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Abstract

Vision transformers (ViTs), which have demon-
strated a state-of-the-art performance in image
classification, can also visualize global interpreta-
tions through attention-based contributions. How-
ever, the complexity of the model makes it diffi-
cult to interpret the decision-making process, and
the ambiguity of the attention maps can cause in-
correct correlations between image patches. In
this study, we propose a new ViT neural tree
decoder (ViT-NeT). A ViT acts as a backbone,
and to solve its limitations, the output contex-
tual image patches are applied to the proposed
NeT. The NeT aims to accurately classify fine-
grained objects with similar inter-class correla-
tions and different intra-class correlations. In ad-
dition, it describes the decision-making process
through a tree structure and prototype and en-
ables a visual interpretation of the results. The
proposed ViT-NeT is designed to not only im-
prove the classification performance but also pro-
vide a human-friendly interpretation, which is
effective in resolving the trade-off between per-
formance and interpretability. We compared the
performance of ViT-NeT with other state-of-art
methods using widely used fine-grained visual cat-
egorization benchmark datasets and experimen-
tally proved that the proposed method is supe-
rior in terms of the classification performance
and interpretability. The code and models are
publicly available at https://github.com/
jumpsnack/ViT-NeT.

1. Introduction

Transformer structures, which have recently led to success-
ful results in natural language processing (NLP), have also
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Figure 1. A ViT-NeT is a novel way of using a neural tree de-
coder to grant intrinsic interpretability to the ViT. In particular,
the proposed NeT supports the interpretation of the sequential
decision-making procedure for a given image. At each tree node,
attention is concentrated on the glitter rump, green throat, and tail
covert, and the image is classified as a “Bird” through a specific
node path. ViT-NeT is compatible with any ViT methods and
datasets for fine-grained visual classification.

been applied to computer vision. In the same manner in
which NLP divides a sentence into several words and allows
the transformer to learn the association between each word,
a vision transformer (ViT) (Dosovitskiy et al., 2020) learns
the association between image patches. Consequently, it has
been proven that the ViT structure performs better in the
field of vision than a convolutional neural network (CNN)
structure. However, because the ViT and CNN approaches
are based on a black-box learning mechanism, there are lim-
itations in terms of the interpretability of the model. Thus,
demand is increasing for information on the model inter-
pretability, an explanation of the results, and the model
performance.

In the field of computer vision, interpretability can be
broadly divided into two approaches, i.e., those that pro-
vide attention (e.g., heat map and saliency) to the prediction
results and those using the interpretability (transparency) of
the model itself. First, attention based explainable models
(Samek et al., 2017; Selvaraju et al., 2017; Chattopadhay
et al., 2018; Itaya et al., 2021) provide saliency to the image
pixels to explain why a predictive model classifies objects
into specific classes. However, these methods have limita-
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tions in that a person must infer the description of the model
from the attention map again and cannot know the decision-
making process for why the model emphasizes such pixels.
Second, interpretable models (Chen & Guestrin, 2016; Ke
et al., 2017; Dorogush et al., 2018; Lundberg et al., 2020;
Kim et al., 2021) are structures in which the model itself is
transparent, or the decision-making step is understandable.
The interpretability of a model is closely related to its com-
plexity and performance. From the perspective of complex-
ity, the decision tree originally designed as an interpretable
structure has an extremely simple make up, and therefore
has an advantage in terms of the interpretability compared
to the deep neural network (DNN). To overcome the low
interpretability of DNNs while maintaining a high perfor-
mance on fine-grained images, some algorithms (Chen et al.,
2019a; Ji et al., 2020; Wan et al., 2021; Nauta et al., 2021)
have attempted to combine DNNs with decision trees. Such
algorithms provide an attention map to the user for reasons
of classification as well as explanations of the classification
process. However, these interpretable models still have lim-
itations in explaining the decision-making processes, and
there is a trade-off between interpretability and performance.
For example, ProtoTree (Nauta et al., 2021) achieved the
highest fine-grained image classification performance using
an ensemble of a DNN and a decision tree; however, the
interpretability was eventually lowered again owing to the
learning complexity of the ensemble model.

