Robust Models Are More Interpretable Because Attributions Look Normal

Zifan Wang' Matt Fredrikson' Anupam Datta !

Abstract

Recent work has found that adversarially-robust
deep networks used for image classification are
more interpretable: their feature attributions tend
to be sharper, and are more concentrated on the
objects associated with the image’s ground-truth
class. We show that smooth decision boundaries
play an important role in this enhanced inter-
pretability, as the model’s input gradients around
data points will more closely align with bound-
aries’ normal vectors when they are smooth. Thus,
because robust models have smoother boundaries,
the results of gradient-based attribution methods,
like Integrated Gradients and DeepLift, will cap-
ture more accurate information about nearby de-
cision boundaries. This understanding of robust
interpretability leads to our second contribution:
boundary attributions, which aggregate informa-
tion about the normal vectors of local decision
boundaries to explain a classification outcome.
We show that by leveraging the key factors un-
derpinning robust interpretability, boundary at-
tributions produce sharper, more concentrated
visual explanations—even on non-robust mod-
els. Code can be found at https://github.
com/zifanw/boundary.

1. Introduction

Feature attribution methods are widely used to explain the
predictions of neural networks (Binder et al., 2016; Dhamd-
here et al., 2019; Fong & Vedaldi, 2017; Leino et al., 2018;
Montavon et al., 2015; Selvaraju et al., 2017; Shrikumar
et al., 2017; Simonyan et al., 2013; Smilkov et al., 2017;
Springenberg et al., 2014; Sundararajan et al., 2017). By
assigning an importance score to each input feature of the
model, these techniques help to focus attention on parts of
the data most responsible for the model’s observed behavior.
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Figure 1: Visualizations of geometrical interpretations of
Saliency Map (SM), Boundary-based Saliency Map (BSM),
Integrated Gradient (IG) and Boundary-based Integrated
Gradient (BIG). Gradient computations can be viewed
as projecting the input onto a particular decision bound-
ary. While SM projects to a nearby boundary (H;), BSM
projects to the nearest one (H>). IG (the red dashed path)
from a global baseline x4, i.e. zeros, aggregates boundaries
in colorful shaded areas; BIG (the green dashed path) inte-
grates from the point x4 on the nearest boundary Hs to
and therefore aggregates nearby boundaries, H; and Hs in
gray shaded areas.

Recent work (Croce et al., 2019; Etmann et al., 2019) has ob-
served that feature attributions in adversarially-robust image
models, when visualized, tend to be more interpretable—the
attributions correspond more clearly to the discriminative
portions of the input.

One way to explain this observation relies on the fact that
robust models do not make use of non-robust features (Ilyas
et al., 2019) whose statistical meaning can change with
small, imperceptible changes in the source data. Thus, by
using only robust features to predict, these models natu-
rally tend to line up with visibly-relevant portions of the
image. Etmann et al. take a different approach, showing
that the gradients of robust models’ outputs more closely
align with their inputs, which explains why attributions on
image models are more visually interpretable.

In this paper, we build on this geometric understanding of
robust interpretability. With both analytical (Sec. 3) and
empirical (Sec. 5) results, we show that the gradient of the
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model with respect to its input, which is the basic building
block of all gradient-based attribution methods, tends to be
more closely aligned with the normal vector of a nearby de-
cision boundary in robust models than in “normal” models.
Leveraging this understanding, we propose Boundary-based
Saliency Map (BSM) and Boundary-based Integrated Gra-
dient (BIG), two variants of boundary attributions (Sec. 4),
which base attributions on information about nearby de-
cision boundaries (see an illustration in Fig. 1). While
BSM provides theoretical guarantees in the closed-form,
BIG generates both quantitatively and qualitatively better
explanations. We show that these methods satisfy several
desireable formal properties, and that even on non-robust
models, the resulting attributions are more focused (Fig. 3)
and less sensitive to the “baseline” parameters required by
some attribution methods.

To summarize, our main contributions are as follows. (1)
We present an analysis that sheds light on the previously-
observed phenomeon of robust interpretability showing
that alignment between the normal vectors of decision
boundaries and models’ gradients is a key ingredient (Theo-
rem 3.3). In particular, we derive a closed-form result for
one-layer networks (Proposition 3.2) and empirically vali-
date the take-away of our theorem generalizes to deeper net-
works. (2) Motivated by our analysis, we introduce bound-
ary attributions, which leverage the connection between
boundary normal vectors and gradients to yield explanations
for non-robust models that carry over many of the favorable
properties that have been observed of explanations on robust
models. (3) We empirically demonstrate that one such type
of boundary attribution, called Boundary-based Integrated
Gradients (BIG), produces explanations that are more accu-
rate than prior attribution methods (relative to ground-truth
bounding box information), while mitigating the problem of
baseline sensitivity that is known to impact applications of
Integrated Gradients (Sundararajan et al., 2017) (Section 6).

2. Background

We begin by introducing our notations. Throughout the pa-
per we use italicized symbols x to denote scalar quantities
and bold-face x to denote vectors. We consider neural net-
works with ReLLU as activations prior to the top layer, and
a softmax activation at the top. The predicted label for a
given input x is given by F(x) = arg max, f.(x),x € R%,
where F'(x) is the predicted label and f;(x) is the output on
the class i. As the softmax layer does not change the ranking
of neurons in the top layer, we will assume that f;(x) de-
notes the pre-softmax score. Unless otherwise noted, we use
||x|| to denote the 2 norm of x, and the ¢> neighborhood
centered at x with radius € as B(x, ¢).

Explainability. Feature attribution methods are widely-
used to explain the predictions made by DNNs, by assigning
importance scores for the network’s output to each input
feature. Conventionally, scores with greater magnitude in-
dicate that the corresponding feature was more relevant to
the predicted outcome. We denote feature attributions by
z = g(x, f),2,x € R When f is clear from the context,
we simply write g(x). While there is an extensive and grow-
ing literature on attribution methods, our analysis will focus
closely on the popular gradient-based methods, Saliency
Map (Simonyan et al., 2013), Integrated Gradient (Sun-
dararajan et al., 2017) and Smooth Gradient (Smilkov et al.,
2017), shown in Defs 2.1-2.3.

Definition 2.1 (Saliency Map (SM)). The Saliency Map
gs(x) is given by gs(x) := %(xx).
Definition 2.2 (Integrated Gradient (IG)). Given a baseline

input x;, the Integrated Gradient gig(x;Xy) is given by

9i6(x;%p) = (x — Xp) 01 78”("’5‘,’:)”"”)dt.

Definition 2.3 (Smooth Gradient (SG)). Given a zero-
centered Gaussian distribution A" with a standard deviation
o, the Smooth Gradient gsg(x; o) is given by gsg(x;0) :=
E ~N(0,021) late) .
€ e Ox

Besides, we will also include results from
DeepLIFT (Shrikumar et al., 2017) and grad X
input (element-wise multiplication between Saliency
Map and the input) (Simonyan et al., 2013) in our empirical
evaluation. As we show in Section 3.2, Defs 2.1-2.3 satisfy
axioms that relate to the local linearity of ReLU networks,
and in the case of randomized smoothing (Cohen et al.,
2019), their robustness to input perturbations. We further
discuss these methods relative to others in Sec. 7.

Robustness. Two relevant concepts about adversarial ro-
bustness will be used in this paper: prediction robustness
that the model’s output label remains unchanged within a
particular £, norm ball and attribution robustness that the
feature attributions are similar within the same ball. Recent
work has identified the model’s Lipschitz continuity as a
bridge between these two concepts (Wang et al., 2020c) and
some loss functions in achieving prediction robustness also
bring attribution robustness (Chalasani et al., 2020). We
refer to robustness as prediction robustness if not otherwise
noted.

