

5.2. Results On C-to-CUDA Dataset

Table 2 lists the experimental results on the C-to-
CUDA dataset. Generally, the statistical program trans-

lation approaches perform significantly better than auto-
parallelization approaches for C-to-CUDA translation, since
the auto-parallelization approaches have several inherent
limitations. For example, Bones completely fails to conduct
end-to-end C-to-CUDA translation without manual code
annotation, and thus all the evaluated metrics are not avail-
able. PPCG achieves extremely low BLEU-related scores
(e.g., BLEU and ParaBLEU are 0 and 5.39, respectively)
and compilation accuracy (e.g., 37.8 on the test set) since
the employed polyhedral model is limited by conservative
static analysis and thus not applicable to a broad range of
programs.

Compared to the original TransCoder which performs beam
search with machine translation score to select the 1-best
hypothsis, BabelTower improves the BLEU, CodeBLEU,
and ParaBLEU by 1.79, 6.09, and 9.39 on C-to-CUDA test
set, respectively. Also, the compilation accuracy is signifi-
cantly improved from 83.8 to 92.8. Although BabelTower
achieves the best compilation accuracy among all the evalu-
ated approaches, the absolute value of ParaBLEU is gener-
ally smaller than that of the other two metrics. The reason
is that we take parallel semantics into consideration, and
apply a penalty factor for the flawed conversion from the
sequential C code to the parallel CUDA code. In other
words, ParaBLEU provides a more accurate evaluation of
the C-to-CUDA translation task. Also, we further com-
pare the functional correctness of BabelTower against both
auto-parallelization and statistical program translation ap-
proaches by randomly sampling 100 functions in the test
dataset due to huge engineering efforts. Results show that
Bones, PPCG, Transcoder, and BabelTower achieve 0%,
39%, 70%, and 73% in terms of functional correctness
score, respectively.

We also present the theoretical upper bound of BabelTower,
which is obtained by selecting the best hypothsis of each
evaluation metric from all candidates (e.g., 50) generated
by beam search. Except for the compilation accuracy, all
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Source PPCG TransCoder BabelTower

void transpositionCPU ( 
int * vector ,  int * transposed ,  int size ) { 
for(int i = 0 ; i < size ; i++) 

for(int j = 0 ; j < size ; j++) 
transposed[i + j*size] =

vector [ j + i*size ] ; 
}

#include "transpositionCPU_0_kernel.hu"

__global__ void transpositionCPU ( 
int * vector ,  
int * transposed , 
int size ) { 

for(int i = 0 ; i < size ; i ++ ) 
for(int j = 0 ; j < size ; j ++ ) 

transposed[i + j*size] =  vector[j + i*size ] ; 
}

__global__ void transpositionCPU ( 
int * vector ,  
int * transposed ,  
int size ) { 

for(int i = threadIdx.x + blockIdx.x*blockDim.x; 
i < size ; i += blockDim.x * gridDim.x ) 

for(int j = threadIdx.y + blockIdx.y*blockDim.y; 
j < size ; j += blockDim.y*gridDim.y ) 
transposed[i + j*size] =  vector [j + i*size] ; 

}

Source PPCG TransCoder BabelTower
void gemm(…){

int i,j,k;
for (i = 0; i < NI; i++)

for (j = 0; j < NJ; j++){
C[i * NJ + j] *= beta;
for (k = 0; k < NK; ++k)

C[i*NJ + j] += 
alpha * A[i*NK + k] * B[k*NJ + j];

}
}

#include "gemm_kernel.hu"
__global__ void kernel0(...){

int b0 = blockIdx.y, b1 = blockIdx.x;
int t0 = threadIdx.y, t1 = threadIdx.x;
for (int c0 = 32 * b0; c0 < ni; c0 += 8192)

for (int c1 = 32 * b1; c1 < nj; c1 += 8192) {
…

for (int c2 = 0; c2 < nk; c2 += 32)
for (int c3 = 0; c3 <= ppcg_min(31, nk - c2 - 1); c3 += 1) {
...