In this study, we propose an interpretable vision transformer
neural tree (ViT-NeT) that supports excellent fine-grained
visual categorization (FGVC) and provides model inter-
pretability with a simultaneous visual explanation. ViT-NeT
is composed of a combination of a ViT encoder and soft
neural tree decoder (NeT). Although the role of ViT is to
achieve a high level classification performance using high-
quality local and global features as well as the attention
information, a neural tree acts as a discriminant decoder
that interprets the decision-making process of the ViT and
routes the images hierarchically. Therefore, ViT-NeT can
largely solve the interpretability and performance trade-off
that occurs in the existing ensemble models. Figure 1 shows
the approximate operating structure of ViT-NeT. Figure il-
lustrates which image patch receives attention for each node,
how the image patch is branched for each node, and finally,
the fine-grained classification.

This study is the first to combine ViT with neural decision
trees to achieve a high interpretability and classification
performance for fine-grained images. The contributions of
the ViT-NeT proposed in this study are as follows:

» Unlike existing interpretable models, a high perfor-
mance on fine-grained image classification is achieved
competitively with state-of-the-art (SOTA) CNNs and
ViTs, and an analysis is possible without a trade-off

between performance and interpretability.

* The attention weight of a vanilla ViT supports only im-
age interpretability, such as an attention map, whereas
the proposed method makes the decision model itself
transparent, enabling the decision-making process and
image explanation at the same time.

* Molecule prototyping allows a simultaneous interpre-
tation of the positive and negative components of data
at the nodes of the neural tree.

* We present qualitative and quantitative evidence for
the excellent interpretability of the decision-making of
the ViT-NeT model for various test data.

2. Related Works

FGVC with ViTs Until recently, visual classification was
the most fundamental field of deep-learning research; how-
ever, the performance of SOTA models has already reached
its limit. Furthermore, fine-grained categorization, such as
distinguishing visually similar animals and plants, is a chal-
lenging problem that goes beyond the limits of both human
and machine performance. This limitation arises because
most images have both a high inter-class correlation and
a low intra-class correlation. Similar to other vision tasks,
the FGVC task is driven by a CNN, which has achieved
the highest benchmark performance. As various ViT-based
methods (Dosovitskiy et al., 2020; Touvron et al., 2021; Liu
et al., 2021) have recently outperformed CNNs and demon-
strated a SOTA performance, ViT has begun to be applied
to FGVC (He et al., 2021; Zhang et al., 2021). For example,
TransFG (He et al., 2021) exploited attention-based patch
distillation and contrastive loss to extract robust local image
patches and discriminative regions. AFTrans (Zhang et al.,
2021) proposed a selective attention collection module that
operates using a Siamese architecture that shares the weight
parameters. However, because the attention module of the
transformer is applied based on the implicit assumption that
it would be extracted from a local highly discriminative part,
there is a limitation in that the reliability of an attention map
generated during the training process will be ambiguous.

Visual explanation with ViTs With the improving perfor-
mances of CNNs, research on visual explanations is being
actively conducted to secure the reliability necessary for its
practical application. Thus far, visual explanation contribu-
tions in computer vision (Binder et al., 2016; Ribeiro et al.,
2016; Selvaraju et al., 2017; Shrikumar et al., 2017; Lund-
berg & Lee, 2017; Chattopadhay et al., 2018; Itaya et al.,
2021) have mostly focused on CNNs. Although ViTs are
emerging as a new learning paradigm, few practical studies
have been conducted on visual explanations. A common
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Figure 2. Overview of our ViT-NeT model formed using (a) the hierarchical transformer encoder, (b) neural tree decoder, (c) contextual

transformer module, and (d) leaf node.

way to explain the output of a ViT is to visualize the at-
tention maps. Because the attention maps created through
self-attention are applied using only the query and key, there
is a disadvantage in that the overall operation of the model
is not considered. The major issue with the attention-based
ViT methods is that the attention of the previous layer is
combined nonlinearly with the attention of the next layer. To
solve this problem, an attention rollout (Abnar & Zuidema,
2020) combining attention maps and assuming linearity has
been proposed; however, it is difficult to avoid ambiguity in
the attention maps, which may lead to incorrect correlations
between image patches. Although CNNs and ViT-based vi-
sual explanations aim to emphasize a meaningful area, it is
impossible to explain the decision-making process; in addi-
tion, they have limitations in that they support only a global
interpretation. Therefore, for true visual explanations, we
require a new model that is capable of image interpretabil-
ity and at the same time can simultaneously explain the
decision-making process.