3. Explainability, Decision Boundaries, and
Robustness

In this section, we begin by discussing the role of decision
boundaries in constructing explanations of model behavior
via feature attributions. We first illustrate the key relation-
ships in the simpler case of linear models, which contain ex-
actly one boundary, and then generalize to piecewise-linear
classifiers as they are embodied by deep ReLLU networks.
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We then show how local robustness causes attribution meth-
ods to align more closely with nearby decision boundaries,
leading to explanations that better reflect these relationships.

3.1. Attributions for linear models

Consider a binary classifier C(x) = sign(w ' x+b) that pre-
dicts a label {—1, 1} (ignoring “tie” cases where C'(x) = 0,
which can be broken arbitrarily). In its feature space, C'(x)
is a hyperplane H that separates the input space into two
open half-spaces S; and S5 (see Fig. 2(a)). Accordingly, the
normal vector 1 of the decision boundary is the only vector
that faithfully explains the model’s classification while other
vectors, while they may describe directions that lead to pos-
itive changes in the model’s output score, are not faithful in
this sense (see v in Fig. 2(a) for an example). In practice, to
assign attributions for predictions made by C, SM, SG, and
the integral part of IG (see Sec. 2) return a vector character-
ized by z = k1t + ko (Ancona et al., 2018), where k1 # 0
and ko € R, regardless of the input x that is being explained.
In other words, these methods all measure the importance
of features by characterizing the model’s decision boundary,
and are equivalent up to the scale and position of n.

3.2. Generalizing to piecewise-linear boundaries

In the case of a piecewise-linear model, such as a ReLU
network, the decision boundaries comprise a collection of
hyperplane segments that partition the feature space, as
in Hy, Hy and Hj in the example shown in Figure 2(b).
Because the boundary no longer has a single well-defined
normal, one intuitive way to extend the relationship between
boundaries and attributions developed in the previous sec-
tion is to capture the normal vector of the closest decision
boundary to the input being explained. However, as we
show in this section, the methods that succeeded in the case
of linear models (SM, SG, and the integral part of IG) may
in fact fail to return such attributions in the more general
case of piecewise-linear models, but local robustness often
remedies this problem. We begin by reviewing key elements
of the geometry of ReLU networks (Jordan et al., 2019).

ReLU activation polytopes. For a neuron u in a ReLLU net-
work f(x), we say that its status is ON if its pre-activation
u(x) > 0, otherwise it is OFF. We can associate an activa-
tion pattern denoting the status of each neuron for any point
x in the feature space, and a half-space A, to the activation
constraint u(x) > 0. Thus, for any point x the intersection
of the half-spaces corresponding to its activation pattern de-
fines a polytope P (see Fig. 2(b)), and within P the network
is a linear function such that Vx € P, f(x) = w;x + bp,
where the parameters w p and bp can be computed by differ-
entiation (Fromherz et al., 2021). Each facet of P (dashed
lines in Fig. 2(b)) corresponds to a boundary that “flips”
the status of its corresponding neuron. Similar to activa-

tion constraints, decision boundaries are piecewise-linear
because each decision boundary corresponds to a constraint
fi(x) > f;(x) for two classes 4, j (Fromherz et al., 2021;
Jordan et al., 2019).

Gradients might fail. Saliency maps, which we take to be
simply the gradient of the model with respect to its input,
can thus be seen as a way to project an input onto a decision
boundary. That is, a saliency map is a vector that is normal
to a nearby decision boundary segment. However, as others
have noted, a saliency map is not always normal to any real
boundary segment in the model’s geometry (see the left plot
of Fig. 2(c)), because when the closest boundary segment is
not within the activation polytope containing x, the saliency
map will instead be normal to the linear extension of some
other hyperplane segment (Fromherz et al., 2021). In fact,
iterative gradient descent typically outperforms the Fast
Gradient Sign Method (Goodfellow et al., 2015) as an attack
demonstrates that this is often the case.

When gradients succeed. While saliency maps may not
be the best approach in general for capturing information
about nearby segments of the model’s decision boundary,
there are cases in which it serves as a good approximation.
Recent work has proposed using the Lipschitz continuity of
an attribution method to characterize the difference between
the attributions of an input x and its neighbors within a £,
ball neighborhood (Def. 3.1) (Wang et al., 2020c). This
naturally leads to Proposition 3.2, which states that the
difference between the saliency map at an input and the
correct normal to the closest boundary segment is bounded
by the distance to that segment.

Definition 3.1 (Attribution Robustness). An attribution
method g(x) is (A, §)-locally robust at the evaluated point
x if Vx' € B(x,9),||g(x") — g(x)|| < A||x" —x]|.

Proposition 3.2. Suppose that f has a ()\,0)-robust
saliency map gs at X, X' is the closest point on the clos-
est decision boundary segment to x and ||x' — x|| < 4, and
that n is the normal vector of that boundary segment. Then
[In = gs(x)[| < Allx = x']].

Proposition 3.2 therefore provides the following insight: for
networks that admit robust attributions (Chen et al., 2019;
Wang et al., 2020c), the saliency map is a good approxima-
tion to the boundary vector. As prior work has demonstrated
the close correspondence between robust prediction and ro-
bust attributions (Wang et al., 2020c; Chalasani et al., 2020),
this in turn suggests that explanations on robust models will
more closely resemble boundary normals.

As training robust models can be expensive, and may not
come with guarantees of robustness, post-processing tech-
niques like randomized smoothing (Cohen et al., 2019),
have been proposed as an alternative. Dombrowski et al.
(2019) noted that models with softplus activations (y =
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Figure 2: Different classifiers that partition the space into regions associated with apple or banana. (a) A linear classifier
where 1 is the only faithful explanations and v is not. (b) A deep network with ReLU activations. Solid lines correspond to
decision boundaries while dashed lines correspond to facets of activation regions. (c) Saliency map of the target instance
may be normal to the closest decision boundary (right) or normal to the prolongation of other local boundaries (left).

1/681log(1 + exp (5x))) approximate smoothing, and in fact
give an exact correspondence for single-layer networks.
Combining these insights, we arrive at Theorem 3.3 and
Corollary 3.4, which suggest that a saliency map computed
on a smoothed model approximates the normal vector of
the closest boundary, and in particular, that the similarity is
inversely proportional to the standard deviation of the noise
used to smooth the model.

Theorem 3.3. Ler m(x) = ReLU(WX) be a one-
layer network and its smoothed counterpart, m,(x), in-
troduced by randomized smoothing such that m,(x) =
arg max.{ Prim(x + €) = c|} where ¢ ~ N'(0,0%I). Let
g(x) be the Saliency Map for m,(x). Given two points
x,x" € R? such that m,(x) = m,(x'), we have the fol-
lowing statement holds: ||g(x) — g(X')|| < A where X is
monotonically decreasing w.r.t o.

Corollary 3.4. Let m(x) = ReLU(Wx) be a one-layer
network and its smoothed counterpart, my(x). Given a
point z, its closest neighbor x' on the decision boundary
and suppose i = my(x). If g(x), g(x') are the Saliency
Map for the model m, w.r.t class i computed at x and
a', then ||g(x) — g(X')|| < X where X is monotonically
decreasing w.r.t o.

The Saliency Map of the closest neighbor z’ on the decision
boundary in Corollary 3.4 points to the same direction as
the normal vector of the closest decision boundary we have
discussed in the previous paragraph. Thus, this corollary
suggests that when randomized smoothing is used, the nor-
mal vector of the closest decision boundary segment and
the saliency map are similar, and this similarity increases
with the smoothness of the model’s boundaries. We think
the analytical form for deeper networks exists but its expres-
sion might be unnecessarily complex due to that we need
to recursively apply ReLU before computing the integral
(i.e., the expectation). The analytical result above for one-
layer networks and empirical validations for deeper nets

in Figure 11, if taken together, show that attributions and
boundary-based attributions are more similar in a smoothed
model.