}
__syncthreads();

}
}

__global__ void gemm(...){
int i, j, k;
for(i = 0; i < NI; i++)

for( j = 0; j < NJ; j++){
C[i * NJ + j] *= beta;
for(k = 0 ; k < NK; ++k){

C[i * NJ + j] += 
alpha * A [i * NK + k] * B [k * NJ + j];

}
}

}

__global__ void gemm(...){ 
int i, j, k; 
i = blockIdx.x * blockDim.x + threadIdx.x; 
j = blockIdx.y * blockDim.y + threadIdx.y; 
if((i < NI)&&(j < NJ)){ 

C[i * NJ + j] *= beta; 
for(k = 0 ; k < NK ; ++k)

C[i * NJ + j] += 
alpha * A [i * NK + k] * B [k * NJ + j];  

}
}

Figure 4. Case studies on the conversion of parallel semantics. BabelTower generates correct CUDA codes on both cases. In contrast,
PPCG fails to analyze whether or not a loop can be parallelized, while Transcoder only performs code translation but fails to conduct
automatic parallelization.

the BLEU-related metrics of BabelTower are close to that
of the upper bound. The reason that the upper bound of
compilation accuracy is hard to reach is because existing
BLEU-related metrics do not directly correspond to the
compilation. It is expected that the compilation accuracy
might be improved by introducing the compilation-accuracy-
guided metrics to the reranking model, which is left as our
future work.

5.3. Case Studies

We conduct case studies to demonstrate that BabelTower
performs better in identifying potentially parallel semantics
from the C code and converting to well-parallelized CUDA
code following SIMT rules, compared against the state-
of-the-art auto-parallelization approach (i.e., PPCG) and
program translation approach (i.e., TransCoder). Concretely,
we consider 2 well-known computation programs including
transpose and gemm, which are shown in Figure 4.

Regarding the transpose computation, only TransCoder and
BabelTower can generate functionally correct CUDA code
while PPCG fails due to its conservative static analysis on
determine whether or not a loop can be parallelized. More-
over, the generated CUDA code of TransCoder is almost
the same as the original sequential C code, in other words,
TransCoder fails to conduct automatic parallelization. On
contrary, BabelTower is able to generate well-parallelized
CUDA code even with non-intuitive block-level parallelism,
which indicates that each threads performs a dozen of com-
putations to gain high utilization.

Regarding the gemm computation, although all evaluated
approaches manage to generate correct CUDA code, the

benefit of BabelTower is two-fold. The first is that the
CUDA code of BabelTower is much more human-readable
than that of PPCG, as shown in the appendix (see Figure 7),
since the PPCG employs formal mathematical formulation
for code generation. The second is that BabelTower gen-
erate high-performance well-parallelized code compared
to TransCoder, which still generates almost the same code
as the original sequential C code. Moreover, the code of
Transcoder is functionally correct only when running with a
single thread, otherwise different parallel threads will con-
currently write in the same location of the global memory
and lead to incorrect results.
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Figure 5. Comparisons on the performance of the generated
code in Figure 4. BabelTower generates correct CUDA codes on
both cases, and the speedup over the sequential C code reaches at
most 347×.

In addition to evaluating the functional correctness, we also
compare the performance of the generated code, as well
as the original sequential C code. Figure 5 shows that the
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Table 3. Productivity improvement by BabelTower. We evalu-
ate the manual efforts of developing CUDA program with- and
without- the guidance of BabelTower for CUDA experts and
novices on two cases. On average, BabelTower reduces the devel-
opment efforts by 2.4× and 3.8× at most for CUDA experts and
novices, respectively.

TIME(S) KERNELXOR GESUMMV

CUDA
EXPERTS

MANUAL 109 334

W/ BABELTOWER 76 138

TIME SAVING 1.4× 2.4×

CUDA
NOVICES

MANUAL 503 1, 190

W/ BABELTOWER 150 310

TIME SAVING 3.3× 3.8×

CUDA code generated by BabelTower outperforms that of
TransCode and the sequential C code by at most 157× and
347×, respectively. Although the performance of generated
CUDA code of BabelTower is slightly worse than that of
PPCG, PPCG only works on the studied gemm computation.