Model interpretability with neural trees A decision tree
is a powerful way to solve specific tasks at a single fea-
ture level. Although a decision tree architecture has in-
trinsic interpretability, it has a fatal flaw making it unsuit-
able for computer vision tasks. To overcome this hurdle,
many studies (Hinton et al., 2015; Kontschieder et al., 2015;
Balestriero, 2017; Tanno et al., 2019; Ji et al., 2020; Alaniz
et al., 2021; Wan et al., 2021; Nauta et al., 2021) have in-
troduced differentiable neural trees compatible with various
vision tasks. ANTs (Tanno et al., 2019) exploits an adap-
tively configurable neural tree mechanism with trainable
tree components, that is, nodes, edges, and leaves. However,
it has a limited interpretation and is unsuitable for large-
scale datasets. Although NBDT (Wan et al., 2021) applies
a sequentially interpretable neural tree, it must use param-

eters induced from trained CNNs and requires WordNet
(Miller, 1995) to define the interpretable tree architecture.
With ProtoTree (Nauta et al., 2021), a new method is intro-
duced for building an interpretable tree that can visualize
decision-making with prototypes. Nonetheless, it has cer-
tain disadvantages in that the best performance only occurs
when it is a formed ensemble, the ensemble of the tree even-
tually reduces the interpretability, and the training scheme
is complex.

3. Approach

Although attention weights from a stack of ViT layers pro-
vide interpretable clues, existing interpretable models based
on ViT (Dosovitskiy et al., 2020; Touvron et al., 2021; Liu
et al., 2021) only provide post-hoc explanations. Although
intrinsic explanations are ideal cases for interpretable mod-
els, it is generally the case that the more interpretable the
model structure is, the less accuracy it achieves. To achieve
a better balance between the interpretability and accuracy
of the model, we propose a novel, structurally interpretable,
and visually explainable ViT-NeT model by combining a
hierarchical transformer task with a neural tree decoder.

An overview of the proposed ViT-NeT is shown in Figure 2.
First, we use a hierarchical vision-based transformer (Liu
et al., 2021) among the ViT methods as a backbone for a fea-
ture representation. This method can consider the variations
in small and large objects in an image simultaneously using
a shifted window. Next, by changing the local level feature
prototyping (Chen et al., 2018; Nauta et al., 2021) into a
more human-friendly approach, the system was designed to
improve the fine-grained classification performance while
easily interpreting the decision-making process and enabling
a visual explanation.
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Algorithm 1 Training a ViT-NeT
Input: Training set 7, number of epochs F, hierarchical
transformer encoder f, depth of tree d, encoder parameter
0, decoder parameter w

Initialize T = init tree(d; w)
Initialize leaf node set . = )
Get leaf node ids from T and assign it into L

function traverse(i, z;)

if - € L then

return £(z;)

end if

Rioxi(zi) = [N (2]

Rioxit1(zi) =1 — [N (z:)]

laistrip = traverse(2 x i, &; 2xi(2:))

Tdistrip = traverse(2 X i + 1,&; axi+1(2i))

return R; 25 (2;) X lgistriv + Ri2xi+1(Zi) X Fdistrib
end function

forec {1,..,E} do
randomly split 7 into B mini-batches
for (mb, yb) S {Tl, ooy Ty oeny TB} do
zi = f(x1;0)
U = traverse(1,z%)
compute loss(4y, Yp)
update parameter 6 and w with AdamW
end for
end for