4. Boundary-Based Attribution

Without the properties introduced by robust learning or ran-
domized smoothing, the local gradient, i.e. saliency map,
may not be a good approximation of decision boundaries.
In this section, we build on the insights of our analysis to
present a set of novel attribution methods that explicitly in-
corporate the normal vectors of nearby boundary segments.
Importantly, these attribution methods can be applied to
models that are not necessarily robust, to derive explana-
tions that capture many of the beneficial properties of expla-
nations for robust models.

Using the normal vector of the closest decision boundary to
explain a classifier naturally leads to Definition 4.1, which
defines attributions directly from the normal of the closest
decision boundary.

Definition 4.1 (Boundary-based Saliency Map (BSM)).
Given f and an input x, we define Boundary-based Saliency
Map Bs(x) as follows: Bs(x) = 9 f.(x')/dx’, where x' is
the closest adversarial example to x, i.e. ¢ = F'(x) # F(x')
and Vx| |xpm, — X|| < ||x" = x|| = F(x) = F(x).

Incorporating More Boundaries. The main limitation of
using Definition 4.1 as a local explanation is obvious: the
closest decision boundary only captures one segment of the
entire decision surface. Even in a small network, there will
be numerous boundary segments in the vicinity of a relevant
point. Taking inspiration from Integrated Gradients, Defini-
tion 4.2 proposes the Boundary-based Integrated Gradient
(BIG) by aggregating the attributions along a line between
the input and its closest boundary segment.

Definition 4.2 (Boundary-based Integrated Gradient(BIG)).
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Given f, Integrated Gradient gig and an input x, we define
Boundary-based Integrated Gradient Bs(x) as follows:

Big(x) := gig(x;x") (D

where x is the nearest adversarial example to x, i.e. ¢ =
F(x) # F(x') and VX, || X —X]|| < ||x' =%]|| = F(x) =
F(Xm).

Geometric View of BIG. BIG explores a linear path from
the boundary point to the target point. Because points on
this path are likely to traverse different activation polytopes,
the gradient of intermediate points used to compute gig
are normals of linear extensions of their local boundaries.
As the input gradient is identical within a polytope P;, the
aggregate computed by BIG sums each gradient w; along
the path and weights it by the length of the path segment
intersecting with P;. In other words, one may view IG as an
exploration of the model’s global geometry that aggregates
all boundaries from a fixed reference point, whereas BIG
explores the local geometry around x. In the former case,
the global exploration may reflect boundaries that are not
particularly relevant to the model’s observed behavior at a
point, whereas the locality of BIG may aggregate boundaries
that are more closely related (a visualization is shown in
Fig. 1).

Finding nearby boundaries. Finding the exact closest
boundary segment is identical to the problem of certifying
local robustness (Fromherz et al., 2021; Jordan et al., 2019;
Kolter & Wong, 2018; Lee et al., 2020; Leino et al., 2021b;
Tjeng et al., 2019; Weng et al., 2018), which is NP-hard for
piecewise-linear models (Sinha et al., 2020). To efficiently
find an approximation of the closest boundary segment, we
leverage and ensemble techniques for generating adversarial
examples, i.e. PGD (Madry et al., 2018), AutoPGD (Croce
& Hein, 2020) and CW (Carlini & Wagner, 2017), and use
the closest one found given a time budget. The details of
our implementation are discussed in Section 5, where we
show that this yields good results in practice.

5. Evaluation

In this section, we first validate that the attribution vectors
are more aligned to normal vectors of nearby boundaries in
robust models(Fig. 1). We secondly show that boundary-
based attributions provide more “accurate” explanations —
attributions highlight features that are actually relevant to
the label — both visually (Fig. 3 and 4) and quantitatively
(Table 3). Finally, we show that in a standard model, when-
ever attributions more align with the boundary attributions,
they are more “accurate”. The sanity check (Adebayo et al.,
2018) of BIG is included in Appendix. B.7.

General Setup. We conduct experiments over two data dis-
tributions, ImageNet (Russakovsky et al., 2015) and CIFAR-

CIFARIO standard £5|0.5
SM-BSM. 59.96 1.23
1G-AGI 28.20 1.43
IG-BIG 31.22 2.73
ImageNet standard (2[3.0 loo|5:  loo|5oz
SM-BSM 8.48 0.41 2.25 1.61
1G-AGI 13.52 0.36 1.19 0.86
1G-BIG 17.07 0.69 1.74 1.45

Table 1: ¢, differences between SM, IG and their boundary
variants for robust models. The heading of each column
reports the respective training epsilon and the corresponding
¢, norm constraint; Appendix B.4 reports the corresponding
boxplot.

Corr. Loc. EG PP Con.
SM-BSM | 040 046 -0.19 0.07
IG-AGI | 0.24 025 0.05 -0.03
IG-BIG | 035 030 0.20 -0.03

Table 2: Linear correlation coefficients between the align-
ment of SM and IG with nearby boundary vectors, and the
localization metrics. For each row starting with X-Y', the
alignment is defined as —||X — Y'||. For each column, the
localization results are measured with approach in bold font,
ak.aX.

10 (Krizhevsky et al.). For ImageNet, we choose 1500
correctly-classified images from ImageNette (Howard), a
subset of ImageNet, with bounding box area less than 80%
of the original source image. For CIFAR-10, We use 5000
correctly-classified images. All standard and robust deep
classifiers are ResNet50. All weights are pretrained and
publicly available (Engstrom et al., 2019). Implementation
details of the boundary search (by ensembling the results of
PGD, CW and AutoPGD) and the hyperparameters used in
our experiments, are included in Appendix B.2.

5.1. Robustness — Boundary Alignment

In this subsection, we show that SM and IG better align
with the normal vectors of the decision boundaries in robust
models. For SM, we use BSM as the normal vectors of
the nearest decision boundaries and measure the alignment
by the /5 distance between SM and BSM following Propo-
sition 3.2. For IG, we use BIG as the aggregated normal
vectors of all nearby boundaries because IG also incorpo-
rates more boundary vectors. Recently, (Pan et al., 2021)
also provides Adversarial Gradient Integral (AGI) as an al-
ternative way of incorporating the boundary normal vectors
into IG. We first use both BIG and AGI to measure how well
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Model ~ Metrics | BIG BSM  AGI SM  GTI SG IG  DeepLIFT

Loc. 038 033 033 033 035 034 034 0.34

standard EG 054 047 048 047 046 055 05 0.49
PP 0.87 050 058 050 050 0.50 051 0.53

Con. 435 388 4.01 392 394 4.06 397 3.93

Loc. 039 033 039 033 033 034 0.33 0.33

£5]3.0 EG 074 06 064 06 063 0.62 0.65 0.64
PP 092 050 088 050 055 051 0.65 0.77
Con. 5.03 4.12 432 410 425 423 437 4.34

Table 3: Results of several attribution methods over 1500 images of ImageNet using a standard and robust ResNet50
(training € is reported in the first column). BIG: Boundary-based Integrated Gradient. BSM: Boundary-based Saliency Map.
AGI: Adversarial Gradient Integration. SM: Saliency Map. GTI: gradx input. SG: Smoothed Gradient. IG: Integrated
Gradient. See Appendix E for the corresponding boxplot.

Parachute

French horn

Figure 3: Visualizations of attributions for two examples classified by a standard ResNet50.