In summary, the above case studies well demonstrate that
BabelTower greatly outperforms the state-of-the-art auto-
parallelization approach, which fail to address a broad range
of compute-intensive C programs, and statistical program
translation approach, which fails to conduct automatic par-
allelization during translation.

5.4. Improving Productivity of CUDA

In addition to validating BabelTower on the paired corpora
with labeled ground truth, we further use BabelTower to
improve the productivity of real-life CUDA programs. Con-
cretely, given a specific C code either collected from legacy
repositories or manually programmed, since BabelTower
cannot guarantee semantically-equivalent translation, we
measure the additional manual efforts invested to modify
the translated code to the functionally correct CUDA pro-
grams. The measured efforts are compared to that of directly
developing the CUDA programs without the guidance of
BabelTower.

In this study, we invite 8 computer science students as par-
ticipants to write a CUDA program based on the given C
program. Those participants are divided into two groups
(i.e., CUDA experts and CUDA novices) by their familiar-
ity with CUDA programming models. Table 3 reports the
manual efforts of developing the CUDA programs with- and
without- the guidance of BabelTower. With the help of Ba-
belTower, the development efforts are reduced by 2.4× and
3.8× at most for CUDA experts and novices, respectively.
We illustrate the two examples in Figure 8.

6. Related Work
Auto-parallelization. Many approaches focus on auto-
parallelization using polyhedral model (Benabderrahmane
et al., 2010; lim; Liu et al., 2017; Pouchet et al., 2013; Ver-
doolaege, 2010; Li et al., 2013; Baskaran et al., 2008). For
instance, Pluto (Bondhugula et al., 2008a;b) enables end-to-
end auto-parallelization and locality optimization of affine
programs for multi-core processors. PPCG (Verdoolaege
et al., 2013) uses polyhedral model to exploit the parallel
semantic in C code and convert it to CUDA automatically.
DawnCC (Mendonça et al., 2017) can automatically detect
potential parallel code in C/C++ programs and then insert
OpenMP/OpenACC directives where appropriate. Unfortu-
nately, most of these approaches limited in generality (i.e.,
only supports a single statement in perfectly nested loops)
and scalability (i.e., unscalable in complex designs). Auto-
parallelization based on code template is also an important
research field. For example, Bones (Nugteren & Corporaal,
2014) transforms annotated C programs to parallel CUDA
or OpenCL with the built-in skeletons, where the skeleton
sets are based on well defined grammar and vocabulary.
However, it requires considerable manual efforts for code
annotation. As a result, despite of all these advances for
decades, the improved performance of auto-parallelization
is still limited, and thus cannot meet the requirement of the
community.

Statistical program translation. The statistical program
translation is inspired by recent advances on machine trans-
lation including statistical machine translation (SMT) and
neural machine translation (NMT). In the line of SMT,
(Karaivanov et al., 2014; Nguyen et al., 2013; 2016; Oda
et al., 2015; Nguyen et al., 2015) are proposed to use SMT
for code migration, but they cannot be extended well for
API usages. Therefore for better API usages, (Nguyen et al.,
2016; 2017) facilitate the translation from Java to C# by
using word embeddings. An encoder/decoder is also lever-
aged in (Gu et al., 2016) to learn the semantics of queries
and the corresponding API sequences. A number of works
are also proposed in NMT line. Transcoder (Roziere et al.,
2020) trains a neural networks to translate functions and
methods between programming languages with denoising
auto-encoder and back-translation. TransCoder-ST (Roziere
et al., 2021b) increases a parallel corpus translation by lever-
aging an automated unit-testing system. CodeXGLUE (Lu
et al., 2021) aggregates a number of programming bench-
marks based on CodeBLEU. In spite of yielding comparable
performance, these approaches still cannot be applied in C-
to-CUDA translation due to the scarcity of effective dataset
and parallel semantics. Differently, we create C-to-CUDA
dataset for BabelTower and then cope with unpaired corpora
and parallel semantic conversion by using back-translation
with a discriminative reranker. As such, BabelTower can
effectively translate sequential C to prallel CUDA.
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Reranking approaches. (Shen et al., 2004; Och et al.,
2004) are the seminal work of using discriminative rerank-
ing for SMT. (Liu et al., 2018; Imamura & Sumita, 2017;
Wang et al., 2017; Yu et al., 2016; Yee et al., 2019) have
focused on generative reranking for NMT, which optimize
the parameters of the reranker with a criterion. In addition,
several work (Auli & Gao, 2014; Ehara, 2017) combines
the advantage of SMT and NMT by reranking one with the
other. Recently, (Lee et al., 2021) can achieve better perfor-
mance by training large transformer models with reranking
objective. We extend this work to BabelTower with two
key differences. First, instead of supervised training on
aligned dataset, unsupervised translation based on unpaired
mono-lingual corpora is used in BabelTower. Second, since
the traditional metrics such as BLEU and CodeBLEU fail
to capture the similarity of parallel semantics for CUDA,
specially designed ParaBLEU is used in BabelTower.