Hierarchical transformer encoder ViT, which applies a
transformer to image classification, has recently been pro-
posed, and various attempts have been made to fill the gap
between ViT and a CNN. Among them, the Swin Trans-
former (Liu et al., 2021) uses a shifted window mechanism
to induce a powerful expression for dealing with the various
problems of early ViT, such as inductive bias and compu-
tational complexity. The single-window approach used in
conventional transformers exhibits some weaknesses in var-
ious perturbed images, which, unlike a CNN, must maintain
an inductive bias. In the same way as a traditional CNN
ensures robustness in many different cases, the Swin trans-
former inherits hierarchical feature encoding, similar to a
feature pyramid, from the CNN framework. A Swin trans-
former uses a shift window to change the window size and
process multiple patches with self-attention. Because the
size of the patch included in the window varies, an attention
map was created to easily detect small and large objects. The
self-attention of a vanilla transformer applies a quadratic
number of computations on the input image, whereas the
Swin transformer conducts a linear computation on the im-
age. This has the advantage of not only increasing the size
of the model with a relatively small number of computa-

tions but also increasing the inference speed. We used the
Swin transformer as a backbone model to extract the atten-
tion map features for fine-grained classification and a visual
explanation of the images.

Interpretable neural tree decoder Existing interpretable
methods are simple and effective but have limitations in that
they provide only one option between explainability and
performance. To achieve a better trade-off between accuracy
and interpretability, we propose a NeT that uses a perfect
binary tree and a differentiable routing mechanism. The
proposed NeT consists of sets of nodes N (+), leaves L(-),
and edges &; ;(-) between a parent node ¢ and a child node j.
Because the model uses a perfect binary tree, each internal
node has two child nodes: Asy; and Nay;.1. Given the
encoder output z; = f(x; ), the proposed NeT predicts the
final class labels ¢ in a soft-decision manner. Algorithm 1
introduces the training procedure through a recursive tree
traversing ViT-NeT.

The proposed NeT of the ViT-NeT model is aimed specifi-
cally at classifying objects that have similar inter-class cor-
relations and dissimilar intra-class correlations. Although
a global classification can be applied based on relatively
simple global cues, fine-grained classification requires dis-
criminant regions of subdivided categories that are highly
localized. In this study, to capture a small discriminant fea-
ture, prototypes were applied to condensed image patches.

Branch routing The NeT uses prototypes to find discrimi-
native regions among the image patches. When the discrimi-
native feature is sampled, the routing direction is determined
such that the samples are sent to the child in the differen-
tiable routing module. Specifically, each internal node cor-
responds to a trainable prototype P; € R71xWixD Each
prototype is a trainable tensor that is used to measure the
squared L? routing score \; € [0, 1] against the reshaped
image patches z € REXWxD .

N(zi) = log((lz—Pi[3+1)/ (2= Ps[|3+¢)),

ey

The routing score A (z;) of the i-th internal node gives
the similarity between the nearest condensed image patch
7z € R™P and prototype P;. To define the similarity be-
tween a prototype and the image patches in each node, in-
spired by (Chen et al., 2018), we use a convolutional opera-
tion to measure the distance, where each prototype operates
as a convolutional kernel over z and derives the distance
between the prototype and its current z. To induce sim-
ilarity from the distance, we use a logarithmic similarity
measure in Equation (1), which has a high similarity when
the distance is closer to its receptive patch. Following Equa-
tion (1), we define the routing scores for each child node as

max
zEpatches(z;)
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Riaxi(zi) = [N (2] and Ri2xit1(zi) = 1 — [N (2:)]5.