Parachute

DeepLIFT

French horn

Figure 4: Visualizations of attributions for two examples classified by a robust ResNet50 (¢5]3.0). The second example from
Fig. 3 is not correctly classified so we replace it with another image.

IG aligns with boundary normals and later compare them in
Sec. 5.2, followed by a formal discussion in Sec. 7.

1 because of the duality between the Lipschitzness and the
gradient norm, whereas /5 is its own dual.

Aggregated results for standard models and robust models

are shown in Fig. 1. It shows that adversarial training with 5.2. Boundary Attribution — Better Localization

bigger € encourages a smaller difference between attribu-
tions and their boundary variants. Particularly, using {5
norm and setting € = 3.0 are most effective for ImageNet
compared to ¢, norm bound. One possible explanation
is that the {5 space is special because training with £,
bound may encourage the gradient to be more Lipschitz in

In this subsection, we show boundary attributions (BSM,
BIG and AGI) better localize relevant features. Besides SM,
IG and SG, we also focus on other baseline methods in-
cluding Grad x Input (GTI) (Simonyan et al., 2013) and
DeepLIFT (rescale rule only) (Shrikumar et al., 2017) that
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Figure 5: GT-Loc scores for different attributions on a stan-
dard ResNet50.
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Figure 6: GT-Loc scores for different attributions on a robust
(£2]0.3) ResNet50.

are reported to be more faithful than other gradient-based
methods (Adebayo et al., 2018; 2020). Notwithstanding
the empirical evidence of the faithfulness for Class Activa-
tion Map (CAM (Zhou et al., 2016)) and its variations, e.g.
GradCAM (Selvaraju et al., 2019), they are not compared in
this section. Unlike gradient-based methods, the attribution
scores returned by CAM-based methods do not necessarily
point in a direction that will increase the model’s output, as
the gradients stop at the chosen convolution layer. To be
more specific, CAM scores on an ImageNet model are up-
sampled from the activation, e.g. a 7x7 matrix, multiplied
by the influence, e.g. gradients only from top layers, and
formatted to fit the size of the input, e.g. 224x224, so they
naturally appear to be sharper and more concentrated at the
cost of faithfulness to the local behavior of the underlying
model.

In an image classification task where ground-truth bounding
boxes are given, we consider features within a bounding
box as more relevant to the label assigned to the image. Our
evaluation is performed over ImageNet only because no
bounding box is provided for CIFAR-10 data. The metrics
used for our evaluation are: 1) Localization (Loc.) (Chat-
topadhyay et al., 2017) evaluates the intersection over union

(IoU) between the ground-truth bounding box and the area
with positive attributions; 2) GT-Loc (Choe & Shim, 2019;
Aggarwal et al., 2020) evaluates Loc. with a specific thresh-
old instead of all positive attributions and counts the percent-
age of images where the IoU is more than 50 %; 3) Energy
Game (EG) (Wang et al., 2020a) instead computes the por-
tion of attribute scores within the bounding box. While
these two metrics are common in the literature, we propose
the following additional metrics: 4) Positive Percentage
(PP) evaluates the portion of positive attributions in the
bounding box because a naive assumption is all features
within bounding boxes are relevant to the label (we will
revisit this assumption in Sec. 6); and 5) Concentration
(Con.) sums the absolute value of attribution scores over the
distance between the “mass” center of attributions and each
pixel within the bounding box. Higher scores are better re-
sults. We provide GT-Loc as curves in Fig. 5 and 6 against
the threshold and the average scores for the rest metrics
in Table 3 (boxplots included in Appendix B.4). Formal
definitions for metrics and the other details can be found in
Appendix B.1 and B.6.

Results in Table 3. BIG is noticeably better than other
methods on Loc. EG, PP and Con. scores for both robust and
standard models and matches the performance of SG on EG
for a standard model. Notice that BSM is not significantly
better than others in a standard model, which confirms our
motivation of BIG — that we need to incorporate more nearby
boundaries because a single boundary may not be sufficient
to capture the relevant features.

Results in Fig. 5 and 6 BIG is better than all other attribu-
tions on standard models excluding SG and uniformly better
including SG on a robust model. We believe the reason
behind this result is that SG is actually the gradient from
a smoothed counterpart of the standard model (see discus-
sions near Theorem 3.3), which is more robust. Therefore, it
does not seem to be an apple-to-apple comparison between
SG and other approaches because it can be less faithful to
the standard model — namely SG is more faithful to the
smoothed classifier. That is very likely why SG is worse
than BIG in Fig. 6 when the smoothing technique becomes
marginal for improving the robustness for a model that has
already been robustly trained. We have a longer section that
includes more details and discussions on these two figures
in Appendix B.6.

Alignment. We also measure the correlation between
the alignment of SM and BSM with boundary normals
and the localization abilities, respectively. For SM, we
use BSM to represent the normal vectors of the bound-
ary. For IG, we use AGI and BIG. For each pair X-Y in
{SM-BSM, IG-AGI, IG-BIG}, we measure the empirical
correlation coefficient between —||X — Y'||2 and the local-
ization scores of X in a standard ResNet50 and the result
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Figure 7: Comparisons of IG with black and white baselines
with BIG. Predictions are shown in the first column.

Properties black IG AGI  BIG
Boundary-based X v v

Boundary Search N/A PGD  Any

Geometry Global  Local Local
Symmetry v X v
Completeness v v v

Table 4: Qualitative comparisons between IG with black
baseline, BIG and AGI. BIG can use any boundary search
approaches or an ensemble of them while AGI uses PGD
only. AGI fails to meet the symmetry axiom (Sundararajan
et al., 2017) where BIG satisfies all axioms that IG satisfies,
i.e. completeness.

is shown in Table 2. Our results suggest that when the at-
tribution methods better align with their boundary variants,
they can better localize the relevant features in terms of
the Loc. and EG. However, PP and Con. have weak and
even negative correlations. One possible explanation is that
the high PP and Con. of BIG and AGI compared to IG
(as shown in Table 3) may also come from the choice of
the reference points. Namely, compared to a zero vector, a
reference point on the decision boundary may better filter
out noisy features.

We end our evaluations by visually comparing the proposed
method, BIG, against all other attribution methods for the
standard ResNet50 in Fig. 3 and for the robust ResNet50
in Fig. 4, which demonstrates that BIG can easily and effi-
ciently localize features that are relevant to the prediction.
More visualizaitons can be found in the Appendix E. Taken
together, we close the loop and empirical show that standard
attributions in robust models are visually more interpretable
because they better capture the nearby decision boundaries.

6. Discussion

Baseline Sensitivity. It is natural to treat that BIG frees
users from the baseline selection in explaining non-linear
classifiers. Empirical evidence has shown that IG is sensitive
to the baseline inputs (Sturmfels et al., 2020). We compare
BIG with IG when using different baseline inputs, white or
black images. We show an example in Fig 7. For the first
two images, when using the baseline input as the opposite
color of the dog, more pixels on dogs receive non-zero attri-
bution scores. Whereas backgrounds always receive more
attribution scores when the baseline input has the same
color as the dog. This is because gig(x); x (x — Xp); (see
Def. 2.2) that greater differences in the input feature and
the baseline feature can lead to high attribution scores. The
third example further questions the readers using different
baselines in IG whether the network is using the white dog
to predict Labrador retriever. We demonstrate that
conflicts in IG caused by the sensitivity to the baseline selec-
tion can be resolved by BIG. BIG shows that the black dog
in the last row is more important for predicting Labrador
retriever and this conclusion is further validated by
our counterfactual experiment in Appendix D. Overall, the
above discussion highlights that BIG is significantly bet-
ter than IG in reducing the non-necessary sensitivity in the
baseline selection.