7. Conclusion and Future Work
In this paper, we propose a novel learning framework,
i.e., BabelTower, to translate from sequential C to Paral-
lel CUDA, which can significantly relieve the burden of
GPU programming. In addition to building the first large-
scale dataset, we also introduce a novel learning framework
to cope with unpaired corpora and parallel semantic con-
version. Experimental results show that BabelTower out-
performs state-of-the-art by 1.79, 6.09 and 9.39 in terms of
BLEU, CodeBLEU, and ParaBLEU, respectively. Moreover,
the CUDA code generated by BabelTower attains a speedup
of up to 347× over the sequential C code, and the developer
productivity is also significantly improved.

As the first attempt to tackle the challenging auto-
parallelized program translation problem, the functional
correctness of C-to-CUDA translation will be the main fo-
cus of our future work. In addition to further improving
the accuracy of learning models, there are several poten-
tial techniques to guarantee the functional correctness, e.g.,
introducing formal methods such as Satisfiability Modulo
Theories during or after training. It is expected that this
work will inspire more advanced research on this field.
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Araújo, G., and Pereira, F. M. Q. Dawncc: automatic an-
notation for data parallelism and offloading. ACM Trans-
actions on Architecture and Code Optimization (TACO),
14(2):1–25, 2017.
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A. Ablation Study
We conduct detailed ablation study to demonstrate the effectiveness of BabelTower, including using different metrics for
building reranker, different beam sizes, and different data set for training reranker.

Different metrics. Table 4 lists the effects of using different metrics (i.e., BLEU, CodeBLEU, and ParaBLEU) for building
the reranker. Experimental results show that ParaBLEU is the best among all metric candidates in terms of improving the
BLEU, CodeBLEU, ParaBLEU, and compilation accuracy by at most 0.18, 2.73, 1.64, and 13.7, respectively. Note that the
reranker-BLEU only captures the text-level features, which leads to a poor performance in compilation accuracy.

Table 4. Ablation study on the choices of metrics for BabelTower. All results are evaluated on the C-to-CUDA test with beam size 50.

reranker
(BLEU)

reranker
(CodeBLEU)

reranker
(ParaBLEU)

BLEU 73.82 73.90 74.00

CodeBLEU 74.39 77.12 77.12

ParaBLEU 52.38 53.35 54.02

compilation
accuracy (%) 79.1 89.4 92.8

Different beam sizes. By using ParaBLEU for reranking, Table 5 further lists the effects of different beam sizes, i.e., 1, 5,
10, 25, 50. Experimental results show that generally larger beam size can obtain better models in terms of evaluated metrics.
Concretely, beam size of 50 improves the BLEU, CodeBLEU, and ParaBLEU, and compilation accuracy by 1.79, 6.09, 7.60,
and 4.50, respectively, than that beam size of 1. Note that the most significant ParaBLEU is improved mostly, which also
demonstrates the effectiveness of using ParaBLEU for reranking.