Contextual transformer enhancing A contextual trans-
former module is used to enforce the model to capture dis-
criminative patches. Depending on the fact that the em-
pirical receptive field is much smaller than the theoretical
receptive field, the discriminative representation should be
formed by a larger receptive field. In this regard, we focused
on enhancing the global features into tree edges across all
discretized image patches. As shown in Figure 2 (c), the
contextual transformer module (CTM) provides a better de-
scription of the object by aggregating the global context
to the patches of each position. Specifically, given that
image patches are squeezed along the side channel dimen-
sions to 1-dim, softmax is applied on the patch dimensions.
This condensed context matrix is multiplied by the given
image patches to assign global context information. Sub-
sequently, the matrix is projected, followed by a couple
of fully connected layers with GELU and layer normal-
ization. Finally, the enhanced contextual image patches
z; using Equation (2) are fed into the corresponding child
nodes/leaves.

zZ; = &-J(zi) = CTM(ZZ), (2)

Label prediction Each leaf in the tree decoder corresponds
to the leaf prediction module £(-) for predicting the class
probability over the K classes that need to be learned. Let
p(z1) be the accumulated routing score of the encoder out-
put z; passing from the root node to the [-th leaf node in a
set of edges of a specific path p;. The accumulated routing
score, p(z1), is calculated using Equation (3).

pzi)= [ Ris(Eis(z), 3)

(i,3)€py

Each leaf prediction module is formed through global av-
erage pooling (GAP), global max pooling (GMP), a global
fully connected layer (GFC) with shared weights, a local
fully connected layer (LFC), and layer normalization (LN),
as shown in Figure 2 (d). The formula for the leaf prediction
module is as follows:

L(z,z) = LN(LFC(GMP(z,))+ GFC(GAP(f(x;0)))).
@

In Equation (4), whereas the leaf node learns the local view
with a given enhanced context patch and LFC, the GFC fuels
the leaf to learn its representation from a global contextual
view.

The final prediction ¢ is computed as the summation of all
leaf predictions £ multiplied by the accumulated routing
scores py, such that

9= o(Llz,x)) - pi(z), ©)

el

The final prediction g is optimized using a negative logarith-
mic likelihood loss with the ground truth label y.

4. Experiments

This section introduces the detailed setup, including the
datasets and training hyper-parameters. A quantitative anal-
ysis was conducted, followed by ablation studies and quali-
tative analyses.

4.1. Experiment Setup

Datasets We evaluated our ViT-NeT on three FGVC
datasets: CUB-200-2011 (Wah et al., 2011), Stanford Cars
(Krause et al., 2013), and Stanford Dogs (Khosla et al.,
2011), and compared our model with previous SOTA mod-
els in terms of accuracy and interpretability.

Implementation details ViT-NeT was implemented in Py-
Torch. Our hierarchical transformer encoder f contains
Swin transformer layers (Liu et al., 2021) pre-trained us-
ing ImageNet-22K. First, we resized the input images to
a pixel resolution of 448 x 448 through random cropping
for training and center cropping for testing. Following the
procedure of (Liu et al., 2021), we split the image into small
size 4 patches and set the group window size to 14. An
AdamW optimizer was employed with a momentum of 0.9.
The learning rate was initialized as 2e-5 for CUB-200-2011,
2e-4 for Stanford Dogs, and 2e-3 for Stanford Cars. The
batch size was set to 16. Training and testing were con-
ducted using four NVIDIA Tesla V100 32GB GPUs with
APEX.

4.2. Quantitative Analysis

Evaluation on the CUB-200-2011 Dataset The CUB-200-
2011 (Wah et al., 2011) dataset consists of 11,788 images
in 200 classes with 5,994 training images and 5,794 testing
images. Table 1 shows the comparison results with various
SOTA methods for both the CNN and ViT regimes. Com-
pared to the best result of AFTrans (Zhang et al., 2021), the
proposed ViT-NeTs show better results and outweighs all
CNN-based methods on the CUB-200-2011 dataset. When
the backbone network of ViT-NeT is replaced with base
data-efficient image transformers (DeiT-B)(Touvron et al.,
2021), the performance is degraded by 1.5% in comparison
to the base Swin transformer (SwinT-B). When compared
to the base transformer models DeiT and SwinT, the pro-
posed neural tree decoder fuels an overall performance of
approximately 2.5% and 3.2%, respectively. From the re-
sults, we can confirm that for the CUB-200-2011 dataset,
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Table 1. Top-1 Accuracy comparison on CUB-200-2011.