7. Related Work

Comparison with AGL. Our analysis suggests we need to
capture decision boundaries in order to better explain classi-
fiers, whereas a similar line of work, AGI (Pan et al., 2021)
that also involves computations of adversarial examples is
motivated to find a non-linear path that is linear in the repre-
sentation space instead of the input space compared to IG.
Therefore, AGI uses PGD to find the adversarial example
and aggregates gradients on the non-linear path generated
by the PGD search. The path PGD may introduce, as is
adopted by AGI, can be twisted, circular, and even broken
lines either due to the projection or the overlook of higher-
order terms in the derivative for efficiency reasons. We
believe such non-linearity in the path integral might not be
necessary and a simple linear path is even better, as empiri-
cally demonstrated in Table 3. We understand that finding
the exact closest decision boundary is not feasible, but our
empirical results suggest that the linear path (BIG) returns
visually sharp and quantitative better results in localizing
relevant features. Besides, a non-linear path should cause
AGI fail to meet the symmetry axiom (Sundararajan et al.,
2017) (see Appendix C for an example of the importance
of symmetry for attributions). We further summarize the
commons and differences in Table 4.
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Using Bounding boxes for Evaluations. In the evalua-
tion of the proposed methods, we choose metrics related to
bounding box over other metrics because for classification
we are interested in whether the network associate rele-
vant features with the label while other metrics (Adebayo
et al., 2018; Ancona et al., 2017; Samek et al., 2016; Wang
et al., 2020b; Yeh et al., 2019), e.g. infidelity (Yeh et al.,
2019), mainly evaluates whether output scores are faith-
fully attributed to each feature. Our idea of incorporating
boundaries into explanations may generalize to other score
attribution methods, e.g. Distributional Influence (Leino
et al., 2018) and DeepLIFT (Shrikumar et al., 2017). The
idea of using boundaries in the explanation has also been
explored by T-CAV (Kim et al., 2018), where a linear de-
cision boundary is learned for the internal activations and
associated with their proposed notion of concept.

Other View Points. When viewing our work as using
nearby boundaries as a way of exploring the local geometry
of the model’s output surface, a related line of work is Neigh-
borhoodSHAP (Ghalebikesabi et al., 2021), a local version
of SHAP (Lundberg & Lee, 2017). When viewing our as a
different use of adversarial examples, some other work fo-
cuses on counterfactual examples (semantically meaningful
adversarial examples) on the data manifold (Chang et al.,
2019; Dhurandhar et al., 2018; Goyal et al., 2019).

In summary, Ilyas et al. (2019) shows an alternative way
of explaining why robust models are more interpretable by
showing robust models usually learn robust and relevant
features, whereas our work serves as a geometrical explana-
tion to the same empirical findings in using attributions to
explain deep models.

8. Conclusion

This paper studies the relation between attributions and
adversarial robustness in terms of the alignment between at-
tribution vectors with the nearby decision boundaries, which
motivates the proposed explanation, BIG. Empirical eval-
uations on SOTA classifiers validate that our approaches
provide more concentrated, sharper and more accurate ex-
planations than existing approaches. Our idea of leveraging
boundaries to explain classifiers connects explanations with
the adversarial robustness and helps to encourage the com-
munity to improve model quality for explanation quality.
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A. Theorems and Proofs
A.1. Proof of Proposition 3.2

Proposition 3.2 Suppose that f has a (A, §)-robust saliency map gs at x, X' is the closest point on the closest decision
boundary segment to x and ||x' — x|| < §, and that n is the normal vector of that boundary segment. Then ||n — gs(x)|| <
Allx —x/|].

To compute n can be efficiently computed by taking the derivatice of the model’s output w.r.t to the point that is on the

decision boundary such that n = a)(;(x and ¥x,, € R, F(x,,) = F(x) if ||x;, — x|| < ||x — x]].

Because we assume ||x — x’|| < 4, and the model has (A, §)-robust Saliency Map, then by Def. 3.1 we have
[In = gs(x)|| < Allx — ||

A.2. Proof of Theorem 3.3

Theorem 3.3 Let m(x) = ReLU(Wx) be a one-layer network and its smoothed counterpart, m,(x), introduced by
randomized smoothing such that m,(x) = arg max.{Pr[m(x + €) = c|} where e ~ N'(0,0%I). Let g(x) be the Saliency
Map for m,(x). Given two points x,x' € R? such that m,(x) = m,(x'), we have the following statement holds:
[lg(x) — g(x")|| < X\ where X is monotonically decreasing w.r.t o.

Proof: The proof is three-fold: 1) firstly we will show that there exist a non-linear activation function Er(x) such that the
output of the smoothed ReLU network m,(X) is equivalent when replacing the ReLU activation with Er activation; 2)
secondly derive the difference between the saliency map of the network with Er activation; and 3) lastly, we show that the
difference berween g(x) and g(x'), i.e. the Saliency Map at point ., x', of the network with Er activation is bounded by \
(the expression to follow), which is monotonically decreasing w.r.t 0.

(1) Step I: Error activation (Er) function and randomized smoothing'.

Randomized Smoothing creates a smoothed model that returns whichever the label that the base classifier most likely to
return under the perturbation generated by the Gaussian noise. Now we take a look at the output of each class under the
Gaussian noise. Consider y; is the output of the i-th class of the network ReLU(Wx), that is

Yi = Ecun(0,02nReLU(W, (x + €)) 2

To simplify the notation, we denote E.xr(0,021) as E. We expand Equation (2):

y; = E [ReLU(w, x + w; €)] = E [ReLU(u + ¢)] 3)

where we denote u = w,/ x and ¢/ = w

deviation s and

€. u is a scalar and €’ follows a zero-centered univariate Gaussian with a standard

sx o 4)

This is because the dot production between the constant weight vector w; and the random vector € can be seen as a linear
combination of each dimension of € and the covariance between each dimension of e is O for the Gaussian noise used for
randomized smoothing in the literature (Cohen et al., 2019). By expanding the expectation symbol to its integral form, we
obtain:

2
Y = 3\/% / exp(— )ReLU(u +¢€')de %)

Let 7 = u + € and notice that ReLU (1) = 0if 7 < 0, the equation above can be rewritten as:

1 _ 2
Yi = orl eXp(—%)TdT (6)
1 u?
= Von exp(— % 25t [1 + Erf( \[S)} 7
¥

"We appreciate the discussion with the author Pan Kessel of (Dombrowski et al., 2019) for the derivations from Equation (4) to (6)
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where Erf is the error function defined as Erf(z) = % [ exp(—t?)dt. We therefore define an Er activation for an input
with the standard deviation s as

1 2 u u
Er(u: s) — - — |1+ Erf(—
r(u, 5) \/§7r exp( 282)8 + B |: + Er (\@8)] )]
and we show that
Yi = Ecun(0.021) [ReLU(W, (x + €))] = Er(w x; 5(0)) (19)

That is, to analyze the gradient of the output for a smoothed model w.r.t the input, we can alternatively analyze the gradient
of an equivalent Er network. We plot three examples of the Er activations in Fig. 8 for the readers to see what does the
function look like.

2) Step II: the Saliency Map for an Er network.
By the definition of Saliency Map (Def. 2.1), g(z), and the chain rule, we have:

Oy, Oy, 0
g(x) = 8?; = 8?2 a—i (Letu = w, x) (11
0
= %(Er(u; s)) - w; (12)
1 U
—2P+Eﬂ¢%ﬂ-m (13)

The transition between Equation (11) to (12) is based on the fact that the derivative of Erf(z) is % exp(—z?).

3) Step III: the difference between g(z’) and g(z) for an Er network.