Table 5. Ablation study on the effects of beam sizes for BabelTower. All results are evaluated on the C-to-CUDA test by optimizing the
model with ParaBLEU.

beam size 1 5 10 25 50

BLEU 72.21 69.96 73.98 73.59 74.00

CodeBLEU 71.03 71.41 73.83 75.38 77.12

ParaBLEU 46.42 45.19 47.89 51.86 54.02

compilation
accuracy (%) 88.3 91.7 89.4 89.9 92.8

Different training sets. Table 6 lists the effects of different training sets for building the reranker. In addition to the adopted
policy for filtering data pairs generated by back-translation (i.e., Filter-BT Data), we also consider to use all generated data
pairs (i.e., Full-BT Data) and randomly select half of the generated data pairs (i.e., Half-BT Data) for training the reranker.
It can be observed that the proposed filtering policy performs significantly better than using data directly generated by
back-translation (e.g., ParaBLEU is improved by at most 18.11), even the data size of latter is much larger for training.
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Table 6. Ablation study on the effects of training data for BabelTower’s raranking model. All results are evaluated on the C-to-CUDA
test by optimizing the model with ParaBLEU.

Full-BT Half-BT Filtered-BT
data data data

data pairs 108, 735 54, 825 12, 571

BLEU 54.68 52.60 74.00

CodeBLEU 66.20 65.23 77.12

ParaBLEU 36.91 35.91 54.02

compilation
accuracy (%) 77.1 81.5 92.8

B. Formulation of the Training for Discriminative Ranking
In the CUDA to C step, given the input CUDA code x, the 1-beam intermediate C code u is generated by beam search. In
the C to CUDA step, we performs beam search to generate N -beam hypotheses wi, i ∈ [1, N ] (N ≃ 50).

The discriminative ranking model D is then applied to the N hypotheses individually, each time takes the intermediate C
code u as the original input. D learns to predict the ParaBLEU score of each hypothesis wi, where the original CUDA code
x is taken as the reference. We minimize the KL-divergence between the output distribution of the discriminative ranking
model pD and the target distribution p, both normalized to [0, 1], the formulation is detailed in Equation 6.

pD(wi|u; θD) =
exp (D (wi|u; θD))∑N

j=1 exp (D (wj |u; θD))

scorei =
ParaBLEU (wi|x) − minj ParaBLEU (wj |x)

maxj ParaBLEU (wj |x) − minj ParaBLEU (wj |x)

p(wi) =
exp (scorei/τ)∑N

j=1 exp (scorej/τ)

L(θD) = −
N∑

j=1

p(wi) log
pD(wi|u; θD)

p(wi)
,

(6)

where τ is the softmax temperature set to 0.5 in practice.
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C. Distribution of the Loop Nesting Depth in the C-to-CUDA Dataset
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Figure 6. The distribution of loop nesting depth in the dataset.
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D. Generated Code of PPCG and BabelTower

PPCG

#include "gemm_kernel.hu"
__global__ void kernel0(

double *A, double *B,
double *C, double alpha, double beta,
int ni, int nj, int nk)

{
int b0 = blockIdx.y, b1 = blockIdx.x;
int t0 = threadIdx.y, t1 = threadIdx.x;
double private_C[1][2];

#define ppcg_min(x,y) ({ __typeof__(x) _x = (x); __typeof__(y) _y = (y); _x < _y ? _x : _y; })
for (int c0 = 32 * b0; c0 < ni; c0 += 8192)

for (int c1 = 32 * b1; c1 < nj; c1 += 8192) {
if (b1 <= 31 && nj >= 32 * b1 + t1 + 1 && ni >= t0 + c0 + 1 && c1 == 32 * b1) {

private_C[0][0] = C[(t0 + c0) * 1024 + (32 * b1 + t1)];
if (nj >= 32 * b1 + t1 + 17)