Table 2. Top-1 Accuracy comparison on Stanford Dogs.

Method Backbone Top-1 (%) Method Backbone Top-1 (%)
ProtoTreef (Nauta et al., 2021)  ResNet-50 82.2 MaxEnt (Dubey et al., 2018) DenseNet-161 83.6
STN (Jaderberg et al., 2015) Inception 84.1 FDL (Liu et al., 2020) DenseNet-161 84.9
ResNet-50 (He et al., 2016) ResNet-50 84.5 DFL-CNN (Wang et al., 2018)  ResNet-50 84.9
MA-CNN (Zheng et al., 2017)  VGG-19 86.5 RA-CNN (Fu et al., 2017) VGG-19 87.3
DCL (Chen et al., 2019b) VGG-16 86.9 Cross-X (Luo et al., 2019) ResNet-50 88.9
TASN (Zheng et al., 2019b) VGG-19 87.1 SEF (Luo et al., 2020) ResNet-50 88.8
DFL-CNN (Wang et al., 2018) ResNet-50 87.4 API-Net (Zhuang et al., 2020)  ResNet-101 90.3
NTS-Net (Yang et al., 2018) ResNet-101 87.9 DeiT (Touvron et al., 2021) DeiTB 915
DCL (Chen et al., 2019b) ResNet-50 87.8 . . .
SwinT (Liu et al., 2021) SwinT-B 88.0
TASN (Zheng et al., 2019b) ResNet-50 87.9 .
TransFG (He et al., 2021) ViT-B/16 90.4
DBTNet (Zheng et al., 2019a) ResNet-101 88.1 AFTrans (Zhang et al., 2021) VIT-B/16 916
FDL (Liu et al., 2020) DenseNet-161 89.1 getal, :
PMG (Du et al., 2020) ResNet-50 89.6 ViT-NeT DeiT-B 93.6
API-Net (Zhuang et al., 2020) DenseNet-161 90.0 ViT-NeT SwinT-B 90.3
StackedLSTM (Ge et al., 2019)  GoogleNet 90.4
Dei.T (TOL}vron etal., 2021) Dei.T—B 87.6 Table 3. Top-1 Accuracy comparison on Stanford Cars.
SwinT (Liu et al., 2021) SwinT-B 88.4
TransFG (He et al., 2021) ViT-B/16 90.9
AFTrans (Zhang et al., 2021) ViT-B/16 91.5 Method Backbone Top-1 (%)
ViT-NeT DeiT-B 90.1 ProtoTreef (Nauta et al., 2021)  ResNet-50 86.6
ViT-NeT SwinT-B 91.6 RA-CNN (Fu et al., 2017) VGG-19 92.5
T 224 image input MaxEnt (Dubey et al., 2018) DenseNet-161 93.0
DFL-CNN (Wang et al., 2018)  ResNet-50 93.1
when the proposed NeT is combined with SwinT, it shows SEF (Luo et al., 2020) ResNet-50 94.0
the best fine-grained classification performance compared FDL (Liu et al., 2020) DenseNet-161 942
g p p Cross-X (Luo et al., 2019) ResNet-50 94.6
to the CNN-based methods as well as base transformers. MMAL (Balikas et al., 2017) ResNet-50 95.0
. PMG (Du et al., 2020) ResNet-50 95.1
Evaluation on the Stanford Dogs Dataset The Stanford API-Net (Zhuang et al., 2020)  DenseNet-161 953
Dogs dataset (Khosla et al., 2011) is a fine-grained dataset - -
of 100 different breeds formed by 20,580 images, which g@ﬁ,ﬁi‘gr;n;t ;1(')’221())21) IS)\:III;E',I{?B 34212
is fonnc?d by 12,000 images for training apd 8,5.80 images TransFG (He et al., 2021) ViT-B/16 941
for testing. The evaluation results are listed in Table 2. AFTrans (Zhang et al., 2021) ViT-B/16 95.0
Our V1T—NeT outperformed most of the comparison meth- ViT-NeT DeiT-B 047
ods, particularly on the CNN backbone. Moreover, the ViT-NeT SwinT-B 95.0