U/

V2s

Because by the assumption we know that i = m, (x) = m,(x’), when analyzing the Saliency Map of the other point x’, we
still focus on the output y(x’);. Thus, the difference between Saliency Map for x, z’ therefore is computed as

_ Oyi(x) 1
Toax 2

g(x') {1 + Erf( )] cwi, U =w, % (14)

1 u’ 1 u
x") — g(x)|| =1|= |1+ Erf ]~wi{1+Erf]~wi 15
o) = g6oll = 15 |1+ ()| wi = 5 |14 Bai( | ol s
1 o’ u
— Z[Brf(——) — Brf(—)| - ||w; 16
SIE() ~ Ef( ] | a6
<1 [|Erf( AN |Erf(u)|} ||w:|| (Triangle Inequality) 17)
-2 V2s V2s ’ £ aney
We notice that the v’ is bounded because v’ = w,| x' < ||w;|| - ||x|| < ||[w:| - (||w:]| + ) and similarly for « such that

u =w,; x < ||w;|| - (||x|| + ). Because Erf function is increasing w.r.t the input and s > 0, we arrive at the following
inequality:

lg(x') — g(x)]] < A (18)

where

[wll - ([1x]] +7)

s ) - llwil| (19)

We take the absolute symbol out because the output of an Erf is positive when its input is positive. Now, given that

[|w;l||,» = ||z — 2’|| and ||x|| are constants when , the upper-bound Erf(%) - ||w;|| is monotonically increasing
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Figure 8: The graph of Er(u; s) w.r.t different standard deviations s.

as s decreases. From the Step I, we know that s « o, and here Step III shows ) is monotonically decreasing w.r.t s. Taken
together, we prove that A is monotonically decreasing w.r.t o.

Corollary 3.4 Let m(x) = ReLU (Wx) be a one-layer network and its smoothed counterpart, m, (x). Given a point z, its
closest neighbor 2’ on the decision boundary and suppose i = m,(x). If g(x), g(x’) are the Saliency Map for the model
me W.I.t class ¢ computed at = and 2/, then ||g(x) — g(x’)|] < A where A is monotonically decreasing w.r.t o.

Proof: The proof of this corollary is a direct application of Theorem 3.3 by applying it to x and x’. Namely,

[lg(x) — g(x)I| < Erf( ) - lwill (20)

V2s

where s is proportional to o.

B. Experiment Details and Additional Results
B.1. Metrics with Bounding Boxes

We will use the following extra notations in this section. Let X, Z and U be a set of indices of all pixels, a set of indices of
pixels with positive attributions, and a set of indices of pixels inside the bounding box for a target attribution map g(x). We
denote the cardinality of a set S as |S].

Localization (Loc.) (Chattopadhyay et al., 2017) evaluates the intersection of areas with the bounding box and pixels
with positive attributions.

Definition B.1 (Localization). For a given attribution map g(x), the localization score (Loc.) is defined as

1ZNU]|
|Ul+[Zn(X\U)

Loc := 21

Energy Game (EG) (Wang et al., 2020a) instead evaluates computes the portion of attribute scores within the bounding
box.

Definition B.2 (Energy Game). For a given attribution map g(x), the energy game EG is defined as

ZiGZﬁU 9(x);
EG = 2
S x max(g(x):, 0) 22

Positive Percentage (PP) evaluates the sum of positive attribute scores over the total (absolute value of) attribute scores
within the bounding box.

Definition B.3 (Positive Percentage). Let V' be a set of indices pf all pixels with negative attribution scores, for a given
attribution map g(x), the positive percentage PP is defined as

ZiEZﬂU 9(x)i
Yicznv 9(X)i = Xievau 9(%)i

PP = (23)
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Figure 9: Localizaiton performance for attributions on a standard ResNet

Concentration (Con.) evaluates the sum of weighted distances by the “mass” between the “mass” center of attri-
butions and each pixel within the bounding box. Notice that the computation of ¢, and c, can be computed with
scipy.ndimage.center_of mass. This definition encourages that pixels with high absolute value of attribution
scores to be closer to the mass center. Note that we resize the coordinates of pixels from 0 - 224 to 0 - 1 first.

Definition B.4 (Concentration). For a given attribution map g(x), the concentration Con. is defined as follws

Con. =3 §(x)i/y/(ia — €2)? + (iy — c,)? (24)

icU
where g is the normalized attribution map so that §; = g:/ >,y 9il- iz, 7, are the coordinates of the pixel and

ZieU Zl’g(x)z o ZieU 1y§(x)1

) Cy = = 25
ZieUg(X)i E ZieUg(X)i (23)

Cy =

Besides metrics related to bounding boxes, there are other metrics in the literature used to evaluate attribution methods (Ade-
bayo et al., 2018; Ancona et al., 2017; Samek et al., 2016; Wang et al., 2020b; Yeh et al., 2019). We focus on metrics that
use provided bounding boxes, as we believe that they offer a clear distinction between likely relevant features and irrelevant
ones.

B.2. Implementing Boundary Search

Our boundary search uses a pipeline of PGDs, CW and AutoPGD. Adversarial examples returned by each method are
compared with others and closer ones are returned. If an adversarial example is not found, the pipeline will return the point
from the last iteration of the first method (PGDs in our case). Hyper-parameters for each attack can be found in Table 7. The
implementation of PGDs and CW are based on Foolbox (Rauber et al., 2020; 2017) and the implementation of AutoPGD
is based on the authors’ public repository” (we only use apgd-ce and apgd-dlr losses for efficiency reasons). All
computations are done using a GPU accelerator Titan RTX with a memory size of 24 GB. Comparisons on the results of the
ensemble of these three approaches are shown in Fig. 5.

B.3. Hyper-parameters for Attribution Methods

All attributions are implemented with Captum (Kokhlikyan et al., 2020) and visualized with Trulens (Leino et al., 2021a).
For BIG and IG, we use 20 intermediate points between the baseline and the input and the interpolation method is set to

2https ://github.com/fra3l/auto-attack
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Figure 10: Localizaiton performance for attributions on a robust ResNet (¢5]3.0)

riemann_trapezoid. For AGI, we base on the authors’ public repository®. The choice of hyper-paramters follow the
default choice from the authors for ImageNet and we make minimal changes to adapt them to CIFAR-10 (see Fig. ??).

To  visualize the  attribution  map, we use the HeatmapVisualizer with Dblur=10,
normalization_type="signed_max" and default values for other keyword arguments from Trulens.

B.4. Detailed Results on Localization Metrics

We show the average scores for each localizaiton metrics in Sec. 5. We also show the boxplots of the scores for each
localization metrics in Fig. 9 for the standard ResNet50 model and Fig. 10 for the robust ResNet50 (¢2|3.0). All higher
scores are better results.

B.5. Additional Comparison with AGI

We additionally compare the localization ability of relevant features between BIG and AGI if we only use PGDs to return
closest boundary points, that is we recursively increase the norm bound and perform PGD attack until the first time we
succeed to find an adversarial point. We denote this approach as BIGp. Note that BIGp is still different from AGI by the type
of the path, i.e. lines and curves, over which the integral is performed. That is AGI also aggregates the path integral starting
from a set of adversarial points found by the targeted PGD attack, where BIGp starts from the adversarial pointed returned
by untargeted PGD attack. We use the same parameters for both PGD and AGI from Fig. 7 and we run the experiments over
the same dataset used in Sec. 5.1. For reference, we also include the results of IG. The results are shown in Table. 8. We
notice that after removing CW and AutoPGD, BIGp actually performs better than AGI, and even slightly better than BIG for
the robust model. One reason to explain the tiny improvement from BIGp might be that for a robust network, the gradient at
each iteration of the PGD attack is more informative and less noisy compared to a standard model so that the attack can
better approximate the closest decision boundary. The results in Table. 8 therefore demonstrates that BIG and BIGp are able
to localize relevant features better than AGI.