private_C[0][1] = C[(t0 + c0) * 1024 + (32 * b1 + t1 + 16)];
}
if (ni >= t0 + c0 + 1 && nj >= t1 + c1 + 1) {

private_C[0][0] *= beta;
if (nj >= t1 + c1 + 17)

private_C[0][1] *= beta;
for (int c2 = 0; c2 < nk; c2 += 32)

for (int c3 = 0; c3 <= ppcg_min(31, nk - c2 - 1); c3 += 1) {
private_C[0][0] +=

((alpha * A[(t0 + c0) * 1024 + (c2 + c3)]) * B[(c2 + c3) * 1024 + (t1 + c1)]);
if (nj >= t1 + c1 + 17)

private_C[0][1] +=
((alpha * A[(t0 + c0) * 1024 + (c2 + c3)]) * B[(c2 + c3) * 1024 + (t1 + c1 + 16)]);

}
if (b1 <= 31 && c1 == 32 * b1) {

C[(t0 + c0) * 1024 + (32 * b1 + t1)] = private_C[0][0];
if (nj >= 32 * b1 + t1 + 17)

C[(t0 + c0) * 1024 + (32 * b1 + t1 + 16)] = private_C[0][1];
}

}
__syncthreads();

}
}

Figure 7. The code generated by PPCG for gemm operation.



BabelTower: Learning to Auto-parallelized Program Translation

Hypothesis Reference

__global__ void kernelXor(
unsigned int key,
char * input_str_cuda,
unsigned char * possible_plaintext_str_cuda,
int input_length){
int id = blockIdx.x * blockDim.x

+ threadIdx.x;
if(id >= input_length)

return ;
int keyIndex = id % 4;
int keyCharPtr = ((char *)&key);
char keyChar = keyCharPtr[keyIndex];
possible_plaintext_str_cuda[id] =

keyChar ˆ input_str_cuda[id];
}

__global__ void kernelXor(
unsigned int key,
char * input_str_cuda,
unsigned char * possible_plaintext_str_cuda,
int input_length){
int id = blockIdx.x * blockDim.x + threadIdx.x;
if(id >= input_length)

return;
int keyIndex = id % 4;
char* keyCharPtr = ((char *) & key);
char keyChar = keyCharPtr[keyIndex];
possible_plaintext_str_cuda[id] =

keyChar ˆ input_str_cuda[id];
}

#define DATA_TYPE float
#define N 1024
__global__ void gesummv(

int n,
DATA_TYPE alpha, DATA_TYPE beta,
DATA_TYPE* A, DATA_TYPE* B,
DATA_TYPE* tmp, DATA_TYPE* x, DATA_TYPE* y){

int i, j;
i = blockIdx.x * blockDim.x + threadIdx.x;
j = blockIdx.y * blockDim.y + threadIdx.y;

if(i < N && j < N) {
tmp[i] = A[i * N + j] * x[j] + tmp[i];
y[i] = B[i * N + j] * x[j] + y[i];

}
y[i] = alpha * tmp[i] + beta * y[i];

}

#define DATA_TYPE float
#define N 1024
__global__ void gesummv(

int n,
DATA_TYPE alpha, DATA_TYPE beta,
DATA_TYPE* A, DATA_TYPE* B,
DATA_TYPE* tmp, DATA_TYPE* x, DATA_TYPE* y){

int i, j;
i = blockIdx.x * blockDim.x + threadIdx.x;
if(i < N){

tmp[i] = 0;
y[i] = 0;
for(j = 0; j < N; j++){

tmp[i] = A[i * N + j] * x[j] + tmp[i];
y[i] = B[i * N + j] * x[j] + y[i];

}
y[i] = alpha * tmp[i] + beta * y[i];

}
}

Figure 8. Examples of the wrong translation results for BabelTower. Regarding the kernelXor operation, BabelTower successfully
performs the conversion of parallel semantics for the sequential loop, but introduces a syntax error for the definition of keyCharPtr.
Regarding gesummv operation, BabelTower incorrectly parallels both loops, but the inner j loop should maintain the sequential loop
structure to ensure functional correctness.