performance of our model is on par with the attention-based
variants (He et al., 2021; Zhang et al., 2021) and exceeds
the accuracy of the black-box or base ViT-based methods.
Base DeiT and SwinT provide a lower performance than
when combined with our NeT decoder, DeiT-B+NeT and
SwinT-B+NeT, i.e., 91.5% versus 93.6%, and 88.0% versus
90.3%, respectively. When our ViT-NeT model uses SwinT-
B as a backbone, the top-1 accuracy is slightly diminished
by 3.3% compared to the DeiT-B backbone. This is due to
the problem that base SwinT’s classification performance
is somewhat inferior in images with a complex background.
However, when combined with DeiT, it significantly outper-
forms the base DeiT as well as SOTA AFTrans. As a result,
the proposed NeT proved that the fine-grained classification
performance can be improved by using the delivered con-
densed image patches with a neural tree and a differentiable
routing mechanism regardless of the type of ViT.

Evaluation on the Stanford Cars Dataset The Stanford
Cars dataset (Krause et al., 2013) contains 16,185 images in

T 224 image input

196 classes, including 8,144 images for training and 8,041
images for testing. As shown in Table 3, the proposed ViT-
NeT based on SwinT-B showed a top-1 accuracy of 95.0%.
This accuracy is equivalent to that of AFTrans (Zhang et al.,
2021), which achieves a SOTA performance among the ViT-
based methods. The CNN-based SOTA method API-Net
(Zhuang et al., 2020) employs a complex DenseNet-161
and an anti-perturbation inference design with a genera-
tive prediction strategy to exploit the discriminative fea-
tures, achieving a top-1 accuracy of 95.3%. However, this
method has a disadvantage in that it takes a long time to
learn and test because of the complex network. By com-
bining a NeT, ViT-NeT improves the performance of the
base encoders, DeiT and SwinT. Combining proposed NeT
model with DeiT-B and SwinT-B, we found that the perfor-
mance improved by 2.3% and 0.5% compared to base DeiT
and SwinT, respectively.
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Table 4. Ablation study between pooling methods on CUB-200-
2011 dataset.

Pooling  Top-1 (%)
GAP 91.4
GMP 91.6

Table 5. Ablation study on the contextual transformer module on
CUB-200-2011 dataset.

Backbone Use CTM  Top-1 (%)
. X 89.3
DeiT-B J 90.1
. X 90.7
SwinT-B % 91.6

In experiments on three datasets, we commonly found that
performance could be significantly improved by combin-
ing NeT with base ViTs. When the Swin transformer was
used as the backbone of NeT, the overall performance was
high, but the Stanford Dogs dataset showed slightly lower
performance. Therefore, it is necessary to improve the per-
formance of NeT’s CMT and leaf prediction module so that
it can consistently achieve high performance regardless of
the backbone and dataset type.

4.3. Ablation Study

Effectiveness of tree depth We graphed the performance
changes using the tree depth, which is a key factor defining
a tree architecture. To validate the effectiveness of the tree
height, we defined five variants with different depths {3, 4,
3, 6, 7} of trees on the CUB-200-2011, Stanford Dogs and
Stanford Cars datasets. As shown in Figure 3, the proposed
ViT-NeT achieves the best performance when the depth of
the tree is set to 4 in CUB-200-2011 dataset. In the case
of a depth of 3, the model has a limited capacity, which is
insufficient for representing subtle differences in the dataset.
Conversely, when the depth of the tree is set to over 5, an
excessive number of trainable parameters for the dataset lead
the model to an overfitting, as shown in Figure 4. This issue
can also be validated through a sequential analysis of the
decision-making process, and it can be confirmed that the
activations are derived from the overlapping characteristics
of the given image.