B.6. Details and Discussions around GT-Loc

Besides the localization metrics used in Sec. 5.1, we discuss an additional localization metric frequently used for evaluating
attention and CAM-based explanations: Topl-Loc (Choe & Shim, 2019; Aggarwal et al., 2020). Top1-Loc is calculated
as follows: an instance is considered as Top1-Loc correct given an attribution if 1) the prediction is Top1-correct; and 2)
GT-Loc correct — namely, the IoU of the ground-truth bounding box and area highlighted by the attribution is more than

*https://github.com/pd90506/AGI
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Pipeline ‘ Avg Distance ‘ Success Rate
(ImageNet) Standard ResNet50
PGDs 0.549 72.1%
+ CW 0.548 72.1%
+ AutoPGD 0.548 72.1%
(ImageNet) Robust ResNet50 (¢2]3.0)
PGDs 2.870 74.1%
+CW 2.617 74.1%
+ AutoPGD 2.617 74.1%
(ImageNet) Robust ResNet50 (/. |4/255)
PGDs 2.385 98.9%
+CW 2.058 98.9%
+ AutoPGD 2.058 98.9%
(ImageNet) Robust ResNet50 (/. |8/255)
PGDs 2.378 99.1%
+CW 1.949 99.1%
+ AutoPGD 1.949 99.1%
(CIFAR-10) Standard ResNet50
PGDs 0.412 98.7%
+ CW 0.120 98.7%
+ AutoPGD 0.120 98.7%
(CIFAR-10) Robust ResNet50 (¢5]0.5)
PGDs 1.288 99.9%
+CW 1.096 99.9%
+ AutoPGD 1.096 99.9%

Table 5: Pipeline: the methods used for boundary search. Avg Distance: the average {5 distance between the input to the
boundary. Success Rate: the percentage when the pipeline returns an adversarial example. Time: per-instance time with a
batch size of 64. We are using much bigger es for robust models, so the success rates are higher than a standard model.
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Figure 11: {5 distances in logarithm between SG and BSG against different standard deviations ¢ of the Gaussian noise.
Results are computed on ResNet50.
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CIFAR10 standard robust

€ 0.5 1.0
topk 10 10
max iters 15 15

ImageNet standard robust

€ 2.0 6.0
topk 15 15
max iters 15 15

Table 6: Hyper-parameters used for AGI. We use the default parameteres from the authors’ implementation for ImageNet
and make minimal changes for CIFAR-10.

black 1G white 1G BIG

Figure 12: Full results of Fig. 7 in Sec. 6. For the third, fourth and fifth example, we compute the attribution scores towards
the prediction of the third example, Labrador retriever. IG with black or white attributions show that masked
area contribute a lot to the prediction while BIG “accurately” locate the relevant features in the image with the network’s
prediction.

50 %. When only using the images that are Top1-correct, Top1-Loc reduces to GT-Loc. Top1-Loc is different from other
localization metrics used for evaluating attribution methods because it takes the prediction behavior of the target model
into the account, which in general is not an axiom when motivating a gradient-based attribution method. In the previous
evaluations, we are only interested in images that the model makes correct Top1 predictions, in this section we will use the
same images that are true-positives. In this case, Top1-Loc accuracy reduces to GT-Loc accuracy, and so we measure the
GT-Loc directly. To determine the which part of the image is highlighted by the attribution, we compute a threshold for
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CIFAR10 standard robust
€s [0.2,0.4,0.6,0.8,1.0] [0.25,0.5,1.0,1.5,2.0]
max steps 100 100
step size 5e-3 Se-3
PGDs ImageNet ‘ standard robust
€s [36/255.,64/255.,0.3,0.5,0.7,0.9,1.1]  [1.0,2.0, 3.0, 4.0, 5.0, 6.0]
max steps 100 100
step size adaptive adaptive
CIFARIO | standard robust
€ 1.0 2.0
max steps 100 100
step size le-3 le-3
Ccw ImageNet ‘ standard robust
€ 1.0 6.0
max steps 100 100
step size le-2 Se-2
CIFARI10 standard robust
€ 1.0 2.0
max steps 100 100
step size 6e-3 1.6e-2
AutoPGD ImageNet standard robust
€ 1.1 6.0
max steps 100 100
step size 2.3e-2 1.2e-1

Table 7: Hyper-parameters used for adversarial attacks. adapt ive means the actual step size is determined by 2 * € / max
steps.

each attribution map and a pixel is considered within the highlight region if and only if the attribution score is higher than
the threshold. For a given attribution map, we consider a threshold value ¢ as the g-th percentile for the absolute values
of attribution scores. We plot the GT-Loc accuracy against g in Fig. 13. We notice that attention-based and CAM-based
attributions usually produce a cloud-like visualization because of the blurring technique or upsample layers used to compute
the results. To ensure GT-Loc will work from gradient-based attributions we are interested in this paper, we also include
results (Fig. 14) where we apply a Gaussian Blur (¢ = 3.0) to the attribution map first before calculating the GT-Loc
accuracy. The results are aggreated over 1500 images from ImageNette on a standard ResNet50 and a robust ResNet50,
respectively. Higher GT-Loc scores are better. Note that Fig. 13 is a collection of Fig. 5 and 6 from Sec. 5.

Behavior of BIG. The results in Fig. 13 and 14 show that BIG is better than all other attributions on standard models
excluding SG and uniformly better including SG on a robust model. Before we provide some explanations about the
behaviors of SG (green curves) on standard models in the next paragraph, we also observe that: 1) blurring only changes the
GT-Loc scores but not the overral rankings across attributions; 2) a threshold corresponding to a percentile near 40% provides
the best GT-Loc scores for all methods; 3) gradient-based attributions generally provide worse GT-Loc (or Top1-Loc)
scores compared to CAM-based and attention-based approaches in the literature (Choe & Shim, 2019; Aggarwal et al.,
2020), which is not surprising because gradient-based approaches are usually axiomatically-justified to be faithful to the
model. Therefore, it is expected that the model will more or less learn spurious features from the input, which makes the
gradient-based attributions noisy than attention and CAM-based ones. Therefore, when localizing relevant features, users
may want to consult activation-based approaches, i.e. CAMs, but when debugging and ensuring the network learns less
spurious and irrelevant features, users should instead use gradient-based approaches because of the axioms behind these



Robust Models Are More Interpretable Because Attributions Look Normal

0.35
0.30
0.25

30.204

ul

© 0.15 -
0.10

0.05 A

0.00 1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Threshold Threshold

Figure 13: GT-Loc scores for different attributions. GT-Loc measures the portion of instances where the IoUs of between
the groudtruth bounding box and the bounding box generated by thresholded the attributions are greater than 0.5. The
x-axis is the percentile used to threshold an attribution map to determine the highlighted area and y-axis is the GT-Loc
score aggregated over all the instances. Left: Standard ResNet50. Right: Robust ResNet50(¢5]0.3). Note that Fig. 13 is a
collection of Fig. 5 and 6 from Sec. 5.
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Figure 14: GT-Loc scores for different attributions when applying a Gaussian blur kernel (¢ = 3.0) to the attribution maps
before thresholding the attribution maps. Left: Standard ResNet50. Right: Robust ResNet50(¢2|0.3)

approaches.