In the case of the Stanford Cars and Stanford Dogs datasets,
a significant performance was shown when the tree depth
was 5 or more. In the case of the Stanford Cars dataset, there
was no significant difference in the performance depending
on the tree depth, and the best performance occurred at a
depth of 6. Similarly, in the Stanford Dogs dataset, the
best performance was achieved at a depth of 6, although the
performance difference was larger with the tree depth. From
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Figure 3. Top-1 Accuracy of a ViT-NeT with effect of the depth
of the neural tree decoder on CUB-200-2011, Stanford Dogs and
Stanford Cars.
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Figure 4. Prototype responses of a specific decision path in the NeT
with the depth of 5. As the tree depth increases, model overfitting
occurs, resulting in identical prototype responses at the tip of the
bird’s wing.

the experiment results, we can see that the tree depth of NeT
should differ according to the complexity of the dataset, and
that increasing the depth does not improve the performance
but rather leads to an overfitting.

Effectiveness of leaf nodes Leaf nodes play an important
role in projecting routed patches into subcategorical spaces.
In Section 3, we suggest that each leaf node be configured
with the local projection and global guidance projection.
To allow the leaves to learn robust condensed patches, we
considered two options: GAP and GMP. From the com-
parison results presented in Table 4, we found that using
GMP leads to the top-1 accuracy (0.2%), beating out the
GAP, on the CUB-200-2011 dataset. We identified that the
GMP operation can gather more contextual information by
focusing on the maximum response of the patches rather
than encouraging a leaf to focus on the average responses
between patches.

Effectiveness of contextual transformer module We de-
signed a neural tree decoder using a CTM at all tree edges.
We believe that the CTM enhances the global context in-
formation between discretized patches. To evaluate the
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Figure 5. Visualized local interpretations showing sequential decision-making on randomly sampled images. The proposed NeT found

tails, beaks, wings, feathers, claws, and eyes in the given images.

effectiveness of the CTM, we conducted a performance
comparison on two backbone networks with two variants,
i.e., w/CTM and wo/CTM. As shown in Table 5, when us-
ing DeiT as the backbone with the CTM of ViT-NeT, the
top-1 accuracy is increased from 89.3% to 90.1%. Similarly,
when SwinT is used as the backbone with the CTM of ViT-
NeT, the top-1 accuracy increases from 90.7% to 91.6%.
We confirm that the CTM can fuse various types of global
context information within the condensed image patches for
achieving a better performance.

4.4. Qualitative Analysis

We present an intrinsically interpretable NeT method. To
validate the interpretability of the decision-making, we pro-
vide qualitative evaluations that show visualized sequential
decision-making against randomly sampled images. Fig-
ure 5 shows the validation results of the decision path for a
given image. To visualize a practical decision-making pro-
cedure, we redefine the decision routing in a hard decision
manner, which greedily feeds condensed image patches to
a specific child node with a larger routing score. As shown
in this figure, The proposed NeT finds local discriminative
regions in a human-friendly manner. Similar to (Chen et al.,
2018; Nauta et al., 2021), some results attempt to interpret

the background. Owing to the nature of the dataset, it is
difficult to state that it is completely incorrect because the
species of bird may be divided according to the habitat. For
example, because auklets live in the sea, there may be a lot
of water or stones in the background, whereas flycatchers
mainly feed on insects, and thus they may be surrounded
by trees or grass. We found that the results of the prototype
trained at the root node from the proposed model are some-
what different from the results of the leaf. In the root node,
there are cases in which the prototype mainly focuses on the
color or texture, which may divide a large feature space into
sub-decision regions owing to the nature of the binary tree.

5. Conclusion

A CNN and ViT, which are leading SOTA approaches in im-
age classification, both have a flaw in that they are black-box
models that cannot clearly explain or interpret the predic-
tion results. The ViT-NeT proposed in this paper uses the
ViT backbone to extract high-quality local and global fea-
tures as well as attention information, and applies a new
NeT designed to present the decision-making and image
explanation for the classification process. Although existing
fine-grained visual categorization methods have a trade-off
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between interpretability and performance, the proposed ViT-
NeT achieves a newly demonstrated SOTA performance and
excellent interpretability on the benchmark dataset without
any trade-offs.
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