Behavior of SG in Standard Models. SG is uniformly better than all other approaches in terms of the Gt-Loc accuracies
on a standard model, which is surprising but not totally unexpected. We beleive the reason behind this result is that, SG is
actually the gradient from a smoothed counterpart of the standard model (see discussions near Theorem 3.3), which is more
robust. Therefore, it does not seem to be an apple-to-apple comparison between SG and other approaches because it can be
less faithful to the standard model — namely SG is more faithful to the smoothed classifier. That is very likely why SG is
worse than BIG in Fig. 13b and 14b when the smoothing technique becomes marginal for improving the robustness for a
model that has already been robustly trained.

B.7. Sanity Check for BIG

We perform Sanity Checks for BIG using Rank Order Correlations between the absolute values of BIGs when randomizing
the weights from the top layer to the bottom (Adebayo et al., 2018). To ensure the output of the model does not become
NaN, when randomizing the weights of each trainable layer, we ensure that we replace the weight matrix with a random
matrix with the same norm as follows.

def _randomized_models() :
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Model ~ Metrics | BIG BIGp AGI IG

Loc. 038 038 033 0.34

standard EG 054 054 048 05
PP 087 087 058 0.51

Con. 435 435 401 3.97

Loc. 039 039 039 033

45]3.0 EG 074 076 0.64 0.65
PP 092 096 0.88 0.65

Con. 503 510 432 437

Table 8: Comparisons among BIG, BIGp (BIG using PGD only to run the boundary search), AGI and IG.

all_parameters = []
for param in model.parameters () :
all parameters.append (param)
for step, param in enumerate (all_parameters[::-1]):
random_w = torch.randn_like (param)
## we make sure the randomized weights have the same norm to prevent the network to
output nan results
param.data = torch.nn.parameter.Parameter (
random_w * torch.norm(param.data) / torch.norm(random_w.data))
if step % num_blocks == 0 or step == len(all_parameters) :
yield model

For each iteration, we continuously replace randomized 5 layers in the reversed sequence returned by
model .parameters () and the results are plotted in Fig. 15. We consider BIG passes the sanity check as the re-
sults are similar compared with the top row of Fig 4 in (Adebayo et al., 2018).

B.8. Additional Experiment with Smoothed Gradient

Theorem 3.3 demonstrates that for a one-layer network, as we increase the standard deviation o of the Gaussian distribution
used for creating the smoothed model m, (Cohen et al., 2019), the difference between the saliency map and the boundary-
based saliency map computed in m, is bounded by a constant A, which is monotonically decreasing w.r.t o. That is,
greater o will produce a smoothed model, where the saliency map (SM) explanation of m, is a good approximation for the
boundary-based saliency map (BSM). However, as the depth of the deep network increases, a closed-form analysis may be
difficult to derive. Therefore, in this section, we aim to empirically validate that the take-away from Theorem 3.3 should
generalize to deeper networks.

Computing SM for m,. One practical issue to compute any gradient-related explanations for the smoothed model m,, is
that m,, is defined in an integral form, which can not be directly built with t £ . keras. However, Theorem B.5 shows that
the smoothed gradient of the original model m is equivalent to the saliency map of the smoothed model m,,. Namely, the
order of smoothing and integral is exchangeable when computing the gradient.

Theorem B.5 (Proposition 1 from (Wang et al., 2020c)).  Suppose a model f(x) satisfies max | f(x)| < oo. For Smoothed
Gradient gsg(x), we have

gsolx) = L2 DE) 6)

where q(x) = N'(0,02I) and ® denotes the convolution operation.

Computing BSM for m,. Another practical issue is computing the decision boundary for a smoothed model m, is
not defined in a deterministic way as randomized smoothing provides a probabilistic guarantee. In this paper, we do the
following steps to approximate the decision boundary of a smoothed model. To generate the adversarial examples for the
smoothed classifier of ResNet50 with randomized smoothing, we need to compute back-propagation through the noises.
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Figure 15: The rank order correlations of the absolute values of BIGs against the number of layers (counting from top to
bottom) where trainable weights are replaced with random matrices.

The noise sampler is usually not accessible to the attacker who wants to fool a model with randomized smoothing. However,
our goal in this section is not to reproduce the attack with similar setup in practice, instead, what we are after is the point
on the boundary. We therefore do the noise sampling prior to run PGD attack, and we use the same noise across all the
instances. The steps are listed as follows:

1. We use numpy . random. randn as the sampler for Gaussian noise with its random seed set to 2020. We use 50
random noises per instance.

2. In PGD attack, we aggregate the gradients of all 50 random inputs before we take a regular step to update the input.
3. We set ¢ = 3.0 and we run at most 40 iterations with a step size of 2 x €/40.

4. The early stop criteria for the loop of PGD is that when less than 10% of all randomized points have the original
prediction.

5. When computing Smooth Gradient for the original points or for the adversarial points, we use the same random noise
that we generated to approximate the smoothed classifier.

Results. We run the experiment with 500 images from ImageNet on ResNet50 as this computation is significantly more
expensive than previous experiments. We compute the /5 distances between SM and BSM obtained from the steps above for
several values as shown in Fig. 11. Notably, the trend of the log difference against the standard deviation o used for the
Gaussian noise validates that the qualitative meaning of Theorem 3.3 holds even for large networks. That is, when the model
becomes more smoothed, saliency map explanation is a good approximation for the boundary-based saliency map.

C. Symmetry of Attribution Methods

Sundararajan et al. (2017) prove that a linear path is the only path integral that satisifes symmetry; that is, when two features’
orders are changed for a network that is not using any order information from the input, their attribution scores should not
change. One simple way to show the importance of symmetry by the following example and we refer Sundararajan et al.
(2017) to readers for more analysis.

Example 1. Consider a function f(z,y) = min(x,y) and to attribute the output of f to the inputs at z = 1,y =
we consider a baseline z = 0,y = 0. An example non-linear path from the baseline to the input can be (z = 0,y =
0) = (x =1,y =0) = (x = 1,y = 1). On this path, f(z,y) = min(z,y) = y after the point (z = 1,y = 0);
therefore, gradient integral will return O for the attribution score of x and 1 for y (we ignore the infinitesimal part of
(x =0,y =0) = (z =1,y = 0)). Similarly, when choosing a path (+t =0,y =0) = (z =0,y =1) = (z =1,y = 1),
we find x is more important. Only the linear path will return 1 for both variables in this case.

—
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D. Counterfactual Analysis in the Baseline Selection

The discussion in Sec. 6 shows an example where there are two dogs in the image. IG with black baseline shows that the
body of the white dog is also useful to the model to predict its label and the black dog is a mix: part of the black dog has
positive attributions and the rest is negatively contribute to the prediction. However, our proposed method BIG clearly shows
that the most important part is the black dog and then comes to the white dog. To validate where the model is actually using
the white dog, we manually remove the black dog or the white dog from the image and see if the model retain its prediction.
The result is shown in Fig. 12. Clearly, when removing the black dog, the model changes its prediction from Labrador
retriever to English foxhound while removing the white dog does not change the prediction. This result helps to
convince the reader that BIG is more reliable than IG with black baseline in this case as a more faithful explanation to the
classification result for this instance.

E. Additional Visualizations for BIG

More visualizations comparing BIG with other attributions can be found in Fig. 16 and 17. We show several examples in
Fig. 18 when there are more than one objects in the input and we explain the model’s Top1 prediction, where we show that
BIG is able to localize the objects that are actually relevant to the predicted label.
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Figure 16: Visualizations of different attributions for a standard ResNet50
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Figure 17: Visualizations of different attributions for a robust (¢5]3.0) ResNet50
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Figure 18: Visualizations of different attributions for a standard ResNet50 where there are usually more than one objects in
the input. We also label each input with the Top 1 prediction made by the classifier.



